
Concurrency

Johan Montelius

KTH

VT23

1 / 31

What is concurrency?

Concurrency: (the illusion of) happening at the same time.

A property of the programming model.

Why would we want to do things concurrently?

2 / 31

concurrency vs parallelism

programing model

ex
ec

ut
io

n
m

od
el

sequential

sequential

parallel

concurrent

3 / 31

concurrency models

Shared memory: modify a shared data structure
C++/C
Java

Message passing: processes send and receive messages
Erlang/Elixir
Go
Scala
Occam
Rust
Smalltalk

There are more, but these are the two large groups.

4 / 31



how do we send messages

Communicating Sequential Processes (CSP), messages are sent through
channels, a process can choose to read a message from one or more channels

Go, Occam, Rust
Actor model, messages are sent to a process, a process reads implicitly from its
own channel

Smalltalk, Erlang/Elixir, Scala

5 / 31

actor model

An actor:
state: keeps a private state that can only be changed by the actor
receive: has one channel of incoming messages
execute: given a state and a received message, the actor can

send: send a number of messages to other actors
spawn: create a number of new actors
transform: modify its state an continue, or terminate

6 / 31

ordering of messages

Is the set of messages to an actor ordered?

In what order should the messages be handled?

The evaluation of a function is deterministic, how about the execution of an actor?

7 / 31

naming of actors

How can an actor direct a message to a specific actor?

Do we have a global naming scheme?

How do we find the identifier of an actor?

8 / 31



exceptions

What should we do if we’re sending a message to an actor that has terminated?

What if we’re waiting for a message that will never be sent?

Are sent messages guaranteed to arrive?

9 / 31

process identifier

We introduce one additional data structure:

Structures = {Process identifiers} ∪ Atoms ∪ {{s1, s2}|si ∈ Structures}

There is no term, nor pattern, that corresponds to an identifier.

10 / 31

spawn

A new process is spawned by giving it a function to evaluate,

... the result is a process identifier (pid).

pid = spawn(fn() -> ... end)

or

pid = spawn(module, name, [arg, ...])

In the later case, the function must be exported from the module.

11 / 31

send

Given a process identifier, an arbitrary data structure can be sent to the process.

send(pid, message)

In Erlang this was written using an operator !, often called “bang”.

12 / 31



receive

We extend expressions:

<expression> ::= <receive expression> | ...

<receive expression> ::=
receive do <clauses> end

similar to case expressions

13 / 31

example

def server(sum) do
receive do

{:add, x} ->
server(sum + x)

{:sub, x} ->
server(sum - x)

end
end

14 / 31

side effects
In a pure functional program, the only effect of evaluating an expressions is the
returned value - not any more.

:
bar(pid, 42)
bar(pid, 32)

:

def bar(pid, msg) do
send(pid,{:hello, msg})

end

:
x = foo(2)
y = foo(2)

:

def foo(x) do
receive do

{:hello, msg} -> msg + x
end

end
15 / 31

Who am I?

One more built-in function:

myPid = self()

16 / 31



few extensions

Few extensions to the functional subset:

pid: a process identifier as a data structure
spawn: creating a process, returning a pid
send: sending of messages to a pid
receive: selective receive of messages
self: the process identifier of the current process

All constructs can, apart from the receive statement, almost be given a functional
interpretation.

Our operational semantics does not give us any understanding of the execution.

17 / 31

order of messages

Message passing is: unreliable FIFO.

:
send(pid, {:this, :is, :message, 1})
send(pid, {:this, :is, :message, 2})
send(pid, {:this, :is, :message, 3})

:

What could be the result at the receiving end?

How many messages are lost in reality?

18 / 31

order of messages

Process one:

:
send(pid, {:one, 1})
send(pid, {:one, 2})

:

Process two:

:
send(pid, {:two, 1})
send(pid, {:two, 2})

:

19 / 31

selective receive

def sum(s) do
receive do

{:add, x} -> sum(s + x)
{:sub, x} -> sum(s - x)
{:mul, x} -> sum(s * x)

end
end

Assume we spawn a process given the expression fn() -> sum(10) end, and the
sequence of messages in the queue is:

{:sub, 4}, {:add, 10}, {:mul, 4}, {:mul, 2}, {:sub, 10}

20 / 31



selective receive

def closed(s) do
receive

{:add, x} -> closed(s + x)
:open -> open(s)
:done -> {:ok, s}

end
end

def open(s) do
receive do

{:mul, x} -> open(s * x)
{:sub, x} -> open(s - x)
:close -> closed(s)

end
end

Assume we spawn fn() -> closed(4) end and the sequence of messages is:

{:sub, 4}, :open, {:mul, 4}, {:add, 2}, :close {:add, 2}, :done

In every receive expression we start from the beginning of the queue.

21 / 31

implicit deferral

Selective receive: we specify which messages we are willing to accept.

Implicit deferral: messages that we do not explicitly receive, remain in the message
queue.

We could have chosen fifo receive i.e. messages must be received in the order they
have in the message queue (Actors model).

We could have chosen explicit deferral, but then we would have to state which
messages that should be handled later.

22 / 31

how to describe a processes

Finite state machine (FSM) : describing the states where messages determine
transitions
Sequence diagram : how processes interact, protocol definitions
Flow-based Programming (FBP) : architecture view of processes
Domain Specific Language : describe the systems in a high level programming
language
...

23 / 31

finite state machine - FSM

closedstart

open

final

:open

{:add, X}

:done

{:mul, X}

{:sub, X}

:close

24 / 31



finite state machine - FSM

Elixir receive statements are not a direct realization of a finite state machine.

Messages that arrive too early in a finite state automata would give us an undefined
state.

The implicit deferral give us a very simple description of a finite state machine where
messages are allowed to arrive too early.

25 / 31

sequence diagram

node switch
{:new, n}

con

lnk1

{:connect, lnk1}
{:ok, lnk1}

lnk2

{:connect, lnk1}

{:connect, lnk2}

26 / 31

flow-based programming

Figure: from J Paul Morrison www.jpaulmorrison.com

27 / 31

time to deliver

src/2
def src(sink, frw) do

send(sink, :a)
send(frw, :b)

end

frw/2
def frw(sink) do

receive do
msg -> send(sink,msg)

end
end

src sink

frw

a

b b

28 / 31



example account

def acc(saldo) do
recieve do

{:deposit, money} ->
acc(saldo + money)

{:withdraw, money} ->
acc(saldo - money)

end
end

def doit() do
acc = spawn(fn()->acc(0) end)
send(acc, {:deposit, 20})
send(acc, {:withdraw, 10})
acc

end

29 / 31

example account

def acc(saldo) do
recieve do

{:deposit, money} ->
acc(saldo + money)

{:withdraw, money} ->
acc(saldo - money)

{:request, from} ->
send(from, {:saldo, saldo})
acc(saldo)

end
end

def check(acc) do
send(acc, {:request, self()})
receive do

{:saldo, saldo} ->
saldo

end
end

30 / 31

summary

asynchronous: messages are sent and eventually (hopefully) delivered
FIFO: message delivery is ordered
selective receive: the receiver decides the order of handling messages
implicit deferral: messages remain in the queue until handled
diagrams: finite state machines, sequence diagrams, flow-based program

31 / 31


