
   

 
 
 
 

 
 

 

 
 
 

MASTER THESIS 
 

 

Study of Different Cache Line Replacement Algorithms in 
Embedded Systems 

  
 
 
 

GILLE  DAMIEN  
 

08 March 2007 
 
 

 
 
 
 
 

Company: ARM France SAS 
Les Cardoulines B2 - Route des Dolines 
Sophia Antipolis - 06560 Valbonne  
France 

Industrial supervisor: Frédéric Piry 

KTH examiner:  Ingo Sander 
 
 
 
 
 
 
 
 
 

 





i  Abstract/ Sammanfattning 

 
 
 
Abstract 
 
The increasing speed gap between processors and memories underlines the criticalness of cache 
memories. The strong area and power consumption constraints of general purpose embedded systems 
limit the size of cache memories. With the development of embedded systems provided with an 
operative system, these constraints are even stronger. The selection of an efficient replacement policy 
thus appears as critical.  
 
The Least Recently Used (LRU) strategy performs well on most memory patterns but this performance 
is obtained at the expense of the hardware requirements and of the power consumption. Consequently, 
new algorithms have been developed and this work is devoted to the evaluation of their performance. 
The implementation of a cache simulator allowed us to carry out a detailed investigation of the 
behaviour of the policies, which among others demonstrated the occurrence of Belady’s anomaly for a 
pseudo-LRU replacement algorithm, PLRUm. The replacement strategies that emerged from this study 
were then integrated in the ARM11 MPCore processor and their performance results were compared 
with the cache simulator ones. 
 
Our results show that the MRU-based pseudo-LRU replacement policy (PLRUm) approximates the 
LRU algorithm very closely and can even outperform it with low hardware and power consumption 
requirements. 
 
 
 

Sammanfattning  
 
Det ökande gapet mellan processorer och datorminnen förstärker betydelsen av effektiviteten hos cache 
minnena. De kraftiga restriktionerna av yta och elkraft begränsar storleken på cache minnena. Med 
utvecklingen av inbyggda system med operativsystemen blir restriktionerna ännu mer betydande. Så att 
välja en effektiv ersättningsalgoritm är därför kritiskt. 
 
LRU algoritmen presterar bra på de flesta minnesstrukturer, men det fås till kostnad av hårdvaru 
specifikationer och elkrafts konsumption. Nya algoritmer har därför utvecklats och den här 
avhandlingen behandlar evalueringen av deras prestanda. Implementeringen av en cache simulator har 
tillåtit oss att utföra en detaljerad undersökning av egenskaperna hos algoritmerna, vilket bland annat 
påvisade Beladys anomali för PLRUm, en ersättningsalgoritm. Algoritmerna som kom fram under 
analysen integrerades sedan i ARM11 MPCore processorn och deras prestanda jämfördes med cache 
simulatorns. 
 
Våra resultat visar att PLRUm kommer nära LRU algoritmen och till och med kan prestera bättre än 
LRU:n med låg hårdvara- och elkrafts krav. 



Study of different cache line replacement algorithms in embedded systems ii 

 
 
 
Acknowledgements 
 
 
This report concludes a six-month internship performed in the premises of ARM France SAS, in 
Sophia Antipolis. There, people helped me making progress in this interesting and crucial work, either 
on the theoretical understanding of all the phenomena involved in handling a data cache or about the 
applied management of the simulations and some C debugging issues. Thus, I take here the opportunity 
to thank all my colleagues from ARM France. I am particularly grateful to my industrial supervisor, 
Frédéric Piry, for his abiding support and for his answers to my numerous questions. Finally, I would 
like to thank KTH and École Polytechnique for having given me the opportunity to spend one year in 
Sweden as a double degree student. 



iii  Table of contents 

 
 
 

Table of contents 
 
 
 

List of figures .........................................................................................................................................vi 

List of tables ..........................................................................................................................................vii  

List of codes...........................................................................................................................................vii  

Chapter 1 Introduction ..........................................................................................................................1 

1. Motivation.........................................................................................................................................1 

2. Methods and plan of the thesis .........................................................................................................1 

Chapter 2 Theoretical Background ......................................................................................................3 

1. The need of caches............................................................................................................................3 
1.1. Memories...................................................................................................................................3 
1.2. Caches .......................................................................................................................................4 

2. Generalities about caches ................................................................................................................4 
2.1. Definitions .................................................................................................................................5 
2.2. Unified vs. separated caches for data and instruction................................................................5 
2.3. Write-through vs. write-back.....................................................................................................5 
2.4. The question of the replacement policy.....................................................................................6 
2.5. The mapping..............................................................................................................................6 
2.6. Different types of misses ...........................................................................................................9 

Chapter 3 Overview of the replacement algorithms..........................................................................11 

1. The optimal algorithm ....................................................................................................................11 

2. Principle of locality ........................................................................................................................11 

3. Usual algorithms ............................................................................................................................11 
3.1. Random....................................................................................................................................12 
3.2. Least Recently Used (LRU).....................................................................................................12 
3.3. First In First Out (FIFO)/ Round Robin...................................................................................13 
3.4. Least Frequently Used (LFU)..................................................................................................13 

4. Approximations of the LRU policy .................................................................................................13 
4.1. The 1-bit replacement policy ...................................................................................................13 
4.2. MRU based Pseudo LRU (PLRUm)........................................................................................14 
4.3. Tree-based Pseudo LRU (PLRUt) ...........................................................................................14 
4.4. Modified Pseudo LRU (MPLRU) ...........................................................................................15 
4.5. SIDE algorithm........................................................................................................................16 
4.6. Comparison of these policies...................................................................................................16 

5. Enhanced LRU policies ..................................................................................................................16 
5.1. 2Q ............................................................................................................................................19 
5.2. LRU-K .....................................................................................................................................19 
5.3. Segmented LRU (SLRU).........................................................................................................19 
5.4. Adaptive Replacement Cache (ARC) ......................................................................................19 
5.5. Summary of the enhanced LRU policies .................................................................................20 

6. Ideas of improvement......................................................................................................................20 
6.1. Cacheable/Non Allocatable .....................................................................................................20 



Study of different cache line replacement algorithms in embedded systems iv 

6.2. Selective cache way.................................................................................................................20 

Chapter 4 The current cache implementation ...................................................................................21 

1. The ARM11 microarchitecture .......................................................................................................21 
1.1. Architecture vs. microarchitecture...........................................................................................21 
1.2. Memory ...................................................................................................................................21 
1.3. System Control Coprocessor ...................................................................................................21 
1.4. Memory Management Unit (MMU) ........................................................................................22 
1.5. Generalities about caches ........................................................................................................22 
1.6. ARM11 vs. competitor configurations ....................................................................................23 

2. The ARM11 MPCore level 1 data side memory system..................................................................23 
2.1. Slots Unit .................................................................................................................................23 
2.2. Micro Translation Lookaside Buffer .......................................................................................25 
2.3. Arbiter .....................................................................................................................................25 
2.4. RAMs ......................................................................................................................................25 
2.5. Hit stage...................................................................................................................................26 
2.6. Store Buffer (STB) ..................................................................................................................26 
2.7. Line Fill Buffer (LFB) .............................................................................................................26 
2.8. Eviction Write Buffer (EWB)..................................................................................................26 
2.9. Droute......................................................................................................................................26 

Chapter 5 Replacement policies simulation .......................................................................................27 

1. Principles........................................................................................................................................27 
1.1. Source files ..............................................................................................................................27 
1.2. Choice of the policies ..............................................................................................................27 
1.3. Cache simulator .......................................................................................................................28 
1.4. Benchmarks .............................................................................................................................29 
1.5. Software...................................................................................................................................30 
1.6. Remarks about the simulations................................................................................................31 

2. Simulation results ...........................................................................................................................32 
2.1. Benchmarks with usual replacement policies ..........................................................................32 
2.2. Non-MRU and Global Round Robin study .............................................................................33 
2.3. Software...................................................................................................................................34 

3. Interpretation..................................................................................................................................35 
3.1. Random....................................................................................................................................35 
3.2. Round Robin............................................................................................................................38 
3.3. Global Round Robin................................................................................................................39 
3.4. 1-bit .........................................................................................................................................39 
3.5. Non-MRU................................................................................................................................40 
3.6. Modbits....................................................................................................................................40 
3.7. Side..........................................................................................................................................41 
3.8. LRU and pseudo-LRUs ...........................................................................................................41 

4. Cache set associativity....................................................................................................................44 
4.1. 2-way vs. 4-way set associative caches ...................................................................................45 
4.2. High associativity ....................................................................................................................45 

5. Conclusion: which replacement algorithms will be selected?........................................................46 

Chapter 6 The cache implementation .................................................................................................47 

1. Replacement policies implementation ............................................................................................47 
1.1. Integration of the lockdown feature.........................................................................................47 
1.2. Hazards....................................................................................................................................48 
1.3. Updating the status bits............................................................................................................48 
1.4. Allocating a way......................................................................................................................50 

2. Status bits implementation..............................................................................................................51 
2.1. How to update the status bits ...................................................................................................51 
2.2. Storage of the status bits ..........................................................................................................51 



v  Table of contents 

3. In the Dirty RAM ............................................................................................................................52 
3.1. Creation of a status slots module .............................................................................................53 
3.2. Actions on memory requests ...................................................................................................54 
3.3. Obtaining the up-to-date version of the status bits ..................................................................55 
3.4. Sum up.....................................................................................................................................55 

4. In a new RAM .................................................................................................................................56 
4.1. The RAM.................................................................................................................................56 
4.2. Slots module ............................................................................................................................57 
4.3. Actions on memory requests ...................................................................................................57 
4.4. Sum up.....................................................................................................................................57 

5. In a new RAM with a small cache ..................................................................................................58 
5.1. Status bit RAM ........................................................................................................................59 
5.2. Status Bit Cache.......................................................................................................................59 
5.3. Read Buffers............................................................................................................................63 
5.4. Write buffer .............................................................................................................................66 
5.5. Updater ....................................................................................................................................66 
5.6. Optimizations ..........................................................................................................................66 
5.7. Hazards....................................................................................................................................67 
5.8. Validation of the design...........................................................................................................67 
5.9. Sum up.....................................................................................................................................68 

6. Results of the simulations ...............................................................................................................69 
6.1. Obtaining the hit ratio..............................................................................................................69 
6.2. Simulations ..............................................................................................................................70 

7. Conclusion......................................................................................................................................74 

Chapter 7 Conclusion...........................................................................................................................75 

1. Results ............................................................................................................................................75 

2. Future work ....................................................................................................................................75 

References .............................................................................................................................................77 

Appendix A Number of status bits ......................................................................................................81 

Appendix B The cache simulator ........................................................................................................83 

Appendix C Selection of benchmarks .................................................................................................89 

Appendix D Validation of the implementation in Verilog ................................................................91 

Index ......................................................................................................................................................94 



Study of different cache line replacement algorithms in embedded systems vi 

 
 
 

List of figures 
 
 
 
 
Figure 1: Repartition of memories............................................................................................................3 
Figure 2: Performance gap between CPUs and memories........................................................................4 
Figure 3: Usual memory hierarchy...........................................................................................................4 
Figure 4: Fully associative cache..............................................................................................................6 
Figure 5: Address in a fully-associative cache .........................................................................................7 
Figure 6: Direct-mapped cache.................................................................................................................7 
Figure 7: Address in a direct mapped cache.............................................................................................8 
Figure 8: N-way set associative cache......................................................................................................8 
Figure 9: Address in a 2n-way set associative cache.................................................................................9 
Figure 10: Miss ratio on different cache configurations with the PLRUm replacement policy ..............9 
Figure 11: Improved LRU stack bits ......................................................................................................12 
Figure 12: 1-bit sequence .......................................................................................................................13 
Figure 13: PLRUm sequence..................................................................................................................14 
Figure 14: Decision tree for the PLRUt algorithm .................................................................................14 
Figure 15: PLRUt sequence....................................................................................................................15 
Figure 16: Decision tree for the MPLRU algorithm...............................................................................15 
Figure 17: Side sequence........................................................................................................................16 
Figure 18: Level 1 data side memory implementation of the ARM11 MPCore processor.....................25 
Figure 19: Hit ratio of the different usual replacement policies averaged over benchmarks..................33 
Figure 20: Average hit ratios on representative benchmarks with GRR and non-MRU ........................33 
Figure 21: Hit ratio of the interesting replacement policies on the software applications......................34 
Figure 22: office_rotate hit ratio in a 4-way set associative cache .........................................................35 
Figure 23: Markov chain for the Random replacement policy ...............................................................37 
Figure 24: Evolution of the probabilities p(k,n) in function of the allocations in the cache set .............37 
Figure 25: Average number of busy lines in function of the allocations in the cache set.......................37 
Figure 26: Hit ratio for automotive_aifftr in a 4-way set associative cache ...........................................40 
Figure 27: Hit ratio of the dirty bits implementation averaged over the selection of benchmarks .........40 
Figure 28: Memory requests of a core on a test bench ...........................................................................52 
Figure 29: Architecture of the Dirty RAM solution ...............................................................................53 
Figure 30: Architecture with the new RAM solution .............................................................................56 
Figure 31: Addressing the status bit RAM .............................................................................................57 
Figure 32: Architecture of the RAM and cache solution........................................................................58 
Figure 33: Status Bit Cache hit ratios for a 16-KB 4-way set associative cache on the selection of 
benchmarks.............................................................................................................................................60 
Figure 34: Status Bit Cache hit ratios for a 16-KB and 4-way set associative cache on software..........60 
Figure 35: Status Bit Cache hit ratios for a 4-way set associative data cache with different Status Bit 
Cache configurations and different data cache sizes on the selection of benchmarks............................61 
Figure 36: Hit ratio for a 4-way set associative cache on the SPEC92 benchmark suite [GEE93] .........61 
Figure 37: Deriving the address of the Status Bit Table for the two SBC configurations ......................62 
Figure 38: Wave diagram of a SBRB.....................................................................................................64 
Figure 39: Wave diagram of a sequence for the overall SBC side .........................................................68 
Figure 40: Improved LRU stack bits ......................................................................................................82 
Figure 41: PLRUt tree nodes numbering................................................................................................86 
Figure 42: MPLRU tree nodes numbering .............................................................................................86 



vii  List of figures 

 
 
 

List of tables 
 
 
 
 
Table 1: Comparison of the different simple replacement policies ........................................................17 
Table 2: Summarize of the enhanced LRU policies ...............................................................................18 
Table 3: Cache characteristics of commercialized processors................................................................24 
Table 4: Hit ratio for the different policies with benchmarks with a 4-way set associative cache .........32 
Table 5: Average miss ratios on representative benchmarks of GRR and non-MRU ............................34 
Table 6: Miss ratios of LRU, Random and PLRUm on specific benchmarks ........................................36 
Table 7: Miss ratios of PLRUm, PLRUt, Random and Round Robin on specific benchmarks..............38 
Table 8: Pseudo-LRU ways for PLRUm and PLRUt .............................................................................42 
Table 9: Non-optimality of PLRUt and quasi-optimality of PLRUm on a loop.....................................43 
Table 10: Sequence of 3 loops of Nways+1 steps for LRU, PLRUm and PLRUt ....................................43 
Table 11: Number of hits for the Nways+1-step loop with different filling orders...................................44 
Table 12: The same Nways+1-step sequence for LRU with a different filling order................................44 
Table 13: Miss ratio in 4-way and 2-way set associative caches for software averaged over the different 
cache sizes ..............................................................................................................................................45 
Table 14: Impact of high associativity on miss ratio for software and the selection of benchmarks......45 
Table 15: Equivalent of Belady’s anomaly for PLRUm.........................................................................46 
Table 16: Impact of the number of read buffers on the overall performance of maze and explorer.......65 
Table 17:  Hit ratio of the Verilog version with benchmark office_rotate..............................................71 
Table 18: Miss ratio of the candidates on the different ARM11 cache configurations with maze and 
explorer...................................................................................................................................................72 
Table 19: Impact of the LFSR width for 1-bit with a 4-way set associative and 16KB data cache........73 
Table 20: Test sequence of the optimal algorithm..................................................................................84 
Table 21: Test sequence for SIDE..........................................................................................................85 
Table 22: Test sequence of PLRUm algorithm ......................................................................................85 
Table 23: Test sequence of MPLRU algorithm......................................................................................86 
Table 24: Test sequence for LRU...........................................................................................................87 
Table 25: Test sequence for ModBits.....................................................................................................83 
Table 26: Test sequence of the Status Bit Cache Logic with PLRUm replacement policy ....................92 
 
 
 
 
 

List of codes 
 
 
 
 
Code 1: 1-bit allocation and update of the status bits with lockdown feature ........................................49 
Code 2: PLRUm allocation and update of the status bits with lockdown feature...................................49 
Code 3: PLRUt allocation and update of the status bits with lockdown feature.....................................50 
 



Study of different cache line replacement algorithms in embedded systems viii 

 
 
 

List of abbreviations 
 
 
 
 
CP15  Coprocessor 15 
CPU  Central Processing Unit 
GRR  Global Round Robin 
LFB  Line Fill Buffer 
LFSR  Linear Feedback Shift Register 
LFU  Least Frequently Used 
LRU  Least Recently Used 
MMU  Memory Management Unit 
MPLRU  Modified Pseudo Least Recently Used 
MRU  Most Recently Used  
PLRUm  MRU based Pseudo Least Recently Used 
PLRUt  Tree-based Pseudo Least Recently Used 
RAM  Random Access Memory  
RR  Round Robin 
SBC  Status Bit Cache 
SBG  Status Bit Group 
SBRB  Status Bit Read Buffer 
SBT  Status Bit Table 
SBWB  Status Bit Write Buffer 
SBT   Store Buffer 
TLB  Translation Lookaside Buffer 



1  Chapter 1 - Introduction  

 
 
 
 

Chapter 1  
 
Introduction  
 
 
 
В любом начинании только одна тайна: будет ли завершение?  

Г. Александровa 
 

 

1. Motivation 

As processors become faster and faster, the performance gap between memories and processors gets 
wider and wider. Consequently, different solutions are proposed to cope with this issue, among them 
increasing cache performance. In this perspective, designing a cheap, low-power and efficient 
replacement policy appears as critical, as Eq. (2) p.6 shows. Besides, studies [MEG03, ZOU04] 
demonstrated that there is a significant gap between the optimal replacement algorithm and the one 
used in most embedded systems’ processors, i.e. Random or FIFO. This observation motivates a deep 
study of these policies. However, because of the high locality in instruction caches, using a new 
replacement policy is not so critical for instruction caches [MIL03], particularly in comparison with the 
designing cost. This thesis is thus focused on the improvement of data cache performance by 
implementing a new cache line replacement algorithm. 
 
The word implementation is crucial in this definition because all the studies published in the literature 
up to now deal with a cache simulator model, and thus are restricted to the theoretical efficiency of 
these algorithms. There is a lack of knowledge and data in this field, particularly in the embedded 
world. Moreover, all the works cited above focus on the x86 architecture and aim to find the most 
efficient algorithm. The only work found in the literature about replacement algorithms on ARM 
processors is [MIL03] but they use a simulator of the core and not the core itself, which could lead to 
some significant differences. Moreover, it was the previous generation of ARM cores, whose 
architecture has changed a lot. In this work, we will deal with a typical embedded processor, the 
ARM11 MPCore one. Like other embedded cores, there is no published work about the efficiency of 
different replacement cache line algorithms. This work will try to compensate this lack of knowledge. 
The originality of this study will be to take into account not only the efficiency of the algorithms but 
also their designing cost, their power consumption and their area; thereby leading to a good 
compromise between these factors. This is explained by the fact that whereas these factors are non-
essential for desktop applications, they are critical for embedded systems. 
 
Finally, all the studies found in the literature are focused on mono-processors whereas our 
implementation will take care of the process of invalidating lines. The impact of this feature is not 
studied in details in this thesis because of time restrictions. However, it is dealt with in the 
implementation since the ARM11 MPCore processor is a multi CPU system. 

2. Methods and plan of the thesis 

As explained in the previous paragraph, the aim of this internship is to implement a cheap, low-power, 
efficient and easy to design cache line replacement policy. In order to reach this goal, the thesis has 
been split into different parts: 

                                                           
a At each beginning, there is only one mystery: will it be completed? 

G. Aleksandrov 



Study of different cache line replacement algorithms in embedded systems 2 

- study of  the literature, 
- simulation of the algorithms and deep study of their characteristics, 
- implementation of one or some algorithms in a hardware description language. 

 
These steps allow dividing the thesis into different parts, with their own objectives. This method 
usually leads to a well organized work and simplifies meeting the requirements because there are 
various small frequent steps. This splitting is natural in the sense that we first study the existing 
material and try to improve the existing replacement algorithms. Then the chosen policies are simulated 
on our particular architecture in order to evaluate their performance and finally from these results and 
the constraints specific to embedded systems, some are chosen as candidates for implementation, which 
is the final step. The plan reflects this partitioning. 
 
Chapter 2 presents the general features of caches memories. People already familiar with caches can 
begin the reading of this thesis at Chapter 3. 
 
Chapter 3 deals with the common replacement strategies as well as their expected performance. The 
advantages and drawbacks of each policy are examined to select the algorithms that may meet 
embedded systems’ constraints. 
 
Chapter 4 briefly addresses the characteristics of the ARM11 implementation useful for this work. 
 
Chapter 5 is devoted to the simulations of the replacement algorithms on a cache model. These results 
are then confronted to the literature and to the cost evaluations of their integration in the ARM11 
MPCore data side architecture, thereby selecting some candidates for an implementation. 
 
Chapter 6 focuses on the Verilog implementation of some replacement strategies. Different proposals 
are examined and the chosen one is addressed in details. Simulations are then performed on the 
enhanced version of the processor to corroborate the performance improvement. 
 
Chapter 7 sums up the results of this work and suggests some ideas for future works on neighbouring 
themes. 
 
 
 



3  Chapter 2 - Theoretical Background  

 
 
 
 

Chapter 2  
 
Theoretical Background 
 
 
 
We are therefore forced to recognize the possibility of constructing a hierarchy of memories, each of which has 
greater capacity than the preceding but which is less quickly accessible. 

 
A. Burks, H. Goldstine, J. von Neumann: Preliminary Discussion of the Logical Design of Electronic Computing 

Instrument, Part I, Vol. I, Report prepared for the U.S. Army Ord. Dept 
1946 

 
 
 
Before dealing in details with cache line replacement algorithms, the main characteristics of the cache 
memories that will be used in this thesis are briefly presented. The mapping, which will be intensely 
discussed in the final implementation, is dealt with in details. 
 

1. The need of caches 

1.1. Memories 

Memories are one of the basic hardware elements with processors and communication. They enable 
data and instructions to be saved and they can be accessed thanks to the address of their elements. 
There are two types of memory accesses: 

- the reads which give the value of an element stored at a defined address, 
- the writes which store a value at a given address. 

The access could concern only one word or some words, depending on the executed instruction. 

 
 

Figure 1: Repartition of memoriesa 
 
Ideally, we would like to have an indefinitely large memory (with high capacities) which would be able 
to immediately access one element as well as instantly replace one of them. Unfortunately, it is only a 
dream. Various types of memories are thus used at different levels of the memory hierarchy, each of 
them resulting from specific compromises between price, capacity, speed, reliability, availabilityb. 
These criterions yield the classification of memories depicted above. 
 
After the first glance on the figures above, one notices that the fastest memories are the most 
expensive. Apart from cost, fast memories have also low capacity, thus preventing engineers from 

                                                           
a These two pictures come from [SCU03] 
b For more details about distinction between reliability and availability, see [DOU06] 

 
Cache 

Main 

On-line storage 

Near-line storage 

Off-line storage 

Registers 



Study of different cache line replacement algorithms in embedded systems 4 

designing fast and big memories. The different memories are usually regrouped as a pyramid in 
accordance with the previous observations. Registers lie at its top, as they are the fastest and the most 
expensive memory. Cost per byte, capacity and speed decrease downwards this pyramid to off-line 
storage.  

1.2. Caches 

During the last years, the gap between processors’ speed and memories’ speed increased in spite of the 
numerous attempts to cope with it (see Figure 2). As a result, memory access time appears now as a 
bottleneck for the design of fast systems. Indeed, the average access time is 60 ns for DRAM (usually 
used for the main memory) whereas a typical ARM11 MPCore processor clock period is 2 ns. 
Therefore, many endeavours have been performed to reduce the average access time. Fast memories 
located near the CPU (Central Processing Unit) and containing the most frequently used data and 
instructions should be a good solution to this issue: embedded SRAMs (commonly employed in cache 
memories) can exhibit an average access time equal to 1 ns. Unfortunately, these memories are also 
very expensive and their capacities are limited in virtue of the principles presented in Section 1.1. 
Processors would ideally always access the caches (except for cold misses), thereby requesting greater 
and greater capacities of the caches. It is obviously in opposition with the previous remark.  
 

 
Figure 2: Performance gap between CPUs and memoriesa 

 
Nowadays, processors are thus frequently provided with a second level cache (denoted as L2) in order 
to solve the cache size issue. This cache acts as an intermediary memory between the first level cache 
and the main memory. It has greater capacity but lower speed than first level caches (whose symbol is 
L1). The corresponding memory hierarchy is drawn on Figure 3 for a back-end L2. It can also be 
directly connected to the CPU and it is known as front-end. 
 

 
Figure 3: Usual memory hierarchy 

 
In the next chapters, the term upper level memory will refer to the second-level cache if there is a back-
end L2 or to the main memory for the other systems. 

2. Generalities about caches 

Various points about the characteristics of caches are addressed in this section:  unified or separated 
caches, mapping, replacement policies… 
 

                                                           
a Picture from  [HEN03] 

CPU L1 
 

L2 

 
 

Main  
Memory 

Word 
 

Line Lines 



5  Chapter 2 - Theoretical Background  

2.1. Definitions 

A cache is a small fast memory located near the processor which contains the data recently accessed. 
With caches, the memory access is not deterministic anymore but probabilistic. 
 
A cache line is the smallest amount of data that can be transferred between the upper level memory and 
the cache. It takes advantage of the locality principlea to avoid numerous costing upper level memory 
accesses. A cache line is composed of words. 
 
A word is the smallest amount of data transferred between the processor and the cache and usually 
corresponds to the size of the processor’s registers. 
 
If the data/instruction required by the processor is located in the cache, it is a hit. Otherwise, it is a 
miss. 
 
The mapping is the technique used to assign one upper level memory block to one cache line. 

2.2. Unified vs. separated caches for data and instruction 

The information, that the processor needs accessing to, is the data and the instructions. They can be 
saved in the same memory or in two different memories because of their particularitiesb. 
 
Separating the data and the instruction caches doubles the bandwidth because the processor can issue 
simultaneously an instruction request and a data request. Indeed, a load or a store simultaneously calls 
for a data as well as an instruction. A unified cache can so be a bottleneck of the system in some 
specific situations. A separated cache has thus the advantage of a multi-port memory without its cost. 
Moreover, the logic that arbitrates priority between data and instructions in a unified cache is 
suppressed in a separated cache. Another advantage of separated caches is that the two caches can be 
located near the place where they will be used, thus saving some nanoseconds in the critical path. 
 
