
Dijkstra

Johan Montelius
KTH

HT22

1 / 21

undirectional graph

A

B C

D E G

H I

K

2 / 21

trains in Sweden

Malmö Lund Hässleholm

ÅstorpHelsingborg

Kristianstad Karlskrona

Halmstad Varberg

Alvesta

...

...

...

13

3530

36

23 39

39

29

26
38

95

A weighted graph.

3 / 21

trains in Sweden

Malmö Lund Hässleholm

ÅstorpHelsingborg

Kristianstad Karlskrona

Halmstad Varberg

Alvesta

...

...

...
13

3530

36

23 39

39

29

26
38

95

A weighted graph.

3 / 21

trains in Sweden

Malmö Lund Hässleholm

ÅstorpHelsingborg

Kristianstad Karlskrona

Halmstad Varberg

Alvesta

...

...

...
13

3530

36

23 39

39

29

26
38

95

A weighted graph.

3 / 21

trains in Sweden

Malmö Lund Hässleholm

ÅstorpHelsingborg

Kristianstad

Halmstad Varberg

Alvesta

Karlskrona Emmaboda

Göteborg

Nässjö

Värnamo

Kalmar

Jönköping

Mjölby Linköping

Norrköping

Herrljunga Falköping

Trollhättan

Uddevalla Strömstad

4 / 21

represent the graph

public class City {
String name;
Connection [] neigbours ;

:
}

public class Connection {
City city;
Integer distance ;

:
}

5 / 21

the graph
Stockholm

51

Uppsala

90

Västerås

6 / 21

the naive solution

What is the shortest path from Malmö to Stockholm?

Set a maximum distance of the path.
Do we have more time left?
Are we at the destination?
For each of the direct connected cites:

set the maximum distance allowed and
find the shortest path from the city to the destination.

Return the shortest distance found (or null).

7 / 21

the naive solution

What is the shortest path from Malmö to Stockholm?
Set a maximum distance of the path.

Do we have more time left?
Are we at the destination?
For each of the direct connected cites:

set the maximum distance allowed and
find the shortest path from the city to the destination.

Return the shortest distance found (or null).

7 / 21

the naive solution

What is the shortest path from Malmö to Stockholm?
Set a maximum distance of the path.

Do we have more time left?

Are we at the destination?
For each of the direct connected cites:

set the maximum distance allowed and
find the shortest path from the city to the destination.

Return the shortest distance found (or null).

7 / 21

the naive solution

What is the shortest path from Malmö to Stockholm?
Set a maximum distance of the path.

Do we have more time left?
Are we at the destination?

For each of the direct connected cites:
set the maximum distance allowed and
find the shortest path from the city to the destination.

Return the shortest distance found (or null).

7 / 21

the naive solution

What is the shortest path from Malmö to Stockholm?
Set a maximum distance of the path.

Do we have more time left?
Are we at the destination?
For each of the direct connected cites:

set the maximum distance allowed and
find the shortest path from the city to the destination.

Return the shortest distance found (or null).

7 / 21

the naive solution

What is the shortest path from Malmö to Stockholm?
Set a maximum distance of the path.

Do we have more time left?
Are we at the destination?
For each of the direct connected cites:

set the maximum distance allowed and

find the shortest path from the city to the destination.
Return the shortest distance found (or null).

7 / 21

the naive solution

What is the shortest path from Malmö to Stockholm?
Set a maximum distance of the path.

Do we have more time left?
Are we at the destination?
For each of the direct connected cites:

set the maximum distance allowed and
find the shortest path from the city to the destination.

Return the shortest distance found (or null).

7 / 21

the naive solution

What is the shortest path from Malmö to Stockholm?
Set a maximum distance of the path.

Do we have more time left?
Are we at the destination?
For each of the direct connected cites:

set the maximum distance allowed and
find the shortest path from the city to the destination.

Return the shortest distance found (or null).

7 / 21

the naive solution

What is the shortest path from Malmö to Stockholm?
Set a maximum distance of the path.

Do we have more time left?
Are we at the destination?
For each of the direct connected cites:

set the maximum distance allowed and
find the shortest path from the city to the destination.

Return the shortest distance found (or null).

7 / 21

the path solution

As before but keep a trail of cities that you have past.
Do we have more time left?
Are we at the destination?
Is the city in the path?
:

8 / 21

the path solution

As before but keep a trail of cities that you have past.

