
An exercise in communication
Programming II - Elixir Version

Johan Montelius

Spring Term 2018

Introduction

This exercise is partly about breaking up a problem in layers of abstractions
and implement each layer as a process or a set of processes. We will model
our solution as communicating finite state machines and each machine is of
course implemented as an Elixir process.

The problem that we will look at is how to create a communication
abstraction that provides addressing and FIFO delivery over a lossy channel.
The situation will look similar to that of TCP/IP but our problem statement
and solution will be much simpler.

1 A transport abstraction

Assume that we want to create a transport service. The service should
provide the following functionality:

� identity: The service should provide addresses, we should be able to
send and receive messages to other processes given an address.

� flow control: The service should take care of flow control so we should
not be able to send more messages than the receiver can consume.

� ordered delivery: Packets should be delivered in order.

� reliable delivery: Packets should be delivered even if the underlying
communication channel is lossy.

This is not that hard to achieve and the solution could easily be be
described in a state diagram with 15 states and 123 transitions..... The
problem we would have is that, if we want to solve all these properties in
one go, we would have so many things to keep track of that the solution
would look like a bowl of spaghetti.

Instead of solving all problems at once we divide the solution into layers,
each layer providing a service that brings us closer to the final solution. The

ID1019 KTH 1 / 20

layers that we will implement have similarities with the ISO communication
layers or the layers in the IP stack. The layers that we will work with are:

� link: This layer is given, it will send a frame on a wire but does not
know very much more. There are no guarantees that the frame will
arrive nor that frames will arrive in order.

� network: This layer will introduce network addresses so we can have
several nodes connected together. It uses the link layer straight off so
we do not add ordered delivery nor guarantees of message delivery.

� order: This layer will add re-transmissions of missing messages and
keep track of ordering of messages.

� flow: This layer will solve the flow-control problem.

The TCP protocol is similar to our order and flow layers but also im-
plements congestion avoidance, process addressing, stream to datagram seg-
mentation etc. In this implementation we only provide reliability and flow
control to make things a bit easier. We will also implement them as separate
layers to show how simple each layer can be implemented.

If we draw a diagram over the complete system it will look like Fig.1.
Each layer will have one or more processes that implements the right ab-
stractions. In its first incarnation each layer will be handled by a single
process but when we extend the system we might want to have separate
processes for different directions.

We now start form the ground up and implement layer by layer. We
should be able to test that a layer works before implementing the next
layer.

2 link layer

The link layer process is, as shown in Fig.2 quite simple. We will first start
the process and give it the process identifier of the master process. We will
then send it a message that connect the process with a destination link layer
process.

Note the order here; we can not provide the link layer process with its
connection point when we create the process. If we tried we would end up
in a chicken or the egg question. We solve this by first creating both link
processes and the send them a message with the process identifier of their
peer.

The link layer should be able to handle the following messages:

� {:send, msg} : A message from the master (the network layer pro-
cess), telling the link process to send the message, msg, to the destina-

ID1019 KTH 2 / 20

user 1 user 2

flow 1 flow 2

order 1 order 2

network 1 network 2

link 1 link 2

message message

flow controlled flow controlled

ordered ordered

addressed addressed

frame

Figure 1: The architecture.

initstart

link

final

{:connect, dest}

:quit

{:send, msg}

frame(data: msg)

:quit

Figure 2: The link layer.

ID1019 KTH 3 / 20

tion process. The message is wrapped in a Frame and sent using the
regular Elixir send primitive.

� frame(data: msg): A frame from the peer link process. This mes-
sage should be forwarded to the master process using the regular Elixir
send primitive. The message is sent as is, msg, without being wrapped
in any special data structure.

The Elixir implementation is given in Appendix A. Before we continue
we write a small test program and connect two nodes together.

def test_link() do

sender = spawn(fn() -> sender() end)

receiver = spawn(fn() -> receiver() end)

{:ok, ls} = Link.start(sender)

{:ok, lr} = Link.start(receiver)

send(ls,{:connect, lr})

send(lr, {:connect, ls})

send(sender, {:connect, ls})

send(receiver, {:connect, lr})

:ok

end

This program will start two processes, the sender and the receiver;
note the order in which we have to start the processes. The two master
processes are started first in order to provide the link processes with their
respective master. Once the link processes are created we can connect them
together and then connect the master processes to the link processes.