On the other hand, separated caches raise important issues concerning the enforcement of the 
coherency between the two caches, especially for self-modifying codes. A thorny problem must be 
solved if data and instructions lie in the same memory line: each cache can own an erroneous copy of 
the memory line, thereby raising the coherency problem. Finally, the separation of cache and data leads 
also to an inefficient use of the memory because some memory space is wasted. 

2.3. Write-through vs. write-back 

When a data is located in the cache, the system has two copiesc: one in the main memory, one in the 
cache. Two different policies govern the write: 

- write through: the data/instruction is written both in the cache and in the main memory, 
- write back: the information is written in the main memory only when the line is 

removed from the cache. To avoid useless back writings in the main memory, the 
cache lines are provided with a dirty bit. If it is set to 1, it means that the 
data/instruction has been modified in the cache. Otherwise, the data is clean and does 
not need to be written back in the main memory on eviction. 

 
The main problem of the write through policy is its generation of a lot of unnecessary traffic. It leads to 
a situation where the processor may have to wait for the write buffer to perform the writes. With this 
policy, the main memory has always an up-to-date copy of the data/instruction, which simplifies 
coherency. 
 

                                                           
a For further details about the locality principle, see next chapter. 
b On the figure 5.8 p. 406 of [HEN03], we see for instance that instruction caches have less miss rates 
than data caches. 
c For systems with a L2 cache, the situation can be more complex: there can be up to three copies, one 
in L1, one in L2, one in the main memory. For non-inclusive L2, there may be a copy in L1 with no 
copy in L2. 



Study of different cache line replacement algorithms in embedded systems 6 

The write back policy does not face the programmer with these problems but it has also drawbacks. It 
generates fewer stores and is so faster but by definition the discrepancies between cache and main 
memory last longer and the worst case sequence is longer too. Moreover, the implementation of this 
policy is more complex. 

2.4. The question of the replacement policy 

Since caches cannot contain the whole memory, designers face an important problem: which lines 
should be stored in the cache? The answer is obviously dynamic because the needs of the processor 
dynamically change over time. Consequently, the problem can be reformulated: in which emplacement 
of the cache should lines be stored, which lines should be kept in the cache and which ones should be 
discarded? Numerous cache lines replacement algorithms try to answer the replacement question in an 
efficient, low power consuming, fast, easy to implement and cheap way. The criticalness of this 
question is illustrated by the following equation: 
 
Average access time = Hit ratio x Average cache access time + 

(1 – Hit ratio) x (Average cache access time + Average upper level access time) 
(1) 

 
The term Average cache access time comprises the time required for sending the Load/Store instruction 
to the cache, performing the cache lookup and forwarding the data in case of a hit. This step is 
performed by any instruction sent to the cache arbiter. For missed accesses, the line must then be 
fetched from the upper level memory. Replacing the times by their typical values in clock cycles, 
Average cache access time = 2 and Average upper level access time = 100, one gets: 
 

Average access time = 102 – 100 x Hit ratio ≈ 100 x Miss ratio (2)    
 
Decreasing the miss ratio of only one percent improves the overall performance of one clock cycle! 
This observation explains why the theme of this thesis is considered as crucial. 

2.5. The mapping 

The replacement policy answered only partially to the questions formulated in the previous section: the 
first one remains. The answer is given by the mapping that assigns an upper level memory block to a 
cache line. Three mappings are usually used: direct mapped, fully associative and N-way-set 
associative. 

2.5.1. Fully-associative cache 
The mapping of a fully-associative cache is drawn on Figure 4. Each memory line can be mapped 
anywhere in the cache. This technique thus requires performing the lookups of all the lines in parallel, 
thereby generating a huge amount of hardware in the cache controller. It implies large access times and 
big capacitances. These constraints make this solution viable only for small caches.  
 

 
Figure 4: Fully associative cache 

 
As the main memory block can be mapped anywhere, a means is needed to know which upper level 
memory address currently lies in the cache: this is given by the tag, a unique number for each upper 



7  Chapter 2 - Theoretical Background  

level memory block. Because of the huge amount of bits, this piece of information is usually stored in a 
dedicated RAM. 
 
The memories and the cache are assumed to be byte-addressable therefore any byte of the cache lines 
can be accessed individually. The part of the address handling these byte accesses is called the offset.  
 
Let us take the example of a 32-bit address and 2s KB cache where s is an integer. The memory is 
assumed to be byte-addressable and the width of the cache line equal to 256 bits, i.e. 32 bytes. The 
main memory thus contains 227 lines. This distinction between the lines can be performed according to 
the address cut drawn in Figure 5. 

 
Figure 5: Address in a fully-associative cache 

 
In Figure 4, the tag is bound with information bits. They allow the cache controller to know the state of 
the given cache line. In general, it contains the following: 

- validity bit: the stored line is valid or not, 
- dirty bit:  the line has been modified since its allocation, 
- coherency protocol bits: in multiprocessors environment, some additional bits are 

required to ensure coherency between the caches of the processors (MESI for instance 
needs four additional bits in one hot encoding). 

These bits do not depend on the mapping and will be found through the three different mappings. 
Depending on the implementation, some other bits can be found too. 

2.5.2. Direct-mapped cache 
Here, each memory line is mapped to a particular line of the cache. The line on which the memory 
block is mapped is denoted by a part of the address called the index. On Figure 6, the cache lines are 
composed of 4 words. A common way to perform the cache line selection is: 

)(mod)( linesofnumberaddresslineMemoryLine =  

 
Figure 6: Direct-mapped cache 

 
 Let us retake the example of the previous section: a 32-bit address and 2s KB cache. Thus, the cache 
contains 2s+13 bits. Knowing that a line is 256-bit wide, one deduces that there are 2s+5 lines per set. 
Therefore, the index is (s+5)-bit wide.  
 
The memories are byte-addressable. Consequently the 32-bit address enables access to a 235-bit 
memory. As the width of the cache lines is 256 bits, the main memory contains then 227 lines. As a 
result, 222-s different lines need to be distinguished per cache set. The tag is so (22-s)-bit wide. 
Moreover, a line is 32-byte wide, giving an offset of 5 bits. The address cutting is shown on Figure 7. 

5    27 

Tag Offset 

0 5 31 



Study of different cache line replacement algorithms in embedded systems 8 

 
Figure 7: Address in a direct mapped cache 

 
Direct mapping is a simple strategy but poorly effective. Indeed, as the cache size is smaller than the 
upper level memory size, different memory blocks are mapped to the same cache line, thereby leading 
to numerous conflicts misses. A means to prevent it is to allow a memory line to be mapped onto 
different cache lines. This solution is presented in the next section. 

2.5.3. N-way set associative cache 
The cache is split into sets where each set is composed of N cache lines. The cache scheme is drawn on 
Figure 8, where a set is represented as the union of the red rectangles.  
 

 
Figure 8: N-way set associative cache 

 
The upper level memory line is affected to a set and can then be mapped on any of the N ways, thereby 
giving the possibility to decrease the number of conflict misses. Therefore, the cache is associative in a 
set; which explains the name of the mapping. The set selection can be performed by: 

Set = (Memory line address) mod (number of sets) 

As an example, we will consider here the case of a 2s KB 2n-way set associative cache.  Thus, the cache 
contains 2s+13-n bits per way. Knowing that a line is 256-bit wide, one deduces that there are 2s+5-n lines 
per set. Therefore, the index is (s-n+5)-bit wide. 
 
The memories are byte-addressable. Consequently the 32-bit address allows access to a 235-bit memory. 
As the width of the cache lines is 256 bits, the main memory contains then 227 lines. As a result, there 
are 222-s+n different lines to distinguish per cache set. The tag is so (22-s+n)-bit wide. 
 
 

s+5    22-s 5 

Tag Index Offset 

0 5    s+10 31 



9  Chapter 2 - Theoretical Background  

A line is composed of 32 bytes, yielding an offset of 5 bits. An address scheme is drawn below. 

 
Figure 9: Address in a 2n-way set associative cache 

2.6. Different types of misses 

A miss occurs when the data (or the instruction) required by the processor does not lie in the cache: it 
must be then fetched from the upper level memory. There are four types of misses: 

- compulsory misses: these are the misses on a cold start. Data must be fetched at least 
once from the upper level memory to be present in the cache, 

- capacity misses: these misses occur when the working set (data/instructions required 
for the program) exceeds the cache size, 

- conflict misses: such misses result from the mapping of two different items to the same 
cache line, 

- coherency misses: in a multiprocessing environment, the coherency protocol may 
invalidate a line. The next lookup for this line will be a miss. 

 
This work is mainly devoted to single processors’ data caches. Consequently, we will not deal further 
with the coherency misses. The different types of misses can be seen on Figure 10. It should be noticed 
that the x-axis of the graph is logarithmic. 
 

 
Figure 10: Miss ratio on different cache configurations with the PLRUm replacement policy a 

 
Compulsory misses.   First, one sees that for the highest cache sizes (128 KB and greater), the miss 
ratio is constant and tends to be zero. However, it is a bit greater than zero (around 0.06 %). Increasing 
further the cache size does not influence the miss ratio anymore. These remaining misses are the 
compulsory misses and correspond to the first use of the data. Thus, they are impossible to avoid, 
unless the cache becomes omniscient and predicts the data that will be used on start in order to preload 
them in the cache.  
 
Capacity misses.   When the working set cannot be contained in the cache, useful values evict one 
another from the cache. These misses are capacity misses and they can be seen on the graph in the part 
where the hit ratio continuously decreases. For instance, one deduces from Figure 10 that the working 
set of this program is around 32 KB. They can be avoided by increasing the number of cache lines or 
by enlarging the size of the lines in the cache. However, increasing the size of the lines without 
modifying the cache size leads to more conflict misses. So these two solutions extend the size of the 

                                                           
a This graph results from simulations run with a cache simulator created in this thesis. It will be 
presented in details in Chapter 5. The memory requests pattern was obtained from maze, a program 
looking for a path between two nodes of a tree. 

5 s-n+5 22-s+n 

Tag Index Offset 

0 5 s-n+10 31 



Study of different cache line replacement algorithms in embedded systems 10 

cache, which will be more expensive, consume more power and more area. These solutions have thus 
strong negative impact on key points of embedded systems. Moreover, the size of the cache cannot be 
continuously increased because it makes the cache access time longer. Yet, the memory access time 
constrains the processor clock cycle and is considered as a limit in today’s processors. As a result, 
dealing with conflict misses appears as the only efficient and cheap way to increase the efficiency of 
the caches. 
 
Conflict misses.   One sees that there is a difference between direct mapped cache and N-way set 
associative cache for data cache sizes between 8 KB and 64 KB. This difference between 16-way set 
associative cache and direct mapped cache is due to a diverse influence of conflict misses. Indeed, 16-
way set associative cache avoids conflict misses by giving more possibilities for the allocation of a 
way, thereby leading to fewer conflicts. On the graph, the hit ratios of 8-way and 16-way set 
associative cache are almost equivalent. Thus, 16-way set associative cache can be considered as 
efficient as a fully-associative cache for this memory pattern. The difference between the optimal 
algorithm and the N-way set associative caches yields the ratio of conflict misses in the given 
configuration. This simulation confirms that the origin of conflict misses is the mapping of the upper 
memory level blocks to a cache line. Therefore, relaxing the constraints on the mapping should 
decrease the number of conflict misses. In this optics, N-way set associative caches (and ideally fully 
associative cache) appear as the best solution to this issue according to Figure 10. Nevertheless, 
increasing the associativity of the cache is also problematic because it requires a lot of lookups in 
parallel, which is power consuming, the key point for embedded processors. For this reason, an 
alternative for dealing with conflict misses is to propose another replacement policy, which would be as 
optimal as possible. When a conflict occurs, the choice of the line to evict at the profit of the incoming 
one is crucial since it determines the data present in the cache. This observation demonstrates the 
criticalness of the theme of this thesis. 
 
 
 
Through this chapter, different characteristics of the cache have been presented. Among them, one 
appeared critical for the design of an efficient and low-power embedded cache: the cache replacement 
policy. This is the subject of this thesis and is investigated in details in the next chapter. 
 
 
 



11  Chapter 3 -Overview of the replacement algorithms  

 
 
 
 

Chapter 3  
 
Overview of the replacement algorithms 
 
 
 
Savoir pour prévoir, afin de pouvoira. 

 
A. Comte 

 
 
 
We have seen in the previous chapter that different upper level memory lines are mapped to the same 
cache line. Thus, when the set of cache lines, which the upper level memory block can be mapped to, is 
full, the line that will be evicted at the profit of the new data must be chosen. The role of the 
replacement algorithms is to select the discarded line as optimally as possible. These algorithms should 
be implemented in hardware and execute rapidly in order not to speed down the processor. In this 
chapter, the principle of locality – on which almost all the replacement policies are based – is presented 
before introducing and comparing the usual replacement algorithms. 
 

1. The optimal algorithm 

This algorithm [BEL66] uses the cache in the optimal way. It replaces the lines that will not be used for 
the longest period of time. Consequently, it must know all the future accesses and thus is impossible to 
implement. Only simulations on predefined memory patterns can be carried out. As a result, it only 
appears as a means to measure the performance of the replacement algorithms. Moreover, Brehob et al. 
[BRE04] showed that computing the optimal policy is NP-hard for modern cache structures. Because of 
this huge computation time, it will be little used in this thesis.  
 
Since processors are not omniscient, a method predicting the next accessed data is needed to approach 
the performance of the optimal algorithm. To that end, replacement policies resort to the principle of 
locality. 

2. Principle of locality 

Programs tend to reuse the data and the instructions that they have used recently: this is the temporal 
locality. Moreover, a program tends to use the instructions and the data that are located in the vicinity 
of the used one. This is the spatial locality. For instance, a program spends in average 90% of its 
execution time in 10% of its code [HEN03]. As a result, we can reasonably predict the next used data 
and instructions from the previously accessed ones. Replacement algorithms try to take advantage of 
the locality to be as near as possible to the optimal replacement choice. 

3. Usual algorithms 

As stated in the previous chapter, the eviction occurs among the cache lines of a given set, which is the 
set of an N-way set associative cache or all the cache lines for a fully associative cache. Replacement 
algorithms are responsible for assigning this victim line. Of course, there is no need of such an 

                                                           
a From knowledge comes prediction and from prediction action 



Study of different cache line replacement algorithms in embedded systems 12 

algorithm for direct mapped caches where there is not any selection to operate. Through this chapter, a 
single cache set will be considered; it is assumed that the situation is duplicated for the other cache sets. 

3.1. Random 

The replacement policy chosen here is the simplest: the discarded line is randomly selected. This 
algorithm is easy to implement as a pseudo-random counter for the whole cache, consumes few 
resources but performs badly because it is not usage-based. Its performance relies on the real 
randomness of the sequence. It can be implemented with Linear Feedback Shift Registers but this 
solution is poorly efficient. Random is reported to perform 22% worse than LRU on average [ZOU04]. 
This inefficiency is balanced by another advantage of the Random policy: in opposition to Round 
Robin, its variations depend less on parameters such as working set size, number of cache lines. 

3.2. Least Recently Used (LRU) 

The LRU algorithm evicts the least recently used line. The idea behind is to keep the data recently used 
which should be used soon, thanks to the principle of locality. It has been demonstrated that LRU never 
results in more than p times more misses than the optimal algorithm where p is proportional to the 
number of ways [SLE85]. All the accesses to the blocks are recorded and the replaced block is the one 
which has been the least recently used. It is thus very computationally expensive to implement for large 
caches with a great number of ways. Moreover, it does not take into account the frequency of accesses.  
 
Replacement in a set of N elements requires N(N-1)/2 bits with an upper triangular matrix R (without 
diagonal) if the traditional encoding is used. When a line i is referenced, row i is set to 1 and column i 
is set to 0. The LRU line is the one whose row is entirely equal to 0 (for those bits in the row because 
the row can be empty) and whose column is entirely 1. This algorithm should execute rapidly and quite 
easy to implement. As the complexity grows with the size, it is preferable to have small set sizes but 
small set size generates more conflicts. 
 
Nevertheless, another solution was developed in this thesis, which yields fewer bits, but at the price of 
a bit more complicated encoding which would require more hardware. However, it should be 
acceptable considering the fact that the ARM11 data cache has only four ways. Furthermore, the point 
is that the critical factor of the design will be the size of the additional storage (see Chapter 6) and not 
the hardware itself. Amongst other things, it is explained by the sharing of the hardware by all the data 
cache sets. The proposal relies on the squandering of the storage in the traditional encoding. Let us look 
at the example of a sequence successively accessing ways 3-2-0-1 in a 4-way set associative cache. 
This situation is drawn in Figure 11. The MRU way lies on the top of the stack and the LRU on the 
bottom. The two first ways are encoded with two bits. Once it is known that the two first ways in the 
LRU stack are ways 1 and way 0, only two possibilities remain: the access order is either 2-3 or 3-2. It 
is justified by the fact that the stack can always be considered as full. Therefore, it can be encoded in 
one bit instead of the three previously used. This solution should save 2 bits per set, which is crucial 
when keeping in mind that usual cache configurations are composed of 512 lines [ARM01]. This 
solution is the most compact encoding (for a theoretical demonstration, see Appendix A). 
Unfortunately, there is no easy expression of the number of bits in the general case (for more details 
see Appendix A).  
 

 
Figure 11: Improved LRU stack bits 

 
LRU is widespread in the industry although there are well-known situations where it performs far from 
optimal. The classical example is a loop of Nways+1 steps, each step j accessing data j. At each step, the 
data that will be used at the next access is discarded, thereby leading to a miss ratio of 100% percent 
whereas the optimal policy generates only 25% (one out of four) of miss. For this reason, other 

0 1 

0 0 

0 

Set Stack 

Way 0 Way 1 Way 2 Way 3 

Set  



13  Chapter 3 -Overview of the replacement algorithms  

algorithms, which require even much more hardware, are developed. Therefore, they appear as quite 
inefficient candidates for implementation in embedded cores. 

3.3. First In First Out (FIFO)/ Round Robin 

Since the LRU replacement policy is complex to implement and computational consuming, a popular 
approximation, FIFO, has been developed. It removes block in the order they were brought in the 
cache, thereby taking advantage of the locality principle in a simpler way. FIFO yields a miss ratio 
12%-20% higher than LRU in average [SMI83] but is far less expensive in hardware and in 
computation time. It can be designed with a log2(Nways)-bit counter per set, which points to the next 
evicted way of the set. This counter is incremented on every cache miss. Provided that the counter is 
initially set to 0 when the cache is cleaned, the lines are discarded in the order they entered the cache. 
 
Apart from its relative poor performance, this algorithm presents a major drawback: contrary to the first 
impression, increasing the size of the cache can worsen the efficiency of the algorithm. This 
phenomenon is known as Belady’s anomaly [BEL69]. 

3.4. Least Frequently Used (LFU) 

This algorithm keeps track of the frequency of accesses of the lines and replaces the LFU one. 
Therefore, the lines which have been accessed very frequently and that will not be needed again tend to 
remain in the cache, preventing useful data to be cached. Usually, an aging policy is used to avoid this 
cache pollution. It requires logarithmic implementation complexity in cache size and will then not be 
studied further in this thesis focused on embedded and hardware cheap solutions. 

4. Approximations of the LRU policy 

The LRU policy gives good performance but it requires a lot of hardware to keep track of the last 
accessed data in the cache. This hardware complexity has a strong negative impact on the average 
access time, thus justifying the use of approximations to this policy. On the bottom of the LRU stack, 
the probability that the processor hits a line is almost constant, so a complete order is not required, only 
a partial one is needed. As a result, approximations of the original LRU algorithm should perform well. 
 
For all the figures drawn in this section, the following convention is respected: the green colour 
corresponds to blocks considered as Most Recently Used (MRU) by the replacement algorithm and the 
yellow one stands for the pseudo-LRU line(s)a. 

4.1. The 1-bit replacement policy 

It is one of the simplest approximations of LRU and requires only one bit per set [SO88]. The bit 
partitions the set into two groups: one which contains the MRU line, the other that does not contain.  
The aim is to protect the MRU line and its neighbours according to the principle of spatial locality. On 
a cache request, this bit is updated to point to the part where the MRU line lies. The discarded line is 
then randomly selected in the non-MRU half. A sequence of the algorithm is shown on Figure 12. After 
an access, the pointed half (in green in the sequence below) is always the one where the access 
occurred. 

 
Figure 12: 1-bit sequence 

 

                                                           
a There is only one for the pseudo-LRU algorithms but Nways/2 for 1-bit policy and 1..N ways for Side 

a b c d a b c d 

Read d 

a e c d 

Write e 

a e b d 

Read b 



Study of different cache line replacement algorithms in embedded systems 14 

The simplicity of this policy is obtained at the price of the performance. For high associativity (greater 
than 8), this policy performs as bad as Random. Nevertheless, for low associativity, its results are good 
(5-10% worse than LRU), rising it up as a credible candidate. 

4.2. MRU based Pseudo LRU (PLRUm) 

In this approximation, each block is assigned a MRU bit. When the cache controller replaces a line, it 
switches the MRU bit 0 to 1. If all the MRU bits are equal to 1 after the modification, all the bits except 
the last accessed are reinitialized to 0. According to [ZOU04], PLRUm and PLRUt are very good 
approximations of LRU. PLRUm outperforms PLRUt and is even better than LRU for some patterns.  
It explains that PLRUm has been used in IBM computers (for instance IBM3033). Consequently, it 
appears as one leading candidate (cheap, efficient, easier to implement) for embedded applications. 
This algorithm can be conceptualized by a finite state machine, as Fatemi et al. proved [FAT94]; 
thereby leading to different possibilities for the design of such a system. A sequence is drawn on the 
figure below.  

 
Figure 13: PLRUm sequence 

4.3. Tree-based Pseudo LRU (PLRUt) 

This binary tree approximation of the LRU algorithm [KAR94] requires N-1 bits in an N-way 
associative cache. Such a tree is drawn on Figure 14.  
 

 

Figure 14: Decision tree for the PLRUt algorithm 
 

The tree bits encode the paths towards the leaves corresponding to the different ways of the set. 
Reading them points to the pseudo LRU line. On hit, the bits on the path towards the hit line are 
inversed to indicate the opposite part of the tree as pseudo LRU. The idea behind is to protect the last 
accessed data from eviction by inversing the nodes towards it. For instance, let us take a look at the 
example of a 4-way set associative cache, where the initial data in the set are a, b, c and d, which points 

Read a Read d 

Read b Write e 

1 1 1 0 

1 1 0 0 

0 0 0 1 

1 0 1 0 1 0 1 1 

0 1 0 0 

a b c d a b c d 

Read d 

a e c d b e c d 

b e a d b e a d 

PLRUT bit  

Cache set 



15  Chapter 3 -Overview of the replacement algorithms  

to d as the pseudo LRU way (see Figure 15). The tree bits and the contents of the set are drawn after 
the memory access occurred. Let us take the example of the third instruction Read b. Data b lies in way 
1 of the cache thus the path goes through the top node and the left leaf one. These bits are modified to 
point to the other halves, i.e. the top bit points to the right half and the leaf bit to its left half. The 
principle is the same for all the other instructions of the sequence. 

 
Figure 15: PLRUt sequence 

The disadvantages of this algorithm come from its binary nature, which makes it simple. The node at 
the top of the tree contains only one piece of information (one bit) and cannot reflect sufficiently 
exactly the history of the leaves of the tree: using a bit implies a loss of history. Another problem is that 
decoding the bits is a sequential process. Indeed, the nodes must be stridden from the upper node 
downwards to a leave. Designers are thus prevented from performing parallel computations. However, 
it is widely used in data caches thanks to its high induced hit ratio (Al-Zoubi et al. reported a miss ratio 
1-5% worse than LRU [ZOU04]). 

4.4. Modified Pseudo LRU (MPLRU) 

 
Figure 16: Decision tree for the MPLRU algorithm 

 

Ghasemzadeh et al. [GHA06] introduced an algorithm which is supposed to partially solve the issue of 
history loss presented above about PLRUt. They split the nodes in two groups: the ones that keep 

 TBAI (1 bit) 

Cache set 

MBAI (2 bits) 

a b c d a b c d 

Read d 

e b c d 

Write e 

e b c d 

Read b 

e b a d 

Read a 

e b a d 

Read d 



Study of different cache line replacement algorithms in embedded systems 16 

information about two leaves of the tree (the Two Block Access Indicators) and the ones which give 
information about more than two blocks (the Multiple Block Access Indicators). Two bits model the 
MBAIs: one for the previous status and one for the current status. TBAIs are equivalent to PLRUt tree 
bits. On a miss, previous bit is used to determine which line to discard. The resulting tree is drawn on 
Figure 16. 

For a 32KB 4-way set associative cache, the authors find an average miss rate of 2% for MPLRU 
whereas around 2.1% for PLRUt. This figure seems to increase with cache size and associativity. 
MPLRU performs around 8.5% better than PLRUt while keeping the low overhead of the latter. 
Compared to PLRUt, it has few more operations like copying bits but their amount is quite 
insignificant. The major negative impact is thus the storage of one more additional bit per MBAI, 
which corresponds to a single bit per set for a 4-way set associative cache. At first glance, it is an 
acceptable amount but it should be kept in mind that this will impact on all the cache sets. Therefore, 
this could significantly affect the power consumption. The final decision about the relevancy of this 
algorithm will then be made with respect to the results of simulations. 

4.5. SIDE algorithm 

Deville [DEV90] introduced a new policy which allies the simplicity of FIFO with an almost LRU 
performance. It has one counter per set like FIFO but the update of these counters is usage based, 
thereby improving the performance of FIFO. The counter points to an element among the least recently 
used. Let N be the set associativity. If there is a hit on element i, the counter c is updated to (i+ 1) mod 
N if i=c  and remains unchanged otherwise. On a miss, c is updated to (c+1) mod N. Consequently, this 
counter partitions the set in two groups: the possibly MRU on the left, the surely LRU elements on the 
right. The discarded line is the one pointed by the counter, i.e. the possibly LRU line located at the 
frontier with the surely LRU group. All the information is lost at each beginning of a phase, when the 
counter is reset to 0 (all the ways are identical for the replacement algorithm). The hardware 
implementation shows that it can be designed to work also in FIFO mode. The additional logic 
compared with a FIFO is an N-bit-comparator and an N-bit-encoder, which are shared by the sets.  

 
Figure 17: Side sequence 

 
On a 4KB cache, the improvement is around 10-15% for a 4-way-set-associative. This figure is 
strongly dependent on the associativity and the algorithm performs almost as well as LRU (only 0-5% 
worse) on low associativity while being much simpler to implement. 

4.6. Comparison of these policies 

We have seen a lot of different policies, understood their principle of working but let us now sum up 
everything to compare them. This is done in Table 1. 

5. Enhanced LRU policies 

In Section 3.2, it has been shown that LRU performs far from optimized on some patterns, although its 
results are good on average. Besides, LRU is badly efficient on burst access sequences: data that are 
accessed only once are cached and take the place of lines that may be useful. To solve these issues, 
improvements have been developed; among them some could be implemented on pseudo-LRUs but, up 
to now, I have found no data about such an attempt. These algorithms are thus very useful for disk 
caches or file copying when a lot of burst accesses are necessary. All the policies presented below are 
based on the same idea: partition the cache in two parts. One part contains the data referenced once; the 
other the data accessed at least twice. The relative sizes of the partitions are dynamic or fixed, 
depending on the algorithms. The flows between the two pools are specific of each algorithm too.  

a b c d a b c d 

Read c 

a b c e 

Write e 

d b c e 

Read d 



17             Chapter 3-Overview of the replacement algorithms  

Policy Bits required 4-way 
What to do when 

hit on i? 
What to do when 

miss? 
Logic required 

(only estimations) 
Performance to LRU 

Random log2(Nways) 2 - Update LFSR LFSRs and XORs to generate the random 22% worse [ZOU04] 

FIFO Nsets.log2(Nways) 2. Nsets - 
Increment FIFO 

counter 
Incrementing logic and Nsets log2(Nways)-bit-counter registers. 

