semantics

Evaluation

We will define a small subset of the Elixir language and describe the operational
semantics.

Johan Montelius

KTH
Warning - this is not exactly how Elixir works ... but it could have been.

VT23

1/31 2/31

expressions patterns

The language is described using a BNF notation.

(atom) == :a|b|:c]... A pattern is a syntactical construct that uses almost the same syntax as terms.
variable) ::= x z|...)

<) vz (pattern) 1= <literal>

(literal) := <atom> | <variable>

(expression) ::= <literal> | <variable> | '{’ <expression> ', <expression> '}' | ? <pattern> '’ <pattern> "}’

Examples: {:a,:b}, {x,y}, {:a, {:b, z}} The _ symbol can be read as “don't care”.

Simple expressions are also referred to as terms.

3/31 4/31

sequence evaluation

When we evaluate sequences, the result will be a data structure.

(match) ::= <pattern> '=" <expression>
(sequence) ::= <expression>
| <match>';’ <sequence> Atoms = {a, b, c, ...}
examples: Structures = Atoms U {{s1, sz }|s; € Structures}

ex = :a; {:b, x}

°x = :a;y = {:b, x}; {:a, y} An evaluation can also result in L, called “bottoms”, this represents a failed evaluation.

5/31 6/31

injective mapping evaluation

A sequence is evaluated given an environment, written o (sigma).

For every atom a, there is a corresponding data structure s The environment holds a set of variable substitutions (bindings): v/s € o, vis a
variable and s is a structure.

We write a > s.

- £00 — foo An evaluation of a sequence e given an environment o is written Ea(e).

rgurka — gurka
We write:

For every digit 1,2,3 (or I, II, III) there is a corresponding number 1,2, 3.
prerequisite

] Eo(expression) — result
Our language could have data structures that do not have corresponding terms.

where result is a data structure.

7/31 8/31

evaluation of expressions evaluation tree

We have the following rules for evaluation of expressions:

Evaluation of an atom: foo = foo x/bar € {x/bar}
arrs
Eo(a) =5 ERX xp by (i {dop)--féo ERX xfpray()}-+-br
Evaluation of a variable: Jse E{x /ibax}Hafob{ %99,~x}] fow? bar}
Eo(v) —s

Evaluation of a compund structure:

Eo(e1) = s1 Eo(e) — s
Eo({e1,e}) — {s1,5}

9/31 10/31

evaluation of expressions evaluation of expressions

assume: o = {x/{a, b}}

Eo(:c) — ¢

What if we have Eo(v) and v/s & o? Eo(x) — {a,b}

viséo
Eo(v) —>L assume: o = {x/a,y/b}

Eo({x,y}) —{a b}

11/31 12/31

pattern matching matching failure

The result of evaluating a pattern matching is a an extended environment. We write:
Po(p,s) — 0

where 6 (theta) is the extended environment. What do we do with Po(a, s) when a % s?

Match an atom:
arss

Po(a,s) > o
aths

Match an unbound variable: Po(a,s) — fail

vitdo
Po(v,s) = {v/s} Uo
Match a bound variable: v/iteo t#s
v/sea Po(v,s) — fail

Po(v,s) — o A fail is not the same as L.

Match ignore:

PJ(_, S) — 0 13/31 14 /31

matching compound strcutures examples

If the pattern is a compound pattern, the components of the pattern are matched to
their corresponding sub structures.
assume: o = {y/b}
Po(p1,s1) — o' Po'(p2,s2) — 6 e Po(x,a) = {x/a}Uo
Po({p1, p2},{s1,5}) = 0 o Po(y,b) = o
o Po(y,a) — fail
e Po({y,y}, {a, b}) — fail

Note that the second part is evaluated in ¢’.

Example: P{}({x,{y,x}},{a,{b,c}})

Match a compund pattern with anyting but a compound structure will fail.

15/31 16/31

pattern matching evaluation of sequences

A new scope is created by removing variable bindings from an environmet.

o=oc\{v/t | v/teo A v in p}
So(p) — o’

Pattern matching can fail.

fail is different from L A sequence is evaluated one pattern matching expression after the other.

We will use failing to guide the program execution, more on this later.
Eo(e) =t So(p) — o’ Po'(p,t) — 0 Ef(sequence) — s

Eo(p = e;sequence) — s

Erlang and Elixir differ in how this rule is defined.

17/31 18/31

example Where are we now

We have defined the semantics of a programming language (not a complete language)
by defining how expressions are evaluated.

x = :a; y = :b; {x,y} Important topics:

@ set of data structures: atoms and compound structures
@ environment: that binds variables to data structures
@ expressions: term expressions, pattern matching expressions and sequences

@ evaluation: from expressions to data structures Ec(e) — s

19/31 20/31

Why

Why do we do this?

21/31

more

What is missing:
@ evaluation of case (and if expressions)

@ evaluation of function applications

22/31

case expression case expression

case

end

X

b >

do

:foo
:bar

23/31

expression) ::= <case expression> | ...
case expression) ::= 'case' <expression> 'do’ <clauses> 'end’

clauses) ::= <clause> | <clause> ;" <clauses>

(
(
(
(

clause) ;1= <pattern> '->" <sequence>

24/31

evaluation of case expression selection of a clause

So(p) = o’ Po'(p,s) =6 0 +# fail Ef(sequence) — s
Co(s,p — > sequence; clauses) — s

Eo(e) =t Co(t,clauses) — s
Eo(case e do clauses end) — s

So(p) — o’ Po'(p,s) — fail Co(s,clauses) — s
Co(s, p — > sequence; clauses) — s

Co (s, clauses) will select one of the clauses based on the patterns of the clauses and

then continue the evaluation of the sequence of the selected clause.
a So(p) = o' Po'(p,s) — fail

Co(s,p — > sequence) —_L

25/31 26 /31

example free variables

E{x/{a, b}}(case x do :a -> :a; {_,y} -> y end) —

E{X/{a, b}}(x) = {a, b}

Are all syntactical correct sequences also valid sequences?

C{X/{a,b}}({a, b}, :a -> :a; {_,y} > y)— A sequence must not contain any free variables.
P{x/{a, b}}}(:a,{a, b}) — fail A free variable in a <sequence> is bound by the pattern matching expressions in the
sequence <patter> = <expression>, <sequence> if the variable occurs in the
C{x/{a,b}}({a, b}, {_,y} > y) = <pattern>.
P{x/{a, b}}({_,y}.{a,b}) = {y/b, x/{a,b}} A free variable in a <sequence> is bound by the pattern matching expressions in the

clause <pattern> -> <sequence> if the variable occurs in the <pattern>.
E{y/b,x/{a b}}(y) =

b

27/31 28/31

free variables much ado about nothing

x = :a; {y,z} = {x,:b}; {x,y,z}
A lot of work for something that simple - why bother, it could not have been done
{y,z} = {x,:b}; {x,y,z} differently.

x = {:a,:b}; case x do {:a,z} -> z end

29/31 30/31

variable scope what's missing

x = {:a,:b};
y = case x do
{:a, z} > {:c, z} Handle lambda expressions, closures and function application.
end;
{y, z}
This is not allowed in our language, z in {y, 2} is a free variable. However is

allowed in Erlang and was until changed allowed in Elixir (fixed in v1.5).

31/31 32/31