Do we have more time left?
Are we at the destination?
Is the city in the path?
:

8 / 21

the path solution

As before but keep a trail of cities that you have past.
Do we have more time left?

Are we at the destination?
Is the city in the path?
:

8 / 21

the path solution

As before but keep a trail of cities that you have past.
Do we have more time left?
Are we at the destination?

Is the city in the path?
:

8 / 21

the path solution

As before but keep a trail of cities that you have past.
Do we have more time left?
Are we at the destination?
Is the city in the path?

:

8 / 21

the path solution

As before but keep a trail of cities that you have past.
Do we have more time left?
Are we at the destination?
Is the city in the path?
:

8 / 21

improvement

If you have found a path with a distance d ,
then any other path should be shorter than the found.

9 / 21

improvement

If you have found a path with a distance d ,

then any other path should be shorter than the found.

9 / 21

improvement

If you have found a path with a distance d ,
then any other path should be shorter than the found.

9 / 21

bounded depth first search

If we had a DAG - we would be able to use a depth first search
directly (might not be efficient but it works),

Since we have cirkular paths we need a trick to avoid looping.

Set a maximum "time traveled".

Works for railroads - does it work for all weighted graphs?

10 / 21

bounded depth first search

If we had a DAG - we would be able to use a depth first search
directly (might not be efficient but it works),

Since we have cirkular paths we need a trick to avoid looping.

Set a maximum "time traveled".

Works for railroads - does it work for all weighted graphs?

10 / 21

bounded depth first search

If we had a DAG - we would be able to use a depth first search
directly (might not be efficient but it works),

Since we have cirkular paths we need a trick to avoid looping.

Set a maximum "time traveled".

Works for railroads - does it work for all weighted graphs?

10 / 21

bounded depth first search

If we had a DAG - we would be able to use a depth first search
directly (might not be efficient but it works),

Since we have cirkular paths we need a trick to avoid looping.

Set a maximum "time traveled".

Works for railroads - does it work for all weighted graphs?

10 / 21

bounded depth first search

If we had a DAG - we would be able to use a depth first search
directly (might not be efficient but it works),

Since we have cirkular paths we need a trick to avoid looping.

Set a maximum "time traveled".

Works for railroads - does it work for all weighted graphs?

10 / 21

iterative deepening

Do a bounded depth first search - if no path is found, try increasing
the bound.

Strategy - start with bound 30 min, if not found increase to 60 min,
if not found increas to 90 min

If the minimum path is found at 300 min, how much time have we
wasted.

11 / 21

iterative deepening

Do a bounded depth first search - if no path is found, try increasing
the bound.

Strategy - start with bound 30 min, if not found increase to 60 min,
if not found increas to 90 min

If the minimum path is found at 300 min, how much time have we
wasted.

11 / 21

iterative deepening

Do a bounded depth first search - if no path is found, try increasing
the bound.

Strategy - start with bound 30 min, if not found increase to 60 min,
if not found increas to 90 min

If the minimum path is found at 300 min, how much time have we
wasted.

11 / 21

iterative deepening

Do a bounded depth first search - if no path is found, try increasing
the bound.

Strategy - start with bound 30 min, if not found increase to 60 min,
if not found increas to 90 min

If the minimum path is found at 300 min, how much time have we
wasted.

11 / 21

iterative deepening

Do a bounded depth first search - if no path is found, try increasing
the bound.

Strategy - start with bound 30 min, if not found increase to 60 min,
if not found increas to 90 min

If the minimum path is found at 300 min, how much time have we
wasted.

11 / 21

avoid circular paths

More bookkeeping - keep a trail of cities and don’t go back, or

... hava a party!

12 / 21

avoid circular paths

More bookkeeping - keep a trail of cities and don’t go back, or

... hava a party!

12 / 21

avoid circular paths

More bookkeeping - keep a trail of cities and don’t go back, or

... hava a party!