Low overhead in principle. 
12-20% worse  

[ZOU04, SMI83] 

LRU 
Nsets. 

Nways.log2(Nways) 
8. Nsets 

Update the LRU 
stack 

Update the LRU 
stack 

Can be implemented in a matrix form. Seems too intricate 
and computation time consuming for embedded systems 

- 

PLRUm Nsets. Nways 4. Nsets 
Update the MRU 

bits 
Update the MRU 

bits 
Around Nways. Nsets registers (for the MRU bits), Nways. Nsets 

muxes, 3.Nsets. log2(Nways) AND/OR 
1% worse to 3% better 

[ZOU04] 

PLRUt Nsets.( Nways -1) 3. Nsets 
Update the tree 

bits 
Update the tree bits 

Around Nsets.( Nways -1) registers, Nsets.( Nways -1) Muxes, 
Nsets.( Nways -1) inverters, Nsets. log2(Nways) OR 

1-5% worse 

 [ZOU04] 

MPLRU 
Nsets.(3 Nways /2-2)  
[ Appendix A ] 

4. Nsets 
Update the tree 

bits 
Update the tree bits 

Around Nsets.(3 Nways /2-2) registers, Nsets.(3 Nways /2-2) 
Muxes, 2* Nsets.(3 Nways /2-2) AND/OR 

1-4% worse 
[GHA06] 

SIDE Nsets. log2(Nways) 2. Nsets 

Update the 
counter c to (i+ 1) 

mod S if i ≥ c 
Nothing if i < c 

Increment counter 
and random 

selection 

Nsets log2(Nways)-bit-registers for the counters. Nways -bit 
comparator and incrementation. LFSRs and XORs to 
generate the random during the discarding selection. 

0-20% worse. Strongly 
dependent on associativity. On 
low associativity (2-8), 0-5%  

[DEV90] 

1-bit Nsets 1. Nsets Update the bit Update the bit 
LFSRs and XORs to generate the random in the LRU 

partition, Nsets. Nways OR/AND 

10-20% worse for high 
associativity; 

5-10% worse for low [SO88] 

Table 1: Comparison of the different simple replacement policies 



Study of different cache line replacement algorithms in embedded systems         18 

 

Policy Lists 
User 

defined 
parameters 

What to do when hit on i? What to do when miss? 
Complexity per 

request 
Performance to 

LRU 

2Q 

1 LRU list 
and 1 FIFO 
list split into 
two sub lists 

Kin and Kout 
Move it the MRU side of the LRU list 
Am. If it was in A1, remove it from 

A1. 

Move the line to the back-end of the FIFO 
A1in. Move the discarded line to the FIFO 

A1out. Discard line from this FIFO. 
Constant 

5-10% better 
[JOH94] 

LRU-
Ka 

K history lists CIPb 
Update the CRPc of the data and its K 

history lists. 

Select a victim by exploring the list of 1st 
and K access. Initialize the CRP and the K 

history lists of the data. 

Logarithmic 
time  (because 
of its priority 

queue) 

Around 50% 
better for very 
large database 

buffers  [ONE93] 

SLRU 
2 LRU lists of 

fixed size 
c1+c2=c 

PbS size 

Move i to the MRU position of the 
PtSd. Move the LRU line of the PtS to 

the MRU position of the PbSe if 
necessary. Discard the LRU line of the 

PbS if necessary. 

Move the line to the MRU part of the PbS. 
Discard the LRU line of the PbS if 

necessary. 
Constant 

Around 5% better 
[KAR94] 

ARC 
2 LRU lists of 

size c 
- Move i to the MRU position of T2 

Miss on the global list:  Delete the LRU 
page in B1 if ||T1|| <c, in T1 otherwise. 

Move i to the MRU in T1. 
Hit on the global list: Update p (addition 

and min/max operations) and move i to the 
MRU position of T2. 

Constant 
50-200% better 

[MEG03] 

Table 2: Summarize of the enhanced LRU policies 

                                                           
a The performance figures are here given for K=2 
b Correlation Information Period: approximately the time a data accessed only once should stay in the cache. 
c Correlated Related Period: the time since a given data has not been accessed 
d Protected Segment: segment of fixed size which contains the element accessed at least twice. 
e Probationary Segment: segment which contains data that have been accessed only once recently. 



19   Chapter 3- Overview of the replacement algorithms 

5.1. 2Q 

The two queues presented above have fixed size in this implementation. The first queue, which 
contains the data accessed once, is treated as a FIFO queue and the second one is managed as a LRU 
stack. The first queue is also partitioned in two queues (A1in and A1out) because experimental results 
showed that the optimal size of the first queue strongly depends on the trace. This can be considered as 
a trick to dynamically adjust the fixed size of the queue. Kin and Kout are respectively the size of A1in 
and A1out. The reported improvement over the LRU reaches 5-10% [JOH94]. However, the problem is 
that two queues as well as migrations from one to another must be managed, which is hardware 
expensive and cycle consuming. 

5.2. LRU-K 

In this algorithm, O'Neil et al. [ONE93, ONE99] split the cache in K different pools which correspond to 
the lines that were accessed between 1 and K times quite recently (in reference with a backward K 
distance). The idea is basically the same as 2Q: keeping track of the history to predict the next accesses.  
A history list of the K last accesses of each data accessed recentlya should be maintained and would be 
logic-consuming. On a miss, the victim is chosen by exploring these lists and finding the data which 
has not been accessed quite recently and whose last Kth access was the LRU. Nevertheless, this 
algorithm seems to be really efficient only for big sizes (for instance for disk buffering). A simplified 
version may however be efficient also for embedded caches too. The issue, which is common to all the 
algorithm presented in this section, is to estimate the importance of these patterns on a L1 data cache 
and hence the need of such improvements for embedded caches. 

5.3. Segmented LRU (SLRU) 

As we have seen, LRU caches can be filled by lines which are accessed only once, thus discarding from 
the cache lines which should be useful. The principle here is similar to LRU-K but seems easier to 
implement. The cache is divided into two segments: the protected segment and the probationary 
segment. On a miss, data is then pended on the MRU part of the probationary segment. Hits are added 
to the MRU part of the protected segment. As the protected segment has a definite size, adding a line 
into the protected segment pushes the LRU line of the protected segment to the MRU part of the 
probationary segment. This method avoids flooding the cache with data that will not be reused, because 
the protected segment contains lines which have been accessed at least twice. The supplementary 
storage is thus one bit per each cache line (a flag which indicates whether the line belongs to the 
protected or the probationary part of the cache). However, the hardware needed to handle the two 
queues should not be forgotten. Globally, there is one pointer that marks the border between the two 
zones. There is extra maintenance due to moving the lines in the list on a hit. The best results were 
obtained when the size of the protected segment is around 80% of the cache. It performs around 3-4% 
better than LRU for a cache size of 0.5 Mb [SO88]. 

5.4. Adaptive Replacement Cache (ARC) 

The algorithm designed by Megiddo and Modha [MEG03] maintains the history of 2c lines where c is 
the cache size. This 2c-history is divided in two subgroups: L1 and L2 of length c. L1 contains the lines 
recently referenced once and L2 the lines recently referenced at least twice. These two subgroups are 
then dynamically split in two subsets T(op) – which contains the MRU part – and B(ottom) – which 
contains the LRU part – so as ||T1 U T2||=c. A parameter p represents this partition: p can be seen as the 
target size of the list T1. At a given time, the ARC algorithm performs as a fixed replacement policy 
which keeps p lines in T1 and c-p in T2. This parameter p is dynamic and tuned in function of the 
demand in order to "invest" in the most active list. The increment and the decrement steps of p depend 
also on the respective size of the sets B1 and B2.  
 
This algorithm performs as well as the fixed replacement policy with the optimal p but it is dynamic 
and no parameter needs to be tuned before and hence should perform the same way through all 
workloads and cache parameters, contrary to the other policies presented above. It is scan-resistant, has 

                                                           
a This recency is defined by the Correlated Information Period, which is an a priori defined parameter. 



Study of different cache line replacement algorithms in embedded systems 20 

a constant overhead (with contrast to the logarithmic overhead of the LRFU and LRU-K). For instance, 
on a SPC1 benchmark, the hit ratio of ARC was 23.82% and only 4.24% for the LRU but with a cache 
of 4GB. The space overhead seems to be small, 0.75% of the cache according to the authors.  
Nevertheless, the huge cost in hardware counterbalances the first optimism and assigns this solution 
only for desktop systems and possibly for some L2 embedded caches. 

5.5. Summary of the enhanced LRU policies 

We have seen a lot of different enhanced policies, understood their principle of working but they are 
quite complex. As it was done for the pseudo-LRU policies, we summarize their principle and 
performance in Table 2.  The common point of these policies is their hardware cost. While LRU 
needed to handle one queue, they introduce two stacks with floods between them. This should require 
too much hardware for embedded L1 caches. As a result, they will not be studied further but were 
addressed here to give some knowledge about enhancements of LRU. 

6. Ideas of improvement 

Some other algorithms, which are not based on LRU, were proposed. Some of them present interesting 
features which could be used in further developments of cache policies. 

6.1. Cacheable/Non Allocatable 

Tyson et al. [TYS95, TYS97] present a technique to improve the replacement algorithms using Selective 
Cache Line Replacement. The authors point out that a large percentage of data misses are caused by a 
small number of instructions (less than 5% of the load instructions cause 99% of cache misses). The 
idea is thus to mark these instructions as C/NA (the load instructions and not the data!). The decision of 
allocating the data is then taken in respect with this flag. They develop static and dynamic method. 

- Static method: instructions that cause a miss higher than 75% are marked CNA. It is 
useless for us because it requires pre-runs of the program, 

- Dynamic method: each load instruction has a 2-bit counter, which is incremented at 
each miss and decremented at each hit. On a hit, the instruction that brought the cache 
line in cache is also decremented. When it reaches “11”, the load instruction is marked 
as C/NA. It gives an average improvement of 20% on bandwidth requirements (for the 
SPEC2000 benchmarks) but is insignificant for the hit rate (less than 1% on average). 

6.2. Selective cache way 

Inoue et al. [INO99] proposed an implementation where the hardware tries to predict which way will be 
used and gives power only to this predicted way. It saves power but if the prediction is erroneous, a 
cycle is lost. MRU (a 2-bit flag for a 4-way associative cache) is frequently used to predict the way. 
Reading the MRU bits before accessing the cache makes the cache access longer but it can be 
performed in an earlier pipeline stage. On the other hand, it decreases access time because there is no 
way selection delay. 
 
 
 
Various replacement policies were presented in this chapter. Balancing the estimated hardware cost and 
the power consumption with their expected performance led us to select a class of replacement policies 
in respect with the constraints of embedded systems: the pseudo-LRU algorithms.  The latter will be 
simulated on the ARM11 architecture to compare their theoretical performance with the simulated one. 
For that end, a study of the ARM11 data cache side is beforehand required. 
 



21   Chapter 4 - The current cache implementation  

 
 
 

Chapter 4  
 
The current cache implementation 
 
 
 
Any sufficiently advanced technology is indistinguishable from magic. 

 
A. Clarke, Profiles of the Future: An Inquiry into the Limits of the Possible 

 
 
 
The different cache lines replacement policies studied in the previous chapter raised the issue of the 
hardware implementation. Before dealing with it in details, the main features of the ARM11 
architecture, which will be useful in this thesis, are addressed. In this work, the target processor is an 
ARM11 core, so the presented microarchitecture is the ARM11 one, an implementation of the ARMv6 
instruction set architecture [ARM11, COR02].  
 

1. The ARM11 microarchitecture 

1.1. Architecture vs. microarchitecture 

The architecture is the general description of the behaviour of the microprocessor, its interface with the 
outside world, but without specifying the internal design. So it can be seen as a description of the 
instruction set and of the programmer’s model.  
 
The microarchitecture is the detailed definitions of the internal design and hardware, which support a 
given architecture. These specifications usually concern points that are invisible to the programmer. 
 
For the ARM11 MPCore processor, the architecture is ARMv6. 

1.2. Memory 

The ARM processors must work with a byte-addressed memory and suppose the alignment. Double 
word, word, half-word and byte accesses are supported. During the three first accesses quoted above, 
bits [0:2], [0:1] and 0 are respectively ignored. Usually, the main memory is cacheable and bufferable. 
The memory system endianness and the ARM processor should match one another or be configured for 
that aim in CP15 register 1. 

1.3. System Control Coprocessor 

All the memories and the system features are controlled by coprocessor 15 (CP15), also known as the 
System Control Coprocessor. It contains up to sixteen 32-bit primary registers, whose permission 
(read-only, write-only or read-write) depends on their functionality. 
 
The characteristics of the caches are accessible through register 0 of the system control coprocessor. 
This register indicates the type (unified or separated), the size of the data and instructions caches, the 
write policy (write-through or write-back) and the cache associativity. 
 



Study of different cache line replacement algorithms in embedded systems 22 

Caches, MMU, write-buffers, branch prediction and replacement strategy can be enabled or disabled on 
register 1 of the System Control coprocessor. For more information about other registers of CP15, one 
can read Chapter B2 of ARM Architecture Reference Manual [ARM01]. 

1.4. Memory Management Unit (MMU) 

The MMU converts the virtual address into a physical address. It is also responsible for controlling 
whether a program is allowed to access a memory area. This permission depends on the running mode 
(User, Privileged) and ensures improved security of the system.  

1.5. Generalities about caches 

The caches are separated for data and instructions and no coherency is implemented. A detailed 
examination of the ARM11 MPCore level1 data side memory system will follow this brief overview of 
the main characteristics of the data cache in the ARM11 MPCore processor. 

1.5.1. Data cache characteristics 
The data cache is available in three configurations:  

- 64 KB 4-way set associative cache: 512 setsa, 9-bit index, 18-bit tag, 5-bit offset, 
- 32 KB 4-way set associative cache: 256 sets, 8-bit index, 19-bit tag, 5-bit offset, 
- 16 KB 4-way set associative cache: 128 sets, 7-bit index, 20-bit tag, 5-bit offset. 

The data cache is write-back write-allocate. 

1.5.2. Replacement policy 
One of the most important characteristics of the data cache for the present study is the replacement 
policy. In ARM11 MPCore, an altered version of the Round Robin algorithm is implemented. It will be 
denoted Global Round Robin (GRR) in this thesis to distinguish it from the usual Round Robin. Two 
major design decisions distinguish it from the literature algorithm. First, it cares about the presence of 
free ways in the set before allocating a way. In a unique processor environment, this does not enhance 
the overall performance. Yet, it should give a significant improvement in multi-processor systems due 
to the invalidation of shared lines after writes, which creates free lines disassociated from the Round 
Robin counter. The second and the most significant difference is the global nature of the counter which 
is not owned by a set anymore. This ensures using only a 4-bit register to save the counter but at the 
expense of a loss of performance. Nevertheless, this is acceptable (see Chapter 5) and justifies the 
current implementation. 

1.5.3. Non-blocking misses 
One of the most interesting features in the data cache management of the ARM11 microarchitecture is 
the non-blocking and hit-under-miss operation. It allows the processor not to stall, if a memory request 
results in a cache miss. The cache immediately issues a line fill request and waits for the data to be 
fetched from the upper level memory.  The pipeline goes on and performs the next instruction, 
provided that there is no dependency between the instructions: the processor is not blocked. If the 
instruction is a Load, the microarchitecture avoids processor’s stalling if the look-up yields a hit (hit-
under-miss): the data cache handles the lookup while waiting for the line fill. Up to two successive 
cache read misses are supported [MPC05] before stalling the processor. 

1.5.4. Lockdown blocks 
The cache improves in general the performance of memories but also worsens the worst case: as it has 
been stated in Eq.2, an instruction resulting in a cache miss is executed in Average cache access time + 
Average upper level access time and not only Average upper level access time. This overhead for 
misses can be problematic for some programs whose frequently accessed data are evicted from the 
cache whereas useless or simply unimportant data still pollute it. This issue can be solved by locking 
the ways where these critical data are stored: the replacement algorithm will never discard the lines 
located in these ways. As a result, these crucial data are protected from eviction, thereby improving the 

                                                           
a The number of lines, index width, tag width and offset width are derived from equations of section 2.5.3 



23   Chapter 4 - The current cache implementation  

overall performance. In ARM processors, only ways and not parts of cache sets can be locked. This is 
performed in two phases: 

- modifying CP15 register 9 (data cache lockdown register) to lock ways 0..W, 
- fetching the data in the cache. If there are not any free ways, the data is allocated to 

(one of) the locked way(s). 
Once this is completed, the replacement algorithm will not discard ways 0..W until CP15 register 9 has 
been modified. 

1.6. ARM11 vs. competitor configurations 

An overview of the solutions chosen up-to-now by different leading companies is drawn in Table 3. 
One can see the predominance of N-way set associative caches among the present configurations, with 
N = 2 or N = 4 for the embedded processors. These figures agree with the different configurations 
available on ARM processors, which are 4-way set associative. This quite low figure is explained by 
the overhead of the cache lookup for higher associativity, which significantly increases the access time, 
the area and the power. Four appears as a quite good compromise, as it will be demonstrated in Chapter 
5 Section 4. 
 
The ARM11 block size lies in the range [32:64] of typical values for embedded processors. This figure 
can be explained by the will to take advantage of the locality principle and not to pollute the cache with 
neighbour data which will not be accessed soon. 
 
LRU and pseudo-LRUs are widespread in the desktop systems thanks to the high induced hit rate. 
However, they have a negative impact on area and power consumption. Nowadays, this class of 
replacement policies enters the embedded world too. The introduction of a system-on-chip L2 platform 
based on a pseudo-LRU replacement policy by MIPS is one example [MIP06]. Therefore, integrating a 
modified low-power version in ARM processors must be investigated and considered as one of the 
permanent ARM efforts aiming better performance in the embedded world without sacrificing power 
and area. 
 
The major technical features of the ARM11 microarchitecture have been addressed. A detailed 
examination of the ARM11 data cache management is now needed. The following section deals with it. 

2.  The ARM11 MPCore level 1 data side memory system 

The data side memory block organization is drawn on Figure 18. The different modules and their role 
are described below. 

2.1. Slots Unit 

The Slots Unit is responsible for handling the memory requests from the core. It is composed of three 
slots, each of them being in charge of a single memory accessa. When a request arrives, the micro-TLB 
converts the virtual address to a physical address and gets the protection and cache attributes. In respect 
with these attributes, the slot then generates an abort if needed.  In case of a write, the request is sent to 
the Store Buffer and the slot is freed. If the Store Buffer is full, the request waits in the slot until the 
Store Buffer accepts it. If the access is a read, the slot asks the arbiter for an access to the RAMs. If the 
lookup results in a miss, a line fill request is sent to the Line Fill Buffer. Otherwise, the data is 
forwarded to the processor through the Droute module. 
 
The Slots Unit also computes the sequentiality of the access. The information is then used to power off 
the four Tag RAMs and some Data RAMs. Indeed, if the first lookup of the burst access succeeds, the 
slot is aware of it on the second sequential access. Knowing that the data lies in the cache, only the 
Data RAM containing the requested data is enabled (the other RAMs are disabled). This feature 
ensures saving much power. 

                                                           
a It is a single access and not a single memory request. Indeed, processor’s memory requests can be 
merged (for instance two successive reads at the same line) or can induce more than one memory 
access (for instance instructions like LDMIA, STMIA…) 



Study of different cache line replacement algorithms in embedded systems             24 

 

 
 

AMD Athlon 
 

[AMD02] 

Hitachi 
SH3-DSP 

 
[SH3] 

Intel 
Pentium III 

 
[HEN03] 

Intel 
Pentium 4 

 
[INT06] 

IBM PowerPC 
405 CR 

 
[HEN03] 

Sun 
UltraSparc III 

[SPA03] 
[HEN03] 

DEC Alpha 
21064 

[W IK06] 
[HEN03] 

DEC Alpha 
21364 

[W IK06] 
[HEN03] 

Freescale 
PowerQuicc 

III 
[GEN04] 

Instruction 
architecture 

80x86 SuperH 80x86 80x86 PowerPC SPARC v9 Alpha Alpha PowerQuicc 

Intended 
application 

desktop 
Communication, 

embedded 
desktop desktop embedded server 

Workstations, 
servers 

Workstations, 
servers 

Wireless, 
embedded 

Instructions/ 
clock 

3 ? 3 3 1 4 1/2.51 1/0.6 ? 

Clock rate 1400 MHz  
900-1200 

MHz 
3 GHz 266 MHz 600-900 MHz 100-200 MHz 

800-1300 
MHz 

1.3-1.5 GHz 

Instruction 
cache / Data 

cache 

64 KB 2-
way/64 KB 

2-way 
divided into 

8 banks 

16 KB 4-way 
unified 

Way 2 and 3 
lockable 

16 KB 2-
way/ 16 KB 

2-way 

~ 96 KB / 8 
KB 4-way 

16 KB 2-way/8 
KB 2-way 

32 KB 4-
way/64 KB 4-

way 

Direct mapped 
8 KB / 8 KB 

64 KB 2-
way/64 KB 2-

way 

32 KB 8-
way/ 32 KB 

8 way 

On-chip L2 
cache 

256 KB 16-
way 

(exclusive) 
- 

256-2048 
KB 8-way 

256 KB 8-
way (not 
inclusive) 

- - - 
1536 KB 6-

way 
256 KB 8-

way 

Off-chip L2 
cache 

- - - - - 8 MB 1-way 2 MB 1 way - - 

Block size 
(bytes)  L1/L2 

64  32 64/128 32 32 32 64 32/32 

Replacement 
Policy 

LRU LRU 
Pseudo 
LRU 

Pseudo LRU ? ? - ? Pseudo LRU 

Write update 
Policy L1/L2 

Write-back 
Write-back and 
write-through 

Write-
through/ 

Write-back 

Write-
through/ 

Write-back 
? 

Write-through 
no-write 
allocate 

Write-through Write-through 
Write-back/ 

Write-
through 

Table 3: Cache characteristics of commercialized processors 



25  Chapter 4 - The current cache implementation  

 
Figure 18: Level 1 data side memory implementation of the ARM11 MPCore processora 

2.2. Micro Translation Lookaside Buffer 

The micro-TLB (micro Translation Lookaside Buffer) is an 8-entry fully associative cache of the main 
TLB. The lookup is performed very quickly and the physical address and page attributes are available 
in the same clock cycle as the arrival of the virtual address. In case of a miss, the address is sent to the 
main TLB which will handle it. 

2.3. Arbiter 

The arbiter deals with the accesses to cache lines. Among the requesting modules, a single one is 
granted access, in respect with fixed priorities. It also transmits the information (particularly the 
address) to the Dirty RAM, the Tag RAMs and the Data RAMs. The different requesting modules are 
the two Line Fill Buffers, the Eviction Buffer, the Store Buffer, the Slots Unit, the CP15 controller and 
the Cache Coherency Controller Block. 

2.4. RAMs 

In the current implementation, the RAMs can be regrouped in three types: the Tag RAMs, the Data 
RAMs and the Dirty RAM. All the RAMs are physically addressed: the cache is said to be PIPT 
(Physically Indexed Physically Tagged). 

2.4.1. Tag RAMs 
The Tag RAMs store the tag of the different cache lines as well as their validity bits. Since the cache 
size is up to 64 KB, the Tag RAMs comprise up to 512 lines of 22 bits (20 tag bits, 1 validity bit and 1 
MESI exclusive bit). 

2.4.2. Data RAMs 
It stores the data and is organized in the same way as the Tag RAMs. Its capacities are up to 512 lines 
of 32 bytes (8 words). 

                                                           
a The original picture from [MPC05] has been modified so that it only presents the essential modules. 

STB 

Integer core 

Slots 

Slot 0 Slot 1 Slot 2 

Micro 
TLB 

Translation 
Lookaside 

Buffer 

Arbiter 

 
Dirty 
RAM 

 
Tag 
RAM 

 
Data  
RAM 

Cache 
Coherency 
Controller 

CP15 
controller 

Exclusive 
Monitor 

Hit stage 

Store Buffer 

Data return path 

Cache 

Droute 

Bus 
Interface 

Unit 

Slot 

LineFill Buffer 0 LineFill Buffer 1 Eviction Buffer 
  Bus Interface  
    Unit (BIU) 

Integer core 



Study of different cache line replacement algorithms in embedded systems  26 

2.4.3. Dirty RAM 
The Dirty RAM contains the information of a set: dirtiness and MESI protocol bits. One line is 24-bit 
wide and stands for the information of the four ways of a given index. 

2.5. Hit stage 

This is the module responsible for computing the hit/miss information. This information is returned to 
the module which was granted access by the arbiter. In case of a miss, the evicted way is also passed on 
to the requesting module. 

2.6. Store Buffer (STB) 

The Store Buffer is composed of four slots. Each slot has space for the 64-bit data and for the 32-bit 
physical address. It receives the write requests from the Slots Unit and merges them with the existing 
one when it is possible, thereby avoiding numerous cache accesses. If the request is non-cacheable, the 
write is transmitted to the Bus Interface Unit. If it is cacheable, the Store Buffer requests an access to 
the RAMs for the lookup. If a miss occurs, the slot requests for a line fill. In case of hit, the slot asks 
for a new access to write the data: in overall, at least two cycles are necessary to handle the request. 
The overhead of writes over read does not really matter because the reads can hit in the Store Buffer. 
Indeed, from the point of the view of the core, everything happens as if the data is already written in the 
cache. 

2.7. Line Fill Buffer (LFB) 

Two 256-bit Line Fill Buffers are responsible for fetching a line from the upper level memory. They 
are endowed with the merging ability, which allows saving power and bus traffic. Another important 
enhancement is the LFB hit ability: a lookup resulting in a miss can hit in one LFB and the data will be 
forwarded to the processor as soon as possible. When the words are received from the upper level 
memory, they are streamed to the CPU; preventing it from waiting that the whole line has been fetched 
to get the requested data. Once the line fill has been completed, the LFB asks the arbiter for an access 
to the RAM. When granted, it writes the whole line in one clock cycle: tag, data and attributes. 

2.8. Eviction Write Buffer (EWB) 

This buffer receives the line that has been discarded from the cache. Then it requests access to the bus 
and writes back the data in the upper level memory. 

2.9. Droute 

It only selects the valid data from the different sources and returns it to the core. It can be considered as 
a multiplexer. 
 
 
 
In this chapter, the different modules which are involved in handling a data cache request were 
presented. With this technical background, the issue of getting results about efficiency of the different 
replacement policies can thus be discussed.  



