Morse Encoding

Programming IT - Elixir Version

Johan Montelius

Spring Term 2024

Introduction

Morse codes were used in the days of telegraphs and manual radio commu-
nication. It is similar in the idea to Huffman coding in that it uses fewer
symbols for frequent occurring characters and more symbols for the infre-
quent ones. You task is to write a decoder for Morse signals and decode two
secret messages.

1 DMorse codes

There are several standards for Morse codes and we will here use a slightly
extended version since we also want to code some special character. The
Morse code uses, as you probably know, long and short (often pronounced
di and da) to encode characters. You might therefore think that is identical
to Huffman codes but there is a difference. In Morse coding we have a special
signal that tells us when one character ends and the next start. The pause
between characters is necessary in order to decode a message.

The code for ’a’ is di-da, ’i’ is di-di and I’ is di-da-di-di. If we just had
the sequence di-da-di-di we would not know if this was “ai” or “j”; we need
a third signal, the pause, to tell the difference. A sequence di-da-pause-di-
di-pause is then decoded as “ai”.

How does this change the structure of our decoding tree? In a Huffman
tree we only have characters in the leafs and when we hit a leaf we know
that we have a complete character and can start from the root again. In a
Morse tree we can finish anywhere along the path to a leaf. We thus have
characters in every node of the tree (apart from the root).

2 The decoder

The Morse codes that we will use are given in the decoding tree in the
Appendix. As you see we have represented the table as a tree were each
node is on the form:

ID1019 KTH 1/4



{:node, character, long, short}

An empty tree is represented by the value :nil and the root holds
dummy value instead of a character; if everything works fine we will never
have to see the nil nor the dummy value.

To decode a message you only have to choose the long branch when you
hear a long signal and a short branch when you hear a short signal. When
you hear the pause you have decoded a character and can start from the
root again.

Implement a function decode(signal, tree) that takes a signal and
the decoding tree and returns a decoded message. The signal is in the form
of a string with dots and dashes .- . .- - --? (i.e. a charlist
with ASCII characters 45, 46 and 32 (dash dot and space), don’t use the
integers in yoru code but the elixir way of writing ASCII codes i.e. 7., 7-
and 7
s)

Decode the secret messages below. If you cut and paste the code, make
sure that you don’t have carriage-return etc in the string. The string should
only contain the dash, dot and space characters.

If you by accident have two spaces between to characters this might be
decoded as :na which then will generate a string that is not a proper string.
To solve this problem you might add a rule for the case where you're in
the root of the tree (the character is :na) and you hear a space. Then you
simply do nothing and just start from the root again. The rule can be made
general so that any unknown character will simply make the decoder start
from the root.

3 The encoder

To encode messages we simply need the table that gives us codes for each
character. You could of course use the tree directly to find the code of a

ID1019 KTH 2 /4



character but this requires searching through the whole tree for each carac-
ter. Why not traverse the tree once and build a map structure that maps
characters to codes. The codes are best represented as charlist.

First implement a fucntion that takes the morse tree and returns an
encoding table as a map. Is then a simple task to implement a function
that takes a message (encoded as a charlist) and encodes each character
of the message. When you construct the encoded message make sure that
you include a pause between each code sequence. The message ’sos’ is thus
encoded ... -- ... ’ with spaces between the sequences.

ID1019 KTH 3 /4



4 The Morse codes

def tree do
{:node, :na,
{:node, 116,
{:node, 109,
{:node, 111,
{:node, :na, {:node, 48, nil, nil}, {:node, 57, nil, nill}},
{:node, :na, nil, {:node, 56, nil, {:node, 58, nil, nill}}}},
{:node, 103,
{:node, 113, nil, nil},
{:node, 122,
{:node, :na, {:node, 44, nil, nil}, nil},
{:node, 55, nil, nil}}}},
{:node, 110,
{:node, 107, {:node, 121, nil, nil}, {:node, 99, nil, nill}},
{:node, 100,
{:node, 120, nil, nil},
{:node, 98, nil, {:node, 54, {:node, 45, nil, nil}, nil}}}}},
{:node, 101,
{:node, 97,
{:node, 119,
{:node, 106,
{:node, 49, {:node, 47, nil, nil}, {:node, 61, nil, nil}},
nil},
{:node, 112,
{:node, :na, {:node, 37, nil, nil}, {:node, 64, nil, nill}},
nill}},
{:node, 114,
{:node, :na, nil, {:node, :na, {:node, 46, nil, nill}, nill}},
{:node, 108, nil, nil}}},
{:node, 105,
{:node, 117,
{:node, 32,
{:node, 50, nil, nil},
{:node, :na, nil, {:node, 63, nil, nill}}},
{:node, 102, nil, nill}},
{:node, 115,
{:node, 118, {:node, 51, nil, nil}, nil},
{:node, 104, {:node, 52, nil, nil}, {:node, 53, nil, nil}}}}}}
end

1D1019 KTH 4 /4



