Hinges and latches

Assume you're producing hinges and latches and would like to make as much money as
possible.

Dynamic programming

@ Your resources are 2400g of raw
material and 480 minutes of time.

KTH @ Each hinge takes 260g of material and
40 minutes to make.

Johan Montelius

VT23 @ Each latch takes 180g of material and

60 minutes to make.

@ Hinges are sold for 30 crowns and
latches for 24 crowns.

1/40 2/40
Hinges and latches linear programming
Assume you're producing hinges and latches and would like to make as much money as
possible.
p = 30h+ 24/
latches .
A maxium profit is found in one of the
corners:
. 260h+ 180/ < 2400
h=0,l=8— p=192
Assume we make h hinges and / latches: .
@ limited resources: 260h + 180/ < 2400 RN h=09.1=0— p=270
@ limited time: 40h + 60/ < 480 AN
fit: p = 30h+ 24 Yy 40h + 60/ < 480
op.r0| p + e h=7,1=3— p=282
o find h and / to maximize p AN
— > hinges

3/40 4/40

search for the answer search for the answer

Describe a product as {material, time, prize}: a hinge is {260, 40, 30} and a
latch is {180, 60, 24}.

To find the maximum profit, we either: Define a function search(material, time, hinge, latch), that given an amount

of material, time and descriptions of hinges and latches, returns the number of hinges,
make a hinge and then maximize profit or h, and latches, /, to produce to maximize profit p, {h, 1, p}.

make a latch and then maximize profit.
@spec seach(integer, integer, hinge, latch) :: {integer, integer, integer}

def search(material, time, hinge, latch) do

{hinges, latches, profit}
end

5/40 6/40

search for the answer search for the answer

def search(m, t, {hm, ht, hp}=h, {lm, 1t, 1lp}=1l) when (m >= hm) and :
(t >= ht) and def search(m, t, {hm, ht, hp}=h, 1) when (m >= hm) and (t >= ht) do

(m >= 1m) and ## we can make a hinge
(t >= 1t) do {hn, 1ln, p} = search((m-hm), (t-ht), h, 1)
we have material and time to make either a hinge or latch {hn+1, 1n, (p+hp)}
{hi, 1i, pi} = search((m-hm), (t-ht), h, 1) end
{hj, 1j, pj} = search((m-1m), (t-1t), h, 1) def search(m, t, h, {lm, 1t, 1p}=1l) when (m >= 1m) and (t >= 1t) do
which alternative will give us the maximum profit ## we can make a latch
if (pi+hp) > (pj+lp) do {hn, 1n, p} = search((m-1m), (t-1t), h, 1)
make hinge {hn, In+1, p+lp}
{(ni+1), 1i, (pi+hp)} end
else def search(_, _, _, _) do
make a latch ## we can make neither
{hj, (1j+1), (pj+lp)?} {0,0,0}
end end

end 7/40 8/40

a test problem solved

>Hinges.search(2400, 480, {260, 40, 30}, {180, 60, 24})

{7, 3, 282}

>Hinges.search(2000,480,{260,40,30},{180,60,24})

{4,5,240%} What is the problem?
>Hinges.search(2800,520,{260,40,30},{180,60,32})

{7,4,338}

9/40 10/40

complexity complexity

search(2400,480, ...)

search(2140,440, ...) search(2220,420, ...)

search(1880,400, ...) search(2040,360, ...)

What is the depth of this tree? How does it relate to the size of the resources?

11/40 12/40

the m x t space dynamic programming

time
A

/ Problem divided into simpler parts that can
///////1 be solved independently, but

- the parts share sub-problems that can be
reused.
latch /

hinge

» material

13/40 14 /40

Fibonacci memory

Let's add a memory to the search function.

def memory(material, time, hinge, latch) do
mem = Memory.new()

def £ib(0) do {0, nil} end {solution, _} = search(material, time, hinge, latch, mem)

solution

def fib(0) do O end def fib(1) do {1, O} end end
def f%b(l) do 1 end def fib(n) d def check(material, time, hinge, latch, mem) do
def fib(n) do et tibin) do : case Memory.lookup({material,time}, mem) do

£ib(n-1) + fib(n-2) {n1, n2} = fib(n-1) nil ->
end {n1+n2, ni} ## no previous solution found

end {solution, mem} = search(material, time, hinge, latch, mem)
{solution, Memory.store({material,time}, solution, mem)}
found ->

{found, mem}
end

end
15 /40 16 / 40

memory a memory

def search(m, t,..., mem) when ... do
the key is a tuple {m,t}, defining the remaining resource (the point in the mxt space).