12 / 21

paint the town red

Malmö Lund Hässleholm

ÅstorpHelsingborg

Halmstad

Värnamo

Alvesta

Malmö Lund Hässleholm

ÅstorpHelsingborgHelsingborg

Halmstad

Värnamo

Alvesta

Varberg

Kristianstad Karlskrona Emmaboda

Göteborg

Nässjö

Kalmar

Jönköping

Mjölby Linköping

Norrköping

Herrljunga Falköping

Trollhättan

Uddevalla Strömstad

13 / 21

paint the town red

Malmö

Lund Hässleholm

ÅstorpHelsingborg

Halmstad

Värnamo

AlvestaMalmö

Lund Hässleholm

ÅstorpHelsingborgHelsingborg

Halmstad

Värnamo

Alvesta

Varberg

Kristianstad Karlskrona Emmaboda

Göteborg

Nässjö

Kalmar

Jönköping

Mjölby Linköping

Norrköping

Herrljunga Falköping

Trollhättan

Uddevalla Strömstad

13 / 21

paint the town red

Malmö Lund

Hässleholm

ÅstorpHelsingborg

Halmstad

Värnamo

AlvestaMalmö Lund

Hässleholm

ÅstorpHelsingborgHelsingborg

Halmstad

Värnamo

Alvesta

Varberg

Kristianstad Karlskrona Emmaboda

Göteborg

Nässjö

Kalmar

Jönköping

Mjölby Linköping

Norrköping

Herrljunga Falköping

Trollhättan

Uddevalla Strömstad

13 / 21

paint the town red

Malmö Lund Hässleholm

ÅstorpHelsingborg

Halmstad

Värnamo

AlvestaMalmö Lund Hässleholm

ÅstorpHelsingborgHelsingborg

Halmstad

Värnamo

Alvesta

Varberg

Kristianstad Karlskrona Emmaboda

Göteborg

Nässjö

Kalmar

Jönköping

Mjölby Linköping

Norrköping

Herrljunga Falköping

Trollhättan

Uddevalla Strömstad

13 / 21

paint the town red

Malmö Lund Hässleholm

Åstorp

Helsingborg

Halmstad

Värnamo

AlvestaMalmö Lund Hässleholm

Åstorp

HelsingborgHelsingborg

Halmstad

Värnamo

Alvesta

Varberg

Kristianstad Karlskrona Emmaboda

Göteborg

Nässjö

Kalmar

Jönköping

Mjölby Linköping

Norrköping

Herrljunga Falköping

Trollhättan

Uddevalla Strömstad

13 / 21

paint the town red

Malmö Lund Hässleholm

ÅstorpHelsingborg

Halmstad

Värnamo

AlvestaMalmö Lund Hässleholm

ÅstorpHelsingborg

Helsingborg

Halmstad

Värnamo

Alvesta

Varberg

Kristianstad Karlskrona Emmaboda

Göteborg

Nässjö

Kalmar

Jönköping

Mjölby Linköping

Norrköping

Herrljunga Falköping

Trollhättan

Uddevalla Strömstad

13 / 21

paint the town red

Malmö Lund Hässleholm

ÅstorpHelsingborg

Halmstad

Värnamo

AlvestaMalmö Lund Hässleholm

Åstorp

Helsingborg

Helsingborg

Halmstad

Värnamo

Alvesta

Varberg

Kristianstad Karlskrona Emmaboda

Göteborg

Nässjö

Kalmar

Jönköping

Mjölby Linköping

Norrköping

Herrljunga Falköping

Trollhättan

Uddevalla Strömstad

13 / 21

paint the town red

Malmö Lund Hässleholm

ÅstorpHelsingborg

Halmstad

Värnamo

AlvestaMalmö Lund Hässleholm

Åstorp

Helsingborg

Helsingborg

Halmstad

Värnamo

Alvesta

Varberg

Kristianstad Karlskrona Emmaboda

Göteborg

Nässjö

Kalmar

Jönköping

Mjölby Linköping

Norrköping

Herrljunga Falköping

Trollhättan

Uddevalla Strömstad

13 / 21

paint the town red

Malmö Lund Hässleholm

ÅstorpHelsingborg

Halmstad

Värnamo

AlvestaMalmö Lund Hässleholm

Åstorp

Helsingborg

Helsingborg

Halmstad

Värnamo

Alvesta

Varberg

Kristianstad Karlskrona Emmaboda

Göteborg

Nässjö

Kalmar

Jönköping

Mjölby Linköping

Norrköping

Herrljunga Falköping

Trollhättan

Uddevalla Strömstad

13 / 21

paint the town red

Malmö Lund Hässleholm

ÅstorpHelsingborg

Halmstad

Värnamo

AlvestaMalmö Lund Hässleholm

Åstorp

Helsingborg

Helsingborg

Halmstad

Värnamo

Alvesta

Varberg

Kristianstad Karlskrona Emmaboda

Göteborg

Nässjö

Kalmar

Jönköping

Mjölby Linköping

Norrköping

Herrljunga Falköping

Trollhättan

Uddevalla Strömstad

13 / 21

a search tree

Malmö

Lund

ÅstorpHelsingborgMalmö Hässleholm

Lund ÅstorpLund Halmstad Hässleholm Lund Helsingborg Lund Åstorp Alvesta Kritanstad

