
Dynamic programming

Johan Montelius

KTH

VT23

1 / 40

Hinges and latches
Assume you’re producing hinges and latches and would like to make as much money as
possible.

Your resources are 2400g of raw
material and 480 minutes of time.
Each hinge takes 260g of material and
40 minutes to make.
Each latch takes 180g of material and
60 minutes to make.
Hinges are sold for 30 crowns and
latches for 24 crowns.

How many hinges and latches should you produce to maximize profit.

2 / 40

Hinges and latches
Assume you’re producing hinges and latches and would like to make as much money as
possible.

Assume we make h hinges and l latches:
limited resources: 260h + 180l < 2400
limited time: 40h + 60l < 480
profit: p = 30h + 24l
find h and l to maximize p

How many hinges and latches should you produce to maximize profit.

3 / 40

linear programming

hinges

latches

260h + 180l < 2400

40h + 60l < 480

p = 30h + 24l

maxium profit is found in one of the
corners:

h = 0, l = 8 → p = 192

h = 9, l = 0 → p = 270

h = 7, l = 3 → p = 282

4 / 40

search for the answer

To find the maximum profit, we either:

make a hinge and then maximize profit or

make a latch and then maximize profit.

5 / 40

search for the answer
Describe a product as {material, time, prize}: a hinge is {260, 40, 30} and a
latch is {180, 60, 24}.

Define a function search(material, time, hinge, latch), that given an amount
of material, time and descriptions of hinges and latches, returns the number of hinges,
h, and latches, l , to produce to maximize profit p, {h, l, p}.

@spec seach(integer, integer, hinge, latch) :: {integer, integer, integer}

def search(material, time, hinge, latch) do
:
:

{hinges, latches, profit}
end

6 / 40

search for the answer
def search(m, t, {hm, ht, hp}=h, {lm, lt, lp}=l) when (m >= hm) and

(t >= ht) and
(m >= lm) and
(t >= lt) do

we have material and time to make either a hinge or latch
{hi, li, pi} = search((m-hm), (t-ht), h, l)
{hj, lj, pj} = search((m-lm), (t-lt), h, l)
which alternative will give us the maximum profit
if (pi+hp) > (pj+lp) do

make hinge
{(hi+1), li, (pi+hp)}

else
make a latch
{hj, (lj+1), (pj+lp)}

end
end 7 / 40

search for the answer
:

def search(m, t, {hm, ht, hp}=h, l) when (m >= hm) and (t >= ht) do
we can make a hinge
{hn, ln, p} = search((m-hm), (t-ht), h, l)
{hn+1, ln, (p+hp)}

end

def search(m, t, h, {lm, lt, lp}=l) when (m >= lm) and (t >= lt) do
we can make a latch
{hn, ln, p} = search((m-lm), (t-lt), h, l)
{hn, ln+1, p+lp}

end

def search(_, _, _, _) do
we can make neither
{0,0,0}

end
8 / 40

a test

>Hinges.search(2400, 480, {260, 40, 30}, {180, 60, 24})

{7, 3, 282}

>Hinges.search(2000,480,{260,40,30},{180,60,24})

{4,5,240}

>Hinges.search(2800,520,{260,40,30},{180,60,32})

{7,4,338}

9 / 40

problem solved

What is the problem?

10 / 40

complexity

search(2400,480, ...)

search(2140,440, ...) search(2220,420, ...)

search(1880,400, ...) search(2040,360, ...)

What is the depth of this tree? How does it relate to the size of the resources?
11 / 40

complexity

12 / 40

the m x t space

material

time

hinge

latch

13 / 40

dynamic programming

Problem divided into simpler parts that can
be solved independently, but
- the parts share sub-problems that can be
reused.

