
An emulator
Programming II

Johan Montelius

Spring Term 2021

Introduction

In this exercise we will combine your knowledge of assembly programming
and functional programming to implement an emulator for a subset of MIPS
assembler. You should have a basic understanding of assembly programming
but we will not do very advanced programming so no need to know all
instructions by heart. The idea here is not to implement a complete emulator
but to see how we can implement it in Elixir.

1 MIPS assembler

We will only implement a small subset of the MIPS instruction set. If we
can emulate one arithmetic operation I think we could easily extend the
emulator to handle all. The subset is however chosen to cover the various
forms of instructions: arithmetic, load and store, branching etc. We will
also include some non-MIPS instructions that might be fun to have when
we run our programs.

These are the instructions that we will implement:

� add $d $s $t : add the values of register $s and $t and place result
in $d.

� sub $d $s $t : subtract the values of register $s and $t and place
result in $d.

� addi $d $t imm : add the values of register $t and the immediate
value imm and place result in $d.

� lw $d offset($t) : load the value found at address offset + $t

and place it in $d.

� sw $s offset($t) : store the value in register $s at address offset
+ $t.

ID1019 KTH 1 / 6

� beq $s $t offset : branch to pc + offset if values at $s and $t

are equal.

We will also implement the two following instructions that do not have
any corresponding machine instructions but are very handy for our imple-
mentation.

� halt : halt the execution (normally implemented as an endless loop
but we will actually stop)

� out $s : output value at register location $s.

When you normally write assembly programs you of course use an editor
and write you programs in a text file. A program could for example look
like this:

.text

main:

addi $1 $0 5 # $1 <- 5

lw $2 $0 arg # $2 <- data[arg]

add $4 $2 $1 # $4 <- $2 + $1

addi $5 $0 $1 # $5 <- 1

loop: sub $4 $4 $5 # $4 <- $4 - $5

bne $4 $0 loop # branch if not equal

.data

arg: .word 12

We could write a parser that would read a file and represents the program
in a suitable data structure for our emulator but we will skip this step and
start from a reasonable data structure that represents the program. We will
represent our program in two structures, one that holds the code and one
that holds the data. This is not really how things work but it’s fine for our
needs and it makes things easier.

The program will be a list of instructions where each instruction is a
tuple holding the name of the instruction and its arguments. The program
above could be represented by the following list:

[{:addi, 1, 0, 5}, # $1 <- 5

{:lw, 2, 0, :arg}, # $2 <- data[:arg]

{:add, 4, 2, 1}, # $4 <- $2 + $1

{:addi, 5, 0, 1}, # $5 <- 1

{:label, :loop},

{:sub, 4, 4, 5}, # $4 <- $4 - $5

ID1019 KTH 2 / 6

{:out, 4}, # out $4

{:bne, 4, 0, :loop}, # branch if not equal

:halt]

We have added two extra instructions: :out that will be used for output
and :halt that will terminate the execution.

The data segment will in the same way be represented as a sequence of
labels and values.

[{:label, :arg}, {:word, 12}]

We combine the code segment and data segments into one tuple and this
is what we will call a program in this tutorial.

{:prgm, code(), data()}

This data structure is how the program is presented to us. The structure
might not be the best structures for our purposes but that is one of our first
tasks of our implementation, find a suitable representation that we can work
with.

2 The implementation

We start by doing an overall design of the system. This will give us insight
into which modules we will need an how data best is represented.

2.1 the state of the computation

The first thing we should think through is what the state of the computation
is. The program itself is of course part of the state but since we have sepa-
rated the code from the data the code part is static. We will only read from
the code using a program counter. The program counter is thus something
that is part of the state and it will of course change during the execution.
The most normal operation is that the program counter is incremented by
4 to index the next instruction but it could also be set by a branch or jump
instruction.

The memory is of course also part of the state and it will of course change
with each store operation. We should be able to index it using addresses
and let’s assume that we only use addresses aligned by 4 bytes (you could
change this later and allow for byte addressing). So given that we should
both be able to read from and write to this data structure we might choose
something different from the code area.

The final state of the computation are the registers of the CPU. In a
MIPS architecture we have 32 general purpose registers (well, register 0
always holds the value 0) but the MIPS assembler language has a convention

ID1019 KTH 3 / 6

of usage. Register 28 is pointing to the data area, 29 is used as a stack
pointer, 30 as the frame base pointer etc. For our purposes the registers are
all the same (apart from register zero).

2.2 the execution

When we start our emulation we will have a code area where we can read
the next instruction referred to by the program counter. We will retrieve
the instruction, interpret it, possibly modify registers and/or memory and
then determine how to update the program counter. Let’s give it a try:

defmodule Emulator do

def run(prgm) do

{code, data} = Program.load(prgm)

reg = Registers.new()

run(0, code, reg, data)

end

def run(pc, code, reg, mem) do

next = Program.read_instruction(code, pc)

case next do

:halt ->

:ok

{:add, rd, rs, rt} ->

pc = pc + 4

s = Register.read(reg, rs)

t = Register.read(reg, rt)

reg = Register.write(reg, rd, s + t) # well, almost

run(pc, code, reg, mem)

:

end

end

Let’s totally ignore the problem of overflow and that negative numbers
should be represented as two’s complement etc. This is not the course of
data architecture, we’re only doing this for fun.

It should be rather simple to complete this piece of the emulator. Load
and store instructions will simply us a module that does the right thing and
branch and jump instructions are simple.

ID1019 KTH 4 / 6

2.3 the output

The :out instruction could of course echo the value of the register in the
terminal but let’s add a feature that collects the output in a list that is
returned when the program terminates. We can hide the details of how
things are done in a separate module that takes care of everything.

defmodule Emulator do

def run(prgm) do

{code, data} = Program.load(prgm)

out = Out.new()

reg = Registers.new()

run(0, code, reg, data, out)

end

def run(pc, code, reg, mem, out) do

next = Program.read_instruction(code, pc)

case next do

:halt ->

Out.close(out)

{:out, rs} ->

pc = pc + 4

s = Register.read(reg, rs)

out = Out.put(out, s)

run(pc, code, reg, mem, out)

:

end

end

That’s it, all you have to do now is implement the supporting modules
and you have a MIPS emulator up and running.

3 Your implementation

There are four modules that you need to implement, three supporting mod-
ules and then the emulator itself. Start with the supporting modules and
test them before you implement the final solution. These are the modules:

ID1019 KTH 5 / 6

� Program: The module should be able to create a code segment and a
data segment given a program description. It should provide functions
to read from the code segment and both read and write to a data
segment.

� Register: The register module should handle all operations for the
registers: create a new register structure and, read and write to indi-
vidual registers.

� Out: The module should collect the output from the execution and
be able to return it as a list of integers.

� Emulator: This module is the heart of the system. It should be able
to take a program, transform it to a code and data segment and then
execute the program and return the output.

The different modules all handle a state but the requirements on these
states are different. The code segments only needs to provide a quick lookup
operation given a program counter but does not have to care about changing
the code itself. The data segment should of course be easy both to read and
write to and the same goes for the registers. The difference between the
data segment and the register is that the register is of a fixed and fairly
small size. The output structure should support incremental writing but no
reading, apart from when the list is returned. These differences should be
taken into account in you implementation, choose a data structure that is
suitable in each case.

ID1019 KTH 6 / 6

