
Abstractions

Johan Montelius
KTH

HT22

1 / 21

interface vs implementation

Let’s say you want a data structure where you should be able to:
given a key and value, associate the value with the key
given a key, find a value associated with the key
given a key, remove the value associated with the key

Adding duplicate values for a key is undefined.
Let’s go.

2 / 21

interface vs implementation

Let’s say you want a data structure where you should be able to:

given a key and value, associate the value with the key
given a key, find a value associated with the key
given a key, remove the value associated with the key

Adding duplicate values for a key is undefined.
Let’s go.

2 / 21

interface vs implementation

Let’s say you want a data structure where you should be able to:
given a key and value, associate the value with the key

given a key, find a value associated with the key
given a key, remove the value associated with the key

Adding duplicate values for a key is undefined.
Let’s go.

2 / 21

interface vs implementation

Let’s say you want a data structure where you should be able to:
given a key and value, associate the value with the key
given a key, find a value associated with the key

given a key, remove the value associated with the key
Adding duplicate values for a key is undefined.
Let’s go.

2 / 21

interface vs implementation

Let’s say you want a data structure where you should be able to:
given a key and value, associate the value with the key
given a key, find a value associated with the key
given a key, remove the value associated with the key

Adding duplicate values for a key is undefined.
Let’s go.

2 / 21

interface vs implementation

Let’s say you want a data structure where you should be able to:
given a key and value, associate the value with the key
given a key, find a value associated with the key
given a key, remove the value associated with the key

Adding duplicate values for a key is undefined.
Let’s go.

2 / 21

interface vs implementation

Let’s say you want a data structure where you should be able to:
given a key and value, associate the value with the key
given a key, find a value associated with the key
given a key, remove the value associated with the key

Adding duplicate values for a key is undefined.

Let’s go.

2 / 21

interface vs implementation

Let’s say you want a data structure where you should be able to:
given a key and value, associate the value with the key
given a key, find a value associated with the key
given a key, remove the value associated with the key

Adding duplicate values for a key is undefined.
Let’s go.

2 / 21

an array where the index is the key

public class KeyValue <Value > {

Value [] store;
int size = 100;

public KeyValue () {
store = (Value []) new Object[this.size];

}

:
}

3 / 21

what if...

An index in an array 0..max does not work as a key?

4 / 21

what if...

An index in an array 0..max does not work as a key?

4 / 21

comparable keys

We could always define an order for keys - but we might not have
one.

Equality might not be the same as identity.

Identity is cheap, equality might be ... undecidable.

5 / 21

comparable keys

We could always define an order for keys - but we might not have
one.

Equality might not be the same as identity.

Identity is cheap, equality might be ... undecidable.

5 / 21

in Java
public class Person implements Comparable {

String first;
String last;

@Overide
public int compareTo (Person b) {

int cmp = this.last. compareTo (b.last);
if (cmp == 0)

cmp = this.first. compareTo (b.first);
return cmp;

}
:

}
6 / 21

a sorted/unsorted array of Key/Values
public class KeyValue <Key extends Comparable <Key >, Value > {

KeyVal [] store;
int size = 100;

public class KeyVal {
Key key;
Value val;

}

public KeyValue () {
store = new KeyValue .KeyVal[this.size];

}
:

}
7 / 21

a linked list
public class KeyValue <Key , Value > {

KeyVal store;

private class KeyVal {
Key key;
Value val;
KeyVal next;
:

}

public KeyValue () { store = null; }

:
}

8 / 21

a tree
public class KeyValue <Key extends Comparable <Key >, Value > {

KeyVal store;

private class KeyVal {
Key key;
Value val;
KeyVal left;
KeyVal right;
:

}

public KeyValue () { store = null; }
:

}
9 / 21

time complexity

operation array* unsorted sorted list tree**

lookup O(1) O(n) O(lg(n)) O(n) O(lg(n))

add O(1) O(1) O(n) O(1) O(lg(n))

remove O(1) O(n) O(n) O(n) O(lg(n))

