Graphs

Johan Montelius
KTH
HT23
a linked list

- each node has atmost one link
a linked list
- each node has atmost one link
- add, remove, lookup
- each node has atmost one link
- add, remove, lookup
- sorted, unsorted
- each node has atmost one link
- add, remove, lookup
- sorted, unsorted
- access to last node
- cirkular?
a tree
- each node has atmost two links
- each node has atmost two links
- one root node

a tree

- each node has atmost two links
- one root node
- nodes at level n can only have links to level $n+1$
- ergo: no cirkular paths
- add, remove, lookup

a tree

- each node has atmost two links
- one root node
- nodes at level n can only have links to level $n+1$
- ergo: no cirkular paths
- add, remove, lookup
- sorted, unsorted

a tree

- each node has atmost two links
- one root node
- nodes at level n can only have links to level $n+1$
- ergo: no cirkular paths
- add, remove, lookup
- sorted, unsorted
- implemented using an array?

a tree

- each node has atmost two links
- one root node
- nodes at level n can only have links to level $n+1$
- ergo: no cirkular paths
- add, remove, lookup
- sorted, unsorted
- implemented using an array?
let's relax the rules
relaxing the rules

relaxing the rules

relaxing the rules

relaxing the rules

DAG

DAG

DAG

DAG

rivers

Is a river a DAG?

rivers

Is a river a DAG?
Is a river a tree?

rivers

Is a river a DAG?
Is a river a tree?

Bifurcation

Directed graph

Directed graph

Directed graph

undirectional graph

trains in Sweden

represent the graph

```
public class City {
    String name;
    Connection[] neigbours;
}
```

```
public class Connection {
    City city;
    Integer distance;
}
```


the graph

the naive solution

What is the shortest path from Malmö to Stockholm?

the naive solution

What is the shortest path from Malmö to Stockholm?
Set a maximum distance of the path.

the naive solution

What is the shortest path from Malmö to Stockholm?
Set a maximum distance of the path.

- Do we have more time left?

the naive solution

What is the shortest path from Malmö to Stockholm?
Set a maximum distance of the path.

- Do we have more time left?
- Are we at the destination?

the naive solution

What is the shortest path from Malmö to Stockholm?
Set a maximum distance of the path.

- Do we have more time left?
- Are we at the destination?
- For each of the direct connected cites:

the naive solution

What is the shortest path from Malmö to Stockholm?
Set a maximum distance of the path.

- Do we have more time left?
- Are we at the destination?
- For each of the direct connected cites:
- set the maximum distance allowed and

the naive solution

What is the shortest path from Malmö to Stockholm?
Set a maximum distance of the path.

- Do we have more time left?
- Are we at the destination?
- For each of the direct connected cites:
- set the maximum distance allowed and
- find the shortest path from the city to the destination.

the naive solution

What is the shortest path from Malmö to Stockholm?
Set a maximum distance of the path.

- Do we have more time left?
- Are we at the destination?
- For each of the direct connected cites:
- set the maximum distance allowed and
- find the shortest path from the city to the destination.
- Return the shortest distance found (or null).

the naive solution

What is the shortest path from Malmö to Stockholm?
Set a maximum distance of the path.

- Do we have more time left?
- Are we at the destination?
- For each of the direct connected cites:
- set the maximum distance allowed and
- find the shortest path from the city to the destination.
- Return the shortest distance found (or null).
the path solution

the path solution

As before but keep a trail of cities that you have past.

the path solution

As before but keep a trail of cities that you have past.

- Do we have more time left?

the path solution

As before but keep a trail of cities that you have past.

- Do we have more time left?
- Are we at the destination?

the path solution

As before but keep a trail of cities that you have past.

- Do we have more time left?
- Are we at the destination?
- Is the city in the path?

the path solution

As before but keep a trail of cities that you have past.

- Do we have more time left?
- Are we at the destination?
- Is the city in the path?

improvement

improvement

If you have found a path with a distance d,

improvement

If you have found a path with a distance d, then any other path should be shorter than the found.
assignment

assignment

- build the graph from specificaton

assignment

- build the graph from specificaton
- naive search given max distance

assignment

- build the graph from specificaton
- naive search given max distance
- preventing loops using path

assignment

- build the graph from specificaton
- naive search given max distance
- preventing loops using path
- improve search by remember found distance

assignment

- build the graph from specificaton
- naive search given max distance
- preventing loops using path
- improve search by remember found distance
- realizing that something needs to be done

