
Complexity

Johan Montelius
KTH

HT23

1 / 17

big-O

An estimate of the change in execution time...
when the data set grows large.

2 / 17

big-O

An estimate of the change in execution time...
when the data set grows large.

2 / 17

big-O

An estimate of the change in execution time...
when the data set grows large.

2 / 17

an upper bound

0 5 10 15 20 25 30 35 400

1,000

2,000

3,000

4,000

t(n) = 2n2 + 3n + 20

2.2n2

n

tim
e

Ergo: t(n) is in O(n2) since there is a k such that k × n2 > t(n)
above some n.

3 / 17

a lower bound

0 5 10 15 20 25 30 35 400

1,000

2,000

3,000

4,000

t(n) = 2n2 + 3n + 20

1.8n2

n

tim
e

Ergo: t(n) is in Ω(n2) since there is a k such that k × n2 < t(n)
above some n.

4 / 17

Big-O, Ω and Theta

A functions upper bound is limited by O(g(n)).
Its lower bound is limited by Ω(g(n)).
If a function is limited by O(g(n)) and Ω(g(n)) then it is
limited by Θ(g(n)).

5 / 17

Big-O, Ω and Theta

A functions upper bound is limited by O(g(n)).
Its lower bound is limited by Ω(g(n)).
If a function is limited by O(g(n)) and Ω(g(n)) then it is
limited by Θ(g(n)).

5 / 17

Big-O, Ω and Theta

A functions upper bound is limited by O(g(n)).
Its lower bound is limited by Ω(g(n)).
If a function is limited by O(g(n)) and Ω(g(n)) then it is
limited by Θ(g(n)).

5 / 17

Big-O, Ω and Theta

A functions upper bound is limited by O(g(n)).
Its lower bound is limited by Ω(g(n)).
If a function is limited by O(g(n)) and Ω(g(n)) then it is
limited by Θ(g(n)).

5 / 17

order of ordo

Let’s order the following functions:

0.1 × n + log10(n) 5 ×
√

n + 34

ln(n)2 + 34 log2(n) + 30

n4 + 20 × n + 32 50 × n + 100

20 × n2 + 100 n × log10(n)

O(n) O(
√

n)

O(lg(n)2) O(lg(n))

O(n4) O(n)

O(n2) O(n × lg(n))

O(n4) O(n2) O(n × lg(n)) O(n) O(
√

n) O(lg(n)2) O(lg(n))

orderd by complexity - not execution time given a specific n

6 / 17

order of ordo

Let’s order the following functions:
0.1 × n + log10(n) 5 ×

√
n + 34

ln(n)2 + 34 log2(n) + 30

n4 + 20 × n + 32 50 × n + 100

20 × n2 + 100 n × log10(n)

O(n) O(
√

n)

O(lg(n)2) O(lg(n))

O(n4) O(n)

O(n2) O(n × lg(n))

O(n4) O(n2) O(n × lg(n)) O(n) O(
√

n) O(lg(n)2) O(lg(n))

orderd by complexity - not execution time given a specific n

6 / 17

order of ordo

Let’s order the following functions:

0.1 × n + log10(n)

5 ×
√

n + 34

ln(n)2 + 34 log2(n) + 30

n4 + 20 × n + 32 50 × n + 100

20 × n2 + 100 n × log10(n)

O(n)

O(
√

n)

O(lg(n)2) O(lg(n))

O(n4) O(n)

O(n2) O(n × lg(n))

O(n4) O(n2) O(n × lg(n)) O(n) O(
√

n) O(lg(n)2) O(lg(n))

orderd by complexity - not execution time given a specific n

6 / 17

order of ordo

Let’s order the following functions:

0.1 × n + log10(n) 5 ×
√

n + 34

ln(n)2 + 34 log2(n) + 30

n4 + 20 × n + 32 50 × n + 100

20 × n2 + 100 n × log10(n)

O(n) O(
√

n)

O(lg(n)2) O(lg(n))

O(n4) O(n)

O(n2) O(n × lg(n))

O(n4) O(n2) O(n × lg(n)) O(n) O(
√

n) O(lg(n)2) O(lg(n))

orderd by complexity - not execution time given a specific n

6 / 17

order of ordo

Let’s order the following functions:

0.1 × n + log10(n) 5 ×
√

n + 34

ln(n)2 + 34

log2(n) + 30

n4 + 20 × n + 32 50 × n + 100

20 × n2 + 100 n × log10(n)

O(n) O(
√

n)

O(lg(n)2)

O(lg(n))

O(n4) O(n)

O(n2) O(n × lg(n))