27  Chapter 5 - Replacement policies simulation  

 
 
 

Chapter 5  
 
Replacement policies simulation 
 
 
 
In der Praxis muß der Mensch die Wahrheit, d. h. die Wirklichkeit und Macht, seines Denkens beweisen.a  

 
K. Marx, Thesen über Feuerbach 

 
 
 
In order to compare the replacement policies and their efficiency for ARM processors, a cache 
simulator has been developed. A detailed interpretation of the simulation results will follow the 
presentation of the simulator assumptions and of its implementation. It will allow us to select the 
replacement strategies whose hardware realization will be carried out in the next chapter. 
 

1. Principles 

1.1. Source files 

The cache simulator and its replacement policies were written in C. For further details of the code, one 
can see Appendix B. 

1.2. Choice of the policies 

The cache simulator affords different replacement policies: 1-bit, Global Round Robin, Modbits, 
MPLRU, non-MRU, Optimal, PLRUm, PLRUt, Random, Round Robin, Side and true LRU. They can 
be divided into two subgroups: the academic policies already presented in Chapter 3 and some 
additional algorithms simulated to confirm or infirm some hypotheses. 

1.2.1. Academic policies 
These algorithms were chosen because they are widely used (particularly in desktop applications), 
should enhance the cache performance significantly and should not cost so much in terms of gates and 
power, which is a major point of concern for the ARM embedded processors. This selection is based on 
the study presented in the previous chapters, particularly on Table 1.  
 
The algorithms may not correspond exactly to the literature because they were implemented in the way 
they will be used in the ARM processor. Indeed, the simple modification of calling the replacement 
policy only when there is no free ways yields improved performance for the Random algorithm. The 
aim of the thesis being to implement the most efficient algorithms, this solution is simulated in this 
chapter. Section 3.1 demonstrates that this enhancement is at the origin of the slight difference 
observed between the results published in the literature and the ones obtained in this work. Besides, the 
ARM architecture differs a bit from the x86 one, which is the tested architecture in most articles. It 
partially contributes to the reported deviance too. 

                                                           
a Man must prove the truth - i.e. the reality and the power - of his thinking in practice. 



Study of different cache line replacement algorithms in embedded systems  28 

1.2.2. Additional policies 
Modbits and non-MRU are quoted for the first time in this work. They do not come from the literature 
but are ideas for costless replacement policies. Like the other replacement strategies, both policies rely 
on the locality principle. They also helped verifying some hypotheses and better understanding the 
behaviour of the replacement algorithms.  
 
Non-MRU.   Like 1-bit, non-MRU’s aim is to protect the most recently used line from eviction. 
Contrary to 1-bit, it stores the MRU way and therefore requires log2(Nways) storage bits per cache set.   
The expected performance is slightly better than 1-bit since it does not induce any collateral protection. 
Nevertheless, it can be balanced by positive effects of the spatial locality provided that the MRU region 
is wider than a way. This assumption is in accordance with the work of So et al. [SO88]. 
 
Modbits.  Modbits deduces the recently accessed ways from the dirty bits of a set. Indeed, it considers 
the dirty bits as an approximation of the LRU information and examines them in the same way as the 
MRU bits for PLRUm. Using the dirty bits creates a discrepancy between the writes and the reads; 
which can lead to some strange patterns. However, the cost of this policy is negligible because it 
requires no additional bits. Yet, it is at the expense of continuously accessing the dirty bits. Depending 
on the cache implementation, this access can be highly expensive in terms of power, turning on a RAM 
for instance. The behaviour of the simulations will help making decision about this algorithm. 

1.3. Cache simulator 

A cache simulator was designed in order to get clues about the efficiency of the different replacement 
algorithms. The hypotheses of the written model are depicted below.  

1.3.1. Physical parameters 
First, the cache characteristics (cache size, number of ways) can be modified in the configuration file 
and are given as a range: the program will simulate all the legal cache configurations corresponding to 
these ranges. The block size and the line width are fixed settings that filly with the ARM11 
implementation. The other cache attributes (number of lines, amount of sets…) are inferred from these 
basic ones. In order to be as close as possible to real cache’s behaviour, the latency is also 
implemented: the time needed to get a line from the upper level memory (L2 cache or main memory) is 
simulated. Only when the data is available, the previous cache block is discarded; i.e. the evicted cache 
block is available while fetching the data from the upper memory. This latency is characterized by 
three parameters: 

- the transfer time tL2 from L2 cache, 
- the transfer time tm from the main memory, 
- the average hit rate hL2 of L2 cache. 

The set L2 cache – main memory is modelled as a single module which forwards the requested data in 
a time tL2 with a probability hL2 and in a time tm with a probability (1- hL2). 
 
As it will be seen in the next chapter, a considered implementation of the replacement algorithms 
requires a fully-associative cache of the RAM storing the status bitsa. The physical parameters 
describing the cache are its number of lines and its number of elements per cache line. The behaviour 
of this cache – particularly its hit ratio – was also investigated to estimate the efficiency of this 
solution. Like the latency time to fetch a data from the upper level memory, this specialized cache can 
be enabled or disabled in the configuration file. However, its results will be presented in the next 
chapter. 

1.3.2. Inputs of the simulator 
The inputs feeding the cache simulator are memory requests from an ARM11 core, on which different 
benchmarks run. Because of the huge size of the log files, the original TARMAC [SHA01] disassembler 
was modified to lighten log files, which supply the very single information that we need: 

- time when the core requests a data from the memory, 
- type of the access (read or write), 
- address of the wanted data. 

                                                           
a Status bits is the name given in this thesis to the bits required by the replacement policies. Their name 
comes from the fact that they encode the status of a cache set for eviction. 



29  Chapter 5 - Replacement policies simulation  

From these information, the memory request patterns which will feed the cache simulator are deduced, 
thus preventing from running time-consuming SystemC simulations of the core for each policy but only 
once for each benchmark. Of course, the way the cache reacts can impact on the memory request 
pattern from the core but it should be negligible for the scope of this study considering that the 
difference can only be seen for the requests whose lookup result has been changed and for which the 
core is stalled. Yet, the tested core is provided with the hit-under-missa feature, so this situation seldom 
occurs. It must be noticed that the data itself does not matter because data values are needed by the core 
itself, which is simulated as a fixed parameter in this model in the sense that the modifications of the 
data cache implementation do not influence the behaviour of the processor in a first approximation. 
Therefore, the model addressed in this section is minimal: only the very necessary information and 
parameters are taken into account. 
 
The MMU was turned off in order to speed up the SystemC simulations.  Indeed, it does not alter the 
behaviour of the cache since the address conversion from virtual address to physical address is a flat 
one by default. Furthermore, the software has already been verified so there is no access to an 
unauthorized domain from the benchmarks. 

1.3.3. Multiple loads and stores 
The ARM assembly provides instructions to load and store multiple registers from the same memory 
line. This particular feature must be specifically handled in the cache simulator. Indeed, considering 
them as usual memory accesses would overestimate the cache hit ratio: the first instruction is a miss or 
a hit but all the other lookups would result in a hit, provided that the latency simulation is disabled. 
Now, in case of a miss, the cache does not have time to fetch the data from the main memory. 
Consequently the following memory accesses of this core instruction must be marked as a miss too. In 
order to detect them, the timestamps of the instructions are monitored. If the timestamps are equal, then 
the memory access result (hit or miss) is considered as the same as the previous one. If the latency is 
enabled, this test appears redundant. Thus, it is performed only when the latency is disabled. 

1.3.4. Optimal algorithm 
The optimal algorithm implemented in this work is not the real optimal version of the algorithm as the 
name could suggest. It is only a very good approximation of optimality in the sense it looks for the 
future accesses of a set and evicts the way that is accessed the last. This is a sufficient condition for 
optimality under usual circumstances [BEL69]. The issue raised in modern optimized data caches 
originates from instructions such as LDMIA. As it has already been stated previously, this class of 
instructions generates many memory accesses that must be globally considered either as a hit or as a 
miss and not as independent memory requests. The nature of the ARM assembly yields some 
equivalent situations. A solution could be to affect them a weight equal to the number of data cache 
line accesses that it induces, but determining this on execution would be almost impossible since it 
assumes the exact knowledge of the cache contents and of its precise internal organization at every 
rising clock edge. However, this could be roughly approximated by assessing the number of bits it 
requires and dividing it by the width of a data cache line. It would be a quite optimistic approximation 
but the deviance from optimality should be tiny. Besides, state-of-the-art data caches are optimized in 
numerous manners, which prevent researchers from getting a realistic overview of the next lookups. It 
explains the NP-hardness of the optimality issue [BRE04]. Since this thesis aimed to find and to 
implement a cache replacement policy and keeping in mind that the optimal algorithm is only a view of 
spirit and not a realistic replacement strategy, it was decided to keep this good approximation of the 
optimal algorithm. Indeed, it is sufficient to get some absolute clues about the efficiency of the 
considered replacement algorithms. Moreover, in order to avoid numerous reads of the TARMAC file, 
this replacement policy has been enhanced with a buffer to allow faster simulations. 

1.4. Benchmarks  

The benchmarks running on the SystemC model of an ARM11 processor come from different sources:  
- 3D graphics: it is a benchmark suite that stands for the graphic kernel of Quake2. The 

benchmarks are available in 32-bit floating point and integer version,  
- 500 benchmarks: these benchmarks perform usual operations like quick sorting, 

computation of Huffman bits,  

                                                           
a See Chapter 4 Section 1.5.2 p.22 for more details. 



Study of different cache line replacement algorithms in embedded systems  30 

- EEMBC benchmarks (versions 1 and 2): these benchmarks are supposed to account for 
usual application work in the embedded world, particularly for automotive, 
telecommunication and networking (for more information about each benchmark and 
the datasheets, see [EEM06]). 

Combined together, these benchmarks should represent a good overview of the work and of the 
memory access patterns required by usual embedded applications, which is the market of the ARM 
processors. For a deeper description of these benchmarks, one can have a look at Appendix C. 
 
In this work, all the simulated benchmarks exhibit quite large data sets since this property induces more 
realistic patterns and ensures that the hit ratios do not reflect the filling of the cache or the booting 
phase. Indeed, the impact of the replacement policies must not be overwhelmed by these unavoidable 
effects, which would lead us to wrong conclusions. 
 
Selection.   From all the tested benchmarks, a selection of representative benchmarks was performed. 
By representative, it is meant that the cache is stressed and that some differences in the hit ratio 
between the different cache sizes are observable. This last element insures that we do not lie in the part 
of the compulsory misses, on which the replacement policy does not impact at all (see Figure 10 in 
Chapter 1). Moreover, these representative benchmarks exhibit realistic hit ratio (i.e. their hit ratios are 
not all equal to 99.91-99.94%).  
 
Representativeness.   All the benchmarks needed to be adapted to the ARM validation environment. 
Nevertheless, they remained quite useless even after modification since they lead to hit ratio over 99% 
in their original form, thereby raising the issue of their representativeness. Besides, if benchmarks were 
completely trustworthy, there would be no need for a L2 cache, which is obviously not the case in real 
embedded applications. For this reason, these benchmarks were tuned in order to obtain larger cache 
misses ratio. Unfortunately, although it gave us interesting characteristics about the different 
replacement algorithms, it was not sufficient to stress the largest data caches (64 KB and even 32 KB). 
Benchmarks mpeg4_decode  and mpeg4_encode  show the worthlessness of increasing the size of the 
inputs data: the proportion of conflict misses remains the same because the algorithms work only on a 
local window of the working set at a given moment and not on the whole set. As a result, increasing the 
size of data does not influence the hit ratio. 
 
A scale factor can be evoked to extend the conclusions of the smallest data cache sizes to the greatest 
ones but this is not a true scaling. Indeed, not all the cache parameters which potentially bias the cache 
behaviour can be scaled down: block size, cache line size, word size remain unchanged. Consequently, 
a new means to measure the relative performance of the different algorithms was required. Software 
directly run on the processors without any operative system seemed a good solution. Indeed, the aim of 
the benchmarks is to be synthetic and thus they only model the typical behaviours of the programs. So, 
they do not exhibit useless memory requests which help stressing the data cache. Furthermore, the 
introduction of these useless accesses complicates the management of the data cache sets and thereby 
should lead to greater differences between the cache replacement strategies. 

1.5. Software 

The lack of representativeness reported above has been identified for a long time, thus some pieces of 
software have already been developed in the company to solve this issue. They are reused and adapted 
a bit to the needs of this work. These software applications perform different operations: 

- Maze finds a path between two nodes through a connection set, 
- Explorer  computes a factorial, evaluates if different numbers are primes or not, 

performs permutation on different strings, calculates the remainder of integer divisions 
(modulo operations). 

 
The software applications’ characteristics, among them data sets, can be easily modified in order to 
stress the caches. The simulations on the cores took much longer time, preventing us from carrying out 
the study only on these more realistic patterns. Indeed, in opposition to the benchmarks, design issues 
lead us to simulate the software applications on the Verilog core and not on the SystemC version. 
Besides, basing this work only on the two software applications would have exposed us to specific 
characteristics of the programs, thereby negating the statistical average performed over the wide range 
of benchmarks. 



31  Chapter 5 - Replacement policies simulation  

1.6. Remarks about the simulations 

1.6.1. Data cache parameters 
One of the first questions raised before launching simulations is the range of the data cache size. At a 
first glance, only the data cache sizes 16 KB, 32 KB and 64 KB should be studied since they 
correspond to the cache configurations available with the target architecture of this work, the ARM11 
one. However, after the first simulations, it clearly appeared that this will not be sufficient for the scope 
of this work: stressing the 32-KB and even more 64-KB data cache was extremely complicated and the 
observed differences for the 16-KB cache were small. Therefore, it has been decided to add the value 
8-KB to the simulation set. It is firstly needed by the stressing issue presented above. Secondly, it is 
justified by the fact that benchmarks stand for real applications but are a sum up of some of their 
patterns and therefore the cache is less stressed than it will be in the real life. Finally, it should be 
reminded that the data cache will be faced with more complicated patterns in real products: many 
threads will preempt one another and a light version of an operative system will be responsible for 
handling these threads, their priority and interruptions from the outside world. All these factors 
contribute to stress the data cache much more and to give it a smaller efficient cache size. For these 
reasons, the simulated values of the data cache size are 8, 16, 32 and 64 KB. 
 
The simulator is able to deal with up to 32 ways, provided that true LRU is not used and 8 ways if true 
LRU is the replacement strategy. However, the number of ways of almost all the simulations 
introduced in this chapter will be four because it corresponds to the implementation of the data cache in 
the ARM11 MPCore processor. Simulations were also performed with 2-way, 8-way and 16-way set 
associative caches to evaluate the impact of the associativity but their results will be separately 
presented in Section 4.  

1.6.2. Smoothing 
Before dealing with the interpretation of the results, it should be reminded that the results presented 
here were performed on numerous tests. Since each test has its own characteristics, figures can be 
smoothed because of the mathematical average. This is particularly the case for tests, which have 
different significant zones: for instance, one benchmark should exhibit interesting features for 8 KB 
and 16 KB data cache but not for higher cache sizes because its working set would entirely fit in the 
data cache. If the others benchmarks do not exhibit any difference between the replacement algorithms 
for these cache configurations, this specific feature will not be visible in the final data, averaged over 
all the benchmarks. For these reasons, each benchmark result has been studied independently from the 
others and only then the overall results were analyzed. When a benchmark exhibits an interesting 
feature, it is specifically mentioned in the text and explained why it should be important. In other cases, 
only the averaged results are addressed. Yet, smoothing is essential because it prevents us from 
founding the conclusions on a particular and rare phenomenon specific to a program. 

1.6.3. Validity of the results 
In this work, we are faced with an almost unsolvable issue: in order to stress the data cache at a 
significant level, we were forced to use specific software which should reflect the usual observed 
values partially; it implied relying a part of our study on a restricted number of software, thereby 
exposing us to some particular behaviours specific to a software or a special data alignment because 
they are not smoothed anymore among a statistical average. A solution would have been to run a lot of 
different real software and to compare their results. Unfortunately, this would have been very much 
time-consuming and would have prevented us from diving into the design part, which was a major 
point of the original theme of the thesis. Furthermore, it would have required writing the different 
programs in order not to stress the same way the data cache and to face it with various memory request 
patterns. However, it can be admitted that program explorer already performs it in this way but at a 
lower scale: it runs different small programs like factorial, computing the power of a number, 
permuting strings, computing the modulo of a number, popping off and pending elements from/to 
stacks. Therefore, the best solution is after all to keep this issue in mind and to examine the obtained 
results carefully.  



Study of different cache line replacement algorithms in embedded systems  32 

2. Simulation results 

The relative efficiency of the different replacement algorithms must be examined in details for some 
candidates of implementation to emerge from the others. To that end, simulations were performed. A 
comprehensive analysis of their results will follow the presentation of the obtained figures. In a first 
time, only the results of the replacement policies appearing as potential enhancements are introduced 
and then a comparison with the current implementation of the ARM11 MPCore processor (Global 
Round Robin) will be performed. Finally, the replacement strategies will be submitted to the memory 
requests of real programs. This complete process will allow us to get an almost thorough overview of 
the possibilities of each policy. 

2.1. Benchmarks with usual replacement policies 

The results of the benchmarks’ simulations are given in Table 4. The corresponding graphs are drawn 
on Figure 19. From these results, one can distinguish different groups of efficiency among the 
replacement policies: Random and Round Robin, 1-bit, Side and LRU and the pseudo-LRUs (PLRUm, 
PLRUt, MPLRU). According to the obtained figures, the latter appear as the best candidates for 
implementation, even though 1-bit must be further considered too. 
 

All benchmarks Representative benchmarks 

Policy 
Cache 
size 
(KB) 

Ways Hit 
ratio 
(%) 

Miss ratio 
/ LRU 

Average 
Miss ratio 

/ LRU 

Hit 
ratio 
(%) 

Miss ratio 
/ LRU 

Average 
Miss ratio/ 

LRU 
8 4 96.32 0.987 97.04 0.984 
16 4 97.15 0.983 97.90 1.010 
32 4 98.28 0.999 98.74 0.997 

1-bit 

64 4 98.56 0.972 

0.985 

99.10 0.991 

0.996 

8 4 96.27 1.000 97.00 1.000 
16 4 97.10 1.000 97.92 1.000 
32 4 98.27 1.000 98.74 1.000 

LRU 

64 4 98.51 1.000 

1.000 

99.09 1.000 

1.000 

8 4 96.26 1.002 97.01 0.994 
16 4 97.13 0.988 97.94 0.989 
32 4 98.27 1.001 98.73 1.007 

MPLRU 

64 4 98.52 0.998 

0.997 

99.09 1.000 

0.997 

8 4 96.34 0.981 97.07 0.975 
16 4 97.17 0.977 97.94 0.988 
32 4 98.30 0.982 98.78 0.968 

PLRUm 

64 4 98.54 0.985 

0.981 

99.11 0.974 

0.976 

8 4 96.26 1.003 97.01 0.995 
16 4 97.13 0.989 97.94 0.988 
32 4 98.27 1.003 98.73 1.010 

PLRUt 

64 4 98.51 1.000 

0.999 

99.09 1.000 

0.998 

8 4 96.25 1.004 96.92 1.024 
16 4 97.15 0.984 97.84 1.037 
32 4 98.26 1.007 98.71 1.026 

Random 

64 4 98.52 0.999 

0.999 

99.09 0.998 

1.021 

8 4 96.18 1.023 96.86 1.045 
16 4 96.98 1.042 97.79 1.063 
32 4 98.27 1.000 98.75 0.990 

Round 
Robin 

64 4 98.50 1.008 

1.018 

99.06 1.026 

1.031 

8 4 96.23 1.010 96.99 1.001 
16 4 97.10 0.999 97.90 1.008 
32 4 98.25 1.015 98.74 0.994 

SIDE 

64 4 98.50 1.001 

1.009 

99.06 1.033 

1.009 

Table 4: Hit ratio for the different policies with benchmarks on a 4-way set associative cache 
 



33  Chapter 5 - Replacement policies simulation  

 
Figure 19: Hit ratio of the different usual replacement policies averaged over benchmarks 

 
At first glance, it could be surprising that the hit ratios are higher for the representative group than for 
the usual one, although it has been claimed that they present more realistic hit ratios. It is simply due to 
the presence of some specific benchmarks – among others 500_mandeld , consumer_rgbcmyk , 
consumer_rgbcmy … – in the complete set. These benchmarks exhibit a tiny difference between the 
different replacement algorithms across the different cache sizes but yield a quite important amount of 
misses (miss ratio around 2-3%). Capacity misses govern the behaviour of these benchmarks. 
Therefore, the study can be pursued with the single group of representative benchmarks. 

2.2. Non-MRU and Global Round Robin study 

In the continuity of the previous section, the algorithms were compared to the current replacement 
policy of the ARM11 MPCore processor, Global Round Robin. Non-MRU is investigated in this 
section too since it is a comparison for 1-bit at the same degree as GRR for the other strategies. This 
study is carried out in this section and the results are given in Table 5. The benchmarks ran correspond 
to the selection of representative benchmarks. For the sake of clarity, only the policies, which were 
short-listed in pursuance of the first benchmarks’ results, along with some reference algorithms (Round 
Robin and Random), are presented below. This choice of algorithms also provides us with a continuous 
range of complexity of implementation, from no bit for Random to 4 bits for PLRUm, where the 
complexity is still acceptable. 
 

 
Figure 20: Average hit ratios on representative benchmarks with GRR and non-MRU 

 
From these figures, it is striking that the data caches are not stressed enough for 64 KB and even for 32 
KB where the observed hit ratios are abnormally high to hope distinguishing usage-based policies from 
one another. This comment justifies the appeal to software applications in the next section. 
 



Study of different cache line replacement algorithms in embedded systems  34 

 
 

Policy 
Cache 

size  (KB) 
Ways 

Hit 
ratio 

Miss ratio / 
PLRUm 

Average miss 
ratio / PLRUm 

8 4 95.38 1.108 
16 4 96.92 1.097 
32 4 98.59 1.147 

Global Round 
Robin 

64 4 99.08 1.026 

1.095 

8 4 95.58 1.059 
16 4 96.84 1.126 
32 4 98.74 1.026 

Round Robin 

64 4 99.04 1.070 

1.070 

8 4 95.80 1.006 
16 4 97.09 1.037 
32 4 98.69 1.061 

1-bit 

64 4 99.07 1.019 

1.031 

8 4 95.83 0.999 
16 4 97.18 1.005 
32 4 98.68 1.072 

Non-MRU 

64 4 98.98 1.148 

1.056 

8 4 95.60 1.055 
16 4 96.90 1.106 
32 4 98.64 1.101 

Random 

64 4 99.07 1.038 

1.075 

8 4 95.71 1.028 
16 4 97.11 1.029 
32 4 98.72 1.041 

PLRUt 

64 4 99.07 1.036 

1.034 

8 4 95.83 1.000 
16 4 97.19 1.000 
32 4 98.77 1.000 

PLRUm 

64 4 99.11 1.000 

1.000 

Table 5: Average miss ratios on representative benchmarks of GRR and non-MRU 

2.3. Software 

 
Figure 21: Hit ratio of the interesting replacement policies on the software applications 

 
The results are given in the figures above. For sake of clarity, only the policies that emerged before are 
represented here as well as Random and Round Robin as references. The applications used are maze 
and explorer . Their data sets are modified so that caches can be more or less stressed. However, 
changing the work set does not change the global pattern access scheme: the program is the same and 
performs the same operations, only on a different input. Nevertheless, these modifications can be very 



35  Chapter 5 - Replacement policies simulation  

important and impact on the global memory pattern scheme, for instance on trees. Moreover, one of 
their advantages is that the result can be checked, giving a means to be certain that the memory patterns 
reflect reality. Of course, the correctness of the results does not prove that the program operates as 
wanted but the probability is very high. For the scope of this work, it will be considered as a sufficient 
verification. The graphs show that even with these software applications, it was hard to stress the cache 
for 64 KB; it is almost constant between cache sizes 32KB and 64 KB. However, we should keep in 
mind that the usual configurations sold by ARM are up to 32KB. This is all the more true since all 
cores are now provided with an on-chip L2 cache, which explains that the size of L1 caches is reduced. 

3. Interpretation 

The results presented in the previous section mostly agree with the figures reported in the literature 
[DEV90, MIL03, SMI83, ZOU04]. In opposition to the articles cited above, the major point of this 
chapter will be to explain the behaviour of the strategies, analyzed one after another. 

3.1. Random 

3.1.1. General considerations 
As expected, the Random policy is less efficient than the other algorithms; it is almost always 
outperformed by pseudo-LRUs. A difference of 5-7% to the LRU figures is observed, which disagrees 
with the results of Al-Zoubi et al. [ZOU04]: they reported a performance loss roughly equal to 20–25 % 
on the SPEC CPU2000 benchmarks suite [SPE00]. In some of the benchmarks simulated in this work 
(3d_persptris_f32 , networking_ospf , office_bezier ), Random is even slightly better than 
the LRU policy. It is the expression of specific patterns where the width of the history retained by LRU 
is inadequate (loops of Nways+1 steps for instance). This explanation is confirmed by the observation of 
the same behaviour for the pseudo-LRUs. This phenomenon will be more precisely studied in Section 
3.8. Though it is not the common situation, it corroborates the absence of an absolute replacement 
policy; this choice must be performed in accordance with the average characteristics of the running 
programs. This explains the improved performance observed on the maze pattern too since the 
exploration of the connections of the tree does not yield strong spatial locality. Thus, evicting the lines 
in a random manner gives a better probability that the nodes, which will be accessed in the future when 
the program searches back from a leaf, are still located in the cache. 
 
The comparison of Random with Round Robin shows the roughly equivalence of the two algorithms in 
terms of performance. The efficiency then depends on the specificities of each benchmark. 

3.1.2. Lack of stress 
If we restrict our study to the small cache size part of the benchmarks (where the conflict misses are 
more frequent), greater differences up to 25% are noticed. The figures are given in Table 6 for some of 
these benchmarks.  
 

 
Figure 22: office_rotate hit ratio in a 4-way set associative cache 

 
 



Study of different cache line replacement algorithms in embedded systems  36 

Their average miss ratio compared to the LRU ones are:   
- 1.27 for 8 KB data cache,  
- 1.10 for 16 KB data cache, 
- 1.04 for 32 KB data cache, 
- 0.96 for 64 KB data cache. 

 
Miss ratio / LRU miss ratio 

Benchmarks 
Cache 

size (KB) 
LRU Hit 
ratio (%) Random PLRUm PLRUt 

8 98.67 1.373 1.062 1.003 
16 99.01 1.076 0.863 0.906 
32 99.48 1.052 0.884 0.924 

automotive 
aifftr 

64 99.95 1.017 1.001 0.998 
8 99.23 1.048 0.993 0.993 
16 99.28 1.012 1.016 1.002 
32 99.29 1.000 1.002 1.000 

automotive 
tblook 

64 99.29 1.000 1.000 1.000 
8 97.87 1.063 1.002 1.007 
16 98.01 1.032 1.003 1.003 
32 98.21 1.049 1.004 1.002 

mpeg4 decode 

64 98.25 1.019 1.001 1.002 
8 98.24 1.047 1.000 1.004 
16 98.35 1.024 1.002 1.003 
32 98.56 1.055 1.006 1.002 

mpeg4 encode 

64 98.57 1.013 1.000 1.000 
8 99.60 1.889 1.000 1.067 
16 99.97 1.071 1.002 1.376 
32 99.97 1.002 1.002 1.000 

networking 
route lookup 

64 99.97 1.000 1.000 1.000 
8 99.39 1.235 0.997 0.983 
16 99.43 1.143 0.993 0.962 
32 99.47 1.012 1.008 0.988 

office dither 

64 99.73 0.673 0.695 0.766 
8 96.88 1.271 1.030 1.041 
16 98.61 1.366 0.973 0.972 
32 99.88 1.135 0.987 1.546 

office rotate 

64 99.90 0.999 1.001 0.999 
Table 6: Miss ratios of LRU, Random and PLRUm on specific benchmarks 

 
One sees that the figures match the study of Al-Zoubi for small cache sizes. For bigger cache sizes, the 
cache is probably not stressed enough for us to observe these differences at the same intensity. A 
typical graph of these benchmarks is shown on Figure 22. The issue of lack of stress for high cache 
sizes is striking for all the replacement strategies. For sake of concision, it will not be further 
mentioned in the chapter but it should be reminded that it applies to each policy. However, this only 
explains the difference for these benchmarks. Another parameter may significantly affect the overall 
performance. 

