
Mutual Exclusion

Locks, Semaphores and Monitors
Programming II - Elixir Version

Johan Montelius

Spring Term 2018

Getting started

In this assignment you will learn about the concept of mutual exclusion
and how locks, semaphores and monitors can give us what we want. These
concepts are not frequently used in Elixir programming but you should know
about them and understand why they are not often explicitly used in Elixir.

The main idea with mutual exclusion is that we want to limit the con-
currency to at most one executing process in a critical section. A critical
section could be a section in the program where we modify some data struc-
ture and we do not want any other process to see what we have done until
we are completely done. Since we do not have any mutable data structures
in Elixir the need for locks is limited but think about updating a set of files
where you want to do all the changes before you let another process see what
you have done or do their modifications.

1 Let’s implement a lock

We will start by implementing a lock process (or rather try to implement it).
A lock is something that can only be held by one process, the process that
takes the lock knows that it is the sole owner of the lock and can proceed to
a critical section.

Our first attempt to implement a lock process is quite straight forward
- we will implement the lock as a process that only holds one value and
accepts two messages: set and get.

defmodule Cell do

def new(), do: spawn_link(fn -> cell(:open) end)

defp cell(state) do

ID1019 KTH 1 / 12



receive do

{:get, from} ->

send(from, {:ok, state})

cell(state)

{:set, value, from} ->

send(from, :ok)

cell(value)

end

end

end

To make it easier to use the lock we also provide two functions that hide
the fact that we do asynchronous communication.

def get(cell) do

send(cell, {:get, self()})

receive do

{:ok, value} -> value

end

end

def set(cell, value) do

send(cell, {:set, value, self()})

receive do

:ok -> :ok

end

end

If we have created a cell we could use it to protect a critical operation
using the codes that follows (not true so don’t stop reading here).

ID1019 KTH 2 / 12



def do_it(thing, lock) do

case Cell.get(lock) do

:taken ->

do_it(thing, lock)

:open ->

Cell.set(lock, :taken)

do_ya_critical_thing(thing)

Cell.set(lock, :open)

end

end

Perfect, case closed ... ehhh, there is something wrong - what happens
if...? Before you continue think about what would happen if two processes
called the do it/2 procedure with the same lock; do we guarantee that the
two processes will never ever execute the critical section at the same time?

2 The atomic swap

There are two solutions to the problem of the lock in the first section: atomic
swap and Peterson’s algorithm. Using atomic swap we implement a new
message that will read and write to the cell in the same operation. This
feature is often found in hardware and programs written in C or C++ can
often make direct use of this. In our implementation we will implement it
ourselves with a small extension to the lock.

defp cell(state) do

receive do

{:swap, value, from} ->

send(from, {:ok, state})

cell(value)

{:set, value, from} ->

send(from, :ok)

cell(value)

end

end

Assuming we also provide a functional interface we could now use the
lock as follows:

ID1019 KTH 3 / 12



def do_it(thing, lock) do

case Cell.swap(lock, :taken) do

:taken ->

do_it(thing, lock)

:open ->

do_ya_critical_thing(thing)

Cell.set(lock, :open)

end

end

In this version it does not matter if two processes calls the procedure at
the same time; both of them will swap in the value :taken but only one of
them would receive the :open value in return. The process that loses the
race will have to retry to take the lock and will succeed once the holding
process sets the lock to :open.

3 Peterson’s algorithm

You might wonder if there is a way to implement a lock without an atomic
swap operation. If not, we are sure lucky that the hardware people have
implemented it. It turns out that there is and the algorithm is fairly simple
once you understand why it works.

3.1 the algorithm

Assume we have our original cell with only the :get and :set operations.
We also assume that there are only two processes that will compete for
the lock. We will now use three cells: p1, p2 and q. In the cell p1 the
first process will declare its interest in moving into the critical section. The
second process will declare its interest using p2. The q cell will be used to
determine the winner if we have a draw.

The two processes will execute slightly different code when trying to
enter the critical section; or rather, the code is the same but the parameters
are shifted. The first process will call the procedure lock(0, p1, p2, q)

where as the second process will call lock(1, p2, p1, q).