14 / 40

Fibonacci

def fib(0) do 0 end
def fib(1) do 1 end
def fib(n) do

fib(n-1) + fib(n-2)
end

def fib(0) do {0, nil} end

def fib(1) do {1, 0} end

def fib(n) do
{n1, n2} = fib(n-1)

{n1+n2, n1}
end

15 / 40

memory
Let’s add a memory to the search function.
def memory(material, time, hinge, latch) do

mem = Memory.new()
{solution, _} = search(material, time, hinge, latch, mem)
solution

end
def check(material, time, hinge, latch, mem) do

case Memory.lookup({material,time}, mem) do
nil ->

no previous solution found
{solution, mem} = search(material, time, hinge, latch, mem)
{solution, Memory.store({material,time}, solution, mem)}

found ->
{found, mem}

end
end

16 / 40

memory

def search(m, t,..., mem) when ... do

{..., mem} = check(..., mem)

{..., mem} = check(..., mem)

if ... do
{..., mem}

else
{..., mem}

end
end

17 / 40

a memory

the key is a tuple {m,t}, defining the remaining resource (the point in the mxt space).

The value is the number of hinges and latches and best profit possible at this point
{h, l, p}.

The functions we should implement are:
new(): returns a new memory
store(k, v, mem): returns a new memory where the key k is associated with
the value v
lookup(k, mem): return the value v assocaued with the key or nil if not found

18 / 40

a key-value list
Let’s implement the memory as a list of tuples {k, v}.

defmodule Memory do

def new() do [] end

def store(k, v, mem) do

[{k, v}|mem]
end

def lookup(_, []) do nil end

def lookup(k, [{k,v}|_]) do v end

def lookup(k, [_|rest]) do lookup(k, rest) end
19 / 40

benchmark

on a i7-4500 1.8GHz, time in ms

m t m + t search memory
1000 200 1200 0.01 0.03
2000 400 2400 0.08 0.08
3000 600 3600 0.70 0.13
4000 800 4800 10 0.35
5000 1000 6000 110 0.42
6000 1200 7200 1900 0.80
7000 1400 8400 32000 1.30
8000 1600 9600 550000 2.10

20 / 40

complexity

material

time

def lookup(_, []) do nil end
def lookup(k, [{k,v}|_]) do v end
def lookup(k, [_|rest]) do

lookup(k, rest)
end

21 / 40

a map

Why not implement the memory as a hash map?

defmodule Better do

def new() do %{} end

def store(k,v, mem) do
Map.put(mem, k, v)

end

def lookup(k, mem) do
Map.get(mem, k)

end

22 / 40

benchmark

on a i7-4500 1.8GHz, time in ms

m t m+t list map
1000 200 1200 0.03 0.06
2000 400 2400 0.11 0.18
3000 600 3600 0.34 0.24
4000 800 4800 0.82 0.39
5000 1000 6000 1.26 0.31
6000 1200 7200 1.53 0.36
7000 1400 8400 2.25 0.34
8000 1600 9600 2.94 0.43
9000 1800 10800 4.22 0.49
10000 2000 12000 6.22 0.58
11000 2200 13200 8.97 0.69
12000 2400 14400 12.55 0.84

23 / 40

benchmark

24 / 40

same benchmark

25 / 40

dynamic programming

Problem divided into simpler parts that can be solved
independently, but

- the parts share subproblems that can be reused and,

- we can memorize solutions of subproblems.

26 / 40

shortest path

Find the shortest path from one node to another.

Astart

B

D

C

E

F

G

2

5

2

3

6

1

3

2

2

3
1

We assume the graph is a “Directed Acyclic Graph” (DAG)

27 / 40

dynamic programming aproach

Astart

B

D

C

E

F

G

2

5

2
3

6
1

3
2

2

3
1

The dynamic programming approach:
find a recursive solution
memorize solutions to subproblems

28 / 40

dynamic programming aproach

If we are in the final node the
distance is zero and the path is

.

Otherwise, for each outgoing edge:
find the shortest path from the
reached node and return the
shortest given the distance to the
node.

def shortest(from, from, _) do {0, []} end

def shortest(from, to, graph) do
next = Graph.next(from, graph)
distances = distances(next, to, graph)
select(distances)

end

If no path is found we should return {:inf, nil}.

29 / 40

a graph
How do we represent a graph?

