
A Ray Tracer

Johan Montelius

KTH

VT24

1 / 42

A programming example

To show how to work with some Elixir programming constructs and to discuss
representation and modeling, we will implement a small ray tracer.

2 / 42

Architecture

modules that we will implement
vector: vector arithmetic
ray: the description of a ray
sphere: a sphere object
object: a protocol for all objects
camera: the camera position, direction and characteristics
tracer: responsible for the tracing of rays
ppm: how to generate a .ppm file

and possibly some more

3 / 42

ray tracing
The basic idea of ray tracing:

x

y

Eye

Canvas
Camera

Intersection

4 / 42

vector arithmetic

We first need a module to handle vector arithmetic:

Do we need to handle vectors of arbitrary dimensions?
How do we represent vectors?
What basic operations should we implement?

5 / 42

vector arithmetic

ax⃗ : scalar multiplication
x⃗ − y⃗ : subtraction
x⃗ + y⃗ : addition

∥x⃗∥ : norm, or length, of a vector
x⃗ · y⃗ : scalar product (dot product)
x̂ : normalized vector x̂ = x⃗/∥x⃗∥

The notation for a normalized vector differ, sometimes it is written as |⃗x |

6 / 42

vector arithmetic
defmodule Vector do

def smul({x,y,z}, s) do
{x*s, y*s, z*s}

end

def add({x1,y1,z1}, {x2,y2,z2}) do
{x1+x2, y1+y2, z1+z2}

end

def sub({x1,y1,z1}, {x2,y2,z2}) do
{x1-x2, y1-y2, z1-z2}

end

def norm({x,y,z}) do
:math.sqrt(x*x + y*y + z*z)

end

def dot({x1,y1,z1}, {x2,y2,z2}) do
x1*x2 + y1*y2 + z1*z2

end

def normalize(x) do
n = norm(x)
smul(x, 1 / n)

end

7 / 42

polymorphism

polymorphism : the quality or state of existing in or assuming different forms

... x = {1, 3, 2}; y = {3, 2, 4}; x + y

def add({x1,x2,x3}, {y1,y2,y3}) do
{x1+y1, x2+y2, x3+y3}

end
def add(x, y) when is_number(x) and is_number(y) do x + y end

def add(:sprit, :fyrverkeri) do :intebra end

Plolymorphism is more efficient and easier to support in a statically typed language.

8 / 42

objects

We now define how to represent object and rays.
ray: position and direction
sphere: position, radius, ...
object: a protocol for all obejcts

9 / 42

rays

A ray is defined by an position and a direction. The position is a vector (a place in the
space) and the direction is a unit vector.

x

y

o⃗

l̂

defmodule Ray do

defstruct(pos: {0, 0, 0}, dir: {0, 0, 1})
end

10 / 42

tuples and structs

a vector: {2, 3, 1}
a ray:

p = ray.pos d = ray.dir

%Ray{pos: p, dir: d}

Note, access is lg(n) of number of properties, not as efficent as tuples.

11 / 42

Elxir protocols

All objects in the world should provide a function that can determine if it intersects
with a ray.
Introducing protocols:

defprotocol Object do

def intersect(object, ray)

end

Each object will implement the function intersect/2.

12 / 42

spheres

A sphere is defined by:

r c⃗
defmodule Sphere do

defstruct(pos: {0, 0, 0}, radius: 2)

end

more properties will be added later

13 / 42

intersection

c⃗

o⃗

l̂

i⃗1

i⃗2

k⃗
a

h

r t

k⃗ = c⃗ − o⃗
a = l̂ · k⃗
∥k∥2 = a2 + h2

r2 = h2 + t2

t2 = a2 − ∥k∥2 + r2

i⃗ = o⃗ + dl̂
di = a ± t
if di < 0 then i⃗i is behind the origin o⃗

14 / 42

intersection

defimpl Object do

def intersect(sphere, ray) do
k = Vector.sub(sphere.pos, ray.pos)
a = Vector.dot(ray.dir, k)
a2 = :math.pow(a, 2)
k2 = :math.pow(Vector.norm(k), 2)
r2 = :math.pow(sphere.radius, 2)
t2 = a2 - k2 + r2
closest(t2, a)

end

:

end

k⃗ = c⃗ − o⃗

a = l̂ · k⃗

t2 = a2 − ∥k∥2 + r2

15 / 42

ok, what else?

x

y

Eye

Canvas
Camera

Intersection

16 / 42

the camera

What properties do we have?
position : in space
direction : a unit vector
size of picture : width and height
focal length : distance to canvas
resolution: pixles per distance

17 / 42

the camera

position : in space
direction : a unit vector
size of picture : width and height
focal length : distance to canvas
resolution: pixles per distance

o⃗ f⃗

v⃗

h⃗

18 / 42

the camera

o⃗ f⃗

v⃗

h⃗

o⃗

c⃗

d⃗
r⃗

19 / 42

a simple camera

defmodule Camera do

defstruct(pos: nil, corner: nil,
right: nil, down: nil, size: nil)