3.1.3. Importance of looking for free ways 
It should not be forgotten that the implemented algorithm differs from the academic one. Indeed, the 
latter does not look for a free way before allocating a way whereas the simulated one does. This may 
partly explain the difference between the simulated results and the literature ones, which are far from 
optimal. The impact of this hypothesis is studied here with a simple probabilistic model. Let us 
consider only a set of the data cache (the other sets being symmetrical). Denoting p(k,n) the probability 
that there are exactly k free ways in the set after n allocations to the set, the initial conditions are: 
 

P(0) = [ p(4,0), p(3,0), p(2,0), p(1,0), p(0,0)] = [1, 0, 0, 0, 0] 
 
where P(n) is the probability vector. With the same notations as above, S(k) is the state corresponding 
to the assertion exactly k ways store a valid data. The transitions between the different states can be 
represented by the Markov chain drawn on Figure 23.  



37  Chapter 5 - Replacement policies simulation  

 

 
Figure 23: Markov chain for the 

Random replacement policy 

 
Figure 24: Evolution of the probabilities p(k,n) in function of the 

allocations in the cache set 
 
Since the replacement policy is Random and since the four ways of the set are equivalent, the transition 
rate between states S(k) and S(k+1) equals (4-k)/4. The invalidations of the lines which enable a 
transition between the states in the inverse order are neglected here because of their tiny probability in 
multi-processing platforms and their absence in mono-processing environments. Evictions would have 
the same effect but at the difference that an allocation at the same line immediately follows them. The 
set thus remains in the same state. As a result, it can be assumed in a first approximation that there is no 
transition between states S(k) and S(k-1). Combining this to the fact that only one line can be allocated 
at a time, it implies that all the possible transitions have been dealt with. 
 
The transition matrix M is then: 























=

10000

25.075.0000

05.05.000

0075.025.00

00010

M  

And the state evolution is given by: 
P(n) = P(0) x M n 

 
The evolution of states S(k) in function of the number of allocations is drawn on Figure 24. From these 
probabilities, the average number of busy ways N(n) can be easily deduced by the simple equation: 

 
N(n)= 4.p(0,n)+3.p(1,n)+2.p(2,n)+p(3,n) 

 
The resulting curve is drawn on Figure 25 as well as the result for the ARM implementation.  
 

 
Figure 25: Average number of busy lines in function of the allocations in the cache set 

 
There exists a significant difference between the two implementations for the values of n lying in the 
range [2:10]. Supposing that the accesses are uniformly spread among the 512 data cache sets, it 



Study of different cache line replacement algorithms in embedded systems  38 

implies that the effect can be detected on the overall cache behaviour only for the first 5,000 cache 
misses. For these requests, the implemented solution roughly performs 1.25 times better than the 
literature one: its number of busy lines, which is a measure of the effective capacity of the cache in 
some manner, is 1.25 greater than the value obtained with the literature method. On the benchmarks 
simulated above, the average hit ratio is 95-99%. Therefore, a good approximation would be to 
evaluate the 5,000 cache misses roughly equivalent to 500,000 cache requests. As a result, a difference 
around 1.25 is observed between the two implementations up till 500,000 requests.  
 
Let us apply this reasoning to the benchmark networking_ospf  which issued 673,677 data cache 
requests. It then corresponds well to the bounds inferred above. Its hit ratios are 94.46% for Random 
and 94.30% for LRU. At a first approximation, we can apply the 1.25 factor to the whole benchmark 
(the bound 500,000 is a very rough approximation), which yields a corrected miss ratio for Random of 
6.925%. Expressing it in function of LRU miss ratio, one obtains a ratio of 1.21. The corrected 
difference is then in the same range as the one obtained by Al-Zoubi et al. Moreover, it should be 
noticed that the benchmarks presented in Table 6 issued a huge amount of cache requests (over 
2,000,000). Because of this huge amount of requests, the difference has been pad out in the overall 
pattern. Consequently, after examination with a quite coarse model, the simulated results match the 
literature ones. 

3.2. Round Robin 

After examination of the simulation results, it appears that Round Robin performs as bad as Random on 
benchmarks and on software applications. There is no obvious better policy between Random and 
Round Robin: on some benchmarks, one is better, on other benchmarks, it is the opposite. The 
comparison with the LRU policy yields even worst results (around 1-5%). This result disagrees with 
the work of Al-Zoubi et al. which found a difference of 15-20% but agrees with the figures of Deville 
[DEV90] for low associativity. This discrepancy is probably due to the lack of stress on the caches for 
most benchmarks. It is corroborated by the software study.  On explorer  patterns, the difference is 
9% on average with peaks to 15% on low size. The increase of the gap for low sizes reinforces the 
hypothesis of lack of stress. On maze, Round Robin performs on average 2% better than LRU. Once 
more, it underlines the specificity of maze which helps putting the conclusions in perspective with the 
particular characteristics of each program.  
 

Miss ratio / LRU miss ratio 
Benchmark 

Cache 
size 
(KB) 

LRU hit 
ratio (%) PLRUm PLRUt Round Robin 

8 93.49 0.924 0.950 1.091 
16 97.82 0.894 0.978 1.098 
32 99.02 0.975 1.028 1.078 

automotive 
matrix 

64 99.77 1.006 1.128 1.150 
8 99.60 1.000 1.067 1.888 
16 99.97 1.005 1.372 1.073 
32 99.97 1.002 1.000 1.002 

networking 
route lookup 

64 99.97 1.000 1.000 1.000 
8 79.85 0.955 1.001 1.000 
16 86.25 0.807 0.914 0.999 
32 98.76 0.980 1.009 1.005 

networking tcp 
mixed 

64 98.97 0.845 0.911 1.005 
8 99.39 0.997 0.983 1.222 
16 99.43 0.993 0.962 1.146 
32 99.47 1.008 0.988 1.071 

office dither 

64 99.73 0.695 0.766 1.207 
Table 7: Miss ratios of PLRUm, PLRUt, Random and Round Robin on specific benchmarks 

 
Although Round Robin is not a so bad approximation of the LRU policy in overall (see Table 4), a 
significant difference is observed with the following benchmarks: automotive_matrix , 
networking_route_lookup , networking_tcp_mixed , and office_dither . One notices that 
these are almost the same benchmarks as Random, thereby contradicting the potential hypothesis 
according to which only the benchmarks demonstrating what we expect are selected. The figures of 



39  Chapter 5 - Replacement policies simulation  

these specific benchmarks are given in Table 7. The Round Robin performance appears here as 10-15% 
worst than the LRU one, which is in the range of the results given by Al-Zoubi et al. The figures are: 

- 1.300 for 8 KB data cache, 
- 1.079 for 16 KB data cache, 
- 1.039 for 32 KB data cache, 
- 1.091 for 64 KB data cache. 

The results are the worst for the smallest data cache sizes, where the conflict misses are the most 
important. It confirms the hypothesis of a lack of stress to explain the difference between Al-Zoubi’s 
results and ours. The difference in handling the free ways which explained the discrepancy for Random 
does not apply here. Indeed, as long as the line invalidations are negligible, the Round Robin policy 
assigns the four free ways in the increasing order. Then the cache set is full and the ways are evicted in 
the order they came in. 
 
The strong dependence of the Round Robin replacement policy on the cache configuration emerges 
from the simulations. Even for patterns apparently equivalent, the results are quite different. It can be 
explained by data alignments inside the memory or simply a high sequentiality of the optimal 
replacement in some cases. The overall poor performance of the Round Robin strategy can be 
explained by the lack of history in its computing. Indeed, it is well adapted for patterns where the 
accesses are performed sequentially but its results are poorly efficient as soon as the ways of a set are 
not accessed in the same order as the counter, which can lead the policy to evict the MRU line.  As a 
result, the relatively poor observed efficiency is not surprising. 

3.3. Global Round Robin 

These simulations demonstrate that Round Robin with a global counter performs worse than true 
Round Robin and worse than the pseudo-LRU algorithms. The figures correspond well to the intuition 
since GRR is a pseudo-random strategy. As the set locality is strong due to the spatial locality, the GRR 
counter can be seen as an efficient counter on two or three sets, thereby presenting the same drawbacks 
as Round Robin without its advantage of well-fit to the highly sequential accesses. 
 
On the other hand, Global Round Robin performs 1% better on networking_tcp_mixed  and 3% 
better on maze (up till 5% on small cache sizes) than Round Robin whereas the latter outperforms it of 
1-2% on explorer . I expected that Round Robin would perform much better than Global Round 
Robin because there are quite common situations where Global Round Robin evicts the last written 
line.  For instance, let us consider four lines λ1, λ2, λ3, λ4 mapped to distinct sets and which are not 
lying in the cache. Let us now assume that a line λ5 is mapped to the same set as λ1. Then the execution 
of the sequence λ1, λ2, λ3, λ4, λ5 will evict the line λ1 which was the MRU of its set! Such situations are 
not so rare and should have a negative impact on the overall hit ratio. True Round Robin avoids these 
situations and then should be more efficient. However, simulation results differ with this hypothesis: 
the difference is not as significant as expected so this type of situations is not as common as thought at 
first glance. This is confirmed by the results of the non-MRU which slightly performs better than 
Random. Yet, non-MRU aim is to avoid evicting the last written line. The results are thus consistent.  
 
The difference of efficiency between Global Round Robin and its competitors is sufficient to justify 
implementing a pseudo-LRU algorithm. Indeed, in hit ratio – which is the interesting figure which 
reflects the most accurately the efficiency of the replacement algorithms – the difference is a bit less 
than 1% but the hits here are important and the cache must be stressed further to study in depth this 
feature. Besides, the difference reaches two percents of the memory requests on benchmarks 
networking_route_lookup , office_rotate  and networking_pktflow .  

3.4. 1-bit 

The 1-bit policy aims to protect the MRU region and particularly the last written line from eviction. Its 
results are good and better than Random. The policy thus seems quite efficient at a low cost but there 
are some applications patterns where it performs badly: its performance is not steady across all the 
benchmarks. While it performs a bit and even significantly better than LRU for some applications, the 
gap separating it from the best simulated replacement policy is important on some benchmarks. A 
typical graph of these situations is drawn on Figure 26. The random assignment inside the non-MRU 
half benefits from the same features as Random, which could explain the instability of the policy. 



Study of different cache line replacement algorithms in embedded systems  40 

 
Figure 26: Hit ratio for automotive_aifftr in a 4-way set associative cache 

 
This solution yields an improvement compared to the Global Round Robin, up to one percent in hit 
ratio. Furthermore, using only one bit instead of three or four for the pseudo-LRUs would save not only 
area but also power, because there would be fewer accesses to the RAMs storing these bits. 
Consequently, this policy suits the aims of this thesis and is one final candidate for implementation in 
spite of its unsteadiness.  
 
The choice of encoding this policy with one bit protects also the neighboursa of the last written line. In 
order to investigate whether this protection affects the overall hit ratio significantly, an algorithm was 
implemented: the non-MRU policy.  

3.5. Non-MRU  

The principle is the same as for 1-bit but the LRU way – and not its half – is stored so that there is no 
collateral protection. Thus, 2 bits per set are required instead of one. After examination of the results, 
non-MRU performs roughly the same as 1-bit and then appears as a quite non-optimal solution: 1-bit 
requires less additional storage and its updating and decoding processes cost less hardware. Thus, the 
hypothesis raised in the previous section is not verified. Splitting the cache into two halves is well-
adapted to 4-way set associative caches with reasonable data line width. It gives clues about the size of 
the MRU region of typical embedded programs too: it should be included in the range 1-2 lines. Non-
MRU will not be further considered in this work because of its ratio hardware cost-replacement 
efficiency.  

3.6. Modbits 

 
Figure 27: Hit ratio of the dirty bits implementation averaged over the selection of benchmarks 

 
While looking for the cheapest algorithm, using the dirty bits was an idea whose ratio efficiency-cost 
might be interesting. The results of the simulations were quite disappointing: around 2 % worst in hit 
ratio as it can be seen on Figure 27. The difference even reaches 3% in hit ratio on low size where 
                                                           
a By neighbours of way w is meant: {y ∈ N / E(w/2) = E(y/2) } \ { w} , i.e. simply  2.E(w/2) + (1-w mod 
2) = 1-w + 4.E(w/2) in the case of a 4-way set associative cache. 



41  Chapter 5 - Replacement policies simulation  

conflict misses are more important. It may be explained by the fact that this policy does not take into 
account the read and can even evict them when they are MRU. Moreover, once all the ways of a set are 
written, there is no means to differentiate them and it is equivalent to the Random policy until the next 
allocation. As a result, the read requests evict one another whereas writes remain in the cache and 
pollute it. One solution to this issue would be to add an aging policy to this algorithm but then the 
design cost would be too expensive: the Dirty RAM should be powered on at each access, thereby 
leading to high power consumption, which is specifically what must be avoided in embedded systems. 
As the age should be stored somewhere (flip-flops or RAM), it will increase the power consumption of 
this policy. Considering this complexity with its poor efficiency, it will not be mentioned further in this 
work. 

3.7. Side 

As expected and stated in [DEV90], Side performs a bit better than Round Robin and its hit ratios are 
roughly equivalent to the 1-bit policy. The updating process of the counter is based on usage, which 
provides the algorithm with a better adaptability to the patterns. This counter splits the cache into two 
groups and thus establishes a parallel with 1-bit. It is the origin of the close performances of the two 
algorithms. However, it still partially exhibits the same drawback as Round Robin: in the absence of a 
hit, the ways are discarded in the growing order. Moreover, it is strongly dependent on data alignments, 
non-cyclic accesses and cache parameters such as cache size, block size… Thus, it does not appear as a 
good candidate. Compared with 1-bit, Side thus appears not so efficient: it uses a 2-bit counter per set 
instead of one additional bit. 

3.8. LRU and pseudo-LRUs 

3.8.1. Results 
The LRU algorithm and the pseudo-LRU ones present quite the same performance and much better 
than Global Round Robin since they are usage-based. Depending on the benchmarks, their relative 
efficiencies change but the differences are slight: pseudo-LRU algorithms are an efficient 
approximation of the LRU replacement policy. Consequently, implementing a true LRU algorithm is 
not worthy because of its high complexity – which is the origin of bugs in general –, its overhead, its 
consumption and the amount of required hardware. Pseudo-LRUs yield the same performance with 
simpler, cheaper and faster implementation. The issue is now to choose a pseudo-LRU algorithm.  
 
The algorithms are different in nature: PLRUt and MPLRU implement a tree implementation whereas 
PLRUm is MRU based. Inside the first group, the differences are small: MPLRU performs a bit better 
than PLRUt but at the price of one additional bit per set and additional complexity in interpreting the 
status bits. This result is consistent with the simulation results obtained in [GHA06] where a significant 
improvement was only observed for high associativity (eight and above). Moreover, for the same 
amount of bits in a 4-way set associative cache, PLRUm performs much better and the decoding is 
simpler. A difference between PLRUt and PLRUm is observed: while PLRUt is a good approximation 
of LRU, PLRUm outperforms it on almost all the input patterns. This superiority of PLRUm over 
PLRUt is confirmed when examining in details the simulation results. Depending on the data sets, 
PLRUm is 1-5% better in hit ratio than PLRUt and LRU, particularly for small cache sizes, where 
misses occur more often. Thus, PLRUm appears as a better implementation candidate but the tree-base 
version will still be considered further. The candidates among pseudo-LRUs are then: 

- PLRUt : only three bits per set and as efficient as LRU in spite of its acceptable 
unsteadiness observed across the different benchmarks, 

- PLRUm: four bits per set but simpler to encode, decode and interpret. Moreover, its hit 
ratios are the highest in average and on most patterns. 

 
Compared to Global Round Robin, PLRUm performs around 2% better in hit ratio as it is shown in 
Figure 21. However, there is a case when Global Round Robin performs better than the pseudo-LRUs: 
on maze with a very small data cache. This is probably a specific resonance between the data and the 
global Round Robin designation. Other algorithms, including true Round Robin, do not exhibit such a 
feature, confirming that it should be a special alignment which produces this performance. 
Furthermore, this is corroborated by the hit ratio measured for the next data cache sizes: Global Round 
Robin performs much worst. Finally, this specific feature has not been observed on the benchmark 
suite; thereby reinforcing our idea that it is only a specific alignment created by the application. 



Study of different cache line replacement algorithms in embedded systems  42 

3.8.2. The origin of the discrepancies 
The improved performance of PLRUm has already been reported in the literature [MIL03, ZOU04] but 
no explanation about this enhancement has been advanced yet. This paragraph will try to fill this lack 
of knowledge. To that end, some typical sequences are studied; which will help us understanding the 
underlying phenomena governing replacement strategies’ behaviour. 

3.8.2.a.  PLRUm vs. PLRUt 

First, let us be interested in the two pseudo-LRU algorithms and have a look at Table 8. In this table, 
the errors in designing the LRU way are highlighted in grey: the darkest one for an error of 2 in the 
LRU stack and the lightest one for an error of one. Of course, error is a quite inappropriate term since 
an “error” in the LRU stack can help being nearer to the optimal choice. While PLRUt misled us three 
times, PLRUm made only two mistakes but one was quite important in the sense that it designed a way 
located at the second place of the MRU stack. This deviance originates from the reset of the status bits 
whereas element 0 was accessed during the previous step. The erroneous interpretation is then 
transmitted to the next step. Thus, the reset phase seems to be the major inconvenient of PLRUm. 
However, it constitutes its superiority over PLRUt too as it will be seen in the next paragraphs. 
 

Step 1 2 3 4 5 6 7 8 9 10 11 12 13 
Sequence 0 1 2 3 0 3 1 2 1 0 3 0 1 
PLRUm              

PLRU way 1 2 3 0 1 1 2 0 0 3 0  1 2 
status bits 0001 0011 0111 1000 1001 1001 1011 0100 0110 0111 1000 1001 1011 

PLRUt              
PLRU way 1 2 3 0 1 2 2 3 0 3 2 1 2 
status bits 011 110 101 000 011 010 110 001 100 111 010 011 110 

LRU way 1 2 3 0 1 1 2 0 0 3 2 2 2 
Optimal way 0 1 2 2 0 3 3 2 2 2 2-3 0-2-3 0-1-2-3 

Table 8: Pseudo-LRU ways for PLRUm and PLRUt 

3.8.2.b.  Amount of information held by the status bits 

As it has already been stated in Chapter 3, the main difference between the pseudo-LRU algorithms 
consists in the binary tree of PLRUt, which assigns various efficient weights to the different status bits. 
Over the first ten accesses of Table 8, PLRUm yields the exact LRU way whereas PLRUt is mistaken 
twice since node 0 does not held sufficient information about the previous accesses. Indeed, if the true 
LRU way is a neighbour of the last accessed way, it will not be discarded. This could lead to far from 
optimal evictions. As all the MRU bits are almost equivalent, PLRUm does not exhibit this property. 
Nevertheless, a slight discrepancy is introduced by the order of examination. While computing the way 
to be discarded, the algorithm looks for a MRU bit equal to 0 from bit 0 to bit Nways-1; bit k is thus more 
probably subjected to eviction than any bit j for j>k. This discrepancy is however far less significant 
than the one observed in PLRUt. Therefore, it can justify the superiority of PLRUm over PLRUt.  
 
Another example of the lack of information in PLRUt is given in Table 9, where this issue is striking. 
The sequence corresponds to the execution of a loop 0-4-0-5-0-6 after the data cache has been filled 
with elements 0-1-2-3. This type of loop is quite common and the principle of temporal locality is 
strongly verified for this pattern. Since the loop contains only four elements, a protection of the loop 
elements is expected and hence a quasi-optimal performance should be reached. LRU performs 
optimally whereas PLRUm misses once more before keeping the four data as requested. Regarding 
PLRUt, its performance deceives the expectations since way 1 is never evicted and pollutes the cache 
although it is not required in the loop. Once more, this discrepancy originates from the tiny amount of 
information held in node 0. 
 
If this phenomenon was the only one explaining the performance of PLRUt, MPLRU would lead 
improved efficiency over PLRUt and a performance roughly equal to PLRUm. This is obviously not 
the case on Table 4 and can be explained in looking at Table 8 more precisely. The sequence presented 
there is a target sequence of the MPLRU algorithm, where the MBAIs should help reaching a better 
approximation of LRU. In MPLRU, the replacement decision is based on the previous state of the 
MBAIs but the issue of the amount of information held by a bit partially remains since the neighbours 
are still protected due to the tree structure. The retained history is a bit longer, which explains the 
slightly better observed results on some benchmarks but an insignificant improvement in overall. The 



43  Chapter 5 - Replacement policies simulation  

advantage of PLRUm over PLRUt is then the greater history that it can retain in spite of its reset phase, 
even over MPLRU which considers the previous access. 
 

Sequence 0 1 2 3 0 4 0 5 0 6 0 4 0 5 0 6 
PLRUm                 

way 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
way 1  1 1 1 1 4 4 4 4 6 6 6 6 6 6 6 
way 2   2 2 2 2 2 5 5 5 5 5 5 5 5 5 
way 3    3 3 3 3 3 3 3 3 4 4 4 4 4 
status 0001 0011 0100 1000 1001 1011 1011 0100 0101 0111 0111 1000 1001 1101 1101 0010 

PLRUt                 
Way 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Way 1   2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Way 2  1 1 1 1 4 4 4 4 6 6 6 6 5 5 5 
Way 3    3 3 3 3 5 5 5 5 4 4 4 4 6 
status 011 110 101 000 011 110 111 010 011 110 111 010 011 110 111 010 

LRU                 
way 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
way 1  1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 
way 2   2 2 2 2 2 5 5 5 5 5 5 5 5 5 
way 3    3 3 3 3 3 3 6 6 6 6 6 6 6 

Optimal                 
way 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
way 1  1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 
way 2   2 2 2 2 2 5 5 5 5 5 5 5 5 5 
way 3    3 3 3 3 3 3 6 6 6 6 6 6 6 

Table 9: Non-optimality of PLRUt and quasi-optimality of PLRUm on a loop 
 
On the other hand, PLRUm performs also far from optimal in certain situations where the reset leads to 
discard the way lying in the second position of the MRU stack (see step 11 of  Table 8), which explains 
that it is outperformed by PLRUt on some benchmarks. However, this situation is much rarer than the 
loss of information for PLRUt and then the impact is tinier.  

3.8.2.c.  PLRUm outperforming LRU 

Sequence 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 
PLRUm                

way 0 0 0 0 0 4 4 4 2 2 2 0 0 0 3 3 
way 1  1 1 1 1 0 0 0 0 4 4 4 4 4 4 
way 2   2 2 2 2 1 1 1 1 1 1 1 1 1 
way 3    3 3 3 3 3 3 3 3 3 2 2 2 

status bits 0001 0011 0111 1000 1001 1011 0100 0101 1101 0010 0011 0111 1000 1001 1011 
PLRUt                

way 0 0 0 0 0 4 4 4 4 3 3 3 3 2 2 2 
way 1   2 2 2 2 1 1 1 1 0 0 0 0 4 
way 2  1 1 1 1 0 0 0 0 4 4 4 4 3 3 
way 3    3 3 3 3 2 2 2 2 1 1 1 1 

status bits 011 110 101 000 011 110 101 000 011 110 101 000 011 110 101 
LRU                

way 0 0 0 0 0 4 4 4 4 3 3 3 3 2 2 2 
way 1  1 1 1 1 0 0 0 0 4 4 4 4 3 3 
way 2   2 2 2 2 1 1 1 1 0 0 0 0 4 
way 3    3 3 3 3 2 2 2 2 1 1 1 1 

Optimal                
way 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 
way 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 
way 2   2 2 2 2 2 2 3 3 3 3 3 3 3 
way 3    3 4 4 4 4 4 4 4 4 4 4 4 

Table 10: Sequence of 3 loops of Nways+1 steps for LRU, PLRUm and PLRUt  
 
The remaining mystery is now the unexpected good performance of PLRUm on some benchmarks 
where LRU can be clearly outperformed. The non-optimality of the LRU algorithm has already been 



Study of different cache line replacement algorithms in embedded systems  44 

reported in many articles but the fact that it is outperformed by its own approximations is strange. The 
explanation advanced in this thesis relies on the reset feature, which allows PLRUm to be more flexible 
for some specific patterns and specifically for the loops composed of Nways+1 allocations to the same 
set per loop. This contributes also to the enhanced performance of PLRUm over PLRUt. Indeed, the 
reset ensures a more adaptive history, thereby helping avoiding the cache pollution by less useful data. 
One example is given in Table 10. 
 
Sequence 1 2 0 3 4 0 1 2 3 4 0 1 2 3 4 
PLRUm                

way 0 1 1 1 1 4 4 4 2 2 2 0 0 0 3 3 
way 1  2 2 2 2 2 1 1 1 1 1 1 1 1 1 
way 2   0 0 0 0 0 0 0 4 4 4 4 4 4 
way 3    3 3 3 3 3 3 3 3 3 2 2 2 

status bits 0001 0011 0111 1000 1001 1101 0010 0011 1011 0100 0101 0111 1000 1001 1101 
PLRUt                

way 0 1 1 1 1 4 4 4 2 2 2 2 1 1 1 1 
way 1   0 0 0 0 0 0 0 4 4 4 4 3 3 
way 2  2 2 2 2 2 1 1 1 1 0 0 0 0 4 
way 3    3 3 3 3 3 3 3 3 3 2 2 2 

status bits 011 110 101 000 011 001 100 111 010 001 100 111 010 001 100 
LRU                

way 0 1 1 1 1 4 4 4 4 3 3 3 3 2 2 2 
way 1  2 2 2 2 2 1 1 1 1 0 0 0 0 4 
way 2   0 0 0 0 0 0 0 4 4 4 4 3 3 
way 3    3 3 3 3 2 2 2 2 1 1 1 1 

Table 11: The same Nways+1-step sequence with a different filling order. 
 