** using indicies as keys

** given that the tree is fairly balanced
10 / 21

time complexity

operation array* unsorted sorted list tree**

lookup O(1) O(n) O(lg(n)) O(n) O(lg(n))

add O(1) O(1) O(n) O(1) O(lg(n))

remove O(1) O(n) O(n) O(n) O(lg(n))

** using indicies as keys

** given that the tree is fairly balanced
10 / 21

time complexity

operation array* unsorted sorted list tree**

lookup O(1) O(n) O(lg(n)) O(n) O(lg(n))

add O(1) O(1) O(n) O(1) O(lg(n))

remove O(1) O(n) O(n) O(n) O(lg(n))

** using indicies as keys

** given that the tree is fairly balanced
10 / 21

time complexity

operation array* unsorted sorted list tree**

lookup O(1) O(n) O(lg(n)) O(n) O(lg(n))

add O(1) O(1) O(n) O(1) O(lg(n))

remove O(1) O(n) O(n) O(n) O(lg(n))

** using indicies as keys

** given that the tree is fairly balanced
10 / 21

Evaluation

Which implementation to choose:
The keys: are indeces 0..max fine

The keys: is there an order?
Which operations are most frequent/critical?
How about the memory footprint?

11 / 21

Evaluation

Which implementation to choose:
The keys: are indeces 0..max fine
The keys: is there an order?

Which operations are most frequent/critical?
How about the memory footprint?

11 / 21

Evaluation

Which implementation to choose:
The keys: are indeces 0..max fine
The keys: is there an order?
Which operations are most frequent/critical?

How about the memory footprint?

11 / 21

Evaluation

Which implementation to choose:
The keys: are indeces 0..max fine
The keys: is there an order?
Which operations are most frequent/critical?
How about the memory footprint?

11 / 21

Evaluation

Which implementation to choose:
The keys: are indeces 0..max fine
The keys: is there an order?
Which operations are most frequent/critical?
How about the memory footprint?

11 / 21

other operations

Split a data structure in two.
Merge two structures.
Selecting a range of keys.
Selecting keys that are "close to each other" but not
necessarily in order.

12 / 21

other operations

Split a data structure in two.

Merge two structures.
Selecting a range of keys.
Selecting keys that are "close to each other" but not
necessarily in order.

12 / 21

other operations

Split a data structure in two.
Merge two structures.

Selecting a range of keys.
Selecting keys that are "close to each other" but not
necessarily in order.

12 / 21

other operations

Split a data structure in two.
Merge two structures.
Selecting a range of keys.

Selecting keys that are "close to each other" but not
necessarily in order.

12 / 21

other operations

Split a data structure in two.
Merge two structures.
Selecting a range of keys.
Selecting keys that are "close to each other" but not
necessarily in order.

12 / 21

an alternative implementation of a tree

Let’s store the nodes of the tree in an array.
The root of the tree is at index 0.
The left branch of a node at i is at index i × 2 + 1.
The right branch of a node at i is at index i × 2 + 2.

13 / 21

an alternative implementation of a tree

Let’s store the nodes of the tree in an array.

The root of the tree is at index 0.
The left branch of a node at i is at index i × 2 + 1.
The right branch of a node at i is at index i × 2 + 2.

13 / 21

an alternative implementation of a tree

Let’s store the nodes of the tree in an array.
The root of the tree is at index 0.

The left branch of a node at i is at index i × 2 + 1.
The right branch of a node at i is at index i × 2 + 2.

13 / 21

an alternative implementation of a tree

Let’s store the nodes of the tree in an array.
The root of the tree is at index 0.
The left branch of a node at i is at index i × 2 + 1.

The right branch of a node at i is at index i × 2 + 2.