ID1019 KTH 4 / 12



def lock(id, m, p, q) do

Cell.set(m, true)

other = rem(id + 1, 2)

Cell.set(q, other)

case Cell.get(p) do

false ->

:locked

true ->

case Cell.get(q) do

^id ->

:locked

^other ->

lock(id, m, p, q)

end

end

end

def unlock(_id, m, _p, _q) do

Cell.set(m, false)

end

The intuition is that each process begins to declare that they are inter-
ested in taking the lock. They then set the common cell q to the second
process’s identifier as a signal to the second process to go ahead if they are
both interested of the lock. If a process however sees that the second process
is not interested it holds the lock and proceed into the critical section.

3.2 prove it

To understand how Peterson’s algorithm works is not easy; to prove that it
ensures that the two processes do not believe to hold the lock at the same
time is more difficult.

If you want to prove that Peterson’s algorithm works, you can draw a
finite state machine diagram with the state of the variables: p1, p2, q and
two variable l1 and l2 that describes if a process is in the critical section.
One alternative method is to use so-called temporal logic where the rules can
prove that it is never so that l1 and l2 are both true.

An interesting question is whether one can make use of Peterson’s al-
gorithm in a computer that has as much as possible in the cache, or in a
distributed system where clients have local copies. A prerequisite for the
algorithm to work is that if a process sets p1 to true and then reads that p2
is false then it can not be that the second process manages to set p2 to true
and then read that p1 is false. Describe a scenario using cached local copies

ID1019 KTH 5 / 12



that will violate this prerequisite.

3.3 the bakery algorithm

When I lived in Barcelona I learned a wonderful algorithm for keeping track
of who is next to be served in a bakery. When you entered a bakery (or
butchery) you simply greeted every one with the phrase “¿Buenos dias,
ultimo?”. The person who was the last person in line would reply “Si” and
then you would know who was the person just in front of you. If someone
else entered the store you would be the one to reply “Si” and that was it.
The system works perfectly and you avoid the hassle of finding a machine
to give you a ticket. If Leslie Lamport had lived in Barcelona he would
probably never have named his algorithm the bakery algorithm since it is
based on a numbering system where entering processes picks a number that
is higher than any other number in the queue.

The algorithms uses a shared array with one index per process. If the
index of a process is set to 0 it means that the process is not interested in
entering the critical section. When a process wishes to enter the critical
section it will scan the array and find the highest ticket number and then
set its own index to the number plus one. The intuition is that all processes
that entered the store before it should have precedence. It could of course
happen that two processes enters at the same time and chooses an identical
ticket but this is solved by giving precedence to the process with the lowest
id.

When a process has selected a ticket number it will again scan the array
from the beginning and wait until all indexes before its own, are either set
to 0 or have a ticket number that is higher than its own and, all indexes
after its own are set to 0 or have ticket numbers higher or equal to its own.
When the process has scanned the array it is allowed into the critical section
and will, when it is done, set its own index to 0.

The scanning of the array can proceed one step at a time, if a index has
the value 0 it could of course be set by the owner of the index but then it
will be set to a value equal or higher to the ticket of the scanning process.
An index that holds a value that is lower than then ticket of the scanner will
eventually be set to 0 once the processed has completed its critical section.

4 The semaphore

In the previous section we implemented the locks using a busy waiting or
spin-lock strategy. A process that would not immediately require the lock
would try and try again until the lock was acquired. This is a very aggres-
sive strategy that in the worst case means that a process will spend a lot
of resources just reading from a memory location, or as in our case send
thousands of messages to a cell process and request its state.

ID1019 KTH 6 / 12



A better strategy (not always better) could be to suspend the execution
if the lock is not taken and only continue to execute once the lock has been
acquired. The semaphore concept is also often described as being more
general compared to a binary lock. We will describe a semaphore that will
allow at most n processes to enter the critical section. If n is 1 then it called
a binary semaphore.