Whereas PLRUt and LRU miss at each access, PLRUm attunes better and yields three hits over the 
fifteen requests. Nevertheless, it is far from the optimal algorithm which misses only seven times. This 
discrepancy in the behaviour of such patterns could partially explain the improvement observed for 
PLRUm. But one noticed in Table 4 that PLRUt outperforms LRU too but at a slighter degree than 
PLRUm. At first glance, it is in contradiction with the results of Table 10 since PLRUt apparently 
exhibits the same drawback as LRU. Yet, the filling order of the set is a parameter that affects the 
overall performance significantly (see Table 11 and Table 12). Indeed, the replacement strategies 
deduce the future accesses from the previous ones and are then sensible to the first filling. One sees that 
the best improvement is observed for PLRUm but the difference between PLRUt and LRU is not 
negligible too since it is a 0.5 miss for a sequence of 15 elements. This type of loops can be quite 
common in embedded systems where numerous matrix multiplications are called for picture computing 
and telecommunications for instance. The phase called “filling” of the cache corresponds to the state of 
the set before the loop begins and is then strongly dependent on the initialization operations performed 
on the matrix. For this reason, there is no common pattern for the initial state and the 24 possibilities 
must be studied, which is done in Table 12. The importance of the initial state of the cache reflects the 
hysteresis of the considered algorithms. 
 

Start sequence 0123 0132 0231 0213 0312 0321 1023 1032 1203 1230 1302 1320 2013 
LRU 0 1 1 1 2 2 1 2 1 1 2 2 2 
PLRUm 3 4 2 4 5 3 4 5 4 3 5 4 5 
PLRUt 0 1 2 1 2 3 1 2 2 2 3 1 2 
Start sequence 2031 2103 2130 2301 2310 3012 3021 3102 3120 3201 3210 Average 
LRU 2 2 2 2 2 3 3 3 3 3 3 1.92 
PLRUm 3 5 4 3 4 6 4 6 5 4 5 4.17 
PLRUt 3 3 3 3 2 3 4 4 4 4 3 2.42 

Table 12: Number of hits for the Nways+1-step loop with different filling orders 

4. Cache set associativity 

The question seems evident but as it asked only a small additional effort to check it, simulations were 
performed to investigate the impact of associativity on the hit ratio. The results are split in two 
categories: on one hand the reasonable values for implementation and on the other hand the results 



45  Chapter 5 - Replacement policies simulation  

lightening the behaviour of the replacement strategies. This division is performed in accordance with 
the number of requested parallel lookups, which induce important power consumption. 

4.1. 2-way vs. 4-way set associative caches 

4.1.1. Equivalence of the policies 
This simulation allowed us to check the equivalence of LRU, MPLRU, non-MRU, PLRUm, PLRUt, 
Side and 1-bit in a 2-way set associative cache, thereby validating the coded algorithms. In accordance 
with the theoretical equivalence of these strategies for 2-way set associative caches, exactly the same 
hit ratios were observed.  

4.1.2. Impact on hit ratio 
The results of Table 13 demonstrate the performance improvement due to the associativity increase, on 
average 0.5% in gross figures of the hit ratio. The figures are given here for the software because it 
seemed important to stress the data cache as near to reality as possible. The gain is 5-10%, depending 
on the policies and on the memory request patterns. Increasing the associativity releases constraints on 
the placement of a line and then implies less conflict misses. This explains the observed performance 
enhancement that justifies the use of four ways instead of two. This is all the more true as the power 
consumption and the hardware cost of performing four look-ups in parallel are still reasonable. 
 

Replacement policy 1-bit LRU MPLRU PLRUm PLRUt Random 
Round 
Robin 

Side 

4 ways / 2 ways in 
miss ratio 

0.885 0.951 0.923 0.900 0.954 0.921 0.945 0.959 

Table 13: Miss ratio in 4-way and 2-way set associative caches for software averaged over the 
different cache sizes 

 
Specificity of 1-bit.   The specificity of the 1-bit improvement comes from its particular good results 
on the maze program. Indeed, its structure seems very well adapted to such a program. An explanation 
can be obtained by examining the C code in details. First, the structures node and connections are 
respectively 12 and 20-byte wide. Thus, a node lies with two neighbour nodes on its cache line; the 
relative positions inside the line depend on data alignments. The MRU node should be protected from 
eviction in order to be available if the algorithm has to come back from a dead path. All the policies 
perform it but another important point is not to discard the neighbour nodes too because they are very 
likely to be accessed too. Indeed, the nodes are usually numbered so that it is connected to its 
neighbours. This characteristic feature explains the particular good performance of 1-bit.  Apart from 1-
bit, the results are the same for all the replacement policies. In the further study of associativity, only 
the candidates for implementation will then be simulated. 

4.2. High associativity 

Although the increases in power and area of the execution of eight or even sixteen lookups in parallel 
appear as too important, associativities of eight and sixteen were simulated in order to investigate the 
behaviour of the replacement policies. The results are given in Table 14. The selection of benchmarks 
was used to smooth the 1-bit specificity on maze a bit. 
 

Replacement policy 1-bit GRR PLRUm PLRUt 
8 ways / 4 ways in miss ratio 0.997 1.004 1.000 0.998 
16 ways / 8 ways in miss ratio 1.000 1.006 1.003 1.000 

Table 14: Impact of high associativity on miss ratio for software and the selection of benchmarks  
 
Increasing the associativity to eight still yields some improvements. The benchmarks and the software 
applications can be regrouped in two sets: the first one where the improvement is almost zero and the 
other where the enhancement is significant. These comprise maze, telecom_viterbi , 
networking_pktflow , networking_ospf , automotive_matrix  and office_bezier ; they 
correspond to an important working set, which explains that the impact is visible. For the others, only 
side-effects can be detected. Finally, these numbers must be confronted with the improvements 



Study of different cache line replacement algorithms in embedded systems  46 

obtained by the replacement algorithms. An improvement of one percent from 4 to 8 thus appears as a 
quite small increase. Adding it to the cost of lookups, it justifies keeping the current organization. 
 
One notices that increasing to 16 ways is useless. This figure seems strange in the sense that the 
performance degrades with higher associativity but this phenomenon has been already reported in the 
literature [MIL03, ZOU04]. For 1-bit, there is a loss of performance but almost insignificant. This can be 
explained by the fact that the original aim of the algorithm (protect the MRU region) is perverted by the 
fact that the region it protects for high associativity is greater than the MRU region, thereby 
contributing to a pollution of the cache. This is balanced by the impact of the evolution on higher 
associativity caches for programs such as maze.  The phenomenon of the Belady’s anomaly is a well-
known phenomenon for the FIFO algorithm [BEL69]. GRR obviously presents the same anomaly, 
which can partially explain the above evolution.  
 
Sequence 3 2 1 0 3 4 1 2 3 4 0 2 3 1 0 
3-way                

way 0 3 3 3 0 0 4 4 2 2 4 4 2 2 1 1 
way 1 - 2 2 2 3 3 3 3 3 3 3 3 3 3 3 
way 2 - - 1 1 1 1 1 1 1 1 0 0 0 0 0 

status bits 001 011 100 101 010 011 100 101 010 011 100 101 010 011 100 
4-way                

way 0 3 3 3 3 3 3 3 2 2 2 0 0 0 1 1 
way 1 - 2 2 2 2 4 4 4 3 3 3 2 2 2 0 
way 2 - - 1 1 1 1 1 1 1 1 1 1 3 3 3 
way 3 - - - 0 0 0 0 0 0 4 4 4 4 4 4 

status bits 0001 0011 0111 1000 1001 1011 0100 0101 0111 1000 1001 1011 0100 0101 0111 
Table 15: Equivalent of Belady’s anomaly for PLRUm 

 
Belady’s anomaly for PLRUm.  Like Round Robin, PLRUm exhibits Belady’s anomaly as it is shown 
in Table 15 where the accesses resulting in a miss are highlighted in grey. The number of misses is 11 
for the 3-way implementation and 13 for the 4-way implementation. Belady’s anomaly comes from the 
reset phase which induced an erroneous assignment of the pseudo-LRU block on step 6. Although 
Belady’s anomaly is a well-known phenomenon and though pseudo-LRUs are widespread in the 
industrial world, it is surprisingly the first time such a phenomenon is reported, at least at the 
knowledge of the author of this thesis and of its researches through the internet. Besides, this anomaly 
could significantly affect the overall behaviour since it seems a not so rare situation and can be easily 
encountered in implementations allowing the designer to lock some ways. 

5. Conclusion: which replacement algorithms will be selected? 

In pursuance of the detailed investigation performed in this chapter, three candidates are eligible for 
implementation: 

- PLRUm: its performance is the best one observed, it can easily be implemented in 
hardware. Unfortunately, it requires four bits per set, which is one more than PLRUt. It 
can be a crucial design criterion when there is a large number of cache lines, 

- PLRUt: it is a very good approximation of the LRU algorithm, although it is always 
outperformed by PLRUm. Whereas its encoding/decoding is a bit more complex than 
the PLRUm one, it requires only three bits per cache set, thereby saving some storage 
space in comparison with PLRUm. This could be a clincher for the implementation 
where a status bits cache is designed, 

- 1-bit: it performs quite well, almost in the same range as PLRUt but is also unsteady. 
Furthermore, it raises the problem of generating truly random sequences for the 
selection of the evicted line among a set half. Nevertheless, it should be acceptable, 
considering its low designing cost and the final decision concerning this strategy will 
be taken in the next chapter. 

 
The other replacement algorithms do not suit the aims of this thesis: either their performance is not 
sufficient or they design cost is too important. The replacement policies studied further are then the two 
pseudo-LRU algorithms PLRUt and PLRU as well as the 1-bit strategy. 



47  Chapter 6 - The cache implementation  

 
 
 

Chapter 6  
 
The cache implementation 
 
 
 
 
Theory is when everything is known but nothing works. Practice is when everything works but nobody knows why. 
If practice and theory are spliced, nothing works and nobody knows why. 

 
A. Einstein 

 
 
 
In the previous chapter, different replacement policies were studied and their impact was compared 
with their estimated designing cost. The choice of different candidates naturally leads us to deal with 
the different solutions for implementation. They will be presented in this chapter but before dealing 
with the details of each proposal, general characteristics common to the three implementations are 
handled, among them replacement policies’ hardware description.  
 

1. Replacement policies implementation 

The specific characteristics of the ARM11 architecture, which will have to be handled in this thesis and 
which have already been presented in Chapter 4, are briefly addressed here as well as their interactions 
with the replacement strategies. 

1.1. Integration of the lockdown feature 

As it has already been stated in Chapter 4, the ways of the data cache can be locked: they must not be 
replaced and not considered as candidates for eviction by the replacement policy. This feature can be 
handled thanks to the following methods suggested for each algorithm: 
 
1-bit: if the bit points to a completely locked half, the discarded way is randomly chosen among the 
MRU group. Otherwise, the random selection is performed in the pointed half. 
 
PLRUm: while examining the ways to see if a reset is required, the locked ways must be counted as 1 
even if their status bit is 0. On update, they must also be considered as high. During the reinitialization 
of the status bits, the bits corresponding to the locked ways must be set to 1 too. 
 
PLRUt: the situation depends on bit 0. If it points to a fully locked half, it must be inversed provided 
that the other half is not locked too. Though a complete locked set is a situation rejected by the ARM11 
specification, this algorithm is able to handle it. Otherwise, the bit only stands for the negation of the 
hit half. The process is identical for bits 1 and 2 except that these bits represent a fully locked group. In 
this case, it is decided that they point to their first half (i.e. they are set to 0). 
 
Therefore, the locked ways are always considered as locked, on update as well as on allocation; thereby 
avoiding any conflict between the lockdown feature and the integration of a new replacement policy in 
the ARM11 architecture. In respect with the specification, the lockdown is reversible for the 
replacement policy too. At any moment, the ways can be locked/unlocked and the replacement strategy 
will immediately adapt its computations.  
 



Study of different cache line replacement algorithms in embedded systems  48 

The only point is that the algorithm remembers these ways as recently accessed. Yet, removing the 
locking on these ways is a programmer action, thereby surely meaning that these data are useless now 
and can be evicted not to pollute the cache.  The implemented solution does not take care of this but it 
should be an interesting improvement for the system to test: while removing the locking on some ways, 
these ways are marked as LRU on their next accesses. Of course, this would imply many technical 
issues since a cleaning of these status bits could not occur without degrading significantly the current 
performance. A solution would be to perform this modification only on the next access on this set but it 
assumes that the information whether the modification has been done and which ways have been 
unlocked should be stored somewhere. Because of these technical problems, the lack of time and the 
quite rare occurrence of these patterns, this potential enhancement was not studied in this thesis. 
However, it should be an interesting idea for further works on neighbouring themes. 

1.2. Hazards 

Like any digital systems, the data side architecture is faced with hazards that have already been solved 
by the ARM engineers. These issues are briefly addressed in this subsection to evaluate their impact on 
the considered implementations. The other hazards that are specific to the proposals of implementation 
will be handled in the following sections. 
 
RAW (Read After Write) and WAR (Write After Read).    These patterns do not modify the updated 
status bits because they access the same data cache line sequentially. Indeed, accessing twice the same 
line is transparent for the replacement policies because the status bits point to the same evicted line or 
evicted group. 
 
Cache line hazards.   If the data has been modified between the lookup phase and the write of a data, a 
new cache lookup is performed. Thus, a new computation of the status bits will be done; which makes 
the status bit compliant with the state of the line. 

1.3. Updating the status bits 

Before addressing the different implementations in details, the updating process of the different 
algorithms are dealt with in this section. They are independent of the implementation and it will allow 
us examining the impact of the replacement policy in terms of gates and power. The signal way,  
present in the codes below, is either the data cache hit way or the way used by allocation, write… The 
other signals’ names are transparent. In the codes below, the following convention is applied: all 
signals whose name is *_reg  are flip-flops, those which finish in _i  are inputs of the module.  

1.3.1. Sharing the updating hardware 
Since only one data cache set is accessed at a given time, there is a need for a single status bit updater 
for the data cache. The hardware may be shared among all the data cache sets. Yet, the presence of 
modules dedicated in the RAM and of buffers on some of the implementations presented in this chapter 
will increase the need of updating modules to three or four. This result depends on the implementation 
and will be addressed in details in the next sections. 

1.3.2. 1-bit 
The Verilog code of the updating process for 1-bit policy is shown below. It is a bit more complicate 
than the original algorithm to take care of the locked ways.  

 
wire       first_half; 
wire       second_half; 
wire       first_half_locked; 
wire       second_half_locked;    
wire       updated_sb; 
reg [3:0]  lfsr_reg; 
wire       lfsr_feedback; 
 

// Before updating, a check on locking is performed 
assign first_half_locked  = cp15_locked_ways_i[0] & & cp15_locked_ways_i[1]; 
assign second_half_locked = cp15_locked_ways_i[2] & & cp15_locked_ways_i[3]; 

 
// Update with 1-bit 



49  Chapter 6 - The cache implementation  

assign first_half  = way[0] || way[1]; 
assign second_half = way[2] || way[3];     
assign updated_sb  = (first_half && ~second_half_lo cked) || first_half_locked; 
 

// Assigning the way to evict 
always @(posedge clk_i or negedge nreset_i) 
  if (~nreset_i) lfsr_reg <= 4’b0100; 
  else lfsr_reg <= { lfsr_reg[2:0], lfsr_feedback};  
 
assign lfsr_feedback       = ~(lfsr_reg[2] ^ lfsr_r eg[3]); 
assign alloc_way_busy_1bit = { status_bits_reg &&  lfsr_reg[3], 
         status_bits_reg && ~lfsr_reg[3],  
        ~status_bits_reg &&  lfsr_reg[3], 
        ~status_bits_reg && ~lfsr_reg[3]}; 

 
Code 1: 1-bit allocation and update of the status bits with lockdown feature 

 
The overall required hardware for the 1-bit policy is thus around 10 gates and one 4-bit register with 
negative reset for the generation of the random sequence. The random sequence is performed thanks to 
a Linear Feedback Shift Register whose tap configuration is optimal according to [XIL96].  The LFSR 
width is a good compromise between the wanted performance and the hardware cost. Nevertheless, it 
should be easily modified to be nearer to a truly random sequence by incrementing the width of the 
LFSR sequence. This study will be performed in Section 6.2.5. The initial value set on a reset is not 
important, provided that it is non zero. Eventually, the cost of the implementation of the 1-bit policy is 
negligible in amount, area and power. 

1.3.3. PLRUm 
Let us write Verilog code which implements the update of the PLRUm status bits and compute the 
allocated way in Code 2. The status bits are first modified to be compliant with the current locked 
ways. Then the update is performed in accordance with the hit information. If the lookup resulted in a 
miss, the computation of the way to discard is based on the status bits altered to take the lockdown in 
account. 
 

wire       reset_status_bits; 
wire [3:0] new_status_bits; 
wire [3:0] status_bits_pregated; 
wire [3:0] sb_initial_value; 
wire [3:0] sb_initial_value_int; 
     

//Locked ways must be considered locked 
assign status_bits_pregated    = status_bits_reg | cp15_locked_ways_i; 
assign status_bits_gated_plrum = (&status_bits_preg ated) ? cp15_locked_ways_i : 
status_bits_pregated; 
  

//Update of the status bits with PLRUm       
assign sb_initial_value_int       = cp15_locked_way s_i | plru_way; 
assign sb_initial_value           = (&sb_initial_va lue_int) ? cp15_locked_ways_i : 
sb_initial_value_int; 
assign new_status_bits            = plru_way | stat us_bits_gated_plrum; 
assign reset_status_bits          = &new_status_bit s; 
assign updated_status_bits_plrum  = ( {4{reset_stat us_bits}} & sb_initial_value) | 
( {4{~reset_status_bits}} & new_status_bits); 
 

//Allocation of the evicted way with PLRUm 
assign status_bits_alloc_init = status_bits_reg | l fb_cp15_locked_ways; 
assign status_bits_alloc      = (&status_bits_alloc _init) ? lfb_cp15_locked_ways : 
status_bits_alloc_init; 

       
always @(status_bits_alloc)    
  if (~status_bits_alloc[0]) alloc_way_busy_plrum =  4'b0001; 
  else if (~status_bits_alloc[1]) alloc_way_busy_pl rum = 4'b0010; 
  else if (~status_bits_alloc[2]) alloc_way_busy_pl rum = 4'b0100; 
  else if (~status_bits_alloc[3]) alloc_way_busy_pl rum = 4'b1000;  
  else alloc_way_busy_plrum = 4'bXXXX; 
 

Code 2: PLRUm allocation and update of the status bits with lockdown feature 
 



Study of different cache line replacement algorithms in embedded systems  50 

On examination of the code, one notices that around 60 gates and a 4-bit register with asynchronous 
negative reset are required. Once again, this can be considered as negligible in amount of gates and 
power in comparison with the figures of the core. 

1.3.4. PLRUt 
Let us write Verilog code which implements a PLRUt status bits update, in order to evaluate the area of 
these update features. This is done in Code 3. The process is similar to the one presented for PLRUm. 
 

wire [3:0] updated_plrut;       
wire       first_half; 
wire       second_half; 
wire       first_half_locked; 
wire       second_half_locked; 
    

// Before updating, check on locking is performed 
assign first_half_locked  = cp15_locked_ways_i[0] & & cp15_locked_ways_i[1]; 
assign second_half_locked = cp15_locked_ways_i[2] & & cp15_locked_ways_i[3]; 
assign first_half         = way[0] || way[1]; 
assign second_half        = way[2] || way[3]; 
 

// Update with PLRUt 
assign updated_plrut[0] = (first_half && ~second_ha lf_locked)|| first_half_locked; 
assign updated_plrut[1] = cp15_locked_ways_i[0] || (~cp15_locked_ways_i[1] &&    

(first_half && way[0] || second_half && status_bits _reg[1])); 
assign updated_plrut[2] = cp15_locked_ways_i[2] || (~cp15_locked_ways_i[3] && 

(second_half && plru_way[2] || first_half && status _bits_reg[2])); 
assign updated_status_bits_plrut[3] = 0;     
 

// Allocation of the evicted way with PLRUt 
assign lfb_first_half_locked  = lfb_cp15_locked_way s[0] & lfb_cp15_locked_ways[1]; 
assign lfb_second_half_locked = lfb_cp15_locked_way s[2] & lfb_cp15_locked_ways[3];    
assign sb_gated_plrut[0] = lfb_first_half_locked ||  (~lfb_second_half_locked && 
status_bits_reg[0]); 
assign sb_gated_plrut[1] = lfb_cp15_locked_ways[0] || (~lfb_cp15_locked_ways[1] && 
status_bits_reg[1]); 
assign sb_gated_plrut[2] = lfb_cp15_locked_ways[2] || (~lfb_cp15_locked_ways[3] && 
status_bits_reg[2]); 
assign alloc_way_busy_plrut ={sb_gated_plrut[0] &&  sb_gated_plrut[2],   
                              sb_gated_plrut[0] && ~sb_gated_plrut[2],  
                             ~sb_gated_plrut[0] &&  sb_gated_plrut[1],  
                             ~sb_gated_plrut[0] &&  sb_gated_plrut[1]}; 
 

Code 3: PLRUt allocation and update of the status bits with lockdown feature 
 
The PLRUt updating and allocating module is estimated to around 30 gates and a 4-bit register. The 
difference between the figures of the two pseudo-LRUs may question. However, this is explained by 
the nature of the algorithms. Indeed, PLRUm must not only modify the original status bits in regards 
with the locked ways like PLRUt but also perform a reset check on these status bits. This additional 
step is the origin of the additional hardware and of its improved performance. Nevertheless, the two 
implementations require a negligible amount of hardware and their power consumption will be 
insignificant too. 
 
The required hardware for updating the status bits is negligible for the three different policies. Registers 
storing the status bits must be added to this estimation, but it is only four flip-flops… The power 
consumption will be insignificant too. The update is one of the two aspects of the replacement policy, 
the other being assigning the evicted way. This is the theme of the next subsection. 

1.4. Allocating a way 

The question of allocating a way can appear simple at first glimpse. However, it must be noticed that 
the allocation is not immediate: the Line Fill Buffers require time to fetch the data and only then 
request an access to the Data RAMs. As a result, there is here a possibility of hazards: a way of a set 
may be allocated twice successively, thereby leading to the eviction of the MRU line. Fortunately, this 
can be quite easily solved by storing the last allocated lines in registers. According to the specification, 
only two successive misses dealt by the Line Fill Buffers will not stall the processor. Consequently, 
keeping information about the two last allocated lines and their index will enable avoiding these 



51  Chapter 6 - The cache implementation  

hazards. Of course, this piece of information is erased once the corresponding allocation has been 
performed. These lines will then be considered as temporarily locked by the replacement policies if the 
index matches the index of the current access. This complicates the allocation of the way by the 
algorithm but is necessary. After all, it adds only some gates but the cost is more important for 
registers. The 9-bit wide index as well as the way must be stored, thereby increasing the overall gates 
by an amount of 26 registers. Considering the importance of such a hazard which may lead to 
inefficient replacements of the MRU line of a set, this cost is acceptable and the solution approved. The 
codes presented above already integrate this feature: the signal lfb_cp15_locked_ways  integrates 
the locked ways and the way where the Line Fill Buffers will write if the current index matches the 
allocated indexes. 
 
According to the codes given above, the hardware required for updating the status bits and allocating 
the way to discard in accordance with these policies is negligible in comparison with the size of a 
processor. The real impact on the system will be the access to the status bits and the way they will be 
stored and accessed. This issue is addressed in the next section. 

2. Status bits implementation 

2.1. How to update the status bits 

When the hit information about a memory request is available, the address presented at the RAMs has 
already changed and may differ from the data address of the hit/miss computed in hit stage. It is thus 
impossible to update directly the status bits in the RAM as soon as we receive the old status bits 
because they would be written to a wrong address or an erroneous update based on wrong hit 
information would be computed. A specific system ensuring the status bits to be written must be 
designed. In the implementations presented here, the updated status bits are computed by module hit 
stage. This calculation can be done only when the hit/miss and hit way computation are performed. 
Status bits thus need to be registered before updating, which explains the 4-bit registers already counted 
in the previous section. According to the estimations of the previous subsections, only four stages of 
basic gates are required, which should not constrain further the critical path in hit stage since equivalent 
operations are performed in the current implementation. 

2.2. Storage of the status bits 

The replacement policies evoked in the previous chapters need to store pieces of information for each 
data cache index. This observation raises the issue of storing these additional bits. The different 
considered solutions are presented in the subsections above. Hereafter, the term status bit group will be 
used to designate the status bits of a data cache set. For PLRUm, it would be four-bit wide and for 
PLRUt only three.  

2.2.1. Flip-flops 
The first solution is to store the status bits in flip-flops. As the status bits can be read for memory 
access n+1 and updated for memory access n during the same clock period, there would be two 
different addresses: one for writing and one for reading. It would suppose to latch the data address at 
the output of the arbiter to ensure that this address is available when the hit stage module computes the 
updated value. There should be some hazard if read and write addresses are equal but this can be 
further studied and solved if this solution will finally be chosen.  
 
The advantage of this solution is its simplicity of implementation but it is at the price of gates. Indeed, 
it would require for a 64 KB cache 512 N flip flops (N is the number of bits required by the 
replacement policy from 1 for 1-bit to 5 for LRU in our encoding) and 2 9-bit decoders handling 
accesses to the different flip-flops.  

2.2.2. Reuse the available RAMs 
Because of the large size and the important consumption of the flip-flops, another solution has been 
naturally investigated: storing the status bits in one of the available RAMs. Indeed, the data side is 
already provided with RAMs which store tags, dirty bits, modified bits, MESI bits… The two 
possibilities are examined: Dirty RAM and Tag RAM. 



Study of different cache line replacement algorithms in embedded systems  52 

 
Dirty RAM.   The Dirty RAM presents the advantage of being more natural because it is a stock per 
set. We will need up to four bits so there is enough space and keeps the advantage of modularity for the 
choice of the replacement policy.  
 
Tag RAM.   This possibility seems not very functional because the information is specific to a cache 
set and not to a way but one bit per way can be stored in each Tag RAM. This solution would be 
practical for PLRUm but wastes space and gives strange control for the other replacement policies. 
Moreover, it would require activating the four Tag RAMs to get the status bits whereas the Dirty RAM 
will require powering on only one RAM. Definitely, it does not appear to be the smartest choice. 
 
Reusing the Dirty RAM and not the Tag RAM seems a more efficient and less power consuming 
possibility. The drive of the enable signals on sequential accesses would have to be modified a bit with 
this solution. The main advantage is to be integrated in the actual architecture and then does not require 
any additional control hardware for the access itself. A lot of area is also saved by avoiding so many 
flip flops. Finally, only a few additional bits are required so there remains “virtual free bits” for future 
evolutions. 
 

 
Figure 28: Memory requests of a core on a test bench 

 
The inconvenient is the growing complexity to deal with the RAM but it allows us to include ourselves 
in the actual architecture and to mime the manner the hazards are solved. Moreover, there will be a loss 
of cycles for non-sequential reads to allow storing the updated status bits. Fortunately, this will not be 
seen by the core provided that the read data will be available at the same moment as before. As the 
ModelSim simulation shows (see Figure 28), there are usually a quite important number of cycles 
between two memory requests from the core, thereby giving us the possibility to use some of these 
“lazy” cycles to store our updated bits. 

2.2.3. A new RAM  
The solutions above present some important drawbacks in terms of power: the Dirty RAM has to be 
activated on almost each cache access… Therefore, the creation of a dedicated RAM has been studied. 
Indeed, the accessed data are neighbours in time or in space in virtue of the principle of locality. This 
principle will also apply to the requested cache sets. Consequently, many accesses to the RAM could 
be merged, thereby saving power. This gain could be even more significant if this RAM is endowed 
with a small fully-associative cache, which would enable updating the status bits in the same cycle as 
the hit information is provided.  
 
