A transport layer

Johan Montelius

KTH

VT23

1/30

Communication service

Assume we have a communication channel that allow us to send frames between two
connected nodes. The channel is not reliable so messages can be lost or delivered out

of order.

We want to build a communication service that is better.

Our task is to build a communication service that provides:

o reliable delivery: despite frames being lost

o ordered delivery: FIFO - first-in-first-out

@ identity: an addressing scheme

o flow control: prevented from overflowing a receiver

2/30

layered architecture layers

Build a solution using a layered architecture.

Each layers provides an abstraction that the layer above can make use of.

3/30

user 1

message

flow 1

flow controlled

order 1

message

flow 2

5

flow controlled

ordered ordered
addressed addressed
link 1| frame [link 2

4/30

the link layer

master

{:send, msg} msg

frame(data: msg)
link 1 link 2

the link process

require Record

Record.defrecord(:frame, data: nil)

def start(master) do
{:0k, spawn(fn() -> init(master) end)}

end

defp init(master) do
receive do

{:

connect, dest} ->
link (master, dest)

:quit ->

end
end

1ok

the link process - a state diagram

{:send, msg}

link: master

{:connect, dest} dest

start

:quit

5/30

the link process

def link(master, dest) do
receive do
{:send, msg} —>
send(dest, frame(data: msg))
link (master, dest)

frame(data: msg) ->
send (master, msg)
link (master, dest)

:quit >
:ok
end
end

7/30

frame(data: msg)

6/30

8/30

a first try a hub

def test() do
sender = spawn(fn() -> sender() end)

receiver = spawn(fn() -> receiver() end) {:connect, Ink} {:disconnect, Ink}
linkl = Link.start(sender)
. . . frame(data: msg)
link2 = Link.start(receiver)
send(linkl, {:connect, 1link2})
send(1ink2, {:connect, link1}) frame(data: msg) :
send(sender, {:connect, link1}) hub link 2
send(reciever, {:connect, 1link2})
:ok
end frame(data: msg)
9/30 10/30
the hub - a state diagram the hub process

def hub(connected) do
receive do

{:connect, dest} frame() {:connect, pid} ->
hub([pid|connected])

{:disconnect, pid} ->
hub(List.delete(connected, pid))

quit
start hub final frame() = frm ->

Enum.each(connected, fn(pid) -> send(pid, frm) end)

hub (connected)
:quit ->
1ok

{:disconnect, dest}
end

11/30 12/30

the setup - a sequence diagram the network layer

) {:send, to, msg} msg

e Startlusen)
link

{:connect, hub}

{:send, netw(dst: to, data: msg)} netw(dst: id, data: msg)

{:connect, link}

{:connect, link}

The network layer will only forward messages with the right destination.

13/30 14/30

network process - a state diagram the network process

def network(master, id, link) do
receive do
netw(dst: id, msg: msg) {:send, to, msg} —>
send(link, {:send, netw(src: id, dst: to, data: msg)l})
network(master, id, link)

{:send, to, msg}

netw(dst: ~id, data: msg) ->
send (master, msg)
network (master, id, link)

{:connect, Ink}

netw() ->
network(master, id, link)

start

:quit >
:ok

end

15/30 end

16/30

order and reliability the order layer

master

{:send, msg} msg
A communication channel is a duplex flow of an ordered sequence of messages.

order: to, n, i, a

@ add a sequence number to each message

@ order messages as they arrive and
ord(seq: i, data: msg)

{:send, to, ord(seq: n, data: msg)} ack(seq: a)

@ resend lost messages

network

The layer will need to buffer messages and use a timeout to detect missing datagrams.

17/30 18/30

the sending process - state diagram the receiving process - state diagram

ack()
ord(seq: i)

{:send, msg}

{:connect, Ink} receive i

{:connect, Ink}

i ord(seq: j)if j < i
start timeout ()
start

19/30 20/30

the order process the order process

def order(master, to, n, i, [{a,res}|rest]=buffer, netw) do

def order(master, to, n, i, [], netw) do :
receive do

receive do
ord(seq: ~i, data: msg) ->
send(netw, {:send, to, ack(seq: i)})
send (master, msg)
order (master, to, n, i+1, [], netw)

ack(seq: "a) —>
order (master, to, n, i, rest, netw)

{:send, msg} —>
send(netw, {:send, to, ord(seq: n, data: msg)})
order(master, to, n+l, i, [{n, msg}], netw);

after 10 ->
dgr = ord(seq: a, data: res)
send(netw, {:send, to, dgrl})
order (master, to, n, i, buffer, netw)
end

21/30 22/30

flow control the flow control

@ do not overflow the receiver
vertow v o {:send, msg, pid}

@ keep track of the reciever buffer size .
o {:read, n, pid}
@ wait for the user to activly read messges
o msg(data: msg)

@ syn(add: a)
We are introducing a synchronous interface - only send if receiver prepared.

23/30 24/30

the flow control the flow sending process

master

{:read, n, pid}

{:connect, net} {:send, msg, pid}

{:send, msg, pid} {:ok, i, [msg]}

{:send, msg, pid}

{:send, msg(data: msg)} msg(data: msg)

syn()

25/30 26 /30

the flow receiving process extensions

msg(data: msg)

receive s @ What if the link layer could only send sequences of bytes?

:connect, net L .
{ 1 @ Can we add error detection in the link layer?

{:read, n, pid} e Could we build a switch or router?

start

27/30 28/30

a switch summary

@ divide a service into processes

@ layers of abstraction

o finite State Machine (FSM) description of a process
@ sequence diagrams to show protocol

@ asynchronous and synchronous interfaces

. and hopefully, you have learned about communication stacks

29/30 30/30