O(n4) O(n2) O(n × lg(n)) O(n) O(
√

n) O(lg(n)2) O(lg(n))

orderd by complexity - not execution time given a specific n

6 / 17

order of ordo

Let’s order the following functions:

0.1 × n + log10(n) 5 ×
√

n + 34

ln(n)2 + 34 log2(n) + 30

n4 + 20 × n + 32 50 × n + 100

20 × n2 + 100 n × log10(n)

O(n) O(
√

n)

O(lg(n)2) O(lg(n))

O(n4) O(n)

O(n2) O(n × lg(n))

O(n4) O(n2) O(n × lg(n)) O(n) O(
√

n) O(lg(n)2) O(lg(n))

orderd by complexity - not execution time given a specific n

6 / 17

order of ordo

Let’s order the following functions:

0.1 × n + log10(n) 5 ×
√

n + 34

ln(n)2 + 34 log2(n) + 30

n4 + 20 × n + 32

50 × n + 100

20 × n2 + 100 n × log10(n)

O(n) O(
√

n)

O(lg(n)2) O(lg(n))

O(n4)

O(n)

O(n2) O(n × lg(n))

O(n4) O(n2) O(n × lg(n)) O(n) O(
√

n) O(lg(n)2) O(lg(n))

orderd by complexity - not execution time given a specific n

6 / 17

order of ordo

Let’s order the following functions:

0.1 × n + log10(n) 5 ×
√

n + 34

ln(n)2 + 34 log2(n) + 30

n4 + 20 × n + 32 50 × n + 100

20 × n2 + 100 n × log10(n)

O(n) O(
√

n)

O(lg(n)2) O(lg(n))

O(n4) O(n)

O(n2) O(n × lg(n))

O(n4) O(n2) O(n × lg(n)) O(n) O(
√

n) O(lg(n)2) O(lg(n))

orderd by complexity - not execution time given a specific n

6 / 17

order of ordo

Let’s order the following functions:

0.1 × n + log10(n) 5 ×
√

n + 34

ln(n)2 + 34 log2(n) + 30

n4 + 20 × n + 32 50 × n + 100

20 × n2 + 100

n × log10(n)

O(n) O(
√

n)

O(lg(n)2) O(lg(n))

O(n4) O(n)

O(n2)

O(n × lg(n))

O(n4) O(n2) O(n × lg(n)) O(n) O(
√

n) O(lg(n)2) O(lg(n))

orderd by complexity - not execution time given a specific n

6 / 17

order of ordo

Let’s order the following functions:

0.1 × n + log10(n) 5 ×
√

n + 34

ln(n)2 + 34 log2(n) + 30

n4 + 20 × n + 32 50 × n + 100

20 × n2 + 100 n × log10(n)

O(n) O(
√

n)

O(lg(n)2) O(lg(n))

O(n4) O(n)

O(n2) O(n × lg(n))

O(n4) O(n2) O(n × lg(n)) O(n) O(
√

n) O(lg(n)2) O(lg(n))

orderd by complexity - not execution time given a specific n

6 / 17

order of ordo

Let’s order the following functions:

0.1 × n + log10(n) 5 ×
√

n + 34

ln(n)2 + 34 log2(n) + 30

n4 + 20 × n + 32 50 × n + 100

20 × n2 + 100 n × log10(n)

O(n) O(
√

n)

O(lg(n)2) O(lg(n))

O(n4)

O(n)

O(n2) O(n × lg(n))

O(n4)

O(n2) O(n × lg(n)) O(n) O(
√

n) O(lg(n)2) O(lg(n))

orderd by complexity - not execution time given a specific n

6 / 17

order of ordo

Let’s order the following functions:

0.1 × n + log10(n) 5 ×
√

n + 34

ln(n)2 + 34 log2(n) + 30

n4 + 20 × n + 32 50 × n + 100

20 × n2 + 100 n × log10(n)

O(n) O(
√

n)

O(lg(n)2) O(lg(n))

O(n4)

O(n)

O(n2)

O(n × lg(n))

O(n4) O(n2)

O(n × lg(n)) O(n) O(
√

n) O(lg(n)2) O(lg(n))

orderd by complexity - not execution time given a specific n

6 / 17

order of ordo

Let’s order the following functions:

0.1 × n + log10(n) 5 ×
√

n + 34

ln(n)2 + 34 log2(n) + 30

n4 + 20 × n + 32 50 × n + 100

20 × n2 + 100 n × log10(n)

O(n) O(
√

n)

O(lg(n)2) O(lg(n))

O(n4)

O(n)

O(n2) O(n × lg(n))

O(n4) O(n2) O(n × lg(n))

O(n) O(
√

n) O(lg(n)2) O(lg(n))

orderd by complexity - not execution time given a specific n

6 / 17

order of ordo

Let’s order the following functions:

