let's implement a memory

The memory should be a zero indexed mutable data structure of a given size and
provide the following functions:

Asynchronous vs Synchronous

@ @spec new([any]) :: memory : creates a memory initialized with values from
a list
Johan Montelius @ @spec read(memory, integer) :: any : returns the value stored in the
KTH memory at position n

@ @spec write(memory, n, any) -> :ok : writes the value at position n in the
VT23 memory

what do we mean by read and write

1/27 2/27
a first try the functional way

defmodule Mem do
Functional programming rules!
def new(list) do
{:mem, List.to_tuple(list)} Let write/3 return a new memory, a copy of the original with the update.
end

def write({:mem, mem}, n, val) ->
{:mem, put_elem(mem, n, val}}
end

def read({:mem, mem}, n) do
elem(mem, n)
end

def write({:mem, mem}, n, val) do
Nalere

end . .
I love functional programming

... hmm, not that easy

3/27 421



life is easy why not cheat

def test() do
= Mem.new([:a,

meml
mem?2

:b,

:c, :d,

Mem.write(mem, 3, :foo)

take_a_look_at_this(mem1l)

and_check_this(mem2)

end

What if we always write like this:

def te
mem
mem

st() do

= Mem.new([:a,

:b,
= Mem.write(mem, 3,

:c, :d,
:foo)

take_a_look_at_this(mem)
and_check_this (mem)

end

e,

e,

:f])

Can we cheat, and introduce a mutable data structure?

Can we use processes to implement mutable data structures?

5/27

6/27

a mutable cell a synchronous interface

cell/1

def cell(v) do
receive do

{:read, pid} ->

send(pid, {:value, v})

cell(v)

{:write, w, pid} ->

send (pid,
cell (w)

iquit —>

end
end

ok

:0k)

def read({:cell, cell}) do
send(cell , {:read, self()})
receive do
{:value, v} —>
v
end
end

def write({:cell, cell}, val) do
send(cell, {:write, val, self()})
receive do
0k —>
:ok
end
end

7/27

8/27



the cell module the memory

defmodule Cell do defmodule Memory do

def new(list) do

def start(val) do ## things to do in mother process ]
{:cell, spawn_link(fn() -> init(val) end)} cells = Enum.map(list, fn(v) -> Cell.start(v) end)
{:mem, List.to_tuple(cells)}
end
end
def read({:cell, cell}) do ... end def read({:mem, mem}, n) do
Cell.read(elem(mem, n))
def write({:cell, cell}, V) do ... end end
def write({:mem, mem}, n, val) do
def quit({:cell, cell}) do ... end Cell.write(elem(mem, n), val)
end
defciiiEiZii) do ## things to do in the child process def delete({:mem, mem}) do
ond Enum.each(Tuple.to_list(mem), fn(c) -> Cell.quit(c) end)

end
9/27 10/27

at last functional vs processes

test() —>
array = Memory.new([:a,:b,:c,:d,:e,:f,:g,:h]) By extending our language to handle processes, we have left the functional world.
Memory.write(array, 5, :foo)
Memory.write(array, 2, :bar)
love_all(array)

sort_it_for_me(array) Why are mutable data structures evil?
i_love_imperative_programming(array)

We can implement mutable data structures, something that we agreed was evil.

11/27 12/27



this = check_this(mem),
%% I hope it did not change anything
that = check_that (mem),

]

TR

13/27

@ without mutable data structures
concurrency would be easy

@ sharing mutable data structures is the
root of all evil

@ a process is, in one way, a mutable
data structure

@ ... It's only a movie.

15/27

def all_work(cell, 0, jack) do
send(jack, :run)

end

def all_work(cell, n, jack) do
x = Cell.read(cell)
Cell.write(cell, x + 1)
all_work(cell, n-1, jack)

end

def cell(v) do
receive do
{:read, pid} —>
send(pid, {:value, v})
cell(v)
{:write, w, pid} —->
send(pid, :ok)

cell(w)
:quit >
ok
end
end

the evil of mutability truly bad

def no_play(n) do
cell = Cell.start(0)
me = self()
spawn(fn() ->
all _work(cell, n, me) end)
spawn(fn() ->
all _work(cell, n, me) end)
receive do :run —>
receive do :run —->
Cell.read(cell)
end
end
end

V.

14/27

a dull boy adding atomic operations

def cell(v) do
receive do

{:read, pid} ->
send(pid, {:value, v})
cell(v)

{:write, w, pid} ->
send(pid, :o0k)
cell (w)

{:inc, n} —>
send(pid, :o0k)

cell(v+n)
:quit ->
ok

end
end

16/27



a lock using a cell

def critical(danger, lock) do

case Cell.read(lock) of
We want to avoid processes interfering with each other when intracting with a process. -1locked ->

. . critical(danger, lock
Let's implement a lock using our cell. (dang )

:free —>
o take the lock Cell.write(lock, :locked)
o relase the lock do_it(danger)
@ at most one process can hold the lock Cell.write(lock, :free)
end

end

hmmm, not so good

17/27 18/27

a better lock asynchronous communication

defmodule Lock do
Messages in Elixir/Erlang is a form of asynchronous communication.
def start() do
{:lock, spawn_link(fun() -> free() end)}

end send (pid, {:take, self()})
def free() do def taken() do
receive do receive do The sender does not block and wait for the receiver to accept the message.
{:take, pid} -> :release -> Asynchronous : not at the same time
send(pid, :taken) ..
taken() end
end end

end

19/27 20/27



synchronous communication pros and cons

We can implement synchronous communication

def take(lock) do def free() do
send(lock, {:take, self()}) receive do
receive do {:take, pid} ->
:taken -> self (pid, :taken)
- ok taken () What are the pros and cons of asynchronous communication?
end end
end end

The reply is generated by the application layer.

:ok = take(lock)
The application process sees a synchronous operations,

Synchronous : at the same time
21/27 22/27

synchronous by default synchronous when needed

We could provide synchronous communication by default, for example:

send(jack, {:take, this}) send(jack, {:hello, self()}
%% I now know that the message is in the queue of Jack %% I need to know that Jack has fun
receive
? :having_fun ->

run_as_hell()

. or end

send(jack, {:do, that})
%% I now know that the message has been "received" by Jack

but why not..

23 /27 24 /27



an asynchrounous memory

Synchronous programing is boring.

def

cell(v) do

receive do

{:read, ref, pid} ->
send(pid, {:value, ref, v})
cell(v)

{:write, w, ref, pid} ->
send(pid, {:0k, ref})

cell (w)
:quit ->
:ok
end
end

Processes can be used to implement mutable data structures.
Same problems needs to be considered.
Made easier since each mutable data structure is a user defined process.

Asynchronous vs synchronous message passing - pros and cons.

25 /27

27 /27

an asynchrounous memory

def redrum({:cell, cell}) do
ref = make_ref ()
send(cell, {:read, ref, self()})

ref
end ref = redrum(cell)
def murder(ref) do .

receive do val = murder(ref)

{:value, “ref, value} —>
value
end
end

26 /27