The link sender process could look like follows. Implement the corre-
sponding receive process and see if your systems runs.

def sender() do

receive do

{:connect, lnk} ->

:io.format("sender connected to link ~w ~n", [lnk]),

:io.format("sending hello~n", [])

send(lnk, {:send, :hello})

end

end

3 a hub

If we only have two nodes in our network it is rather pointless, so we will
implement a “hub” to which we can connect several nodes. The hub will

ID1019 KTH 4 / 20

hubstart final

{:connect, dest}

{:disconnect, dest}

frame()

:DOWN

:quit

Figure 3: The hub.

accept new connection and forward incoming frames to all connected nodes.
The state machine is shown in Fig. 3. In the implementation we only need to
solve how connections should be stored and how to implement broadcasting
of messages.

As an extra precaution we add monitoring of connected link layer pro-
cesses. If a process dies we remove it from the set of connected processes.
This will save the state of the hub from growing in an environment where
nodes fail before having been disconnected.

An implementation can be found in Appendix A. Write a small test
program, similar to the previous one, where two link layer processes are
connected using a hub.

4 network layer

So we now have a link layer that works but the thing is that the hub will
happily broadcast any message to all connected nodes. If we connect three
nodes to the hub all three nodes will receive all messages. We need a network
layer that introduces an addressing scheme so we can send a message to a
particular node in the network.

In Fig.4 we have the state diagram of the network layer and as you see it
is not much more complicated than then link layer. You might wonder why

ID1019 KTH 5 / 20

init idstart

net id

final

{:connect, lnk}

:quit

netw(dst: id, msg: msg){:send, to, msg}

netw()

:quit

Figure 4: The network layer.

we did not implement the network layer directly since the link layer does
not give us any thing besides message delivery but we might want to add
more features, such as error detection, in the link layer and want to be able
to do this without modifying the network layer.

The network layer is given a unique identifier when it is started and
it will use this address to filter incoming messages. When we start the
process we also provide its master process so that it knows to whom it
should redirect incoming messages. Before we start sending messages we
connect the processes to a link layer process; following the same pattern as
for the test procedures for the link layer.

In Appendix ?? you will find an implementation of a network layer pro-
cess. Implement a simple test function that as before creates a sender and
receiver process that are connected using two network layer processes. The
tricky part is how to start the processes in the right order: application layer,
network layer, link layer, connect link layers, connect network layer to link
layer, connect application layer to network layer.

5 order and reliability

In the next layer we will create a process for one particular flow of messages.
We will then make sure that these messages are delivered properly by adding
a sequence number to the messages and re-transmit messages that could be
lost.

ID1019 KTH 6 / 20

init tostart

ready i

ack msg i

final

{:connect, lnk}

:quit

{:send, msg}

ack()

:quit
timeout

ack(seq: i)

:quit

(a) sending process

initstart

receive i

final

{:connect, lnk}

:quit

%Ord{seq: i}

%Ord{seq: j} if j < i

:quit

(b) receiving process

Figure 5: The ordering layer.

If messages can come out of order we need a way to impose some order.
The ordering is solved if the sending process numbers the messages as they
are sent and the receiver will buffer received messages and deliver them in
the right order.

A problem occurs if a message is lost; if we do not do anything to solve
this the receiver will wait forever for a message that will never arrive. The
solution is of course to let the sender keep a copy of each message in case it
is lost and to let the receiver request a re-transmission. This can be solved
either by explicitly request transmissions or by acknowledge messages that
do arrive correctly, we will choose the latter alternative.

To understand how the layer works we describe the process of a sender
process and the receiver process as two different state machines. In the
implementation we will however combine these machines into one Elixir
process.

In Fig.5 we see the state machines of the sender and receiver processes.
This description in simplified in that it will only allow one outstanding
message. The sender will be directed to send a message to the receiver and
will move in to a state where it is waiting for an acknowledgement for that
particular message i. If everything works it will receive the Ack message
and go back to the ready state. If no acknowledge message is received it will
receive a timeout and resend the message (msg).

The receiver knows what sequence number it is waiting. When the cor-
rect message arrives it will send an acknowledge message in return and for-
ward it to its master. It could be that the sender has already sent a copy of
the message so it must be prepared to discard messages that it has already
seen. The sender must likewise be prepared to discard Ack messages that it
has seen.