4.1 was this it

In Elixir this is expressed so easily that you hardly realize that you have
implemented a semaphore. Look at the code below:

def semaphore(0) do

receive do

:release ->

semaphore(1)

end

end

def semaphore(n) do

receive do

{:request, from} ->

send(from, :granted)

semaphore(n - 1)

:release ->

semaphore(n + 1)

end

end

If we create a semaphore with the initial value 4 then at most four pro-
cesses will be granted access to the critical section. The code for requesting
entrance would of course look like follows:

def request(semaphore) do

send(semaphore, {:request, self()})

receive do

:granted ->

:ok

end

end

The difference from the locks we implemented before is that the request-
ing process will now be suspended waiting in a receive statement until the
semaphore responds with a :granted message.

ID1019 KTH 7 / 12



4.2 I’ve heard it was tricky

In the classical description of a semaphore one must explain what happens
when a process request access and there are no resources left. One will then
describe how this process is added to a queue of waiting processes and how
it then yields the execution. When a process leaves the critical section, the
first process in the queue of suspended processes will be selected and added
to the set of runnable processes (often by sending it a signal to wake up).

In our Elixir implementation all this is hidden in the message queue.
A process that sends a :request message will of course have its message
inserted as the last message in the message queue. If there are no resources
left (the first clause), then request messages will simply not be handled.
Only when resources are available will the semaphore handle requests and
then it will of course handle them in the order they have arrived in the
message queue.

As an exercise you can re-write the semaphore so that it only has one
clause and always accepts requests. If there are no resources available the
requesting process must be held on hold in a list of waiting processes. When
a release message is received and the resource is incremented from zero the
first process, if any, in the lists of waiting processes should be granted access.

5 The monitor

The semaphore gave us a solution to the mutual exclusion problem but is
does of course require that the processes do respect the rules. No process is
allowed to enter the critical section if it has not being granted access by the
semaphore. It must also release its access when it leaves the critical section.
A process that not play by the rules could of course ruin the whole system.

A better strategy is to encapsulate the critical section inside a semaphore
so that no process can enter the critical section without using the semaphore.
This concept is called a monitor and is how things are done in Elixir as well
as Java. In Java one would declare a method of an object to be synchronized
thereby preventing more than one thread at a time to execute the method.
In Elixir the same thing is of course handled by messages.

def monitor(state) do

receive do

{:request, from} ->

updated = critical(state)

send(from, :ok)

monitor(updated)

end

end

ID1019 KTH 8 / 12



The Actors model, that Elixir is built on, automatically gives us the
properties of a monitor. From the implementation of monitor/1 we easily
see that request to execute the critical section are of course handled one by
one and will even be done in a fair order.

You could easily implement more advanced constructs where a request
could contain a lambda expression that should be applied to the monitor
state. In this way the requesting process has more freedom to control what
should be done.

def monitor(state) do

receive do

{:request, fun, from} ->

updated = fun.(state)

send(from, :ok)

monitor(updated)

end

end

In one way, you can view every Elixir process as a monitor that protects
its state. It will only handle one message at a time and it is the only process
that has access to the state.

6 Deadlocks

The locks, semaphores and monitors solves the problem of data corruption
i.e. by only allowing one transformation at a time. As you have seen the
Actors model gives us this almost for free but this is only half of the problem
introduced by concurrency. A equally important problem is the problem of
deadlock i.e. a situation were no process can proceed since they are all
waiting for someone else to take the first step.

6.1 shades of hell

A complete deadlock is of course the worst thing that could happen but
there are other related problems that are almost as bad:

� deadlock: Nothing moves.

� livelock: Things move but we’re not making progress.

� starvation: We make progress but at least one process is prevented
from progressing.

� non-fair scheduling: All processes make progress but some processes
do not get a fair share of the resources.

ID1019 KTH 9 / 12



It is not necessarily so that every system you implement must implement
a fair scheduling algorithm that guarantees that all processes should have a
equal chance in acquiring the resources of the system. It could be enough
that it is starvation free or proved to never go into a livelock. Its important
to understand what is required and then choose algorithms to meet these
requirements. If you always go for an implementation that guarantees fair
scheduling then you might pay more than anyone asked for.

6.2 locks, semaphores and monitors

Go back to the locks, semaphores and monitors in the previous section and
ask yourself what the implemented solutions actually provided. They were
hopefully dead lock free but were they starvation free? Did they provide a
fair scheduling i.e. if a process has requested a lock or access to a critical
section, will the process be granted access before any process that issues a
request at a later moment?