{..., mem} = check(..., mem)
The value is the number of hinges and latches and best profit possible at this point
check(..., mem) {h, 1, p}.

{..., mem}

if ... do The functions we should implement are:

{..., mem}
@ new(): returns a new memory

else o store(k, v, mem): returns a new memory where the key k is associated with
{..., mem} the value v
end @ lookup(k, mem): return the value v assocaued with the key or nil if not found
end

17/40 18/40

a key-value list benchmark

Let's implement the memory as a list of tuples {k, v}.

defmodule Memory do on a i7-4500 1.8GHz, time in ms

m t m + t | search | memory
1000 | 200 | 1200 | 0.01 0.03
2000 | 400 | 2400 | 0.08 0.08
def store(k, v, mem) do 3000 | 600 | 3600 0.70 0.13
4000 | 800 | 4800 10 0.35
5000 | 1000 | 6000 110 0.42
6000 | 1200 | 7200 | 1900 0.80
7000 | 1400 | 8400 | 32000 1.30
def lookup(_, []) do nil end 8000 | 1600 | 9600 | 550000 | 2.10

def lookup(k, [{k,v}|_]) do v end

def new() do [] end

[{k, v}|mem]
end

def lookup(k, [_lrest]) do lookup(k, rest) end

19/40 20/40

complexity a map

Why not implement the memory as a hash map?

defmodule Better do

il 7 def lookup(_, []) do nil end def new() do %{} end
Al def lookup(k, [{k,v}|_]) do v end
/, / Gt loskun(e. [leost]) o def store(k,v, mem) do

Map.put (mem, k, v)

/ lookup(k, rest)
g end
end

def lookup(k, mem) do
Map.get (mem, k)

> material
end

21/40 22/40

benchmark benchmark

on a i7-4500 1.8GHz, time in ms

1x108
m t m-+t list | map 100000
1000 | 200 1200 | 0.03 | 0.06
2000 | 400 | 2400 | 0.11 | 0.18 10000 |

3000 | 600 | 3600 | 0.34 | 0.24
4000 | 800 | 4800 | 0.82 | 0.39
5000 | 1000 | 6000 | 1.26 | 0.31
6000 | 1200 | 7200 | 1.53 | 0.36
7000 | 1400 | 8400 | 225 | 0.34 1
8000 | 1600 | 9600 | 2.94 | 0.43 N
9000 | 1800 | 10800 | 4.22 | 0.49
10000 | 2000 | 12000 | 6.22 | 0.58 01 —
11000 | 2200 | 13200 | 8.97 | 0.69 e

12000 | 2400 | 14400 | 12.55 | 0.84

1000 ¢

runtime in ms

23/40 24/ 40

same benchmark

runtime in ms

10 ¢

shortest path

dynamic programming

list —p—
MAP —f—

Problem divided into simpler parts that can be solved
independently, but

- the parts share subproblems that can be reused and,

- we can memorize solutions of subproblems.

500

1000

1500 2000 2500 3000 3500 4000

n = m+t

25 /40 26 /40

dynamic programming aproach

Find the shortest path from one node to another.

start —

@ find a recursive solution

\ / \ Q G\A The dynamic programming approach:

start >

/ \/ R g

@ memorize solutions to subproblems

We assume the graph is a “Directed Acyclic Graph” (DAG)

27 /40 28 /40

dynamic programming aproach a graph

If we are in the final node the
distance is zero and the path is

Otherwise, for each outgoing edge:

find the shortest path from the
reached node and return the
shortest given the distance to the
node.

def shortest(from, from, _) do {0, [1} end

def shortest(from, to, graph) do
next = Graph.next(from, graph)
distances = distances(next, to,
select(distances)

end

graph)

If no path is found we should return {:inf, nil}.

