Domain Name System

A DNS Resolver

Johan Montelius

KTH

VT23

1/20 2/20

RFC 1035 the resolver

Local Host | Foreign
|
o + Fomm - + | 4+———— +
| | user queries | |queries | | |
| User |--————————————v >| [— |->|Foreign | @ client: sends request to resolver
| Program | | Resolver | | | Name | @ resolver: receives requests, queries servers/resolvers and caches responses
| | <mmmmmmmmmm e | e |==1 Server | @ server: responsible for sub-domain
| | user responses| |responses| | |
A + A + | 4= + The first resolver is most probably running on your laptop.
I A |
cache additions | | references |
v I |
o ——— + |
| cache | |
|

3/20 4/20

let's build a DNS resolver two datagram sockets

defmodule DNS do
def init(local, server, port) do

eserver {8,8,8,8} case :gen_udp.open(local, [{:active, true}, :binaryl) do
Gport 53 {:0k, local} —>
@local 5300 case :gen_udp.open(0, [{:active, true}, :binary]) do
{:0k, remote} —>

def start() do dns(local, remote, server, port)

start(@local, @server, Qport) error ->
end :io.format ("DNS error opening remote socket: ~w~n", [error])

end

def start(local, server, port) do error ->

spawn(fn() -> init(local, server, port) end) :io.format ("DNS error opening local socket: ~w~n", [error])
end end

end

The server is the DNS server to which queries are routed.

5/20 6/20

the server loop let's decode the message

def dns(local, remote, server, port) do 0 78 15 16 2324 31
receive do identifier flags
{:udp, ~“local, _client, _client_port, _msg} -> transport
dns(local, remote, server, pori) © 7+ query blocks 7+ answer blocks header
:stop -> # authority blocks # additional blocks
:ok query, answer, authority
‘update -> and additional blocks
DNS.dns(local, remote, server, port)
strange -> qata
:io.format("strange message ~w~n", [strange]) fields
dns(local, remote, server, port)
end
end

Query and response messages of the same format.

Let’s try.
7/20 8/20

message flags the bit syntax

o QR: query or reply
def decode(<<id::16, flags::binary-size(2),

qdc::16, anc::16,
ncs::16, arc::16,
@ TC: message truncated, more to follow body: :binary>>=raw) do

@ Op-code: the operation

o AA: authoritative answer (if the server is responsible for the domain)

@ RD: recursion desired by client
]) <Lqr::1, op::4, aa::1, tc::1, rd::1, ra::1, _::3, resp::4>> = flags
@ RA: recursion available by server

@ Resp-code: ok or error message in response decoded = decode_body(qdc, anc, ncs, arc, body, raw)
° - : ° ° ! k ? i 1 {id, qr, op, aa, tc, rd, ra, rcode, decoded}
QR Op-code AA|TC|RD|RA - Resp-code end

This is getting complicated. Why passing the raw message to the decoding of the body?

9/20 10/20

decode the body decode a query

The body consists of a number of: query, response, authoritative (server node) and

- . A query consists of a sequence of queries (we know from the header how many).
additional sections.

(query} = <name> <query type> <query class>

The answer, authoritative and additional sections follow the same pattern, the query is

slightly different. name) ::= <empty> | <label> <name>

decode_body(qdc, anc, nsc, arc, body, raw) do
{query, rest} = decode_query(qdc, body, raw)
{answer, rest} = decode_answer(anc, rest, raw)
{authority, rest} = decode_answer(nsc, rest, raw)
{additional, _} = decode_answer(arc, rest, raw) (query type) ::= 16 bits (1 = A, ... 156 = MX, 16 = TXT, ...)
{query, answer, authority, additional}

(
(empty) == 8 bits 0
(

label) ::= <length> <byte sequence of length>

end (query class) ::= 16 bits (1 = Internet)

(length) ::= 8 bits (0..63 i.e. the two highest bits are set to zero)
Note the nestling of the reminder of the body.

11/20 12/20

decode a query decode a name

def decode_name(label, raw) do

def decode_query(0, body, _) do decode_name(label, L[], raw)
{00, body} end
end

def decode_name(<<0::1, 0::1, 0::6, rest::binary>>, names, _raw) do
{Enum.reverse(names), rest}
end

def decode_query(n, body, raw) do
{name, <<qtype::16, qclass::16, rest::binary>>} = decode_name(body, raw)
{decoded, rest} = decode_query(n-1, rest, raw),
{[{name, qtype, qclass} | decoded], rest} def decode_name(<<0::1, 0::1, n::6, _::binary>> = label, names, raw) do
end <<_::8, name::binary-size(n), rest::binary>> = label
decode_name(rest, [name|names], raw)
end

13/20 14/20

query example encoding names by offset

. The names in answers may use a more compact form of encoding.
Erlang binary:

<<4,12, 1, O, Assume we have encoded www.kth.se and need to encode mail.kth.se - then we

0, 1, 0,0, can reuse the coding of kth. se.
o, 0, 0, O,
3,119,119,119,3,107,116,104,2,115,101,0,
0,1,0,1>> (label) ::= <length> <byte sequence of length n> |
<offset>
Decoded query: (offset) ::= 16 bits (two highest bits set to ones)

1036,0,0,0,0,1,0,0, ’ ’,’kth’,’se’],1,1}1,11, L], . . , .
{ (L waw se’] H, U, U, U The length version will always have the top two bits set to 00 and the offset version
will have them set to 11.

15/20 16/20

offset encoding decode an answer

All answer sections have the same basic structure:
def decode_names(<<1::1, 1::1, n::14, rest::binary>>, names, raw) do (answer) ::= (name) (type) (class) (ttl) (length) (resource record)

offset encoding , . o type 16-bits: A-type, NS-, CNAME-, MX- etc
<<_::binary-size(n), section::binary>> = raw

{name, _} = decode_names(section, names, raw) o class 16-bits: Internet, ...
{name, rest} e TTL 32-bits: time in seconds (typical some hours)
end @ length 16-bits: the length of the record in bytes

end

The resource record is coded depending on the type of resource.

17/20 18/20

let's try forward the reply

19/20 20/20

