Streams

Johan Montelius

KTH

VT24

inf = infinity(); [0linf] = inf.(); [1]inf]

def infinity() do
fn() -> infinity(0) end
end

def infinity(n) do
C...1...]

end

1/17

an infinite list

= inf. ()

2/17

the list of fibonacci a lazy list from 1 to 10

A function that returns an infinite list of Fibonacci numbers.

def fib() do
fn() -> fib(1,1) end
end

def fib(f1, f2) do
[f1 | fn() -> fib(f2, f1+f2) end]
end

Let's represent a range of integers from 1 to 10 as:
{:range, 1, 10}

Elixir gives us a syntax for this:
1..10

But we will do our own :-)

This is not how Elixir represents it but it's fine for now

3/17

4/17

sum/1 of a range foldl/3 on a range

def sum({:range, to, to}) do ... end
def sum({:range, from, to}) do ... + sum({:range, ..., to}) end

How do we fold-left on a range:
def sum(range) do sum(range, 0) end foldl({:range, 1, 5}, 0, fn(x,a) -> x + a end)
def sum({:range, to, to}, acc) do ... end
def sum({:range, from, to}, acc) do sum({:range, ..., to}, ...) end

5/17 6/17
sum/1 of a range map/2 on a range

How do we map on a range (let's forget the order):

def sum(range) do foldl(range, O, fn(x,acc) -> x + acc end) end map ({:range, 1, 5}, fn(x) -> x + 1 end)

should we return a list of values or a modified range?

7/17 8/17

filter/2 on a range take/2 on a range

How do we filter a range (again, f¥ck the order): How do we take n elements from a range (order ... not):
filter({:range, 1, 5}, fn(x) -> rem(x,2) == 0 end) take({:range, 1, 1_000_000}, 5)
should we return a list of values or we don't want to build a list of a million integers

9/17 10/17

reduce/3: the goto of all How do we stop in the midle?

def sum(r) do
reduce(r, 0, fn(x,a) -> x+a end)
end

Our reduce/3 should work as £01d1/3 (left to right, tail recursive).

def reduce({:range, from , to}, acc, fun) do Implement take/2 using reduce by ...

if from <= to do
reduce({:range, from+1l, to}, fun.(from, acc), fun) We need to control the reduction.
else
acc
end
end

. we're not done!

11/17 12/17

continue stop in the midle

def reduce({:range, from , to}, {:cont, acc}, fun) do
if from <= to do
reduce({:range, from+1, to}, fun.(from, acc), fun)

def reduce(_, {:halt, acc}, _fun) do
{:halted, acc}

end
else
{:done, acc}
enznd def take(r, n) do
reduce(r, {:cont, {:sofar, n, [] }},
fn(x,{:sofar, n, a}) —>
if n > 0 do
def sum(r) do {:cont, {:sofar, n-1, [x|al}}
reduce(r, {:cont, 0}, fn(x,a) -> {:cont, x+a} end) else
end {:halt, [xlal}
end
end)

The accumulator is both a value and an instruction to continue. end

13/17 14/17

suspend in the midle: head and tail Elixir libraries

def reduce(range, {:suspend, acc}, fun) do
{:suspended, acc, fn(cmd) -> reduce(range, cmd, fun) end}
end

@ List : operatates on lists, returns a list or some value.
@ Enum : takes an Enumerable as argument, returns a list or value.

@ Stream : takes an Enumerable as argument, returns an Enumerable or value.
def head(r) do
reduce(r, {:cont, :na},
fn (x,) -> A datastructure is Enumerable if it implements the enumerable protocol. Lists and
{: susl_)end, x} ranges are Enumerable.
end)
end

15/17 16/17

@ range: representation of a range of integers

@ streams: lazy evaluation of sequences

17/17

