
Asynchronous vs Synchronous

Johan Montelius

KTH

VT23

1 / 27

let’s implement a memory

The memory should be a zero indexed mutable data structure of a given size and
provide the following functions:

@spec new([any]) :: memory : creates a memory initialized with values from
a list
@spec read(memory, integer) :: any : returns the value stored in the
memory at position n
@spec write(memory, n, any) -> :ok : writes the value at position n in the
memory

what do we mean by read and write

2 / 27

a first try

defmodule Mem do

def new(list) do
{:mem, List.to_tuple(list)}

end

def read({:mem, mem}, n) do
elem(mem, n)

end

def write({:mem, mem}, n, val) do
???

end

... hmm, not that easy
3 / 27

the functional way

Functional programming rules!

Let write/3 return a new memory, a copy of the original with the update.

def write({:mem, mem}, n, val) ->
{:mem, put_elem(mem, n, val}}

end

I love functional programming

4 / 27



life is easy

def test() do
mem1 = Mem.new([:a, :b, :c, :d, :e, :f])
mem2 = Mem.write(mem, 3, :foo)
take_a_look_at_this(mem1)
and_check_this(mem2)

end

What if we always write like this:

def test() do
mem = Mem.new([:a, :b, :c, :d, :e, :f])
mem = Mem.write(mem, 3, :foo)
take_a_look_at_this(mem)
and_check_this(mem)

end

5 / 27

why not cheat

Can we cheat, and introduce a mutable data structure?

Can we use processes to implement mutable data structures?

6 / 27

a mutable cell

cell/1
def cell(v) do

receive do
{:read, pid} ->

send(pid, {:value, v})
cell(v)

{:write, w, pid} ->
send(pid, :ok)
cell(w)

:quit ->
ok

end
end

7 / 27

a synchronous interface

read/1
def read({:cell, cell}) do

send(cell , {:read, self()})
receive do

{:value, v} ->
v

end
end

write/1
def write({:cell, cell}, val) do

send(cell, {:write, val, self()})
receive do

:ok ->
:ok

end
end

8 / 27



the cell module

defmodule Cell do

def start(val) do ## things to do in mother process
{:cell, spawn_link(fn() -> init(val) end)}

end

def read({:cell, cell}) do ... end

def write({:cell, cell}, V) do ... end

def quit({:cell, cell}) do ... end

def init(val) do ## things to do in the child process
cell(val)

end
9 / 27

the memory
defmodule Memory do

def new(list) do
cells = Enum.map(list, fn(v) -> Cell.start(v) end)
{:mem, List.to_tuple(cells)}

end
def read({:mem, mem}, n) do

Cell.read(elem(mem, n))
end
def write({:mem, mem}, n, val) do

Cell.write(elem(mem, n), val)
end
def delete({:mem, mem}) do

Enum.each(Tuple.to_list(mem), fn(c) -> Cell.quit(c) end)
end

10 / 27

at last

test() ->
array = Memory.new([:a,:b,:c,:d,:e,:f,:g,:h])
Memory.write(array, 5, :foo)
Memory.write(array, 2, :bar)
love_all(array)
sort_it_for_me(array)
i_love_imperative_programming(array)

end

11 / 27

functional vs processes

By extending our language to handle processes, we have left the functional world.

We can implement mutable data structures, something that we agreed was evil.

Why are mutable data structures evil?

12 / 27



the evil of mutability

:
this = check_this(mem),
%% I hope it did not change anything
that = check_that(mem),

:

13 / 27

truly bad

all_work/2
def all_work(cell, 0, jack) do

send(jack, :run)
end
def all_work(cell, n, jack) do

x = Cell.read(cell)
Cell.write(cell, x + 1)
all_work(cell, n-1, jack)

end

no_play/1
def no_play(n) do

cell = Cell.start(0)
me = self()
spawn(fn() ->

all_work(cell, n, me) end)
spawn(fn() ->

all_work(cell, n, me) end)
receive do :run ->

receive do :run ->
Cell.read(cell)

end
end

end

14 / 27

a dull boy

without mutable data structures,
concurrency would be easy
sharing mutable data structures is the
root of all evil
a process is, in one way, a mutable
data structure
... It’s only a movie.

15 / 27

adding atomic operations

def cell(v) do
receive do

{:read, pid} ->
send(pid, {:value, v})
cell(v)

{:write, w, pid} ->
send(pid, :ok)
cell(w)

:quit ->
ok

end
end

def cell(v) do
receive do

{:read, pid} ->
send(pid, {:value, v})
cell(v)

{:write, w, pid} ->
send(pid, :ok)
cell(w)

{:inc, n} ->
send(pid, :ok)
cell(v+n)

:quit ->
ok

end
end

16 / 27



a lock

We want to avoid processes interfering with each other when intracting with a process.

Let’s implement a lock using our cell.
take the lock
relase the lock
at most one process can hold the lock

17 / 27

using a cell

def critical(danger, lock) do
case Cell.read(lock) of

:locked ->
critical(danger, lock)

:free ->
Cell.write(lock, :locked)
do_it(danger)
Cell.write(lock, :free)

end
end

hmmm, not so good
18 / 27

a better lock

defmodule Lock do

def start() do
{:lock, spawn_link(fun() -> free() end)}

end

def free() do
receive do

{:take, pid} ->
send(pid, :taken)
taken()

end
end

def taken() do
receive do
:release ->

...
end

end

19 / 27

asynchronous communication

Messages in Elixir/Erlang is a form of asynchronous communication.

send(pid, {:take, self()})

The sender does not block and wait for the receiver to accept the message.
Asynchronous : not at the same time

20 / 27



synchronous communication
We can implement synchronous communication

def take(lock) do
send(lock, {:take, self()})
receive do

:taken ->
:ok

end
end

def free() do
receive do

{:take, pid} ->
self(pid, :taken)
taken()

end
end

The reply is generated by the application layer.

:ok = take(lock)

The application process sees a synchronous operations,
Synchronous : at the same time

21 / 27

pros and cons

What are the pros and cons of asynchronous communication?

22 / 27

synchronous by default
We could provide synchronous communication by default, for example:

send(jack, {:take, this})
%% I now know that the message is in the queue of Jack

:
?

... or

send(jack, {:do, that})
%% I now know that the message has been "received" by Jack

:
?

but why not..

23 / 27

synchronous when needed

send(jack, {:hello, self()}
%% I need to know that Jack has fun
receive

:having_fun ->
run_as_hell()

end

24 / 27



an asynchrounous memory

Synchronous programing is boring.

def cell(v) do
receive do

{:read, ref, pid} ->
send(pid, {:value, ref, v})
cell(v)

{:write, w, ref, pid} ->
send(pid, {:ok, ref})
cell(w)

:quit ->
:ok

end
end

25 / 27

an asynchrounous memory

def redrum({:cell, cell}) do
ref = make_ref()
send(cell, {:read, ref, self()})
ref

end

def murder(ref) do
receive do
{:value, ^ref, value} ->

value
end

end

:
ref = redrum(cell)

:
:

val = murder(ref)
:

26 / 27

Summary

Processes can be used to implement mutable data structures.
Same problems needs to be considered.
Made easier since each mutable data structure is a user defined process.
Asynchronous vs synchronous message passing - pros and cons.

27 / 27