Both processes are started and given a specified network address that
it is communication with. It is then given access to a network process to

ID1019 KTH 7 / 20

use when sending messages. The network processes have addresses and
we here assume that the sender and receiver are the only processes that
are communicating using these addresses. The network processes are thus
dedicated to this communication channel.

In this simple version we only allow one message to be outstanding at
any given time. Only when a message has been acknowledged will we send
the next message. This is of course a severe limitation; our communication
channel will be depending on the round trip thus being very slow.

To solve this we extend the sender, as shown in Fig. 6, to allow several
outstanding messages at the same time. We extend the receive ack state so
that we can send new messages while we are waiting for an acknowledgment.
We have too keep track of all sent messages and make sure that we resend
the right one so we keep all sent messages, with their corresponding sequence
number, in a buffer (an list of all messages with the last message sent last).

The sender can now receive the following messages:

� {:send, msg}: The process will send the message in a numbered data-
gram to the receiving process. It will store the message with its cor-
responding sequence number as the last element in the buffer. The
sequence number is then updated.

� ack(seq: a): if a is equal to the sequence number of the first element
in the buffer then this element is removed from the buffer.If we receive
an acknowledgment and remove the last element from the buffer we
move to the ready state.

� ack(seq: a): if a is less than the sequence number of the first el-
ement in the buffer, this is a duplicate acknowledgment and can be
ignored.

� timeout : the process will resend the first element in the buffer.

Note that we have excluded one alternative from the description. A
sending process can send messages 14, 15 and 16, and then receive an ac-
knowledgment for 15 - what should we do? We could of course remove the
element from the buffer immediately but in our description we defer the
message until 15 is the first element in the buffer. Implicit deferral is a
technique that allows us to simplify the description but it also introduce
complications that we will discuss later.

In the description we have chosen to describe the sender and the receiver
as two state machines, which they are. In the implementation however, we
will implement them both as one Elixir process in the same way as we
have implemented the link layer or network layer. We do this in order to
provide a duplex communication channel without having to create two pairs
or processes for each direction. The implementation becomes trickier since

ID1019 KTH 8 / 20

init tostart

ready i

ack a, i

final

{:connect, net}

:quit

{:send, msg}

ack()

:quit

{:send, msg}

timeoutack()

ack(seq: a)

:quit

Figure 6: The ordering process: multiple outstanding messages.

we now have to keep track of both outstanding buffered messages as well as
what messages to receive and acknowledge.

6 flow control layer

The next layer will be slightly different since we now will do synchronous
reads of messages. The previous layers have simply passed an incoming
message to the master process but now we require the master process to
actively do a read operations. Similarly the send operation is acknowledged
so the user of the sending process knows that it is safe to send the next
message. The application layer thus has a message interface that looks like
follows:

� {:send, msg, pid} : sent to the sending process, a :ok message is
delivered to the process pid, when its safe to send the next message.

� {:read, n, pid} : sent to the reading process, at most n messages
are returned in a message {:ok, l, mgs} where l is the number of
messages.

This layer would be easy to implement if we only allowed one outstanding
message but we would of course like to implement a buffered system to
increase the throughput. The read process thus keeps a buffer of incoming

ID1019 KTH 9 / 20

initstart

ready

send s

final

{:connect, net}

:quit

syn()

:quit

{send, Msg, Pid}

#syn{}

quit

(a) sending process

init sizestart

receive s

final

{:connect, net}

:quit

%Msg{data: msg}

{:read, n, pid}

:quit

(b) receiving process

Figure 7: The flow control layer.

messages that are waiting to be read. The buffer does of course have a
maximum size and the sender must be careful not to overflow the reader with
messages. Before the sender can start to send messages it must therefore
receive a synchronize message that informs the sender of how many more
messages it can send. In the first message the reader informs the sender of
the maximum size of the buffer and it is then the responsibility of the sender
to keep track of how many more messages it can send.

In Fig 7 we sea the state diagrams of the sender and receiver. The
sender keeps track of s, the free space in the receiver buffer, a value that is
decremented with each send operation. If this value goes down to 0 it will
enter the ready state were it must first see a synch message before it can
accept more send operations.

As with the ordering layer we will implement the sender and receiver in
one Elixir process. We could however have implemented them in separate
processes but we would the of course need two processes on either side if we
want to provide a duplex channel.

Do as before and implement a test function that creates a sender and a
receiver and connects them over a flow controlled connection.

