Abstractions

Johan Montelius

KTH

HT22

1/21

interface vs implementation

2/21

interface vs implementation

Let's say you want a data structure where you should be able to:

2/21

interface vs implementation

Let's say you want a data structure where you should be able to:
» given a key and value, associate the value with the key

2/21

interface vs implementation

Let's say you want a data structure where you should be able to:
» given a key and value, associate the value with the key
» given a key, find a value associated with the key

2/21

interface vs implementation

Let's say you want a data structure where you should be able to:
» given a key and value, associate the value with the key
» given a key, find a value associated with the key
» given a key, remove the value associated with the key

2/21

interface vs implementation

Let's say you want a data structure where you should be able to:
» given a key and value, associate the value with the key
» given a key, find a value associated with the key
» given a key, remove the value associated with the key

2/21

interface vs implementation

Let's say you want a data structure where you should be able to:
» given a key and value, associate the value with the key
» given a key, find a value associated with the key
» given a key, remove the value associated with the key
Adding duplicate values for a key is undefined.

2/21

interface vs implementation

Let's say you want a data structure where you should be able to:
» given a key and value, associate the value with the key
» given a key, find a value associated with the key
» given a key, remove the value associated with the key

Adding duplicate values for a key is undefined.
Let's go.

2/21

an array where the index is the key

public class KeyValue<Value> {

Value [] store;
int size = 100;

public KeyValue () {

store = (Value[]) new Object[this.size];

by

3/21

what if...

421

what if...

An index in an array 0..max does not work as a key?

421

comparable keys

5/21

comparable keys

We could always define an order for keys - but we might not have
one.

Equality might not be the same as identity.

Identity is cheap, equality might be ... undecidable.

5/21

in Java

public class Person implements Comparable {

String first;
String last;

@0veride
public int compareTo (Person b) {
int cmp = this.last.compareTo(b.last);
if (cmp == 0)
cmp = this.first.compareTo(b.first);
return cmp,

¥

6/21

a sorted /unsorted array of Key/Values

public class KeyValue<Key extends Comparable<Key>, Value>

KeyVal[] store;
int size = 100;

public class KeyVal {
Key key;
Value val,;

}
public KeyValue () {
store = new KeyValue.KeyVal[this.sizel];

3

7/21

a linked list

public class KeyValue<Key, Value> {
KeyVal store;
private class KeyVal {
Key key;
Value val;
KeyVal next;
b

public KeyValue() { store = null; }

8/21

a tree

public class KeyValue<Key extends Comparable<Key>, Value>
KeyVal store;
private class KeyVal {
Key key;
Value val;
KeyVal left;
KeyVal right;
X

public KeyValue() { store = null; }

9/21

time complexity

operation

*
array

unsorted

sorted

list

*%
tree

** using indicies as keys

** given that the tree is fairly balanced

10/21

time complexity

operation

*
array

unsorted

sorted

list

*%
tree

lookup

O(1)

O(n)

O(lg(n))

O(n)

O(lg(n))

** using indicies as keys

** given that the tree is fairly balanced

10/21

time complexity

operation array>|< unsorted | sorted list tree™
lookup | O(1) | O(n) | O(lg(n)) | O(n) | O(lg(n))
add O(1) O(1) O(n) | O(1) | O(lg(n))

** using indicies as keys
** given that the tree is fairly balanced

10/21

time

** using indicies as keys

complexity
operation array>|< unsorted | sorted list tree™
lookup | O(1) | O(n) | O(lg(n)) | O(n) | O(lg(n))
add O(1) O(1) O(n) | O(1) | O(lg(n))
remove | O(1) | O(n) O(n) | O(n) | O(lg(n))

** given that the tree is fairly balanced

10/21

Evaluation

Which implementation to choose:
® The keys: are indeces 0..max fine

11/21

Evaluation

Which implementation to choose:
® The keys: are indeces 0..max fine
» The keys: is there an order?

11/21

Evaluation

Which implementation to choose:
® The keys: are indeces 0..max fine
» The keys: is there an order?
» Which operations are most frequent/critical?

11/21

Evaluation

Which implementation to choose:

The keys: are indeces 0..max fine

The keys: is there an order?