14 / 21

avoiding circular paths

Malmö

Lund

ÅstorpHelsingborg Hässleholm

Åstorp Halmstad Hässleholm Helsingborg Åstorp Alvesta Kritanstad

15 / 21

move slowly forward

-

0

-

1313

-

49

-

48

-

4343 48

-

87

49

-

-

75

87

75

-

106

87

-

186

-

116

-

-

-

-

-

- - -

-

-

-

- -

13

35
30

36

23

39

39

29

99

26

38

39

74

44

39

53

103

80

95 44

33

50

39 59

65

34

39

29

16

201

24

45

16 / 21

move slowly forward

-

0 -

1313

-

49

-

48

-

4343 48

-

87

49

-

-

75

87

75

-

106

87

-

186

-

116

-

-

-

-

-

- - -

-

-

-

- -

13

35
30

36

23

39

39

29

99

26

38

39

74

44

39

53

103

80

95 44

33

50

39 59

65

34

39

29

16

201

24

45

16 / 21

move slowly forward

-

0

-

13

13

-

49

-

48

-

4343 48

-

87

49

-

-

75

87

75

-

106

87

-

186

-

116

-

-

-

-

-

- - -

-

-

-

- -

13

35
30

36

23

39

39

29

99

26

38

39

74

44

39

53

103

80

95 44

33

50

39 59

65

34

39

29

16

201

24

45

16 / 21

move slowly forward

-

0

-

1313 -

49

-

48

-

4343 48

-

87

49

-

-

75

87

75

-

106

87

-

186

-

116

-

-

-

-

-

- - -

-

-

-

- -

13

35
30

36

23

39

39

29

99

26

38

39

74

44

39

53

103

80

95 44

33

50

39 59

65

34

39

29

16

201

24

45

16 / 21

move slowly forward

-

0

-

1313

-

49

-

48

-

43

43 48

-

87

49

-

-

75

87

75

-

106

87

-

186

-

116

-

-

-

-

-

- - -

-

-

-

- -

13

35
30

36

23

39

39

29

99

26

38

39

74

44

39

53

103

80

95 44

33

50

39 59

65

34

39

29

16

201

24

45

16 / 21

move slowly forward

-

0

-

1313

-

49

-

48

-43

43

48

-

87

49

-

-

75

87

75

-

106

87

-

186

-

116

-

-

-

-

-

- - -

-

-

-

- -

13

35
30

36

23

39

39

29

99

26

38

39

74

44

39

53

103

80

95 44

33

50

39 59

65

34

39

29

16

201

24

45

16 / 21

move slowly forward

-

0

-

1313

-

49

-48-43

43 48

-

87

49

-

-

75

87

75

-

106

87

-

186

-

116

-

-

-

-

-

- - -

-

-

-

- -

13

35
30

36

23

39

39

29

99

26

38

39

74

44

39

53

103

80

95 44

33

50

39 59

65

34

39

29

16

201

24

45

16 / 21

move slowly forward

-

0

-

1313

-

49

-48-43

43 48

-

87

49

-

-

75

87

75

-

106

87

-

186

-

116

-

-

-

-

-

- - -

-

-

-

- -

13

35
30

36

23

39

39

29

99

26

38

39

74

44

39

53

103

80

95 44

33

50

39 59

65

34

39

29

16

201

24

45

16 / 21

move slowly forward

-

0

-

1313

-49

-48-43

43 48

-

87

49

-

-

75

87

75

-

106

87

-

186

-

116

-

-

-

-

-

- - -

-

-

-

- -

13

35
30

36

23

39

39

29

99

26

38

39

74

44

39

53

103

80

95 44

33

50

39 59

65

34

39

29

16

201

24

45

16 / 21

move slowly forward

-

0

-

1313

-49

-48-43

43 48

-

87

49

-

-

75

87

75

-

106

87

-

186

-

116