7 extensions

If you think you have everything working you can continue with some ex-
tensions.

7.1 testing

Hopefully you have managed so far but let’s see if things actually work. If
we tweak our hub a bit we can make it drop a packet every now and then. As

ID1019 KTH 10 / 20

we receive a incoming frame we toss a coin and if we’re unlucky we simply
throw the frame away. If things works the ordering layer should resend the
message and also order them in the right order.

While you at it you can give the hub a loss rate that determines how
often it should loose a frame. The following code will get you going:

frame() = frm ->

if :rand.uniform(100) <= loss do

:io.format("nub: throwing away ~w\n", [frm])

:ok

else

Enum.each(connected, fn({_,pid}) -> send(pid, frm) end)

end

hub(loss, connected)

7.2 a switch

Our hub is of course nothing but a hub, it will distribute every frame in all
directions. What would a switch look like?

7.3 zombies

By now you probably have a hundred link processes running on you machine.
Every time you test the system you create several processes that are then
not properly terminated. You could of course continue for a while but if this
was a real system we would eventually run out of resources.

All our processes can take a message :quit and should then of course
terminate. The problem is of course to find them, or rather making sure
that who ever started them also terminates them. Since we want to make
sure that processes terminate even if their parent processes crash we could
use linking when processes are started. Linking is however bi-directional so
if a underlying network process dies it might take it’s master process with
it.

To solve these problems we could, as in the hub, use monitoring to let
processes detect when their masters die. This soon starts to get complicated
and it should be no surprise that Elixir has a whole framework, OTP, to
handle larger systems.

7.4 marshaling

Our link layer can today send anything across the network but this is not
a realistic assumption. Assume that we can only send a byte sequence. If
the interface to the link layer was the message {:send, string}, the layers
above would have to encode their sequence numbers, addresses, packet types

ID1019 KTH 11 / 20

etc in a string. This is one challenge, to encode all data structures as strings
before sending them.

The link layer can now turn into something more interesting and apply
error detection etc to be able to send messages over connections where bit
can be flipped. If you want to learn how a CRC code or a forward error
correction code can be used this is the task to take on.

ID1019 KTH 12 / 20

A linkl.ex

defmodule Link do

r e qu i r e Record

Record . de f r e co rd (: frame , data : ni l)

def s t a r t (master) do
{ : ok , spawn (fn () => i n i t (master) end)}

end

defp i n i t (master) do
receive do

{ : connect , lnk } =>
: i o . format (” l i n k ˜w: connected to ˜w˜n” , [s e l f () , lnk])
l i n k (master , lnk)

: qu i t =>
: ok

end
end

def l i n k (master , lnk) do
receive do

{ : send , msg} =>
send (lnk , frame (data : msg))
l i n k (master , lnk)

frame (data : msg) =>
##: io . format (” l i n k r e c e i v i n g ˜w\n” , [frm])
send (master , msg)
l i n k (master , lnk)

{ : master , new} =>
l i n k (new , lnk)

: s t a tu s =>
: i o . format (” l i n k ˜w: master : ˜w, l i n k : ˜w˜n” , [s e l f () , master , lnk])
l i n k (master , lnk)

: qu i t =>
: ok

end

ID1019 KTH 13 / 20

end

end

ID1019 KTH 14 / 20

B hub.ex

defmodule Hub do

r e qu i r e Link

def s t a r t () do
{ : ok , spawn (fn () => i n i t () end)}

end

def i n i t () do
: i o . format (”hub ˜w: s t a r t ed ˜n” , [s e l f ()])
hub ([])

end

def hub(connected) do
receive do

{ : connect , pid } =>
: i o . format (”hub ˜w: connect ing to ˜w˜n” , [s e l f () , pid])
r e f = : e r l ang . monitor (: process , pid)
hub ([{ r e f , pid } | connected])

{ : d i sconnect , pid } =>
: i o . format (”hub ˜w: d i s connec t ˜w˜n” , [s e l f () , pid])
: e r l ang . demonitor (: process , pid)
hub(L i s t . k eyde l e t e (connected , pid , 1))

{ :DOWN, re f , : process , , } =>
: i o . format (”hub ˜w: died ˜w˜n” , [s e l f () , r e f])
hub (L i s t . k eyde l e t e (connected , r e f , 0))

Link . frame () = frm =>
Enum. each (connected , fn ({ , pid }) => send (pid , frm) end)
hub(connected)

