
Evaluation

Johan Montelius

KTH

VT23

1 / 31

semantics

We will define a small subset of the Elixir language and describe the operational
semantics.

Warning - this is not exactly how Elixir works ... but it could have been.

2 / 31

expressions

The language is described using a BNF notation.

⟨atom⟩ ::= :a | :b | :c | . . .

⟨variable⟩ ::= x | y | z | . . .

⟨literal⟩ ::= <atom>

⟨expression⟩ ::= <literal> | <variable> | ’{’ <expression> ’,’ <expression> ’}’

Examples: {:a,:b} , {x,y} , {:a, {:b, z}}

Simple expressions are also referred to as terms.

3 / 31

patterns

A pattern is a syntactical construct that uses almost the same syntax as terms.

⟨pattern⟩ ::= <literal>
| <variable>
| ’_’
| ’{’ <pattern> ’,’ <pattern> ’}’

The _ symbol can be read as “don’t care”.

4 / 31

sequence

⟨match⟩ ::= <pattern> ’=’ <expression>
⟨sequence⟩ ::= <expression>

| <match> ’;’ <sequence>

examples:
x = :a; {:b, x}
x = :a; y = {:b, x}; {:a, y}

5 / 31

evaluation

When we evaluate sequences, the result will be a data structure.

Atoms = {a, b, c, ...}

Structures = Atoms ∪ {{s1, s2}|si ∈ Structures}

An evaluation can also result in ⊥, called “bottoms”, this represents a failed evaluation.

6 / 31

injective mapping

For every atom a, there is a corresponding data structure s.

We write a 7→ s.

:foo 7→ foo
:gurka 7→ gurka

For every digit 1,2,3 (or I, II, III) there is a corresponding number 1, 2, 3.

Our language could have data structures that do not have corresponding terms.

7 / 31

evaluation
A sequence is evaluated given an environment, written σ (sigma).

The environment holds a set of variable substitutions (bindings): v/s ∈ σ, v is a
variable and s is a structure.

An evaluation of a sequence e given an environment σ is written Eσ(e).

We write:

prerequisite
Eσ(expression) → result

where result is a data structure.
8 / 31

evaluation of expressions

We have the following rules for evaluation of expressions:

Evaluation of an atom: a 7→ s
Eσ(a) → s

Evaluation of a variable:
v/s ∈ σ

Eσ(v) → s

Evaluation of a compund structure:

Eσ(e1) → s1 Eσ(e2) → s2
Eσ({e1, e2}) → {s1, s2}

9 / 31

evaluation tree

E{x/bar}({:foo, x}) →?

E{x/bar}(:foo) →?

:foo 7→ foo

E{x/bar}(:foo) → foo E{x/bar}(x) →?

x/bar ∈ {x/bar}

E{x/bar}(x) → bar

E{x/bar}({:foo, x}) → {foo, bar}

10 / 31

evaluation of expressions

What if we have Eσ(v) and v/s ̸∈ σ?

v/s ̸∈ σ

Eσ(v) →⊥

11 / 31

evaluation of expressions

assume: σ = {x/{a, b}}

Eσ(:c) → c
Eσ(x) → {a, b}

assume: σ = {x/a, y/b}

Eσ({x , y}) → {a, b}

12 / 31

pattern matching
The result of evaluating a pattern matching is a an extended environment. We write:

Pσ(p, s) → θ

where θ (theta) is the extended environment.
Match an atom: a 7→ s

Pσ(a, s) → σ

Match an unbound variable:
v/t ̸∈ σ

Pσ(v , s) → {v/s} ∪ σ

Match a bound variable:
v/s ∈ σ

Pσ(v , s) → σ

Match ignore:

Pσ(_, s) → σ
13 / 31

matching failure

What do we do with Pσ(a, s) when a ̸7→ s?

a ̸7→ s
Pσ(a, s) → fail

v/t ∈ σ t ̸≡ s
Pσ(v , s) → fail

A fail is not the same as ⊥.

14 / 31

matching compound strcutures

If the pattern is a compound pattern, the components of the pattern are matched to
their corresponding sub structures.

Pσ(p1, s1) → σ′ Pσ′(p2, s2) → θ

Pσ({p1, p2}, {s1, s2}) → θ

Note that the second part is evaluated in σ′.

