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interface vs implementation

Let's say you want a data structure where you should be able to:
» given a key and value, associate the value with the key
» given a key, find a value associated with the key
» given a key, remove the value associated with the key

Adding duplicate values for a key is undefined.
Let's go.
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an array where the index is the key

public class KeyValue<Value> {

Value [] store;
int size = 100;

public KeyValue () {

store = (Value[]) new Object[this.size];

by
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what if...

An index in an array 0..max does not work as a key?
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comparable keys

We could always define an order for keys - but we might not have
one.

Equality might not be the same as identity.

Identity is cheap, equality might be ... undecidable.
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in Java

public class Person implements Comparable {

String first;
String last;

@0veride
public int compareTo (Person b) {
int cmp = this.last.compareTo(b.last);
if (cmp == 0)
cmp = this.first.compareTo(b.first);
return cmp,

¥
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a sorted /unsorted array of Key/Values

public class KeyValue<Key extends Comparable<Key>, Value>

KeyVal[] store;
int size = 100;

public class KeyVal {
Key key;
Value val,;

}
public KeyValue () {
store = new KeyValue.KeyVal[this.sizel];

3

7/21



a linked list

public class KeyValue<Key, Value> {
KeyVal store;
private class KeyVal {
Key key;
Value val;
KeyVal next;
b

public KeyValue() { store = null; }
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a tree

public class KeyValue<Key extends Comparable<Key>, Value>
KeyVal store;
private class KeyVal {
Key key;
Value val;
KeyVal left;
KeyVal right;
X

public KeyValue() { store = null; }

9/21



time complexity

operation

*
array

unsorted

sorted

list

*%
tree

** using indicies as keys

** given that the tree is fairly balanced

10/21



time complexity

operation

*
array

unsorted

sorted

list

*%
tree

lookup

O(1)

O(n)

O(lg(n))

O(n)

O(lg(n))

** using indicies as keys

** given that the tree is fairly balanced

10/21



time complexity

operation array>|< unsorted | sorted list tree™
lookup | O(1) | O(n) | O(lg(n)) | O(n) | O(lg(n))
add O(1) O(1) O(n) | O(1) | O(lg(n))

** using indicies as keys
** given that the tree is fairly balanced

10/21



time

** using indicies as keys

complexity
operation array>|< unsorted | sorted list tree™
lookup | O(1) | O(n) | O(lg(n)) | O(n) | O(lg(n))
add O(1) O(1) O(n) | O(1) | O(lg(n))
remove | O(1) | O(n) O(n) | O(n) | O(lg(n))

** given that the tree is fairly balanced
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other operations

Split a data structure in two.

Merge two structures.

Selecting a range of keys.

Selecting keys that are "close to each other" but not
necessarily in order.
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a generic key/value tree

public class Tree<Key extends Comparable<Key>, Value> {

KeyVal[] store;
int size;

public class KeyVal {
Key key;
Value val,;

}
public KeyVal (int max) {
this.size = max;
this.store = new Tree.KeyVal [max]; // warning
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add a key/value pair

public void add(Key k, Value v) {
int indx = O;
while (true) A
if (storel[indx] == null) {
store[indx] = new KeyVal(k,v);
break;
+
if (storel[indx].key == k) {
store[indx].val = v;
break;

by
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add a key/value pair

if (storel[indx].key.compareTo(k) > 0) {

indx = 2*xindx + 1;
} else {
indx = 2*xindx + 2;

}
+
+
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lookup a value given key

public Value lookup (Key k) {
int indx = O;
while (true) {
if (store[indx] == null) { break; }
if (store[indx].key == k) { return store[indx].val;}
if (store[indx].key.compareTo(k) > 0) A
indx = 2*indx + 1;
} else {
indx = 2*xindx + 2;
}
if (indx >= this.size) break;
}
return null,;

by
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what's the catch

When might an array implementation of a tree not be a suitable
solution?
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Abstractions

» There is a difference between the interface provided, and the
implementation.

» The less requirements specified by the interface, the more
freedome do we have in the implementation.

o Linked data structures and arrays are questions about the
implementation.

o The interface describes the functionality and ... runtime
complexity.
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Examples of abstractions

A key/value store: add, lookup, remove, ...

A stack : push, pop, constant time operations

A queue : enqueue, dequeue, constant time operations
... there will be more.
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One man'’s ceiling ..

. is another man’s floor.
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