6.3 detecting a deadlock

Even if the locks, semaphores and monitors that we have discussed have
algorithms that will not deadlock, we can easily create a deadlock if we have
two or more locks. If process P1 is granted a lock A, process P2 is granted a
lock B and requests lock A it will of course have to wait. If process P1 now
requests lock B we have a circular dependency that has caused a deadlock.

We can create a similar circular dependency with monitors if one monitor
will, as part of its critical section, request the service of another monitor.
This monitor might in turn request a third resource that request the service
of the first monitor.

One way to break the deadlock is to give up waiting for a lock, release
some of the locks held, do something else for a while and then retry to take
the locks. We can implement this using a timeout in the receive statement.
The implementation will however be more complicated than you might first
think.

6.4 master should be resting

Assume that we have implemented a semaphore and use the following func-
tion to acquire access.

def request(semaphore) do

send(semaphore, {:request, self()})

receive do

:granted ->

:ok

after

ID1019 KTH 10 / 12



1000 ->

:abort

end

end

A process that calls the procedure request/1 will then be given the
result :ok or :aborted. If everything went fine it will continue to execute
but if it receives :aborted it knows that we could in the worst case be in
a deadlock. If it is not holding any other lock it is not much it can do but
if it holds another request a good strategy could be to release this resource
and then ponder π for a while.

This all sounds fine but the above explanation could have
been given by Gollum.

If you implement it like this your in for a surprise. The message that you
sent to the semaphore is not lost but simply waiting in the message queue
of the semaphore. Sooner or later the semaphore will handle this request
and send a :granted message to you. Now you have the resource even if
you don’t realize it. If you at a later point in time return to the semaphore
and again request the resource you will find this granted message that has
been there all the time.

def request(semaphore) do

ref = make_ref()

send(semaphore, {:request, ref, self()})

wait(semaphore, ref)

end

def wait(semaphore, ref) do

receive do

{:granted, ^ref} ->

:ok

{:granted, _} ->

wait(semaphore, ref)

after

1000 ->

send(semaphore, :release)

:abort

end

end

We should of course also change the implementation of the semaphore
so that it accepts requests on the form {:request, ref, from} and reply
with a {:granted, ref} but then we are on the safe side.

ID1019 KTH 11 / 12



The reason we can send a :release before we actually have been granted
the request is that we know that our request is in the message queue. We
also make sure, by using the unique references, that we will not mistake an
old granted message as a reply to a new request.

Better than trying to resolve a deadlock situation is of course to avoid
it all together and there is a simple strategy that will always work.

6.5 avoiding deadlock

The problem with a deadlock is of course that we have a circular structure
where everyone is waiting for someone else. If we can avoid building a
circular structure we could avoid deadlocks all together.

Assume all resources (locks, semaphores or monitors) are ordered and
you’re never allowed to take higher resource before a lower resource. If
you find that you’re waiting for a resource the resource is of course held
by someone. This someone is either working, in which case everything is
fine and you will be given access sooner or later, or suspended waiting for a
higher resource. It can not be suspended waiting for a lower resource since
it is not allowed to request a lower resource if it is holding the resource that
you’re waiting for.

You might ask, what happens if the process is suspended waiting for a
higher resource but then it is in the same situation as you are. We have a
chain of processes, all waiting. Since we only have a finite set of resources
the process in the end of the chain is not suspended but working. Sooner
or later it will let go of its resources and allow the next process in line to
continue its execution.

The only problem with this strategy is that it sometimes is hard to
order the resources so that everyone knows the order. Nor is it always easy
to determine beforehand which resources that will be needed - if you start
by grabbing a resource that you know you need you’re not allowed to grab
a resource with a lower rank.

7 Summary

The Actors model of handling concurrency saves us from most of the prob-
lems of protecting critical sections. The process is in a sense a monitor that
protects a critical section and the message handling will give all processes
fair access to the resource.

Deadlock is a problem but can often be avoided by ordering the resources
and always request the resources in this order. Detecting a deadlock situa-
tion and resolve the situation might be trickier than think.

ID1019 KTH 12 / 12