Astart

B

D

C

E

F

G

2

5

2
3

6
1

3
2

2

3
1

As a list of edges:
[{:a, :b, 2}, {:a, :d, 5}, {:b, :c, 2}
...]

As a list of nodes:

[{:a, [{:b, 2}, {:d, 5}]},
{:b, [{:c, 2}, {:e, 3}]},
...]

As a matrix of edges:

{{ nil, 2 ,nil, 5 ,nil,nil,nil},
{ nil,nil, 2 ,nil, 3 ,nil,nil},
...}}

30 / 40

a graph

How about this?

Astart

B

D

C

E

F

G

2

5

2
3

6
1

3
2

2

3
1

g = {:g, []}
e = {:e, [{g , 2}]}
c = {:c, [{g, 1}, {e, 6}]}
f = {:f, [{c, 1}, {g, 3}]}
d = {:d, [{f, 2}, {c, 3}]}
b = {:b, [{c, 2}, {e, 3}]}
a = {:a, [{b, 2}, {d, 5}]}

[a: a, b: b, c: c, d: d, e: e, f: f, g: g]

What has this to do with topological order?

31 / 40

the graph
Assume we represent a graph by a map indexd by nodes. Each node holds a key-value
list of edges.
defmodule Graph do

def sample() do
new([a: [b: 2, d: 5], b: [c: 2], ...])

end

def new(nodes) do
Map.new(nodes)

end

def next(from, map) do
Map.get(map, from, [])

end
end

32 / 40

distances

Find the distance to the destination from each of the next steps.

def distances(next, to, graph) do

Enum.map(next, fn({n,d}) ->

case shortest(n, to, graph) do

{:inf, nil} -> {:inf, nil}

{k, path} -> {d+k, [n|path]}

end
end)

end

33 / 40

select
Select the smallest path in the list: [{9, [:d, :c, :g]}, ..]

def select(distances) do
List.foldl(distances,

{:inf, nil},
fn ({d,_}=s,{ad,_}=acc) ->

if d < ad do
s

else
acc

end
end)

end

If the list is empty, the result could be {:inf, nil}.
34 / 40

dynamic programming aproach

If we are in the final node, the
distance is zero and the path is

.

Otherwise, for each outgoing edge:
find the shortest path from the
reached node and return the
shortest given the distance to the
node.

def shortest(from, from, _) do {0, []} end

def shortest(from, to, graph) do
next = Graph.next(from, graph)
distances = distances(next, to, graph)
select(distances)

end

What is the complexity?

35 / 40

let’s add a memory
def dynamic(from, to, graph) do

mem = Memory.new()
{solution, _} = shortest(from, to, graph, mem)
solution

end

shortest(from, to, graph, mem) should return {shortest path, updated memmory}

def shortest(from, from, _, mem) do
{{0, []}, ...}

end
def shortest(from, to, graph, mem) do

next = Graph.next(from, graph)
{..., ...} = distances(next, to, graph, mem)
shortest = select(...)
{..., ...}

end
36 / 40

shortest path given memeory

For all next steps, find the shortesta path.

def distances(next, to, graph, mem) do
List.foldl(next, {[], mem},

fn ({t,d}, {dis,mem}=acc) ->
case check(t, to, graph, mem) do

{{:inf, _}, _} ->
acc

{{n, path}, mem} ->
{[{d+n, [t|path]}| dis], mem}

end
end)

end

37 / 40

shortest path given memeory

If a solution exists use it, if not - compute it.

def check(from, to, graph, mem) do
case Memory.lookup(from, mem) do

nil ->
{solution, mem} = shortest(from, to, graph, mem)
{solution, Memory.store(from, solution, mem)}

solution ->
{solution, mem}

end
end

38 / 40

what if?

Astart

B

D

C

E

F

G

2

5

2

3

6

1
2

3

2

2

3
1

39 / 40

Summary

Problem divided into simpler parts that can be solved
independently, but

- the parts share subproblems that can be reused and,

- we can memorize solutions of subproblems.

40 / 40