Which operations are most frequent/critical?

How about the memory footprint?

11/21

Evaluation

Which implementation to choose:

The keys: are indeces 0..max fine

The keys: is there an order?

Which operations are most frequent/critical?

How about the memory footprint?

11/21

other operations

12/21

other operations

» Split a data structure in two.

12/21

other operations

» Split a data structure in two.
» Merge two structures.

12/21

other operations

» Split a data structure in two.
» Merge two structures.
» Selecting a range of keys.

12/21

other operations

Split a data structure in two.

Merge two structures.

Selecting a range of keys.

Selecting keys that are "close to each other" but not
necessarily in order.

12/21

an alternative implementation of a tree

13/21

an alternative implementation of a tree

Let's store the nodes of the tree in an array.

13/21

an alternative implementation of a tree

Let's store the nodes of the tree in an array.
® The root of the tree is at index 0.

13/21

an alternative implementation of a tree

Let's store the nodes of the tree in an array.
e The root of the tree is at index 0.
e The left branch of a node at j is at index / x 2 + 1.

13/21

an alternative implementation of a tree

Let's store the nodes of the tree in an array.
® The root of the tree is at index O.
o The left branch of a node at /j is at index i x 2 + 1.
e The right branch of a node at j is at index i x 2 + 2.

13/21

an alternative implementation of a tree

Let's store the nodes of the tree in an array.
® The root of the tree is at index O.
o The left branch of a node at /j is at index i x 2 + 1.
e The right branch of a node at j is at index i x 2 + 2.

13/21

a generic key/value tree

public class Tree<Key extends Comparable<Key>, Value> {

KeyVal[] store;
int size;

public class KeyVal {
Key key;
Value val,;

}
public KeyVal (int max) {
this.size = max;
this.store = new Tree.KeyVal [max]; // warning

14 /21

add a key/value pair

public void add(Key k, Value v) {
int indx = O;
while (true) A
if (storel[indx] == null) {
store[indx] = new KeyVal(k,v);
break;
+
if (storel[indx].key == k) {
store[indx].val = v;
break;

by

15/21

add a key/value pair

if (storel[indx].key.compareTo(k) > 0) {

indx = 2*xindx + 1;
} else {
indx = 2*xindx + 2;

}
+
+

16 /21

lookup a value given key

public Value lookup (Key k) {
int indx = O;
while (true) {
if (store[indx] == null) { break; }
if (store[indx].key == k) { return store[indx].val;}
if (store[indx].key.compareTo(k) > 0) A
indx = 2*indx + 1;
} else {
indx = 2*xindx + 2;
}
if (indx >= this.size) break;
}
return null,;

by

17/21

what's the catch

18/21

what's the catch

When might an array implementation of a tree not be a suitable
solution?

18/21

Abstractions

19/21

Abstractions

» There is a difference between the interface provided, and the
implementation.

19/21

Abstractions

» There is a difference between the interface provided, and the
implementation.

» The less requirements specified by the interface, the more
freedome do we have in the implementation.

19/21

Abstractions

» There is a difference between the interface provided, and the
implementation.

» The less requirements specified by the interface, the more
freedome do we have in the implementation.

o Linked data structures and arrays are questions about the
implementation.

19/21

Abstractions

» There is a difference between the interface provided, and the
implementation.

» The less requirements specified by the interface, the more
freedome do we have in the implementation.

o Linked data structures and arrays are questions about the
implementation.

o The interface describes the functionality and ... runtime
complexity.

19/21

Examples of abstractions

» A key/value store: add, lookup, remove, ...

20/21

Examples of abstractions

» A key/value store: add, lookup, remove, ...
e A stack : push, pop, constant time operations

20/21

Examples of abstractions

» A key/value store: add, lookup, remove, ...
e A stack : push, pop, constant time operations
» A queue : enqueue, dequeue, constant time operations

20/21

Examples of abstractions

A key/value store: add, lookup, remove, ...

A stack : push, pop, constant time operations

A queue : enqueue, dequeue, constant time operations
... there will be more.

20/21

One man'’s ceiling ..

21/21

One man'’s ceiling ..

. is another man’s floor.

21/21

