
Maps and Structs

Johan Montelius

KTH

VT23

1 / 21

Java vs Elixir

public static int fib(int n) {

if (n == 0)
return 0;

int n2 = 0, n1 = 1;
int ni = n1;

for(int i = 1; i < n; i++) {
ni = n1 + n2;
n2 = n1;
n1 = ni;

}
return ni;

};

def fib(0) do 0 end
def fib(1) do 1 end
def fib(n) do

fib(n-1) + fib(n-2)
end

2 / 21

Elixir type specification

@spec fib(integer()) :: integer()

def fib(0) do 0 end
def fib(1) do 1 end
def fib(n) do

fib(n-1) + fib(n-2)
end

The compiler does not care about type specifications!

Compiles ok:
:

fib(:bananas)
:

3 / 21

types in Elixir
What types do we have:

Singletons, the types of individual data structures:
1, 2 or 42
:foo, :bar or :atom
{:foo, 42}

Unions of singletons, what we normally refer to as “types”:
integer(): any integer value
float(): any floating point value
atom(): any atom
pid(): a process identifier
reference(): a reference
fun(): a function
.. and many more

Could also be written without the “()”.
4 / 21

types in Elixir

Types for compound data structures:

tuples: {}, {atom(), integer()},
lists: [integer()], [{atom(), integer()}], []...
tuple(): a tuple of any size
list(): a proper list of any type ([any()]
list(integer()) : a proper list of integers

5 / 21

type declarations

Cards are represented as {:card, suit, value}, where the suit is represented using
the atoms :spade, :heart, :diamond and :clubs.

How do we specify the type for suit/1:

suit({:card, suit, _}) do suit end

@spec suit(tuple()) :: atom()

6 / 21

defining types

We would like to define our own type that specifies what a card looks like.

@type value() :: 1..13

@type suit() :: :spade | :heart | :diamond | :clubs

@type card() :: {:card, suit(), value()}

@spec suit(card()) :: suit()

7 / 21

defining types

@type boolean() :: true | false

@type byte() :: 1..255

@type number() :: integer() | float()

The type any(), defines the union of all types.

8 / 21

defining types

The type list(t) is the type of lists containing elements of type t.

@type list(t) :: [] | [t|list(t)]

@type string() :: list(char())

Define the type of a deck of cards.

@type deck() :: list(card())

9 / 21

program annotation

Type specifiers are used for:
documentation of intended usage
automatic detection of type errors

the compiler does not check types

Dialyzer:
checks that given specifications agree with call patterns
detects exceptions and dead code

10 / 21

dynamically typed

Elixir is a dynamically typed language: types are checked and handled at run time.
other dynamically typed languages: PHP, Python, Erlang, Lisp, Prolog

Java is a statically typed language: types are checked and handled at compile time.
other statically typed languages: C/C++, Haskell, Scala, Rust

11 / 21

statically typed

The advantage of a statically typed language:

typedef struct person {
int id;
char name[20];
char email[20];

} person;

void hello(person *who) {
printf("Hello %s\n", who->name);

}

@type person() :: {:person,
integer(),
binary(),
binary()}

def hello({:person, _, name, _}) do
IO.write("Hello #{name}\n")

end

In a statically typed language, the compiled code of hello() takes the structure
person for granted.

12 / 21

type inference

A statically typed language does not imply that the programmer has to specify all
types explicitly - the compiler can infer the types (Haskell, Rust, ..).

fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

13 / 21

dynamically vs statically

The pros and cons of dynamically typed languages:
pro: quick to write code
pro: compiling an easier task
con: induces an overhead at run-time
con: errors detected first at run-time (and maybe very late)

So why is Elixir dynamically typed?
Easier to handle dynamic code updates in distributed systems.

14 / 21

Type systems

Elixir is a dynamically typed programming language.
External tools (Dialyzer) can check for type errors.
Type specification, if correct, helps in understanding the code.
Dynamically vs statically typed systems - pros and cons.

15 / 21

problem

{:car, "Volvo",
{:model, "XC60", 2018},
{:engine, "A4", 4, 2000, 140},
{:perf, 4.6, 8.8}}

def car_brand_model({:car, brand, {:model, model, _}, _ , _}) do
"#{brand} #{model}"

end

16 / 21

key-value list

{:car, "Volvo",
[{:model, "XC60"},{:year 2018}, {:engine, "A4"},
{:cyl, 4}, {:vol, 2000}, {:power 140},
{:fuel, 4.6}, {:acc 8.8}]}

def car_brand_model({:car, brand, prop}) do
case List.keyfind(prop, :model, 0) do

nil ->
brand

{:model, model} ->
"#{brand} #{model}"

end
end

17 / 21

key-value list

What is the asymptotic time complexity of keyfind/3?

alternative syntax: [model: "XC60", year: 2018, ...]

18 / 21

introducing Maps

An efficient implementation of a key-value store with a syntax for pattern matching.

%{} : an empty map
myCar = %{:brand => "Volvo", :model => "XC60", :year= 2008} :
define properties
%{:model => model} = myCar : pattern matching
newCar = %{myCar | :year => 2018} : map as template for new map

Still no compiler support to detect errors.

19 / 21

introducing Structs
defmodule Car do

defstruct brand: "", year: 0, model: "", cyl: 0, power: 0

def brand_model(%Car{brand: brand, model: model}) do
"#{brand} #{model}"

end

def year(car = %Car{}) do
car.year

end

end

Requesting a property that is not defined is detected at compile time.
20 / 21

Summary

dynamically and statically typed systems: pros and cons
tuples: simple but gives us some problems
key-value lists: what problems do we solve, what remains
Maps: pattern matching and more efficient
Structs: towards the advantage of a statically typed system

21 / 21