Example: P{}({x , {y , x}}, {a, {b, c}})

Match a compund pattern with anyting but a compound structure will fail.

15 / 31

examples

assume: σ = {y/b}
Pσ(x, a) → {x/a} ∪ σ

Pσ(y, b) → σ

Pσ(y, a) → fail
Pσ({y , y}, {a, b}) → fail

16 / 31

pattern matching

Pattern matching can fail.

fail is different from ⊥
We will use failing to guide the program execution, more on this later.

17 / 31

evaluation of sequences

A new scope is created by removing variable bindings from an environmet.

σ′ = σ \ {v/t | v/t ∈ σ ∧ v in p}
Sσ(p) → σ′

A sequence is evaluated one pattern matching expression after the other.

Eσ(e) → t Sσ(p) → σ′ Pσ′(p, t) → θ Eθ(sequence) → s
Eσ(p = e; sequence) → s

Erlang and Elixir differ in how this rule is defined.

18 / 31

example

x = :a; y = :b; {x,y}

19 / 31

Where are we now

We have defined the semantics of a programming language (not a complete language)
by defining how expressions are evaluated.

Important topics:

set of data structures: atoms and compound structures
environment: that binds variables to data structures
expressions: term expressions, pattern matching expressions and sequences
evaluation: from expressions to data structures Eσ(e) → s

20 / 31

Why

Why do we do this?

21 / 31

more

What is missing:
evaluation of case (and if expressions)
evaluation of function applications

22 / 31

case expression

case x do
:a -> :foo
:b -> :bar

end

23 / 31

case expression

⟨expression⟩ ::= <case expression> | ...

⟨case expression⟩ ::= ’case’ <expression> ’do’ <clauses> ’end’

⟨clauses⟩ ::= <clause> | <clause> ’;’ <clauses>

⟨clause⟩ ::= <pattern> ’->’ <sequence>

24 / 31

evaluation of case expression

Eσ(e) → t Cσ(t, clauses) → s
Eσ(case e do clauses end) → s

Cσ(s, clauses) will select one of the clauses based on the patterns of the clauses and
then continue the evaluation of the sequence of the selected clause.

25 / 31

selection of a clause

Sσ(p) → σ′ Pσ′(p, s) → θ θ ̸= fail Eθ(sequence) → s
Cσ(s, p − > sequence; clauses) → s

Sσ(p) → σ′ Pσ′(p, s) → fail Cσ(s, clauses) → s
Cσ(s, p − > sequence; clauses) → s

Sσ(p) → σ′ Pσ′(p, s) → fail
Cσ(s, p − > sequence) →⊥

26 / 31

example

E{x/{a, b}}(case x do :a -> :a; {_,y} -> y end) →

E{X/{a, b}}(x) → {a, b}

C{X/{a, b}}({a, b}, :a -> :a; {_,y} -> y) →

P{x/{a, b}}}(:a, {a, b}) → fail

C{x/{a, b}}({a, b}, {_,y} -> y) →

P{x/{a, b}}({_,y}, {a, b}) → {y/b, x/{a, b}}

E{y/b, x/{a, b}}(y) →

b

27 / 31

free variables

Are all syntactical correct sequences also valid sequences?

A sequence must not contain any free variables.

A free variable in a <sequence> is bound by the pattern matching expressions in the
sequence <patter> = <expression>, <sequence> if the variable occurs in the
<pattern>.

A free variable in a <sequence> is bound by the pattern matching expressions in the
clause <pattern> -> <sequence> if the variable occurs in the <pattern>.

28 / 31

free variables

x = :a; {y,z} = {x,:b}; {x,y,z}

{y,z} = {x,:b}; {x,y,z}

x = {:a,:b}; case x do {:a,z} -> z end

29 / 31

much ado about nothing

A lot of work for something that simple - why bother, it could not have been done
differently.

30 / 31

variable scope

x = {:a,:b};
y = case x do

{:a, z} -> {:c, z}
end;

{y, z}

This is not allowed in our language, z in {y,z} is a free variable. However is
allowed in Erlang and was until changed allowed in Elixir (fixed in v1.5).

31 / 31

what’s missing

Handle lambda expressions, closures and function application.

32 / 31

