Philosophers and Concurrency
Programming IT - Elixir Version

Johan Montelius

Spring Term 2018

Introduction

In this assignment you should implement the behavior of five philosophers
that are sitting at a round dining table. The problem is to allow each
philosopher to get something to eat, a task that does not sound to be very
difficult.

The situation is that the five philosophers are sitting at the dinner table
with a bowl of noodles in front of them, and a chopstick between each of
them. We thus have five philosophers and only five chopsticks, this is the
problem.

When a philosopher decides to eat (they sit and think most of the time),
she will pick up the two chopsticks next to her and eat from the bowl of
noodles. When she is done, she will simply return the chopsticks to their
places. If the philosophers do not eat that often things will probably work
out just fine, the problem occurs when several philosophers decide to eat at
the same time.

You should complete a simple program that implements the behavior of
the philosophers and run some experiments to see when things go wrong.
You should also provide a solution to the problem that at least allow some
of the philosophers to get some food.

1 A chopstick

The location of a chopstick is represented by a process. The state of the
process is either:

e available : if a chopstick is present or,

o gone : if the chopstick is taken

A location will start in the state available, and then wait for a request
message. When the location process receives this message it should return
a granted message and move to the state gone. In this state the location

ID1019 KTH 1/7



process will accept a return message and can then return to the available
state. Messages that are not currently handled remain in the message queue.

{:request, from}

start available

Implement this process in a module Chopstick with a function start/0
that spawns the process and returns the process id. When you spawn the
process use spawn_link/1 to make sure that the chopstick process dies if
the mother process dies (and vice verse). This is some skeleton code to give
you the structure of the implementation.

def start do
stick = spawn_link(fn -> ... end)
end

def available() do
receive do
S S
:quit -> :o0k
end
end

def gone() do
receive do
A
:quit -> :ok
end
end

We should try to keep the internals of the location process as hidden as
possible from the users of the module. We therefore provide a functional
interface so that a user of the module does not need to know the structure
of all messages.

def request(stick) do
send(stick, ...)

ID1019 KTH 2 /7



receive do
. => :0k
end
end

Provide similar functions for returning the stick and terminating the
process. We will change things later so you will see that it is very nice to
only allow the philosophers to use the functional interface.

2 A philosopher

A philosopher is either dreaming (some call it thinking), waiting for a chop-
stick or eating. In the dreaming state the philosopher does nothing until she
decides that it is time to eat. She will then request her left chopstick and
her right chopstick, if everything works she can start to eat. A philosopher
will eat for while and then return the chopsticks.

You can implement the dreaming and eating time by using the library
function :timer.sleep/1 that will simply wait for a number of milliseconds
before continuing. If you want to have some randomness you can use the
library function :rand.uniform/1. This sequence will make a process sleep
for a random time.

def sleep(0) do :ok end

def sleep(t) do
:timer.sleep(:rand.uniform(t))

end

Implement the philosopher in a module called Philosopher and provide
a function start/5 that spawns a philosopher process (use spawn_ link/1).
The procedure should take the following arguments.

o hunger: the number of times the Philosopher should eat before it
sends a :done message to the controller process.

e right and left: the process identifiers of the two chopsticks.

e name: an atom that is the name of the philosopher, used for nice
logging.

e ctrl: a controller process that should be informed when the philoso-
pher is done.

Add some nice logging information to your process so that you can track
what is happening. A philosopher could for example print a message when
it receives a chopstick:

ID1019 KTH 37



I0.puts("#{name} received a chopstick!")

Elixir also supports string interpolation; in the code fragment above the
content of the variable name is interpolated with the rest of the string.

3 Dinner at the table

If you have the two modules working we can seat the philosophers around
the table. We first create the locations and then start the philosophers. In
a module called Dinner, define the following function:

def start(), do: spawn(fn -> init() end)

def init() do

cl = Chopstick.start()
c2 = Chopstick.start()
c3 = Chopstick.start()
c4 = Chopstick.start()
c5 = Chopstick.start()

ctrl = self()
Philosopher.start(5, cl, c2, :arendt, ctrl)
Philosopher.start(5, c2, c3, :hypatia, ctrl)
Philosopher.start(5, c3, c4, :simone, ctrl)
Philosopher.start(5, c4, cb, :elisabeth, ctrl)
Philosopher.start(5, c5, cl, :ayn, ctrl)
wait(5, [cl, c2, c3, c4, c5])

end

We're starting all processes under a controlling process that will keep
track of all the philosophers and also make sure that the chopstick processes
are terminated when we’re done.

def wait(0, chopsticks) do

Enum.each(chopsticks, fn(c) -> Chopstick.quit(c) end)
end
def wait(n, chopsticks) do

receive do

:done ->
wait(n - 1, chopsticks)
:abort ->
Process.exit(self(), :kill)
end

end

1D1019 KTH 4 /7



If things go wrong and a process terminates with an error it will kill all
linked processes. If things are stuck in a deadlock we can send an :abort
message to the controller process that then will exit with an error and kill
all other processes.

Now it’s time to see if the philosophers will be able to dream and eat.

4 Experiments

Experiment with the dinner, will the philosophers always be able to eat?
What happens if you decrease the time it dreams? What happens if you
introduce an artificial delay between the receiving of the first chopstick and
requesting the second?

5 Break the deadlock

To break out of a potential deadlock situation we can change the request
function in the chopstick module. Let’s pass a second argument to the
function that specifies how many millisecond we are willing to wait for a
chopstick.

ID1019 KTH 5/ 17



def request(stick, timeout) do
send(stick, ...)
receive do
S
:o0k
after ... ->
:no
end
end

Change your implementation of the philosophers to use the new interface.
You should also add another parameter to the philosopher; every time a
philosopher has to give up waiting for a chopstick its strength is reduced by
one. If the strength goes down to 0 it dies.

So you have broken the dead-lock, or so you think, but what is actually
happening? What happens when a philosopher gives up? You have to
do some thinking but the solution is quite simple once you trace what is
happening.

6 Asynchronous requests

The solution that you have now is quite boring in that a philosopher will
first request the left chopstick and, only when this is delivered will it try to
grab the right chopstick. How about sending a request to both chopsticks
first and then wait for the replies? Change the request function and then
provide a granted function that does the waiting.

If a philosopher gives up, how do we keep track of which chopsticks that
was actually obtained? Is this a tricky problem or a non-problem?

7 A waiter

Can you provide a better strategy for the philosophers so that they can eat
and dream without ending up in a deadlock? What happens if you provide a
waiter that controls how many philosophers that can eat at any given time.
How would this help the situation? How many philosophers can try to eat
without ending up in a deadlock? How smart does the waiter need to be?

8 Benchmark

Run some benchmarks and try to figure out how long time it takes for a set
of philosophers to eat a given number of times. Use the algorithms that do
not risk ending up in deadlocks and try to be as aggressive as possible.

ID1019 KTH 6 /7



Can you work with a increasing “back-off” time so that a philosopher
will wait for a while before trying to grab the chopsticks if it has failed
once? Can the system adapt itself so that it runs smoothly without too
many failed attempts? Is there a trade-off between being aggressive and
over-all throughput?

9 Avoid the deadlock

Is there a small change in the system that will avoid ever landing in a dead-
lock situation? Can you guarantee that all philosophers will eventually get
to eat? Is the system fair?

ID1019 KTH 77