: s t a tu s =>
: i o . format (”hub ˜w: connected to ˜w˜n” , [s e l f () , connected])
hub(connected)

: qu i t =>
: ok

end

ID1019 KTH 15 / 20

end

end

ID1019 KTH 16 / 20

C network.ex

defmodule Network do

r e qu i r e Record

Record . de f r e co rd (: netw , s r c : 0 , dst : 0 , data : ni l)

def s t a r t (master , id) do
con = spawn (fn () => i n i t (master , id) end)
{ : ok , con}

end

def i n i t (master , id) do
: i o . format (”network ˜w: p roce s s ˜w s t a r t ed ˜n” , [id , s e l f ()])
receive do

{ : connect , l i n k } =>
: i o . format (”network ˜w: connected to ˜w˜n” , [id , l i n k])
network (master , id , l i n k)

: qu i t =>
: ok

end
end

def network (master , id , l i n k) do
receive do

{ : send , to , msg} =>
##: io . format (” network ˜w sending ˜w to ˜w\n” , [id , msg , to])
send (l ink , { : send , netw (s r c : id , dst : to , data : msg)})
network (master , id , l i n k)

netw (dst : ˆ id , data : msg) =>
##: io . puts (” network ˜w r e c e i v i n g ˜w\n” , [id , msg])
send (master , msg)
network (master , id , l i n k)

netw () =>
network (master , id , l i n k)

{ : master , new} =>
network (new , id , l i n k)

ID1019 KTH 17 / 20

: s t a tu s =>
: i o . format (”network ˜w: id ˜w, master : ˜w, l i n k : ˜w˜n” , [s e l f () , id , master , l i n k])
network (master , id , l i n k)

: qu i t =>
: ok

end
end

end

ID1019 KTH 18 / 20

D order.ex

defmodule Order do

r e qu i r e Record

Record . de f r e co rd (: ord , seq : 0 , data : ni l)

Record . de f r e co rd (: ack , seq : 0)
Record . de f r e co rd (: dgr , seq : 0 , data : [])

def s t a r t (master , to) do
{ : ok , spawn (fn () => i n i t (master , to) end)}

end

def i n i t (master , to) do
: i o . format (” order to ˜w: p roce s s ˜w s t a r t ed ˜n” , [to , s e l f ()])
receive do

{ : connect , netw} =>
: i o . format (” order to ˜w: connected to ˜w˜n” , [to , netw])
order (master , to , 0 , 0 , [] , netw)

end
end

def order (master , to , n , i , [] , netw) do
receive do

ord (seq : ˆ i , data : msg) =>
send (netw , { : send , to , ack (seq : i)})
send (master , msg)
order (master , to , n , i +1, [] , netw)

ord (seq : j) when j < i =>
send (netw , { : send , to , ack (seq : j)})
order (master , to , n , i , [] , netw)

ack () =>
order (master , to , n , i , [] , netw)

{ : send , msg} =>
send (netw , { : send , to , ord (seq : n , data : msg)})
order (master , to , n+1, i , [{n ,msg }] , netw) ;

ID1019 KTH 19 / 20

{ : master , new} =>
order (new , to , n , i , [] , netw)

end
end
def order (master , to , n , i , [{ a , r e s } | r e s t]= bu f f e r , netw) do

receive do

ord (seq : ˆ i , data : msg) =>
send (netw , { : send , to , ack (seq : i)})
send (master , msg)
order (master , to , n , i +1, bu f f e r , netw)

ord (seq : j) when j < i =>
send (netw , { : send , to , ack (seq : j)})
order (master , to , n , i , bu f f e r , netw)

ack (seq : ˆa) =>
order (master , to , n , i , r e s t , netw)

ack (seq : b) when b < a =>
order (master , to , n , i , bu f f e r , netw) ;

{ : send , msg} =>
send (netw , { : send , to , ord (seq : n , data : msg)})
order (master , to , n+1, i , b u f f e r++[{n ,msg }] , netw)

{ : master , new} =>
order (new , to , n , i , bu f f e r , netw)

a f t e r 10 =>
dgr = ord (seq : a , data : r e s)
##: io . format (” order to ˜w resend ing ˜w\” , [to , dgr])
send (netw , { : send , to , dgr })
order (master , to , n , i , bu f f e r , netw)

end
end

end

ID1019 KTH 20 / 20