0.1 × n + log10(n) 5 ×
√

n + 34

ln(n)2 + 34 log2(n) + 30

n4 + 20 × n + 32 50 × n + 100

20 × n2 + 100 n × log10(n)

O(n)

O(
√

n)

O(lg(n)2) O(lg(n))

O(n4) O(n)

O(n2) O(n × lg(n))

O(n4) O(n2) O(n × lg(n)) O(n)

O(
√

n) O(lg(n)2) O(lg(n))

orderd by complexity - not execution time given a specific n

6 / 17

order of ordo

Let’s order the following functions:

0.1 × n + log10(n) 5 ×
√

n + 34

ln(n)2 + 34 log2(n) + 30

n4 + 20 × n + 32 50 × n + 100

20 × n2 + 100 n × log10(n)

O(n) O(
√

n)

O(lg(n)2) O(lg(n))

O(n4) O(n)

O(n2) O(n × lg(n))

O(n4) O(n2) O(n × lg(n)) O(n) O(
√

n)

O(lg(n)2) O(lg(n))

orderd by complexity - not execution time given a specific n

6 / 17

order of ordo

Let’s order the following functions:

0.1 × n + log10(n) 5 ×
√

n + 34

ln(n)2 + 34 log2(n) + 30

n4 + 20 × n + 32 50 × n + 100

20 × n2 + 100 n × log10(n)

O(n) O(
√

n)

O(lg(n)2)

O(lg(n))

O(n4) O(n)

O(n2) O(n × lg(n))

O(n4) O(n2) O(n × lg(n)) O(n) O(
√

n) O(lg(n)2)

O(lg(n))

orderd by complexity - not execution time given a specific n

6 / 17

order of ordo

Let’s order the following functions:

0.1 × n + log10(n) 5 ×
√

n + 34

ln(n)2 + 34 log2(n) + 30

n4 + 20 × n + 32 50 × n + 100

20 × n2 + 100 n × log10(n)

O(n) O(
√

n)

O(lg(n)2) O(lg(n))

O(n4) O(n)

O(n2) O(n × lg(n))

O(n4) O(n2) O(n × lg(n)) O(n) O(
√

n) O(lg(n)2) O(lg(n))

orderd by complexity - not execution time given a specific n

6 / 17

order of ordo

Let’s order the following functions:

0.1 × n + log10(n) 5 ×
√

n + 34

ln(n)2 + 34 log2(n) + 30

n4 + 20 × n + 32 50 × n + 100

20 × n2 + 100 n × log10(n)

O(n) O(
√

n)

O(lg(n)2) O(lg(n))

O(n4) O(n)

O(n2) O(n × lg(n))

O(n4) O(n2) O(n × lg(n)) O(n) O(
√

n) O(lg(n)2) O(lg(n))

orderd by complexity - not execution time given a specific n

6 / 17

the cost of chess

7 / 17

exponential time

1 2 4 10 20 40 1001

10

100

1,000

10,000

n2n4 2n
1.5n

1.1n

n

tim
e

8 / 17

exponential time

1 2 4 10 20 40 1001

10

100

1,000

10,000

n2n4 2n
1.5n

1.1n

n

tim
e

8 / 17

exponential time

1 2 4 10 20 40 1001

10

100

1,000

10,000

n2n4 2n
1.5n

1.1n

n

tim
e

8 / 17

exponential time

1 2 4 10 20 40 1001

10

100

1,000

10,000

n2n4 2n
1.5n

1.1n

n

tim
e

8 / 17

exponential time

1 2 4 10 20 40 1001

10

100

1,000

10,000

n2n4 2n
1.5n

1.1n

n

tim
e

8 / 17

tractable, intractable and even worse
solvable problems

really hardpolynomial

tractable

exponential

9 / 17

this sentence is false

Alonso Church
lambda calculus

Kurt Gödel
There are things
that can not be
decided.

Alan Turing
the Turing machine

Apart from things that can not be computed, we can compute
everything :-)

10 / 17

this sentence is false

Alonso Church
lambda calculus

Kurt Gödel
There are things
that can not be
decided.

Alan Turing
the Turing machine

Apart from things that can not be computed, we can compute
everything :-)

10 / 17

this sentence is false

Alonso Church
lambda calculus

Kurt Gödel
There are things
that can not be
decided.

Alan Turing
the Turing machine

Apart from things that can not be computed, we can compute
everything :-)

10 / 17

this sentence is false

Alonso Church
lambda calculus

Kurt Gödel
There are things
that can not be
decided.

Alan Turing
the Turing machine

Apart from things that can not be computed, we can compute
everything :-)

10 / 17

this sentence is false

Alonso Church
lambda calculus

Kurt Gödel
There are things
that can not be
decided.