-

-

-

-

-

- - -

-

-

-

- -

13

35
30

36

23

39

39

29

99

26

38

39

74

44

39

53

103

80

95 44

33

50

39 59

65

34

39

29

16

201

24

45

16 / 21

move slowly forward

-

0

-

1313

-49

-48-43

43 48

-

87

49

-

-

75

87

75 -

106

87

-

186

-

116

-

-

-

-

-

- - -

-

-

-

- -

13

35
30

36

23

39

39

29

99

26

38

39

74

44

39

53

103

80

95 44

33

50

39 59

65

34

39

29

16

201

24

45

16 / 21

move slowly forward

-

0

-

1313

-49

-48-43

43 48

-

87

49

-

-

75

87

75

-

106

87

-

186

-

116

-

-

-

-

-

- - -

-

-

-

- -

13

35
30

36

23

39

39

29

99

26

38

39

74

44

39

53

103

80

95 44

33

50

39 59

65

34

39

29

16

201

24

45

16 / 21

move slowly forward

-

0

-

1313

-49

-48-43

43 48

-87

49

-

-

75

87

75

-

106

87

-

186

-

116

-

-

-

-

-

- - -

-

-

-

- -

13

35
30

36

23

39

39

29

99

26

38

39

74

44

39

53

103

80

95 44

33

50

39 59

65

34

39

29

16

201

24

45

16 / 21

move slowly forward

-

0

-

1313

-49

-48-43

43 48

-87

49

-

-

75

87

75

-

106

87

-

186

-

116

-

-

-

-

-

- - -

-

-

-

- -

13

35
30

36

23

39

39

29

99

26

38

39

74

44

39

53

103

80

95 44

33

50

39 59

65

34

39

29

16

201

24

45

16 / 21

Dijkstra’s shortest path

Malmö Lund Hässleholm

ÅstorpHelsingborg

Halmstad

Alvesta

Värnamo

Kristianstad Karlskrona

13
35

30

36

Queue

Shortest:

Malmö-0

Malmö-0

Lund-13

Lund-13

Helsingborg-43

Åstorp-48

Hässleholm-49

Helsingborg-43

Åstorp-48

Hässleholm-49

17 / 21

Dijkstra’s shortest path

Malmö Lund Hässleholm

ÅstorpHelsingborg

Halmstad

Alvesta

Värnamo

Kristianstad Karlskrona

13
35

30

36

Queue

Shortest:

Malmö-0

Malmö-0

Lund-13

Lund-13

Helsingborg-43

Åstorp-48

Hässleholm-49

Helsingborg-43

Åstorp-48

Hässleholm-49

17 / 21

Dijkstra’s shortest path

Malmö Lund Hässleholm

ÅstorpHelsingborg

Halmstad

Alvesta

Värnamo

Kristianstad Karlskrona

13
35

30

36

Queue

Shortest:

Malmö-0

Malmö-0

Lund-13

Lund-13

Helsingborg-43

Åstorp-48

Hässleholm-49

Helsingborg-43

Åstorp-48

Hässleholm-49

17 / 21

Dijkstra’s shortest path

Malmö Lund Hässleholm

ÅstorpHelsingborg

Halmstad

Alvesta

Värnamo

Kristianstad Karlskrona

13
35

30

36

Queue

Shortest:

Malmö-0

Malmö-0

Lund-13

Lund-13

Helsingborg-43

Åstorp-48

Hässleholm-49

Helsingborg-43

Åstorp-48

Hässleholm-49

17 / 21

Dijkstra’s shortest path

Malmö Lund Hässleholm

ÅstorpHelsingborg

Halmstad

Alvesta

Värnamo

Kristianstad Karlskrona

13
35

30

36

Queue

Shortest:

Malmö-0

Malmö-0

Lund-13

Lund-13

Helsingborg-43

Åstorp-48

Hässleholm-49

Helsingborg-43

Åstorp-48

Hässleholm-49

17 / 21

Dijkstra’s shortest path

Malmö Lund Hässleholm

ÅstorpHelsingborg

Halmstad

Alvesta

Värnamo

Kristianstad Karlskrona

13
35

30

36

Queue

Shortest:

Malmö-0

Malmö-0

Lund-13

Lund-13

Helsingborg-43

Åstorp-48

Hässleholm-49

Helsingborg-43

Åstorp-48

Hässleholm-49

17 / 21

Dijkstra’s shortest path

Malmö Lund Hässleholm

ÅstorpHelsingborg

Halmstad

Alvesta

Värnamo

Kristianstad Karlskrona

13
35

30

36

Queue

Shortest:

Malmö-0

Malmö-0

Lund-13

Lund-13

Helsingborg-43

Åstorp-48

Hässleholm-49

Helsingborg-43

Åstorp-48

Hässleholm-49

17 / 21

the algorithm - invariants

Cities in the "shortest found" list are done, there is no shorter
path.
If a city is in the front of the queue we have found the shortes
distance to the city.

18 / 21

the algorithm - invariants

Cities in the "shortest found" list are done, there is no shorter
path.

If a city is in the front of the queue we have found the shortes
distance to the city.

18 / 21

the algorithm - invariants

Cities in the "shortest found" list are done, there is no shorter
path.
If a city is in the front of the queue we have found the shortes
distance to the city.

18 / 21

the algorithm - the operation

Place the source city in the queue with distance 0.

Remove the first city from the queue and
place it in the "shortest found" list.
For each of the connections of the city:
update, or add, the queue entry of that city.

Could it be that we vilolate the invariants?

19 / 21

the algorithm - the operation

Place the source city in the queue with distance 0.

Remove the first city from the queue and
place it in the "shortest found" list.
For each of the connections of the city:
update, or add, the queue entry of that city.

Could it be that we vilolate the invariants?

19 / 21

the algorithm - the operation

Place the source city in the queue with distance 0.

Remove the first city from the queue and

place it in the "shortest found" list.
For each of the connections of the city:
update, or add, the queue entry of that city.

Could it be that we vilolate the invariants?

19 / 21

the algorithm - the operation

Place the source city in the queue with distance 0.

Remove the first city from the queue and
place it in the "shortest found" list.

For each of the connections of the city:
update, or add, the queue entry of that city.

Could it be that we vilolate the invariants?

19 / 21

the algorithm - the operation

Place the source city in the queue with distance 0.

Remove the first city from the queue and
place it in the "shortest found" list.
For each of the connections of the city:
update, or add, the queue entry of that city.

Could it be that we vilolate the invariants?

19 / 21

the algorithm - the operation

Place the source city in the queue with distance 0.

Remove the first city from the queue and
place it in the "shortest found" list.
For each of the connections of the city:
update, or add, the queue entry of that city.

Could it be that we vilolate the invariants?

19 / 21

shortest path

So you found the shortest distanc, where is the path?

20 / 21

shortest path

So you found the shortest distanc, where is the path?

20 / 21

runtime complexity

In each iteration, one city moves from the queue to the
"shortest found" list.

When all cities are in the found list, we are done.
When a city is moved, then:

find connecting cities and
add cities to queue if not in the found list.

21 / 21

runtime complexity

In each iteration, one city moves from the queue to the
"shortest found" list.
When all cities are in the found list, we are done.

When a city is moved, then:
find connecting cities and
add cities to queue if not in the found list.

21 / 21

runtime complexity

In each iteration, one city moves from the queue to the
"shortest found" list.
When all cities are in the found list, we are done.
When a city is moved, then:

find connecting cities and
add cities to queue if not in the found list.

21 / 21

runtime complexity

In each iteration, one city moves from the queue to the
"shortest found" list.
When all cities are in the found list, we are done.
When a city is moved, then:

find connecting cities and

add cities to queue if not in the found list.

21 / 21

runtime complexity

In each iteration, one city moves from the queue to the
"shortest found" list.
When all cities are in the found list, we are done.
When a city is moved, then:

find connecting cities and
add cities to queue if not in the found list.

21 / 21

runtime complexity

In each iteration, one city moves from the queue to the
"shortest found" list.
When all cities are in the found list, we are done.
When a city is moved, then:

find connecting cities and
add cities to queue if not in the found list.

21 / 21

