
Complexity

Johan Montelius

KTH

VT23

1 / 30

run-time complexity of sum

Calculating the sum of all elements in a list:

sum/1
def sum([]) do 0 end
def sum([h|t]) do

s = sum(t)
h + s

end

sum/2
def sum([], s) do s end
def sum([h|t], s) do

s1 = h+s
sum(t, s1)

end

What are the run-time complexities of sum/1 and sum/2?

2 / 30

run-time complexity of foo

foo/1
def foo([]) do [] end
def foo([h|t]) do

z = foo(t)
bar(z, h)

end

foo/2
def foo([], y) do y end
def foo([h|t], y) do

z = zot(h, y)
foo(t, z)

end

What are the run-time complexities of foo/1 and foo/2?

3 / 30

run-time complexity of reverse

nreverse/1
def nreverse([]) do [] end
def nreverse([h|t]) do

z = nreverse(t)
append(z, [h])

end

reverse/2
def reverse([], y) do y end
def reverse([h|t], y) do

z = [h | y]
reverse(t, z)

end

What are the run-time complexities of nreverse/1 and reverse/2?

4 / 30

the recurence relation

nreverse/1
def nreverse([]) do [] end
def nreverse([h|t]) do

z = nreverse(t)
append(z, [h])

end

Assume that append/2 takes kn ms to execute,
where k is some constant time and n is the length
of the list.
Describe the time Tn it takes to execute
nreverse/1 of a list of length n:
T0 = a ms
Tn = Tn−1 + k(n − 1) + b ms

5 / 30

the recurence relation

Tn = Tn−1 + k(n − 1) + b
= Tn−2 + k(n − 2) + k(n − 1) + 2b
= Tn−3 + k(n − 3) + k(n − 2) + k(n − 1) + 3b
:
= Tn−n + k(n − n) +k(n − 1) + nb
= a + 0 + k + 2k + 3k......(n − 1)k + nb

= n (n − 1)
2 k + nb + a

= (k
2)n2 − k

2 n + bn + a

= (k
2)n2 + (b − k

2)n + a

(1)

6 / 30

the big-O notation

We know:

Tn = (k
2)n2 + (b − k

2)n + a

Tn ∈ O(n2)

7 / 30

Ordo calculations

Do ordo calculations in your head without specifying the full Tn relation.

If we know that append/2 is in O(n) then:

Tn ∈ n ∗ O(n) + bn + a

Which means that:

Tn ∈ O(n2)

8 / 30

run-time complexity of reverse/1

nreverse/1

n

n

nreverse/1
def nreverse([]) do end
def nreverse([h|t]) do

z = nreverse(t)
append(z, [h])

end

9 / 30

run-time complexity of reverse/2

reverse/2

n

1

reverse/2
def reverse([], y) do y end
def reverse([h|t], y) do

z = [h | y]
reverse(t, z)

end

10 / 30

complexity of quick-sort

def qsort([]) do [] end
def qsort([h]) do [h] end
def qsort(all) do

{low, high} = partition(all)
lowS = qsort(low)
highS = qsort(high)
append(lowS, highS)

end

What is done in each iteration?
How many iterations do we have?

11 / 30

the recurence relation

T1 = a

Tn = 2 × Tn/2 + nc
= 2 × (2 × Tn/4 + (n/2)c) + nc
= 4 × Tn/4 + 2 × nc
= 8 × Tn/8 + 3 × nc
:
= 2k × T1 + k × nc
= 2lg(n) × a + lg(n) × nc
= n × a + lg(n)n × c

(2)

12 / 30

complexity of quick-sort

qsort/1

log(n)

n

13 / 30

qsort worst case

What if we run qsort on a already ordered list?

14 / 30

complexity of merge-sort

def msort([]) do [] end
def msort(l) do

{a, b} = split(l)
as = msort(a)
bs = msort(b)
merge(as, bs)

end

What is done in each iteration?
How many iterations do we have?
What is the run-time complexity?
Which is best qsort or msort?

15 / 30

complexity of fibonacci

def fib(0) do 0 end
def fib(1) do 1 end
def fib(n) do

fib(n-1) + fib(n-2)
end

What is done in each iteration?
How many iterations do we have?

16 / 30

the recurence relation
Let’s cheat a bit to make it simpler:

T0 = a

Tn = 2 × Tn−1 + c
= 2 × (2 × Tn−2 + c) + c
= 4 × Tn−2 + 3 × c
= 8 × Tn−3 + 7 × c
:
= 2n × T0 + (2n − 1) × c
= 2n × a + 2n × c − c

(3)

The more precise answer is O(1.6n)
17 / 30

complexity of fibonacci

fibonacci/1

n

2n

The smarter implementation is O(n)
... an even smart solution is O(log(n))

18 / 30

The big question

What is the difference between a smart programmer and a not so smart programmer?

3 billion years?

19 / 30

operations on trees

Let’s represent trees as:

:nil
{:node, key, value, left, right}

new: create a empty tree
insert: add an element to the three
lookup: search for an element
modify: modify an element

20 / 30

why trees?

Why use trees, why not use lists?

21 / 30

benchmark tree operations

Operations on a tree.

Figure: Execution time in ms of 100.000 calls

22 / 30

why trees?

Why use trees, why not use tuples?

23 / 30

tuples as a key value store

def new([a,b,c]) do {a,b,c} end

def lookup({a,_,_}, 1) do a end
def lookup({_, b,_}, 2) do b end

:

def modify({_,b,c}, 1, v) do {v, b, c} end
def modify({a,_,c}, 2, v) do {a, v, c} end

:

24 / 30

tuples using builtin functions

def new(list) do List.to_tuple(list) end

def lookup(tuple, k) do elem(tuple, k) end
def modify(tuple, k, v) do put_elem(tuple, k, v) end

The functions put_elem/3 will create a copy of the original tuple!

25 / 30

benchmark tuple operations

Operations on a tuple.

Figure: Execution time in ms of 100.000 calls

26 / 30

compare tuples and trees

Tuple vs tree.

Figure: Modify operations, execution time in ms of 100.000 calls

27 / 30

root of all evil

Programmers waste enormous amounts of time thinking about, or worrying
about, the speed of noncritical parts of their programs, and these attempts at
efficiency actually have a strong negative impact when debugging and main-
tenance are considered. We should forget about small efficiencies, say about
97 percent of the time: premature optimization is the root of all evil. Yet we
should not pass up our opportunities in that critical 3 percent.

Donald Knuth

28 / 30

code vs time

code size

execution time

29 / 30

programming rules

understand the problem before starting coding
write well structured code that is easy to understand
use abstractions to separate functionality from implementation
think about complexity
benchmark your program
if needed, optimize

30 / 30