 
The main problems considering the storage of the status bits have been addressed in the two sections 
above. Three possibilities of implementation emerged from the previous study: 

- reusing the Dirty RAM for its simplicity of implementation and its probably interesting 
results, 

- storing the status bits in a dedicated RAM in order to merge the different accesses and 
saves some power, 

- storing the status bits in a dedicated RAM endowed with a small fully-associative 
cache in order to decrease the number of power consuming RAM accesses. 

These propositions are examined in details in the following sections. Their advantages and drawbacks 
will be evoked, thereby leading us to the final choice of implementation. 

3. In the Dirty RAM 

The implementation inside the Dirty RAM is developed below and the resulting architecture is given 
on Figure 29. On this figure as well as on Figure 30 and Figure 32, the modules that should be 
significantly modified are represented in orange whereas the blue colour stands for created modules 
and connections. 



53  Chapter 6 - The cache implementation  

 
Figure 29: Architecture of the Dirty RAM solution 

3.1. Creation of a status slots module 

In the previous section, it has been shown that the updated bits cannot be stored as soon as they are 
available and thus some clock cycles could be wasted. In order to avoid stalling the RAM while storing 
the updated status bits, a small module is created in which the updated status bits to be stored are 
stocked, waiting for the arbiter to give them access to the RAMs. This module will be called the status 
slots module. The advantage of this solution is to access the RAM only when no other module requests 
it. Provided that the module is well-dimensioned, it will not influence the replacement policy’s 
performance but will induce a better usage of the lazy cycles presented on Figure 28. 

3.1.1. Priority of the module 
The system performance is dictated by the core thus its requests must have priority for accessing to the 
RAMs. This would be a pity if the increase in performance due to the new replacement policy would be 
compensated by delaying core memory accesses (particularly the sequential ones). To avoid this 
situation, the module should be granted a low priority even lower than the Store Buffer: the other 
features are essential for the functioning, not ours. As there are unused clock cycles, the update is able 
to be performed later.  

3.1.2. Dimensioning the status slots module 
The module is divided into slots, each of them corresponding to the status bits of a single cache set. 
Therefore it stores thirteen bits, four of them being the binary representation of the status bits and the 
nine remaining encoding the cache set information. A good comparison for the dimensioning of this 
module is the size of the Store Buffers and of the Slots Unit, which are approximately faced with the 
same workload. Considering that the new module will receive fewer requests than these slotsa, three or 
four slots should be sufficient. However, it must be noticed that the module is given the least priority, 
thus it will be difficult for it to be granted access, which balances the observation of a less important 
traffic. As a result, four or five slots should be a good compromise. Of course, the implementation is 
worthy as long as there are lazy cycles to avoid losing too many status bits. Indeed, if the module is 
full, the LRU information for the corresponding set will be lost since it is non-essential for the 
functioning of the data side. This comparison with the Store Buffer and the Status Slots Unit is all the 
                                                           
a As it is explained on the behaviour of the module in the subsections below, the Status Slots Unit will 
receive only the lookups that resulted in a hit. 

STB 

Status 
Slots 

Store Buffer 

Integer core 

Slots 

Slot 0 Slot 1 Slot 2 

Micro 
TLB 

Translation 
Lookaside 

Buffer 

Arbiter 

 
Dirty 
RAM 

 
Tag 
RAM 

 
Data  
RAM 

Cache 
Coherency 
Controller 

CP15 
controller 

Exclusive 
Monitor 

Hit stage 

Data return path 

Cache 

Droute 

Bus 
Interface 

Unit 

Slot 

LineFill Buffer 0 LineFill Buffer 1 Eviction Buffer 

Integer core 

 Bus Interface  
   Unit (BIU) 



Study of different cache line replacement algorithms in embedded systems  54 

more valid since the Status Slots Unit will be able to merge data which are already present with new 
data. The data being regrouped in the Status Slots Unit, the locality should be even stronger. 

3.2. Actions on memory requests 

We have seen that the status slots module will receive the updated status bits and store them before 
writing them back when it receives grant from the arbiter. Unfortunately, this situation wastes some 
clock cycles only to update the status bits and is consequently not optimal. As a result, the storing of 
the updated status bits can be improved by performing it meanwhile other cache actions occurring at 
the same data cache index: eviction, invalidation, data write of a write request, second sequential access 
of a burst… This optimization is enabled by the correlation of these actions: either the last one induced 
the modification of the status bits, or they result from a cache action which implied the update of the 
status bits too. This optimization has also drawbacks: the updated status bits ready to be stored back in 
the Dirty RAM can be stored on different emplacements, not only the status slots module but other 
modules too. However, each of these modules has an exclusive copy: only this module and the RAM 
own the status bits of the set. When a module owns a copy, the RAM copy is dirty and the module one 
is clean. When no module owns the cache set status bits, the copy in the RAM is up to date. This issue 
is dealt with in much more details in Section 3.3. 
 
In the subsections below, it is thus assumed that the status bits entering the hit stage module are up to 
date and it is not cared where they come from. The different types of cache actions available in the data 
side of the ARM11 MPCore processor are addressed below and are the following: 

- read request: sequential or not, 
- write request: sequential or not, 
- eviction of a line, 
- invalidation of a line. 

3.2.1. Read requests 
If the lookup results in a miss, the allocated way is deduced from the status bits and then sent to the 
Slots Unit. In case of hit, the hit stage also computes the updated status bits. The action then depends 
on the type of the transaction: 

- if it is a sequential access (i.e. burst), the second sequential accessa (if it exists) can be 
used to update the status bits. Indeed, the sequential requests access to the same line 
and thus do not alter the status bits. So, the Slots Unit can write the update bits on a 
sequential access. The Dirty RAM must be specifically enabled for this purpose during 
the second sequential access. 

- if it is not sequential or if the sequentiality is less than 3, the updated status bits are sent 
to the status slots module. This sequentiality is known by the Slots Unit and it should 
forward this signal to the status slots module for it to be aware of taking the updated 
status bits on a hit or not. 

This feature may save a bit clock cycles but may not be implemented in a first version. 

3.2.2. Line Fill 
During a line fill, all the information relevant to the line is written; among them some are stored in the 
Dirty RAM. As a result, it seems possible to write the updated status bits in the same time as the 
dirtiness information. Three solutions were considered: 

- The Line Fill Buffer writes itself the updated status bits and fetches them from hit stage 
on a miss. The role of hit stage here is only to transmit the status bits. The drawback of 
the implementation is that the two Line Fill Buffers must be significantly modified and 
that the storage for the status bits should be added to each buffer (up to 5 bits). It 
creates a copy of the status bits in a different module and may create additional 
conflicts.  Nevertheless, it appears efficient in the sense that it optimizes the RAM 
access usage, 

- The status bits are stored in the status slots on miss too and the Line Fill Buffer gets 
them when granted access. This assumes that the Line Fill Buffer communicates with 

                                                           
a The second sequential access is the third access of the burst. Indeed, the first one has never been 
considered as sequential since the second access is required to compute it. The information is thus 
really available on the third one. 



55  Chapter 6 - The cache implementation  

the status slots before being granted; which is quite complex and somehow far from 
optimal because it introduces unnecessary communication in the system, 

- The Line Fill Buffer does not write the updated status bits and does not store it. It is left 
to the Status Slots Unit but the utilization of the RAM accesses is then non optimal. 

The first solution is preached despite its greater complexity since it should have strong positive effects 
on the power consumption. 

3.2.3. Write requests 
The hit stage computes the updated status bits and forwards them to the Line Fill Buffer and to the 
Store Buffer. If it is a hit, the Store Buffer accepts it and the Line Fill Buffer does not. On a miss, it is 
the opposite. The case of a write miss is so managed by a Line Fill Buffer. These requests have already 
been evoked in the previous section so only the write lookups resulting in a hit are considered further 
here. 
 
On a hit, the Store Buffer stores the updated status bits in a slot and then requests the arbiter an access 
to the RAMs as usual. When it gets grant, it will store the updated status bits in the Dirty RAM while it 
stores the data in the cache. The Store Buffer thus plays an equivalent role to the Line Fill Buffers: it 
stores the updated status bits which it will soon be able to write in the Dirty RAM. Some bits must also 
be added to the basic slot to make this solution feasible. 

3.2.4. Eviction 
The line is marked as invalid and is now recognized as free by the replacement policies. These 
algorithms taking care of this piece of information, there is no need to modify the status bits on 
eviction; it will be done when the set of the line will be used again.  

3.3. Obtaining the up-to-date version of the status bits 

The status bits are stored in the Dirty RAM and in different modules: STB, status slots, LFB0, LFB1… 
The exclusivity of this copy among the modules has been admitted. This hypothesis is checked after 
examination of the actions on different memory requests. Indeed, it has been shown by construction 
that only one module receives the status bits for a given action and these status bits are the most recent 
ones. Therefore, either a single module has the up-to-date version of the status bits and the Dirty RAM 
a dirty copy of it or no module is in possession of it and the up-to-date copy lies in the RAM.  
 
As a result, while the address is presented to the RAMs, it can also be sent to the storing elements 
which will transmit whether they own the given status bits. This lookup will be fast because it is 
performed on flip-flops and it is a parallel execution across all the modules that forward the ownership 
information to the hit stage module (this signal must be gated to arrive at the same time as the data 
from the RAMs). If none of the signals is high, the status bits from the RAM are up to date. If one of 
them is high, the status bits from the given module are taken. This allows us to get the up to date 
version of the status bits. This feature relies on the property demonstrated in the previous paragraph. 

3.4. Sum up 

Compared with the ARM11 MPCore processor version, the additions are: 
- the Status Slots Unit (five 13-bit registers, five 9-bit comparators and the control logic), 
- Line Fill Buffer: 2x4 bits and 2 comparators and a few gates to handle these registers, 
- Store Buffer: 4x4 bits, 4 comparators and a little logic, 
- logic for updating the status bits (roughly 10 registers and 50-100 gates per algorithm) 
- Slots Unit: 3x4 bits and the logic needed to handle the specificity of sequentiality. 

 
These elements seem quite acceptable additions for the implementation of a new system. However, 
attempts to reach optimality as near as possible (particularly in consumption) lead us to implement a 
solution where the status bits are widespread in the system. Exclusivity should be ensured but it seems 
a quite intricate system to manage and source of numerous hazards (especially if the killing signals and 
other ARM11 optimizations are taken into account). Combining this with the numerous writings in the 
Dirty RAM, it makes us thinking of a new implementation. The first idea is to store the status bits in an 



Study of different cache line replacement algorithms in embedded systems  56 

external RAM, where a line will store different status bit groups. This solution relies on the principle of 
locality and should yield interesting enhancements. The detailed study is presented below. 

4. In a new RAM 

Using the Dirty RAM presented the drawback of accessing a whole RAM line to store the updated 
status bits whereas the other components of the line still remain unchanged in most cases. This 
proposal is then far from optimal. Moreover, it is possible to take more advantage of the principle of 
locality: a separated RAM solution would allow us to order the RAM in a more efficient way by 
regrouping neighbouring sets, thereby decreasing the amount of accesses to the RAM and thus saving 
power. This is beneficial provided that a significant amount of accesses is merged. Apart from the 
organization of the RAM, which is dealt with in the following subsection, the designed system is 
almost the same as the previous solution. For this reason, the other parts are briefly addressed at the end 
of this section. The resulting architecture is drawn on Figure 30. 
 

 
Figure 30: Architecture with the new RAM solution 

4.1. The RAM 

We suppose that a new RAM is created where four status bits groups are located on the same line. This 
figure can be explained by the capacity of the RAMs. The single information that must be stored on a 
status bit RAM line is the status bits groups. For the sake of convenience and of decoding of the 
addresses, it is a common solution that the number of ways is a multiple of two. Indeed, the address 
cutting is very simple and fast – one of the major points of concern – for these configurations. The 
replacement policies that have been evaluated as candidates for implementation require up to four bits 
per status bit group. If four sets are stored, the required storage is sixteen bits for the replacement 
strategy.  For the next step (eight status bit groups), thirty two bits must be stored, which would be an 
acceptable figure for the RAM. However, this choice also impacts on the slots module. Indeed, the 
implementation of a slot will require keeping track not only of the status bits but also of the status bit 
tag. For a data cache size of 64 KB, there are 512 sets. If we store 4 status bit groups, the status bit tag 
will be 7-bit wide and 6-bit wide for 8 status bit group. A slot of the slots module must then contain: 

- 8x4 + 6 = 38 bits if 8 status bit group are stored per status bit RAM line, 
- 4x4 + 7 = 23 bits for 4 status bit groups. 

Of course, this is multiplied by the number of slots of the slot module. Therefore, saving four status bit 
group seems a good compromise to avoid adding numerous registers which are power consuming. 
 

STB 

Status 
Slots 

Store Buffer 

Integer core 

Slots 

Slot 0 Slot 1 Slot 2 

Micro 
TLB 

Translation 
Lookaside 

Buffer 

Arbiter 

 
Dirty 
RAM 

 
Tag  
RAM 

 
Data  
RAM 

Cache 
Coherency 
Controller 

CP15 
controller 

Exclusive 
Monitor 

Hit stage 

Data return path 

Cache 

Droute 

Bus 
Interface 

Unit 

Slot 

LineFill Buffer 0 LineFill Buffer 1 Eviction Buffer 

Integer core 

 Bus Interface  
   Unit (BIU) 

 
Status  

Bit  
RAM 



57  Chapter 6 - The cache implementation  

Using the previous data, it is deduced that the created RAM has up to 128 lines. Therefore, addressing 
it requires seven bits which are derived from the RAM 32-bit address. Applying the same reasoning as 
in Chapter 2 Section 2.5.3, one deduces that these seven bits are the MSBs (Most Significant Bit) of the 
index part of the address. The cutting is therefore: 
 

 
Figure 31: Addressing the status bit RAM 

 
At the output of the RAM, the full 16-bit wide line is forwarded. A multiplexer (whose selector will be 
the two LSBs (Least Significant Bit) of the index part of the address) multiplexes them and yields the 
requested output.  

4.2. Slots module 

The slots module is adapted in the same manner to this new storage. The external constraints applied to 
the module in terms of power and capacity differs a bit from the first implementation. Indeed, the only 
significant difference is the width of a slot but this issue has already partially been taken into account 
while ordering the status bit RAM.  However, the greater width of the slot makes us select 
preferentially a solution with a bit fewer slots: two should be sufficient when it is noticed that a slot 
corresponds to 16 data cache lines and that there are “only” two Line Fill Buffers. Thus, a slot stores 16 
bits for the replacement policy and 7 bits for the Status Bit Cache tag. This is consistent with the higher 
locality of the module. 
 
In opposition to the first implementation, the merging feature will be critical here. On free cycles, the 
slots module will be granted access to the RAM and will update the corresponding lines. It should be 
noticed that there is no need to enable the other RAMs when this module is granted access. If the buffer 
is full, the LRU information will simply be lost because it is not strictly required for the core to operate 
correctly. The merging feature helps limiting the number of slots to only two. 

4.3. Actions on memory requests 

The situation is identical to the first proposal except that the status bit RAM will be checked and 
invoked instead of the Dirty RAM when stated before. Therefore, this version is faced with the 
widespread of the status bits through the system too. It must be highlighted that all the memory 
requests are read for the status bit module. The single difference between writes and reads is that the 
cache hit way is used for the read requests whereas the specified way is invoked for the write and 
allocation requests. The writes on the Status Bit Cache is then performed by the updater module. 

4.4. Sum up 

In comparison with the original ARM11 MPCore processor implementation, the additional hardware is: 
- the Status Slots Unit (two 23-bit registers, two 7-bit comparators and a few gates to 

handle the registers), 
- Line Fill Buffer: 2x4 bits, 2 comparators and a little logic, 
- Store Buffer: 4x4 bits and 4 comparators, 
- logic for updating the status bits (around 10 registers and 50-100 gates per algorithm), 
- Slots Unit: 3x4 bits as well as the logic required to handle the specificity of 

sequentiality. 
 
One of the important improvements is to take further advantage of locality: different accesses to 
neighbouring sets are merged, thereby preventing from sending write requests to the RAM. However, 
the other drawbacks of the first implementation remain. Among them the necessity of going through 
the arbiter and a still important amount of requests to the RAM can be cited. It is observed that the 
module can act nearly as a cache if the workload from the core is sufficient. This remark sows the seeds 



Study of different cache line replacement algorithms in embedded systems  58 

of an idea of improvement: avoiding even further useless accesses to the RAMs which are power 
consuming by endowing the status bit RAM with its own dedicated cache. This solution that is 
implemented in this work is dealt with in the next section. 

5. In a new RAM with a small cache 

Taking further advantage of the principle of locality, this implementation should avoid useless accesses 
to the RAM and thus will save power. The status bit RAM is named hereafter SBT (Status Bit Table) 
and the cache of the SBT is SBC (Status Bit Cache).  The architecture is presented graphically below. 
The newly created modules are drawn in blue. 
 
 

 
Figure 32: Architecture of the RAM and cache solution 

 
This solution will be advantageous as long as the creation of the cache allows us to save clock cycles 
and thus to update directly the status bits, as soon as the hit information is known. Therefore the SBC 
must be implemented in logic (flip-flops). It implies a small cache size but ensures full associativity 
and requires less power. An order of 16 should be well adapted, which is confronted to simulations in 
the next subsection. 
 
The updating feature is now performed by the update module which is also responsible for computing 
the evicting line. Since this module is integrated in hit stage, there is no modification with the previous 
proposal. This split is the result of modularity: the module is now instantiated in hit stage as well as in 
the two Status Bit Read Buffers which will require updating the status bits that they fetched from the 
Status Bit Table. 
 
If there is a hit in the SBC, the situation is the same as before. If it misses, the evicted line (decided by 
Round Robin for instance) must be written back in the SBT and the requested line must be fetched 
from the SBT before being stored in the SBC. Since the SBT is a RAM and cannot be immediately and 
simultaneously accessed to two different addresses, these pieces of information must be stored. Buffers 
are therefore created: 

- Status Bit Write Buffer (SBWB) which contains the line discarded by the SBC and 
writes it back in the SBT, 

STB 

SBRB 
Updater 

Integer core 

Slots 

Slot 0 Slot 1 Slot 2 

Micro 
TLB 

Translation 
Lookaside 

Buffer 

Arbiter 

 
Dirty 
RAM 

 
Tag 
RAM 

 
Data  
RAM 

Cache 
Coherency 
Controller 

Hit stage 

Store Buffer 

Data return path 

Cache 

Droute 

Bus 
Interface 

Unit 

Slot 

LineFill Buffer 0 LineFill Buffer 1 Eviction Buffer 
  Bus Interface  
    Unit (BIU) 

Integer core 

Exclusive 
Monitor 

 
Status 

Bit 
Table 

Arbiter 
 

Status 
Bit 

Cache 

Arbiter 

Updater 

SB Read 
Buffer 

SB Write 
Buffer 

CP15 
controller 



59  Chapter 6 - The cache implementation  

- Status Bit Read Buffer (SBRB) which stores the line read from the SBT. It stores the 
hit information to update the read line. This line is then written back in the SBC. 

5.1. Status bit RAM 

The internal organization of the RAM is kept identical to the version described in the previous section 
because the constraints remain roughly unchanged: the amount of bits to be stored is not altered, the 
impact of the number of status bit groups on the status bit Slots Unit is replaced by the influence on the 
width of the Status Bit Cache line and on its flip-flops, the external workload does not change… In this 
configuration, the SBT stores up to 128 lines, each of them contains four status bit groups. Seven tag 
bits are required to distinguish the lines. Consequently, an SBT line is 23-bit wide, assuming that the 
replacement policy’s bits number is four (PLRUm for instance). 

5.2. Status Bit Cache 

From the previous paragraph, it is deduced that a SBC line is 23-bit wide. We suppose that the SBC 
controller is included in the term SBC. In order to obtain some clues about the real efficiency of the 
dedicated cache, some simulations have been performed with an enhanced version of the cache 
simulator, which implements a status bits cache. The parameters describing this cache are: 

- the number of lines, 
- the number of status bit groups it contains per cache line (i.e. the number of data cache 

sets a Status Bit Cache line stands for). 
 
As it is only a simulation, it is supposed that in case of miss, the data is immediately available. Of 
course, this is only an approximation but it is quite realistic considering that the access to the RAM, 
takes in average 1 clock cycle provided that the RAM is available. In comparison with the time 
required to fetch data from a L2 cache (10 clock cycles) or even from the main memory (100 clock 
cycles), this time can be really considered as zero. The only equivalent time is the time of a cache 
access and thus the only issue would be in a sequential access if the cache hits and the Status Bit Cache 
misses. However, considering the probability of the sequential accesses and the average hit ratio in the 
SBC and in the data cache, this is a quite uncommon situation. For the scope of this work, this will be 
considered as a sufficient enough description of the Status Bits Cache. 

5.2.1. Dimensioning 
One of the problems raised by the dedicated cache implementation is the dimensioning of this cache. 
The number of lines is constrained by the fully associativity of the Status Bit Cache: there must be a 
small number of lines in order to limit the control logic (which grows quickly for a fully associative 
cache) and not to waste power in the flip-flops. Considering it, an interval [4, 16] seems good bounds 
for this study even if the figure 16 appears quite important. Simulations will show whether it can be 
further constrained.  
 
The amount of status bit groups per cache line must be decided too. For sake of convenience and 
dealing with the different addresses, it should be a power of two but other integer solutions can be 
simulated for knowledge and trends. Since a Status Bit Group is up to 4-bit wide, the range of 
simulations will be [2, 5] Status Bit Groups per line. It will allow us to confront the dimensioning of 
the RAM already performed with the simulation and thus confirm or infirm the hypothesis. 
 



Study of different cache line replacement algorithms in embedded systems  60 

 
Figure 33: Status Bit Cache hit ratios for a 16-KB 4-way set associative cache on the selection of 

benchmarks 
 

 
Figure 34: Status Bit Cache hit ratios for a 16-KB and 4-way set associative cache on software 

 



61  Chapter 6 - The cache implementation  

 
Figure 35: Status Bit Cache hit ratios for a 4-way set associative data cache with different Status Bit 

Cache configurations and different data cache sizes on the selection of benchmarks 
 
After examination of these figures, it appears that the improvement on the SBC hit ratio is not so 
important above 8 or 9 lines: the surface flattens. This justifies the choice of 8 for this implementation. 
Note that the fact that it is a power of 2 does not matter here because the cache is fully associative. 
Regarding the SBC elements, increasing their amount significantly impacts on the hit ratio only for a 
tiny number of lines. Consequently, the couple 8 lines and 4 elements per SBC line appears as a good 
compromise between performance in hit ratio and amount of logic and power involved. The 
performance simulations corroborate the SBT dimensioning where four appeared as the best 
compromise in respect with capacity and consumption. Eight lookups in parallel will not consume so 
much power since it will be done on registers and hence will not require powering on a RAM. 
 
 

 
Figure 36: Hit ratio for a 4-way set associative cache on the SPEC92 benchmark suite [GEE93] 

 



Study of different cache line replacement algorithms in embedded systems  62 

The results obtained by these simulations are in compliance with the trends reported in [GEE93] for a 
data cache submitted to the SPEC92 benchmark suite. The figure above shows this information 
graphically. The block size of this figure is equivalent to the number of SBC elements and the cache 
size almost corresponds to the amount of SBC lines. The flattening for high cache size is observed too 
whereas the description for high block size is more complete than ours in the sense that it goes further 
and then it exhibits the decrease of the hit ratio after the most efficient value. However, our simulations 
showed this flattening and hence confirm that the range simulation was well-defined. This comparison 
confirms that the characteristics of the SBC can be derived from the general data cache ones, in 
agreement with the first impressions. Indeed, the SBC accesses reflect the data cache requests and thus 
are faced with almost the same constraints with a higher locality; which justifies that the optimal 
number of elements is much smaller than the optimal block size of Gee et al.’s work. 
 
The average obtained hit ratio is around 90% on benchmarks and 80% on software, which strengthens 
the hypothesis of power saving. The real efficiency will depend on the chosen replacement policy in 
the sense that 1-bit would store much more status bits per line and hence its hit ratio would be greater. 
Indeed, the SBT could almost be generated in logic for 1-bit. However, 1-bit is not the favourite 
candidate for implementation because of its dependence on an almost true random sequence, which 
costs a lot of hardware and is quite intricate. The tiny width of a status bit group of the 1-bit algorithm 
is at the origin of the cache structure difference. The address cuttings are then a bit dissimilar too and 
are dealt with in the next subsections. 

5.2.2. Addressing 
Pseudo-LRUs.   The cache aims to store the status bits corresponding to an index of the data cache. As 
it has been seen in the previous section, a good compromise between all the constraints is to design a 
Status Bit Cache which has eight lines of four status bit groups each. Therefore, the offset of the Status 
Bit Table address is 2-bit wide. Moreover, the system supports three data cache sizes: 16 KB, 32 KB 
and 64 KB, which respectively tally with 512, 256 and 128 data cache sets. Consequently, the SBT 
contains 128, 64 or 32 lines. The Status Bit Cache being fully associative, the status bit tag is 5, 6 or 7-
bit wide. The cutting is drawn on Figure 37.a. 
 

 
Figure 37: Deriving the address of the Status Bit Table for the two SBC configurations  

 
1-bit.  The only difference with the pseudo-LRU implementation is the number of status bit groups per 
line: sixteen instead of four. Thus, the offset is 4-bit wide and the tag up to 5-bit wide. The address 
cutting is drawn on Figure 37.b. 

5.2.3. Replacement policy inside the Status Bit Cache 
Like any cache, the SBC needs its own replacement policy. Since the cache is fully associative, the 
replacement policy must not only be efficient but also must cost little power and require few gates. 
According to Chapter 5 and its conclusions, the strategies that meet these constraints are 1-bit, PLRUm 
and PLRUt. Because of its poor efficiency for high associative caches, 1-bit is discarded. The two 
remaining candidates are the two pseudo-LRUs. The selected replacement policy will be PLRUm 
because it is a bit easier to implement and to check that PLRUt, especially when taking into account the 
last evicted ways for the allocation of the victim way.  

5.2.4. Behaviour of the Status Bit Cache 

Generalities 

The Status Bit Cache aims to afford the status bits as soon as they are required and to immediately store 
their updated value. By immediately, it is meant on the next rising edge of the clock. The hit 
information is computed in less than one clock cycle thanks to the implementation in flip-flops. The 



63  Chapter 6 - The cache implementation  

Status Bit Cache is then able to handle simultaneously a write and a read request, even if they 
correspond to the same status bit line. In this case, the value returned by the read request is the one 
which will be written and not the one which currently lies in the registers. This simultaneity of the read 
and write requests is the main advantage of this cache over the RAM implementation. Moreover, the 
power consumption is quite small thanks to the restricted size of the Status Bit Cache. 
 
The single requester for a read is the RAM arbiter which is always granted access. Indeed, the Status 
Bit Write Buffer gets the evicted line as soon as the new one is written; thereby avoiding a specific 
access for the SBWB. As a result, the core requests will never be delayed. 
 