13 / 21

an alternative implementation of a tree

Let’s store the nodes of the tree in an array.
The root of the tree is at index 0.
The left branch of a node at i is at index i × 2 + 1.
The right branch of a node at i is at index i × 2 + 2.

13 / 21

an alternative implementation of a tree

Let’s store the nodes of the tree in an array.
The root of the tree is at index 0.
The left branch of a node at i is at index i × 2 + 1.
The right branch of a node at i is at index i × 2 + 2.

13 / 21

a generic key/value tree
public class Tree <Key extends Comparable <Key >, Value > {

KeyVal [] store;
int size;

public class KeyVal {
Key key;
Value val;

}

public KeyVal(int max) {
this.size = max;
this.store = new Tree.KeyVal[max]; // warning

}
:

14 / 21

add a key/value pair

public void add(Key k, Value v) {
int indx = 0;
while (true) {

if (store[indx] == null) {
store[indx] = new KeyVal(k,v);
break;

}
if (store[indx]. key == k) {

store[indx]. val = v;
break;

}
:

15 / 21

add a key/value pair

:
if (store[indx]. key. compareTo (k) > 0) {

indx = 2* indx + 1;
} else {

indx = 2* indx + 2;
}

}
}

16 / 21

lookup a value given key
public Value lookup(Key k) {

int indx = 0;
while (true) {

if (store[indx] == null) { break; }
if (store[indx]. key == k) { return store[indx]. val ;}
if (store[indx]. key. compareTo (k) > 0) {

indx = 2* indx + 1;
} else {

indx = 2* indx + 2;
}
if (indx >= this.size) break;

}
return null;

}
17 / 21

what’s the catch

When might an array implementation of a tree not be a suitable
solution?

18 / 21

what’s the catch

When might an array implementation of a tree not be a suitable
solution?

18 / 21

Abstractions

There is a difference between the interface provided, and the
implementation.
The less requirements specified by the interface, the more
freedome do we have in the implementation.
Linked data structures and arrays are questions about the
implementation.
The interface describes the functionality and ... runtime
complexity.

19 / 21

Abstractions

There is a difference between the interface provided, and the
implementation.

The less requirements specified by the interface, the more
freedome do we have in the implementation.
Linked data structures and arrays are questions about the
implementation.
The interface describes the functionality and ... runtime
complexity.

19 / 21

Abstractions

There is a difference between the interface provided, and the
implementation.
The less requirements specified by the interface, the more
freedome do we have in the implementation.

Linked data structures and arrays are questions about the
implementation.
The interface describes the functionality and ... runtime
complexity.

19 / 21

Abstractions

There is a difference between the interface provided, and the
implementation.
The less requirements specified by the interface, the more
freedome do we have in the implementation.
Linked data structures and arrays are questions about the
implementation.

The interface describes the functionality and ... runtime
complexity.

19 / 21

Abstractions

There is a difference between the interface provided, and the
implementation.
The less requirements specified by the interface, the more
freedome do we have in the implementation.
Linked data structures and arrays are questions about the
implementation.
The interface describes the functionality and ... runtime
complexity.

19 / 21

Examples of abstractions

A key/value store: add, lookup, remove, ...

A stack : push, pop, constant time operations
A queue : enqueue, dequeue, constant time operations
... there will be more.

20 / 21

Examples of abstractions

A key/value store: add, lookup, remove, ...
A stack : push, pop, constant time operations

A queue : enqueue, dequeue, constant time operations
... there will be more.

20 / 21

Examples of abstractions

A key/value store: add, lookup, remove, ...
A stack : push, pop, constant time operations
A queue : enqueue, dequeue, constant time operations

... there will be more.

20 / 21

Examples of abstractions

A key/value store: add, lookup, remove, ...
A stack : push, pop, constant time operations
A queue : enqueue, dequeue, constant time operations
... there will be more.

20 / 21

One man’s ceiling ..

... is another man’s floor.

21 / 21

One man’s ceiling ..

... is another man’s floor.

21 / 21

