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a small language

a domain: Z i.e. ... − 2, −1, 0, 1, 2...

a set of primitive functions: +, −, ∗, mod, div
syntax: symbols, precedence, parentheses i.e. a way to write expressions
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evaluation of expressions

(3 + 5) ∗ (6 − 3)
8 ∗ (6 − 3)
8 ∗ 3
24

(3 + 5) ∗ (6 − 3)
(3 + 5) ∗ 3
8 ∗ 3
24

(3 + 5) ∗ (6 − 3)
(3 + 5) ∗ 3
(9 + 15)
24
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how about this

5 ∗ (4 + 2)

17 mod 5

7 mod 0
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bottoms

5 mod 0 ≡⊥

⊥ is called bottoms, undefined or ... exception

We extend the domain: Z ∪ {⊥}

How should we interpret: 5 ∗ ⊥
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strict functions

A function that is defined to be ⊥ if any of its argu-
ments is ⊥, is called a strict function,

All of our regular arithmetic functions are strict.
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ok, I get it

What is the value of: (x − x) ∗ 5
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evaluation of expressions

( 3√3 + 54) ∗ (6 − 6)
( 3√3 + 54) ∗ 0
0

(512 div 0) ∗ (6 − 6)
(512 div 0) ∗ 0
0
hmmm, not so good
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order of evaluation

If all functions are strict:
then all arguments of the function must be evaluated
the order does not matter,... or does it?
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if-then-else

Assume we have a function if (test, then, else) with the obvious definition.

Do we want this function to be a strict function?
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variables and functions

Too make life more interesting, we introduce

variables: x , y ,

and functions: λx → x + 5

Most often written λx .x + 5 but we will use →.

So far, functions do not have names.
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functions

λx → x + 5
(λx → x + 5) 7
(7 + 5)
12
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application

We apply a function to an argument (or actual arguments),

(λx → ⟨E ⟩)7

by substituting the parameter (or formal argument) of the function with the argument.

[x/7]⟨E ⟩
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examples

[x/7]⟨x + 5⟩ 7 + 5
[x/7]⟨λy → y + x⟩ λy → y + 7
[x/(λz → z + 2)]⟨λy → (xy) ∗ 2⟩ λy → ((λz → z + 2)y) ∗ 2

But, things could go wrong.
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scope of declaration

In an expression λx → ⟨E ⟩, the scope of x is ⟨E ⟩.

We say that x is free in ⟨E ⟩ but bound in λx → ⟨E ⟩.

We can write λx → (λx → (x ∗ x)), which does complicate things.
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substitution

A substitution [x/⟨F ⟩]⟨E ⟩ is possible if ⟨F ⟩ does not have any free variables ...
... that become bound in [x/⟨F ⟩]⟨E ⟩.

(λx → (λy → (y + x)))(y + 5)

[x/(y + 5)](λy → (y + x))

λy → (y + (y + 5))

(λx → (λz → (z + x)))(y + 5)

[x/(y + 5)](λz → (z + x))

λz → (z + (y + 5))

We have to be careful but renaming variables solves the problem.
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functions

A function is:

. . . a many to one mapping from one
domain to another: A 7→ B

. . . a description of the expression that
should be evaluated: λx → x + 2

In mathematics we can work with functions even if we do not know how to compute
them.
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λ calculus

The λ calculus was introduced in the 1930s by Alonzo Church.
Easy to define:

only three types of expressions: variable, lambda abstraction, application
only one rule: evaluation of application
you don’t even need data structures nor named functions

Anything that is computable can be expressed in λ calculus, it is as powerful as a
Turing machine.
We will use some extensions to the language when we describe functional
programming.

18 / 29

currying

A function of two arguments, can be described as function of one argument that
evaluates to another function of a second argument.

(λx → (λy → x + y)) 7 8
(λy → 7 + y) 8
7 + 8

We can write:
λxy → x + y
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let expressions

λx → (x + 2) + (x + 2) do we have to evaluate (x + 2) twice?
λx → ((λy → y + y)(x + 2)) (x + 2) only evaluated once
λx → let y = x + 2 in y + y more readable
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no recursive definitions

λx → let y = x + y in y + y What does this mean?
λx → ((λy → y + y)(x + y))
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this is ok

λx → let y = x + 2, z = y + 5 in z + z
λx → ((λy → (λz → z + z)(y + 5))(x + 2))

So is this,
λx → let y = x + 2, y = y + 5 in y + y
λx → ((λy → (λy → y + y)(y + 5))(x + 2))
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recursion - fake it

def sum(xs) do
f = fn(l, g) ->

case l do
[] -> 0
[h|t] -> h + g(t, g)

end
end

f.(xs, f)
end

the Y combinator
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functional programming languages

λ-calculus
not the best syntax - not important
no “data structures” - functions are all you need
no need for named named functions
no defined evaluation order

functional programming languages:
different syntax, some good some strange
almost always provide built-in or user defined data structures
named function i.e. the program
defines the evaluation order

All functional programming languages have a core that can be expressed in λ-calculus.
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Elixir

uses the Erlang virtual machine
a Ruby like syntax
a small set of built-in data structures, no user defined
an “eager evaluation” order i.e. arguments are evaluated before the function is
applied

Elixir/Erlang is extended to be able to model concurrency. In the first part of this
course we will only use the functional subset.
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lambda expression

λx → 2 + x fn x -> 2 + x end

(λy → 2 + y)4 (fn y -> 2 + y end).(4)

λx → let y = x + 2, y = y + 5 in y + y

fn x -> y = x + 2; y = y + 5; y + y end
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let expression

let x = 2, y = x + 3 in y + y

x = 2; y = x + 3; y + y
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difference Erlang/Elixir

x = 2; x = 3; x + x

let x = 2, x = 3 in x + x

(λx → (λx → x + x)3)2

(λz → z + z)3

3 + 3

Erlang: not allowed, interpreted as 2 = 3, ...
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function definition

inc ≡ λx → x + 1

def inc(x) do x + 1 end
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multiple arguments

add ≡ λxy → x + y

def add(x, y) do x + y end
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