Complexity

Johan Montelius

KTH
HT23

big-0

An estimate of the change in execution time... when the data set grows large.

big-0

An estimate of the change in execution time... when the data set grows large.

big-O

An estimate of the change in execution time... when the data set grows large.
an upper bound

Ergo: $t(n)$ is in $O\left(n^{2}\right)$ since there is a k such that $k \times n^{2}>t(n)$ above some n.
a lower bound

Ergo: $t(n)$ is in $\Omega\left(n^{2}\right)$ since there is a k such that $k \times n^{2}<t(n)$ above some n.

Big-O, Ω and Theta

- A functions upper bound is limited by $O(g(n))$.
- Its lower bound is limited by $\Omega(g(n))$.
- If a function is limited by $O(g(n))$ and $\Omega(g(n))$ then it is limited by $\Theta(g(n))$.

Big-O, Ω and Theta

- A functions upper bound is limited by $O(g(n))$.
- Its lower bound is limited by $\Omega(g(n))$.
- If a function is limited by $O(g(n))$ and $\Omega(g(n))$ then it is limited by $\Theta(g(n))$.

Big-O, Ω and Theta

- A functions upper bound is limited by $O(g(n))$.
- Its lower bound is limited by $\Omega(g(n))$.
- If a function is limited by $O(g(n))$ and $\Omega(g(n))$ then it is limited by $\Theta(g(n))$.

Big-O, Ω and Theta

- A functions upper bound is limited by $O(g(n))$.
- Its lower bound is limited by $\Omega(g(n))$.
- If a function is limited by $O(g(n))$ and $\Omega(g(n))$ then it is limited by $\Theta(g(n))$.

order of ordo

Let's order the following functions:

order of ordo

Let's order the following functions:

$$
\begin{array}{cr}
0.1 \times n+\log _{10}(n) & 5 \times \sqrt{n}+34 \\
\ln (n)^{2}+34 & \log _{2}(n)+30 \\
n^{4}+20 \times n+32 & 50 \times n+100 \\
20 \times n^{2}+100 & n \times \log _{10}(n)
\end{array}
$$

order of ordo

Let's order the following functions:

$$
\begin{array}{cr}
O(n) & 5 \times \sqrt{n}+34 \\
\ln (n)^{2}+34 & \\
n^{4}+20 \times n+32 & \\
20 \times n^{2}+100 & n \times \log _{2}(n)+30 \\
&
\end{array}
$$

order of ordo

Let's order the following functions:

$$
\begin{array}{cr}
O(n) & O(\sqrt{n}) \\
\ln (n)^{2}+34 & \\
\log _{2}(n)+30 \\
n^{4}+20 \times n+32 & 50 \times n+100 \\
20 \times n^{2}+100 & n \times \log _{10}(n)
\end{array}
$$

order of ordo

Let's order the following functions:

$$
\begin{array}{cc}
O(n) & O(\sqrt{n}) \\
O\left(\lg (n)^{2}\right) & \\
n^{4}+20 \times n+32 & \\
20 \times \log _{2}(n)+30 \\
& n \times \log _{10}(n)
\end{array}
$$

order of ordo

Let's order the following functions:

$$
\begin{array}{cc}
O(n) & O(\sqrt{n}) \\
\hline \begin{array}{ll}
O\left(\lg (n)^{2}\right) & \\
n^{4}+20 \times n+32 & \\
20 \times n^{2}+100 & n \times \log _{10}(n)
\end{array}
\end{array}
$$

order of ordo

Let's order the following functions:

$$
\begin{array}{cc}
O(n) & O(\sqrt{n}) \\
\begin{array}{cc}
O\left(\lg (n)^{2}\right) & O(\lg (n)) \\
O\left(n^{4}\right) & 50 \times n+100 \\
20 \times n^{2}+100 & n \times \log _{10}(n)
\end{array}
\end{array}
$$

order of ordo

Let's order the following functions:

$$
\begin{array}{cc}
O(n) & O(\sqrt{n}) \\
& \\
O\left(\lg (n)^{2}\right) & \\
O\left(n^{4}\right) & O(\lg (n)) \\
20 \times n^{2}+100 & n \times \log _{10}(n)
\end{array}
$$

order of ordo

Let's order the following functions:
$O(n)$
$O(\sqrt{n})$

$$
\begin{array}{ccc}
\left.\begin{array}{cc}
O\left(\lg (n)^{2}\right) & \\
O\left(n^{4}\right) & O(\lg (n)) \\
O\left(n^{2}\right) & \\
O(n)
\end{array}\right)
\end{array}
$$

order of ordo

Let's order the following functions:
$O(n) \quad O(\sqrt{n})$

$$
O\left(n^{2}\right)
$$

$$
\begin{array}{lll}
O\left(\lg (n)^{2}\right) & O(\lg (n)) \\
O\left(n^{4}\right) & O(n) \\
& O(n \times \lg (n)) &
\end{array}
$$

order of ordo

Let's order the following functions:

$$
O(n) \quad O(\sqrt{n})
$$

$$
O\left(\lg (n)^{2}\right)
$$

$O(\lg (n))$
$O\left(n^{4}\right)$
$O(n)$

$$
O\left(n^{2}\right) \quad O(n \times \lg (n))
$$

order of ordo

Let's order the following functions:

$$
O(n) \quad O(\sqrt{n})
$$

$O\left(\lg (n)^{2}\right)$
$O(\lg (n))$
$O\left(n^{4}\right) O\left(n^{2}\right)$
$O(n)$

$$
O(n \times \lg (n))
$$

order of ordo

Let's order the following functions:
$O(n)$
$O(\sqrt{n})$

$$
\begin{array}{lc}
O\left(\lg (n)^{2}\right) & O(\lg (n)) \\
(n \times \lg (n)) & O(n)
\end{array}
$$

order of ordo

Let's order the following functions:

$$
O(\sqrt{n})
$$

$$
O\left(\lg (n)^{2}\right) \quad O(\lg (n))
$$

$$
O\left(n^{4}\right) \quad O\left(n^{2}\right) \quad O(n \times \lg (n)) \quad O(n)
$$

order of ordo

Let's order the following functions:

$$
O\left(\lg (n)^{2}\right) \quad O(\lg (n))
$$

$$
O\left(n^{4}\right) \quad O\left(n^{2}\right) \quad O(n \times \lg (n)) \quad O(n) \quad O(\sqrt{n})
$$

order of ordo

Let's order the following functions:

$$
\begin{array}{lllll}
& & O(\lg (n)) \\
O\left(n^{4}\right) & O\left(n^{2}\right) & O(n \times \lg (n)) & O(n) & O(\sqrt{n}) \\
O\left(\lg (n)^{2}\right)
\end{array}
$$

order of ordo

Let's order the following functions:

$$
O\left(n^{4}\right) \quad O\left(n^{2}\right) \quad O(n \times \lg (n)) \quad O(n) \quad O(\sqrt{n}) \quad O\left(\lg (n)^{2}\right) \quad O(\lg (n))
$$

order of ordo

Let's order the following functions:

$$
O\left(n^{4}\right) O\left(n^{2}\right) \quad O(n \times \lg (n)) \quad O(n) \quad O(\sqrt{n}) \quad O\left(\lg (n)^{2}\right) \quad O(\lg (n))
$$

orderd by complexity - not execution time given a specific n

the cost of chess

exponential time

exponential time

exponential time

exponential time

exponential time

tractable, intractable and even worse

this sentence is false

this sentence is false

Kurt Gödel
There are things
that can not be decided.

this sentence is false

Alonso Church lambda calculus

Kurt Gödel
There are things
that can not be decided.

this sentence is false

Alonso Church lambda calculus

Kurt Gödel
There are things that can not be decided.

Alan Turing the Turing machine

this sentence is false

Alonso Church lambda calculus

Kurt Gödel
There are things that can not be decided.

Alan Turing the Turing machine

Apart from things that can not be computed, we can compute everything :-)

The Imitation Game

It's not easy to determine the classification of a problem.

problem complexity

It's not easy to determine the classification of a problem.

If we have an algorithm at least we know the upper limit.

problem complexity

It's not easy to determine the classification of a problem.

If we have an algorithm at least we know the upper limit.

We have problems where it's easy to find an exponential algorithm, but no proof that there is no polynomial algorithm.
traveling salesman

traveling salesman

traveling salesman

- Find the shortest road that visits all cities.

traveling salesman

- Find the shortest road that visits all cities.
- Let's try them all ...

traveling salesman

- Find the shortest road that visits all cities.
- Let's try them all ...
- exponential solution :-(

traveling salesman

- Find the shortest road that visits all cities.
- Let's try them all ...
- exponential solution :-(
- If I give you the path - how can you verify that it is the shortest?
traveling salesman - almost the same

traveling salesman - almost the same

traveling salesman - almost the same

- Find a road visiting all cities but that is less than xkm .

traveling salesman - almost the same

- Find a road visiting all cities but that is less than xkm .
- Let's try them all ...

traveling salesman - almost the same

- Find a road visiting all cities but that is less than $\times \mathrm{km}$.
- Let's try them all ...
- exponential solution :-(

traveling salesman - almost the same

- Find a road visiting all cities but that is less than $\times \mathrm{km}$.
- Let's try them all ...
- exponential solution :-(
- A solution is easy to verify in polynomial time.

traveling salesman - almost the same

- Find a road visiting all cities but that is less than $\times \mathrm{km}$.
- Let's try them all ...
- exponential solution :-(
- A solution is easy to verify in polynomial time.
- A Non-deterministic Polynomial problem NP.

non-deterministic polynomial

extra income

extra income

$P=N P$

extra income

$P=N P$

If you can prove it, or prove that it does not holds,

extra income

$P=N P$

If you can prove it, or prove that it does not holds, then you can claim a million dollar.

The Millennium Prize Problems
there is still hope

there is still hope

Gearge wictas