29 /40

How do we represent a graph?

00
@, , OO

S

As a list of edges:
[{:a, :b, 2}, {:a,
]

:d, 5}, {:b, :c, 2}

As a list of nodes:

({:a, [{:b, 2}, {:d, 5}1},
{:b, [{:c, 2}, {:e, 3}1},
..

As a matrix of edges:

{{ nil, 2 ,nil, 5 ,nil,nil,nil},
{ nil,nil, 2 ,nil, 3 ,nil,nil},
S

30/40

a graph the graph

Assume we represent a graph by a map indexd by nodes. Each node holds a key-value

How about this?

P ag A
e 21 /

g, [0}

te, [{g, 2313

:c, [{g, 1}, {e, 631}
[{c, 1}, {g, 331}
:d, [{f, 2}, {c, 3}1%
b, [{c, 2}, {e, 3}1}
:a, [{b, 2}, {d, 5}]}

P T Q Hh 0o o0
I

B T N S S S
h

[a: a, b: b, c: ¢, d: d, e: e, f: £, g: gl
What has this to do with topological order?

31/40

list of edges.
defmodule Graph do

def sample() do
new([a:
end

def new(nodes) do
Map.new (nodes)
end

def next(from, map) do
Map.get (map, from, [])
end
end

[b: 2, d: 5], b

[c: 2], ... 1D

32/40

distances select

Find the distance to the destination from each of the next steps. Select the smallest path in the list: [{9, [:d, :c, :gl}, ..]

def select(distances) do

def distances(next, to, graph) do List.foldl(distances,
{:inf, nil},
Enum.map (next, fn({n,d}) -> fn ({d, }=s,{ad, }=acc) ->
case shortest(n, to, graph) do if d < ad do
s
{:inf, nil} -> {:inf, nil} else
acc
{k, path} -> {d+k, [nl|pathl} end
end end)
end) end

end
If the list is empty, the result could be {:inf, nil}.

33/40 34/40

dynamic programming aproach let's add a memory

def dynamic(from, to, graph) do
mem = Memory.new()
{solution, _} = shortest(from, to, graph, mem)
solution

end

If we are in the final node, the
distance is zero and the path is
def shortest(from, from, _) do {0, []1} end

def shortest(from, to, graph) do

h fi h houl h h
next = Graph.next(from, graph) shortest(from, to, graph, mem) should return {shortest path, updated memmory}

Otherwise, for each outgoing edge: distances = distances(next, to, graph) def shortest(from, from, _, mem) do
find the shortest path from the select (distances) o, [} } -
reached node and return the end ond ’ ’
shortest given the distance to the def shortest(from, to, graph, mem) do
node. next = Graph.next(from, graph)
{..., ...} = distances(next, to, graph, mem)
What is the complexity? shortest = select(...)
{..., ...}

end
35/40 36/40

shortest path given memeory shortest path given memeory

For all next steps, find the shortesta path.)] o]
If a solution exists use it, if not - compute it.

def distances(next, to, graph, mem) do def check(from, to, graph, mem) do
List.foldl(next, {[], mem}, case Memory.lookup(from, mem) do
fn ({t,d}, {dis,mem}=acc) -> nil ->
case check(t, to, graph, mem) do {solution, mem} = shortest(from, to, graph, mem)
{{:inf, _}, _} —> {solution, Memory.store(from, solution, mem)}
acc solution ->
{{n, path}, mem} -> {solution, mem}
{[{d+n, [tlpathl}| dis], mem} end
end end
end)
end
37/40 38/40
what if? Summary

K /K Problem divided into simpler parts that can be solved

independently, but

/ \ / - the parts share subproblems that can be reused and,

we can memorize solutions of subproblems.

start —

39/40 40 /40