20 / 42

a normal lens pointing forward

def normal(size) do
{width, height} = size
d = width * 1.2
h = width / 2
v = height / 2
corner = {-h, v, d}
pos = {0, 0, 0}
right = {1, 0, 0}
down = {0, -1, 0}
%Camera{pos: pos, corner: corner, }

end

21 / 42

rays
Given a camera we want to find the rays from the camera “origin” to the {col,row}
position of the canvas.

def ray(camera, col, row) do
x = Vector.smul(camera.right, col)
y = Vector.smul(camera.down, row)
v = Vector.add(x, y)
p = Vector.add(camera.corner, v)
dir = Vector.normalize(p)
%Ray{pos: camera.pos, dir: dir}

end
o⃗

c⃗

y⃗
x⃗

v⃗

p⃗

d⃗

22 / 42

we have everything

x

y

Eye

Canvas
Camera

Intersection

23 / 42

the tracer

defmodule Tracer do

@black {0, 0, 0}
@white {1, 1, 1}

def tracer(camera, objects) do
{w, h} = camera.size
for y <- 1..h, do: for(x <- 1..w, do: trace(x, y, camera, objects))

end

def trace(x, y, camera, objects) do
ray = Camera.ray(camera, x, y)
trace(ray, objects)

end
24 / 42

tracing a ray

def trace(ray, objects) do
case intersect(ray, objects) do

{:inf, _} ->
@black

{_, _} ->
@white

end

25 / 42

the last piece

def intersect(ray, objects) do
List.foldl(objects, {:inf, nil},

fn (object, sofar) ->
{dist, _} = sofar

case Object.intersect(object, ray) do
{:ok, d} when d < dist ->

{d, object}
_ ->

sofar
end

end)
end

26 / 42

time to test

defmodule Snap do

def snap(0) do
camera = Camera.normal({800, 600})

obj1 = %Sphere{radius: 140, pos: {0, 0, 700}}
obj2 = %Sphere{radius: 50, pos: {200, 0, 600}}
obj3 = %Sphere{radius: 50, pos: {-80, 0, 400}}

image = Tracer.tracer(camera, [obj1, obj2, obj3])
PPM.write("snap0.ppm", image)

end

end

27 / 42

snap0.ppm

;

28 / 42

colors

Let’s add some colors to the spheres.

@color {1.0, 0.4, 0.4}

defstruct radius: 2, pos: {0, 0, 0}, color: @color

29 / 42

colors

def trace(ray, objects) do
case intersect(ray, objects) do

{:inf, _} ->
@black

{_, object} ->
object.color

end
end

30 / 42

snap1.ppm

;

31 / 42

adding lights

We want to add some lights to the world.

Lights have a position and a color

The color of an intersection point is determined by the color of the object combined
with the colors from the lights.

Things are getting interesting.
lights: handles everything that has to do with lights and colors.

the representation of colors is a RGB tuple of floats 0..1.0 i.e. {1.0, 0.5, 0.2}

32 / 42

normal vector

c⃗

o⃗

i⃗

n⃗

n⃗ is the normal unit vector, i.e. perpendicular to the
sphere, at the point of intersection.

n⃗ = |⃗i − c⃗|

Will come in handy when we calculate reflection
and illumination.

33 / 42

extend Object protocol

defprotocol Object do
def intersect(object, ray)
def normal(object, ray, pos)

end

defimpl Object do
def intersect(sphere, ray) do

Sphere.intersect(sphere, ray)
end

def normal(sphere, _, pos) do
Vector.normalize(Vector.sub(pos, sphere.pos))

end
end

34 / 42

the world

defmodule World do

@background {0, 0, 0}
@ambient {0.3, 0.3, 0.3}

defstruct(objects: [],
lights: [],
background: @background,
ambient: @ambient)

end

A more convenient way to handle lack of globally accessible data structures.

35 / 42

calculating the color

Find all visible lights from the point of intersection; combine the lights
given the normal vector and illuminate the surface.

In the tracer, when we have found an intersecting object:

case intersect(ray, objects) do
{:inf, _} ->

world.background
{d, obj} ->

i = Vector.add(ray.pos, Vector.smul(ray.dir, d - @delta))
normal = Object.normal(obj, ray, i)
visible = visible(i, world.lights, objects)
illumination = Light.combine(i, normal, visible)
Light.illuminate(obj, illumination, world)

end

36 / 42

snap2.ppm

;
37 / 42

the fun part

The color of an intersection point depends on:
color of the object
combination of light sources
reflection from other objects

38 / 42

the recursive call

defp trace(_ray, 0, world) do
world.background

end

defp trace(ray, depth, world) do
case intersect(world.objects) do

:
{d, obj} ->

:
reflection = trace(r, depth - 1, world)
Light.illuminate(obj, reflection, illumination, world)

end
end

39 / 42

snap3.ppm

;
40 / 42

what more

This was only scratching the surface of ray tracing.

41 / 42

from an architecture point of view

divide program into areas of responsibility
think about abstractions
modules are similar to class definitions
a static type system would have helped us (structs are only halfway)
can we add a new object without rewriting the tracer

42 / 42