Alan Turing
the Turing machine

Apart from things that can not be computed, we can compute
everything :-)

10 / 17

The Imitation Game

11 / 17

problem complexity

It’s not easy to determine the classification of a problem.

If we have an algorithm at least we know the upper limit.

We have problems where it’s easy to find an exponential algorithm,
but no proof that there is no polynomial algorithm.

12 / 17

problem complexity

It’s not easy to determine the classification of a problem.

If we have an algorithm at least we know the upper limit.

We have problems where it’s easy to find an exponential algorithm,
but no proof that there is no polynomial algorithm.

12 / 17

problem complexity

It’s not easy to determine the classification of a problem.

If we have an algorithm at least we know the upper limit.

We have problems where it’s easy to find an exponential algorithm,
but no proof that there is no polynomial algorithm.

12 / 17

problem complexity

It’s not easy to determine the classification of a problem.

If we have an algorithm at least we know the upper limit.

We have problems where it’s easy to find an exponential algorithm,
but no proof that there is no polynomial algorithm.

12 / 17

traveling salesman

Find the shortest road that visits all cities.
Let’s try them all ...
.... exponential solution :-(
If I give you the path - how can you verify
that it is the shortest?

13 / 17

traveling salesman

Find the shortest road that visits all cities.
Let’s try them all ...
.... exponential solution :-(
If I give you the path - how can you verify
that it is the shortest?

13 / 17

traveling salesman

Find the shortest road that visits all cities.

Let’s try them all ...
.... exponential solution :-(
If I give you the path - how can you verify
that it is the shortest?

13 / 17

traveling salesman

Find the shortest road that visits all cities.
Let’s try them all ...

.... exponential solution :-(
If I give you the path - how can you verify
that it is the shortest?

13 / 17

traveling salesman

Find the shortest road that visits all cities.
Let’s try them all ...
.... exponential solution :-(

If I give you the path - how can you verify
that it is the shortest?

13 / 17

traveling salesman

Find the shortest road that visits all cities.
Let’s try them all ...
.... exponential solution :-(
If I give you the path - how can you verify
that it is the shortest?

13 / 17

traveling salesman - almost the same

Find a road visiting all cities but that is
less than x km.
Let’s try them all ...
.... exponential solution :-(
A solution is easy to verify in polynomial
time.
A Non-deterministic Polynomial problem -
NP.

14 / 17

traveling salesman - almost the same

Find a road visiting all cities but that is
less than x km.
Let’s try them all ...
.... exponential solution :-(
A solution is easy to verify in polynomial
time.
A Non-deterministic Polynomial problem -
NP.

14 / 17

traveling salesman - almost the same

Find a road visiting all cities but that is
less than x km.

Let’s try them all ...
.... exponential solution :-(
A solution is easy to verify in polynomial
time.
A Non-deterministic Polynomial problem -
NP.

14 / 17

traveling salesman - almost the same

Find a road visiting all cities but that is
less than x km.
Let’s try them all ...

.... exponential solution :-(
A solution is easy to verify in polynomial
time.
A Non-deterministic Polynomial problem -
NP.

14 / 17

traveling salesman - almost the same

Find a road visiting all cities but that is
less than x km.
Let’s try them all ...
.... exponential solution :-(

A solution is easy to verify in polynomial
time.
A Non-deterministic Polynomial problem -
NP.

14 / 17

traveling salesman - almost the same

Find a road visiting all cities but that is
less than x km.
Let’s try them all ...
.... exponential solution :-(
A solution is easy to verify in polynomial
time.

A Non-deterministic Polynomial problem -
NP.

14 / 17

traveling salesman - almost the same

Find a road visiting all cities but that is
less than x km.
Let’s try them all ...
.... exponential solution :-(
A solution is easy to verify in polynomial
time.
A Non-deterministic Polynomial problem -
NP.

14 / 17

non-deterministic polynomial
All problems

undecidablepolynomial NP

tractable

untractable

15 / 17

extra income

P = NP
If you can prove it, or prove that it does not holds,
then you can claim a million dollar.

The Millennium Prize Problems

16 / 17

extra income

P = NP

If you can prove it, or prove that it does not holds,
then you can claim a million dollar.

The Millennium Prize Problems

16 / 17

extra income

P = NP
If you can prove it, or prove that it does not holds,

then you can claim a million dollar.

The Millennium Prize Problems

16 / 17

extra income

P = NP
If you can prove it, or prove that it does not holds,
then you can claim a million dollar.

The Millennium Prize Problems
16 / 17

there is still hope

17 / 17

there is still hope

17 / 17