Two modules compete for an access to the write part of the cache: the updater and the Status Bit Read 
Buffers. Since the updater deals with the current access and cannot store the whole SBC line but only a 
status bit group, it is assigned the highest priority. It must be underlined that it does not constrain 
further the Status Bit Read Buffer. The presence of an updater request implies that the previous SBC 
lookup resulted in a hit, thus the Status Bit Read Buffers are not faced with a request (see Figure 39). 
Besides, the hit-in-SBRB feature ensures that the delaying of the SBRB request does not affect the 
overall behaviour. For a more detailed explanation of this feature, one can refer to Sections 5.3 and 5.6. 
The actions one each type of data cache request can now be addressed. 

Actions on memory requests 

The cache accesses can be split into two groups: the lookups and the writes. The first category 
comprises the reads and the write lookups whereas the second one is composed of the second phase of 
the write and of the line fill. The evictions are somehow particular and their handling is addressed 
before. 
 
Eviction.   The line is marked as invalid and is now recognized as “free”. Consequently, there is no 
need to modify the status bits; it will be done when the way of this line will be used again. 
 
Lookups.   The status bits are looked up in the SBC while the cache request is forwarded to the RAMs. 
The result of the SBC lookups dictates the following action: 

- on a hit, the updated status bits are written back at the next rising edge of the clock, 
- on a miss, a SBRB fetches the status bits from the SBT, update them and compute the 

way to discard if needed. Finally the updated line is stored back in the SBC. 
It must be noticed that the status bits are updated for any lookup, which may seem queer for the write 
lookup but which prevents the SBC from allocating the way a second time in the near future. Indeed, if 
a miss at the same cache set occurred between the two phases of the write, it would assign the same 
way to the two requests. Thus the MRU line would be evicted, which is clearly what must be avoided.  
 
Writes.   The process is identical to the one described above except that the updated value of the status 
bits is not computed from the hit way value but from the way given by the write requests. This way is 
obtained by the preliminary lookup that yielded either the hit way value to the Store Buffer or the way 
to allocate for the Line Fill Buffer. Therefore, the latency time required to fetch a data from the SBT 
does not impact on the overall performance, provided that this time is smaller than the latency time 
from L2. It will be demonstrated in the next section that this is equal to two clock cycles, which is 
negligible in comparison with the L2 latency times roughly equal to 10 clock cycles.  

5.3. Read Buffers 

The need for buffers has already been stated. This section focuses on the read buffers. A detailed 
examination of its assumptions and of its architecture is followed by the investigation of the minimal 
amount of read buffers. 

5.3.1. Architecture of a read buffer 
Each SBRB is provided with an updater, which allows it to update the status bits if there was a hit or a 
miss in the data cache.  This module is a slightly optimized version of the one located in the hit stage 
module. 
 



Study of different cache line replacement algorithms in embedded systems  64 

 
Figure 38: Wave diagram of a SBRBa 

 
The two Status Bit Read Buffers’ behaviour was implemented as a Finite State Machine. Indeed, it 
seemed very well adapted to this kind of logical functions. Six states were defined: 

- s0 (000): the buffer is free and is waiting for a miss in the Status Bit Cache, 
- s1 (100): the buffer becomes busy and asks for an access to the Status Bit Table. If 

there is a new miss in the SBC that matches the SBT line address of the buffer, it goes 
to state s2. Otherwise, the next state is s5. The higher priority of the read buffers over 
the SBRB for an access to the SBT prevents them from being blocked. Moreover, they 
cannot simultaneously request an access to the SBT since it would imply that the two 
buffers reacted to the same SBC miss. It is avoided by construction. Therefore, it is 
ensured that the read buffer has been granted access to the SBT when it leaves this 
state, 

- s2 (001): the buffer fetches the status bits from the RAM and updates them in respect 
with the hit information stored at the previous positive edge of the clock. In case of a 
SBC miss, this state is responsible of sending the allocated way to the Line Fill 
Buffers. If a SBC miss matches the SBT line stored in the buffer, it goes to state s4. 
Otherwise, it goes to state s3 , 

- s3 (011): the buffer asks for a write to the SBC arbiter and sends the stored updated 
value to it. If a SBC miss matches the data stored in the buffer, it goes to state s4. It 
stays in this state as long as the SBC has not granted it the access, 

                                                           
a Here addresses 1, 2 and 3 correspond to the same SBT line, i.e. their bits [8:2] are the same. 



65  Chapter 6 - The cache implementation  

- s4 (101): a SBC miss matched the SBT line stored in the read buffer. The stored status 
bits are updated using the data cache hit information received during the previous clock 
cycle. As long as a SBC miss matches the SBT line stored in this buffer, this state is 
not leaved. Otherwise, it goes to state s3, 

- s5 (111): this state is similar to state s3: it asks for a write to the SBC arbiter but the 
sent value is directly updated from the SBT one. 

The numbers written in parentheses are the binary representation of the states. These encoding are the 
results of optimizations in order to reduce the number of gates describing the control signals. An 
example of its behaviour is given on Figure 38. 

5.3.2. Amount of read buffers 
Two read buffers are sufficient to ensure theoretically that no Status Bit Cache line is lost, as it can be 
seen on the wave diagram of Figure 38. This limit can be understood if it is kept in mind that a lookup 
results in a single request to the read buffers and that the latter need only two clock cycles to fetch a 
data from the Status Bit Table. The priority of the Status Bit Read Buffers being higher than the Status 
Bit Write Buffers’ one, it ensures that up to two Status Bit Cache misses can be active at a time. 
Indeed, the SBRB is not able to take the request only while in state s1, s2 or s4 and thus only these 
states are further considered for the study of this property. As long as the SBC miss matches the SBC 
index stored by this SBRB, the buffer remains in state s4 and there is no need for another buffer 
(situation on Figure 38). If a SBC miss index differs, the considered buffer goes to its final state and 
will be able to take the next SBC miss. Hence, the theoretical upper bound of the amount of read 
buffers is two.  
 

Policy Software 
Cache 

size (KB) 
Number 

of buffers 
Hit ratio 

(%) 
Execution 
time (ns) 

1 97.468 310789775 16 
2 97.471 310726675 
1 97.691 308503725 

Explorer 
32 

2 97.693 308502375 
1 80.755 2791796225 16 
2 80.752 2791176425 
1 97.177 1658053275 

PLRUm 

Maze 
32 

2 97.234 1654942675 
1 97.468 310789775 16 
2 97.471 310726675 
1 97.691 308503725 

Explorer 
32 

2 97.693 308502375 
1 80.112 2835813825 16 
2 80.093 2838222375 
1 96.999 1670535925 

PLRUt 

Maze 
32 

2 96.997 1670541025 
Table 16: Impact of the number of read buffers on the overall performance of maze and explorer 

 
Yet, the situations where the two status bit buffers are active at the same time are not common. Thus, 
simulations were performed to investigate the loss of performance if only one buffer is implemented. 
This is evaluated in terms of hit ratio and of run time, which is one of the most important factors for the 
user. This figure can be biased by the long booting sequence which does not depend on the 
implementation. However, the boot is equivalent for the two proposed systems and the execution time 
can still be considered as an interesting measure. The results of the different simulations on the Verilog 
code are given in Table 16. For 1-bit, such a problem is not faced since the Status Bit Cache holds eight 
lines of sixteen status bit groups and thus stands for 128 sets. As a result, the SBT is not needed for the 
16-KB data cache. For 32 KB and 64 KB, the principle of locality should allow us to use only one 
Status Bit Read Buffer. Consequently, Table 16 only presents the two pseudo-LRU replacement 
strategies. 
 
The introduction of a second buffer, which enables the application of the strict replacement strategy, 
does not yield a significant performance improvement. Comparing this small enhancement with the 
number of gates of a SBRB, the best solution for embedded systems is thus to design only one such 
buffer. Two would be all the more unjustified because the single read buffer implementation even 
exhibits better hit ratio on some patterns. Instantiating a second buffer can be useful for desktop 



Study of different cache line replacement algorithms in embedded systems  66 

systems in order to enforce a strict replacement algorithm but it is not the case for embedded systems, 
where area and consumption are the major points of concern. Nevertheless, including `define 

TWO_SBRBS in the Verilog code instantiates the second read buffer. 

5.4. Write buffer 

For the write buffer, it could be thought that the constraints are the same but the modified bit ensures 
writing back only the lines altered. Combining it to the strong locality of the accesses which 
consequently do not change the status bits for most requests, it relaxes the constraints on the Status Bit 
Write Buffer. By the way, it justifies the higher priority of the read buffers for accesses to the Status Bit 
Table. It should be noticed that this prioritization forces the write buffer to wait longer for a grant but 
the principle of locality guarantees that read buffer will not access to the SBT RAM continuously, 
thereby letting the write buffer performing its write back in the SBT RAM. Furthermore, the original 
ARM11 design has only one victim buffer for its cache and thereby confirms the need of a single write 
buffer. Consequently, a single buffer will be then implemented in this design. 

5.5. Updater 

The updater is equivalent to the one presented in the other proposals. The output of the SBC is 
registered to ensure that the module receives the data cache hit information and the status bits of a 
given set during the same clock cycle. The origin of this delaying is striking on Figure 39. Apart from 
it, the module tallies with the code written in Section 1.3. 
 
The behaviour of the SBC system has been explained and it has been demonstrated that the considered 
status bits always describe the current state of the data cache: either they are located in the Status Bit 
Cache and immediately updated on a memory access, or they are fetched from the Status Bit Table and 
the induced value of the way to discard is transmitted to the Line Fill Buffers. The word considered is 
of utmost importance in the assertion since the status bits may temporarily not reflect the status of a 
data cache set – they have not been fetched from the SBT or have not been updated yet… – but they 
will be up-to-date once these status bits are required. The assertion must also be understood in respect 
with the loss of accuracy introduced by the restriction of the amount of the status bit buffers. 
Nevertheless, it has been shown that this loss is negligible and that the assertion is valid. In addition to 
this basic behaviour, the design was optimized to decrease the power consumption and to increase the 
performance of the design. These features are handled in the following section. 

5.6. Optimizations 

5.6.1. Updater 
The Status Bit Cache is designed to take advantage of the principle of locality. Therefore, successive 
accesses on the same set often occur. This would lead to unnecessary writes in the Status Bit Cache and 
could prevent the Status Bit Read Buffers from writing a line in SBC since the updater has priority for 
a write access to the SBC. A trick has been introduced to solve this issue: the updater checks that the 
updated value differs from the incoming one before sending it to the cache.  The required hardware is 
only a four-bit comparator, so the cost is quite very negligible in comparison with the potential gain.  

5.6.2. Status Bit Cache 
This optimization is based on the modified bit commonly found in modern caches. This bit states 
whether the Status Bit Cache line has been altered since it was fetched from the Status Bit Table.  As 
the status bit line could have been modified by one of the two Status Bit Read Buffers, the latter 
forward this piece of information on a SBC line fill. This avoids useless writings to the Status Bit Table 
and also helps maintaining the number of Status Bit Write Buffers to one. 

5.6.3. Status Bit Read Buffers 
The SBRBs are probably the most optimized part of the design. First, the design supports hit in the 
SBRBs: if a request misses in the SBC and hits in a buffer, this one waits for the data cache hit 
information and updates the line in consequence. Furthermore, the same tip as in the updater of hit 
stage module is used here in order not to mark lines as modified, when the update has not altered the 



67  Chapter 6 - The cache implementation  

line. Finally, SBRBs are able to fetch a data from SBWB if the requested line lies in this buffer. This 
consists in the means used to avoid some hazards too (see next subsection). In this case, the SBWB is 
prevented from writing its line in the cache and considers in the next cycle that it is empty. 

5.7. Hazards 

The implementation was source of different hazards. They all come from the fact that the status bits 
travel through the system, thereby leading to unwanted situations.  In this section, the terms read and 
write refer to reads and writes to the Status Bit Cache. 
 
The first hazard corresponds to a situation when simultaneous read and write occur at the same address. 
The read value must be equal to the value written at the rising edge of the clock. Indeed, if the returned 
value was the value lying at this moment in the Status Bit Cache, the updated value currently presented 
to SBC would be lost or even could lead to unpredictable… Thus, on a write and a read at the same 
address, the value returned by the cache is the data to write in conformity with the specifications 
asserted in Section 5.2.4. This assignment bypasses the registers of the Status Bit Cache and hence 
leads to numerous bugs and infinite loops in the delta computation. Fortunately, all these problems 
have been solved by carefully caring the signals in the finite state machine of the SBRBs. 
 
The priority of SBRB over SBWB for an access to the SBT induces the possibility of a hazard. Let us 
assume that the evicted line still lies in the SBWB and that a request to the same line is presented to the 
cache arbiter. The SBRB deals with the request and fetches data from the SBT. Since the updated data 
have not been written back yet, it receives the old value of the status bits which will then be written in 
the cache. However, it should be noticed that this hazard occurs only with two SBRBs. Indeed, the 
SBWB must be prevented from accessing to SBT. Since the only other requester is the SBRB module, 
it implies that one of the buffers requests for accessing to SBT. As the buffer which will deal with the 
last request was at the previous clock cycle either in state s0 or one of the two final states s3 or s5, it 
cannot have sent this request. Thus, it was transmitted from the second buffer. Nevertheless, this hazard 
is avoided by the hit in SBWB feature that has been presented in the section about optimizations. When 
a SBC request misses, SBWB compares the tag of the line it stores and the tag of the requested line. In 
case of equality, the line is forwarded to the Status Bit Read Buffer which receive these data and cancel 
its request to SBT arbiter. 
 
It is seen on Figure 39 that the status bits are always updated on the next clock cycle. Thus, the only 
possible hazard has been already solved: it is the presentation of the same read and write addresses. 
Otherwise, the read data is the valid one. There can remain some peripheral hazards but none has been 
detected. 

5.8. Validation of the design 

In order to test the design and to verify that it operates as it should, different tests were performed.  
First, the design was written in a modular manner, which ensures checking each level after its sub 
modules have been validated. To that end, testbenches and some small C programs were developed to 
help performing automatically these verifications. Besides, some signals controlling that the behaviour 
is not crazy were also introduced. For instance, a signal asserts that there are not two lines of the cache 
holding the same data. These signals efficiently contributed to the detection of bugs. 
 
Some basic assembly programs were written and integrated into the validation environment in order to 
test more accurately the newly created modules. The instructions were then followed through the 
design and their interpretation studied. Of course, it was not as simple as it seems because of 
optimizations inside the data cache side. The major point of concern was the out-of-order execution of 
instructions which reorders the instructions. This is a problem for validation and for the replacement 
strategies. Indeed, it is equivalent to modifying the order of the memory accesses and can yield a data 
cache status different from the expected one. The importance of this issue has already partially been 
addressed in the previous chapter and may explain the slight difference observed between the results of 
Chapter 5 and the ones given in Section 6.  
 
Thus, the issue was approached in another manner, consisting in launching some basic tests, such as 
Dhrystone, which calls for various data. The instructions and their impact on the status bits through all 
the design were then investigated and compared with the results manually obtained. This method is 



Study of different cache line replacement algorithms in embedded systems  68 

obviously quite far from optimal and very much-time consuming.  Nevertheless, it helped correcting 
some errors and better understanding all the characteristics of the system. 
 
In order to enable an automatic validation of the design, the Verilog code was modified to store the 
memory requests reaching the data cache. It distinguishes itself from the TARMAC logs by the point of 
view: whereas TARMAC keeps track of the memory requests of the processor, this logger stores the 
memory requests which enter the data cache. Memory requests are thus seen after reordering in the 
case of out-of-order execution and after potential merges. These log files fed the cache simulator of 
Chapter 5, whose results were compared with the Verilog figures. It raises the issue of the diversity of 
points of view on this thesis. Since a single designer, the author of this work, implemented the C and 
the Verilog versions, some interpretation errors can possibly be found in the two versions. 
Nevertheless, it must be reminded that the cache simulator’s results matched the values reported in the 
literature. Hence the bug probability can be considered as tiny though non null. 
 
Finally, the system was submitted to real software running on the processor. No error on the output of 
the system or on any of the inner controlling signals has been observed, thereby validating the module. 
For more information on each step of the validating process, one can refer to Appendix D. 

5.9. Sum up 

 
Figure 39: Wave diagram of a sequence for the overall SBC side 

 
The system finally designed corresponds to the wave diagram drawn in Figure 39. This solution saves 
some power though it adds a small cache along with its power consumption. This addition is 
overbalanced by the reduction the number of accesses to the RAM, which is one of the most power 



69  Chapter 6 - The cache implementation  

consuming elements of a design. The high SBC hit ratio observed with only 8 lines of sixteen bits (i.e. 
128 bits) which avoids numerous accesses to the 2-KB RAM (up to 128 lines of sixteen bits) ensures an 
important gain in energy and in performance. It should be stated too that this implementation avoids 
numerous costly accesses to the L2 as shown by Eq.2. This power consumption of the module must 
then be compared to the value of the power consumption of an access to the L2 cache. The power 
consumptions are denoted W and the hit ratios h. It is easily obtained that: 

∆W = Wnew – Wcurrent = (1 - hSBC) WSBT + WSBC + ∆hL1.WL2  ,         with    ∆hL1=hL1,new –hL1,current 

∆W stands for the power consumption increase between the two implementations. From the simulations 
performed in this chapter and in the previous one, the following typical values are deduced hSBC = 
0.9and ∆hL1 = -0.005. Thus: 

∆W/ WL2 = 0.1 WSBT /WL2 + WSBC /WL2 – 0.005 
Let us evaluate the activity of a register of the Status Bit Cache. The probability that one of the lines is 
modified on an access is (1-hSBC). The eight lines being equivalent to one another, the probability that a 
given line is altered is then 0.125(1-hSBC). Finally, the probability that a given bit of the line is modified 
knowing that the line is modified is 0.5 since it is assumed that 1s and 0s are evenly distributed. As a 
result, the probability that a given register is altered is (1- hSBC)/16=6.25x10-3. Adding it to the tiny 
power consumption of a register in comparison to the L2 access, the SBC power consumption can thus 
be neglected in spite of its 128 registers. Finally, the power difference is: 

∆W/ WL2 = 0.1(2/250)-0.005 =-0.0042 
One thus sees that the impact on the power consumption is null, even a bit beneficial. In spite of the 
quite coarse evaluation, it demonstrates that the proposed implementation is very well adapted to 
embedded systems’ constraints. 
 
One means to estimate the area and is to count the number of registers created in overall. For the 
pseudo-LRUs, it is roughly equal to 330 flip-flops including the SBRBa, the SBC, the updater and the 
SBWB. The SBT RAM must be added to this amount. The 1-bit implementation requires little less 
hardware with only 320 flip-flops in average. In these two cases, the major part of the required flip-
flops is due to the Status Bit Cache and its controlling logic. This is consistent with the negligible 
amount of logic required for the update of the bits itself. The slight difference between 1-bit and the 
pseudo-LRUs originates from the width of the tags of the SBC lines which impacts on the amount of 
registers required by the SBRB and the SBWB, as well as on some intermediate register. The figure 
given for 1-bit is obtained and depends significantly on the amount of flip-flops.  
 
Finally, the implementation of a RAM endowed with its dedicated cache appears as the most promising 
solution because of the power it will save and the tiny amount of hardware required. Moreover, it 
prevents us from continuously accessing the Dirty RAM and avoids significant modifications in the 
current module, which ensures that the verification can be performed in an easier and more modular 
manner. 

6. Results of the simulations 

In the continuity of Chapter 5, the selection of benchmarks and the software applications were 
simulated on the enhanced version of the processor. The results and their interpretation are presented 
here. 

6.1. Obtaining the hit ratio 

Computing the hit ratio, the means used to measure the efficiency of the policies, required getting the 
number of requests and counting the cache hits. At first sight, this task seems trivial but reality is far 
from that. Indeed, numerous problems have to be solved to get this figure. Assuming that we got the 
means to count the cache request, getting hit information is obvious: when there is a cache request, the 
counter is incremented in concordance with the hit information, which is available on the next clock 
cycle. Therefore, the problem can be summed up to enumerating the cache requests. This issue is 
handled in the sections below. 

                                                           
a The implementation of a single Status Bit Read Buffer is assumed. 



Study of different cache line replacement algorithms in embedded systems  70 

6.1.1. Read requests 
The situation for the read requests is quite simple. Indeed, the Slots Unit asks for a cache lookup that 
induces a line fill if it misses. Consequently, monitoring the cache lookup requests from the Slots Unit 
would be a simple means to count the read requests from the core. Unfortunately, the situation is not as 
simple as it seems, because the data cache side is optimized and lookups are merged when it is 
possible. Moreover, the order of instructions issuing is not preserved in the data cache side for data 
which are independent from one another. It leads to a situation a bit different from the one expected by 
the enforcement of the replacement algorithm on the memory requests of the processor. These 
optimizations common to state-of-the-art processors cannot be ignored and must be studied. Relying 
once more on the TARMAC disassembly could help us solving this issue. Unfortunately, correlating 
the memory requests of the TARMAC file with the hit information of the data cache is a very tough 
task since there is no fixed time interval or fixed order between the different accesses and all these 
parameters impact on the merge of the requests directly. Consequently the read lookups are considered 
as an appropriate indicator of the read requests. 

6.1.2. Write requests 
The issue raised by the write requests is a bit more complicate. The writes are constituted by two 
phases: the lookup and the write or line fill. If this split up was permanent, monitoring the lookups 
issued by the Store Buffer would be sufficient to deduce the number of the write requests. However, 
the writes as well as their lookups can be merged to optimize the data cache accesses. This is quite 
similar to the read requests but the problem is even harder when the sequential accesses are taken into 
account. The lookup is performed by the first access and provided that there is no intervention of any 
other requester on this data cache line, the other writes are performed without any lookup, either by the 
Store Buffer in case of a hit or by the Line Fill Buffer in case of a miss where the writes are merged. 
This pathological situation is not faced by the read requests since the read is still visible. Monitoring 
the write accesses thus appears as the best reply but the issue would have been even more intricate 
since the writes reflect only the write requests whose lookup resulted in a hit. Therefore, the Line Fill 
Buffer accesses should have been counted too, thereby leading to a tortuous design where the Line Fill 
misses from the Store Buffer and from the Slots Unit must be distinguished whereas these misses can 
have been merged if they correspond to the same line. Adding the fact that the Store Buffers can hit 
into the Line Fill module, one understands easily that this solution would not have been efficient.  
 
For these reasons and in spite of its drawback about the sequential accesses, the choice was made to 
count the write lookups, which is the means that reflects the best the situation seen from the core. It is 
all the more justified since sequential accesses seldom occur. 

6.1.3. Other requesters 
Among the modules requesting a data cache access, only the following ones remain: the Coprocessor 
15 Controller, the Cache Coherency Controller, the Eviction Buffer and the two Line Fill Buffers. All 
these accesses can be considered as cache maintenance in the sense they are either consequences of 
data cache accesses which have already been taken into account or pure cache maintenance: 

- the requests from CP15 controller are pure cache maintenance and should not be taken 
into account (invalidating, flushing…), 

- the Cache Coherency Controller’s requests are pure cache maintenance due to multi 
processing, 

- the eviction and the line fill requests are due to misses. Yet these misses are the results 
of the Slots Unit lookup or of the Store Buffer lookups and have thus already been 
counted in the number of requests. 

As a result, these cache accesses are ignored when counting the requests. 

6.2. Simulations 

6.2.1. Simulated benchmarks and software 
Since the Verilog simulations are very time consuming and since they must be performed for the four 
replacement policies and for two cache sizes (64 KB could be simulated too but it is very hard to stress, 
specifically for the benchmarks as it has been seen in Chapter 5), only a subset of the benchmark 
selection was considered. The benchmarks which yielded the most significant differences between the 
replacement strategies for the low data cache sizes of the ARM11 MPCore processor form it, i.e. 



71  Chapter 6 - The cache implementation  

automotive_matrix , mpeg4_decode , office_rotate  and networking_tcp . Indeed, the 
difference in gross hit ratio on all the benchmarks is small for the commercial sizes of the data cache, 
even for 16 KB. Whereas the main reported differences in Chapter 5 concerned 8KB, differences were 
however still observable in gross hit ratio figures for some patterns. Among them, 
automotive_matrix , office_rotate  and mpeg4_decode  were the most significant contributors. 
It should be noticed that they belong to different application fields and afford a broad range of 
embedded workload. As a result, it should not restrict the extent of this work. 
 
In the same optics of optimizing the simulations, the software applications maze and explorer  are 
investigated too. For explorer , the elementary functions as well as the data sets were altered to stress 
the cache differently whereas only the input trees were modified for maze. 
 
The striking issue of restricting the study to the two pieces of software and some benchmarks is the 
exposure to the particularities of the latter. As it has already been stated in the previous chapter, maze 
exhibits very good results for the Global Round Robin policy, particularly for low-size caches, in 
contradiction with the other benchmarks and software. It has however been kept as a reference test 
since it constrains well the cache and reminds us the exceptions of some patterns. 

6.2.2. Results and general interpretations 

Benchmarks 

Among the simulated benchmarks, automotive_matrix  exhibited a specific behaviour. For this 
reason, its detailed examination follows the general presentation.  
 

 Cache size 
Policy 16 KB 32 KB 64 KB 
1-bit 98.21 98.80 99.82 

PLRUm 98.70 99.81 99.82 
PLRUt 98.69 99.81 99.82 

Global Round Robin 98.39 99.81 99.82 
Table 17:  Hit ratio of the Verilog version with benchmark office_rotate  

 
Conformity of the simulations.   The results of a typical benchmark are given in Table 17. As the 
figures are in compliance with the cache simulator ones (see Figure 22 p.35), the Verilog simulation 
seems to match the previous study performed in Chapter 5. However, a slight difference is observed 
between the two simulations but it is very tiny (less than 0.05% in hit ratio). This deviance can be all 
the more neglected since the relative efficiencies of the replacement strategies remained the same and 
the exhibited trends are identical. The small disagreement in absolute hit ratio originates from the 
implementation of the cache simulator. Indeed, its inputs are memory requests from the core but they 
are then reordered and merged if there are successive reads or writes to the same memory lines. 
Because of these merges, the requests are a bit miscounted and the impact of a hit can be overestimated 
or underestimated. It should be however kept in mind that the cache simulator took the multiple load-
and-store instructions’ particularity into account; which explains that the observed difference is tiny in 
overall.  
 
Another interesting feature is the dissonance of counted instructions between the cache simulator and 
the Verilog implementation. This issue has already been addressed in Section 6.1 and is evoked briefly 
here. Whereas the cache simulator considers all the memory requests, the latter only deals with the 
accesses once they have entered the data cache. Furthermore, if successive memory requests 
correspond to the same cache line, they are considered as distinct requests by the cache simulator 
whereas they may be merged in one in the real version. Another factor interferes but at a slightest 
degree: the cache simulator was not aware of the turning on of the data cache and then dealt with all the 
requests, even the booting ones and the CP15 starting cleaning of the cache. Obviously, this is 
significant only for the short running programs and could be ignored for the long-running ones. Since 
the benchmarks were chosen in part for their high amount of instructions, this factor is not the major 
contributor to the observed discrepancy. 
 



Study of different cache line replacement algorithms in embedded systems  72 

According to the concise presentation of the general behaviour, the Verilog simulation seems to 
corroborate the cache simulator’s results perfectly. Automotive_matrix  demonstrates the opposite 
below. 
 
The particular case of automotive_matrix.   In opposition to the other benchmarks, 
automotive_matrix  did not exhibit any significant difference between the replacement strategies, 
which appears discordant with the cache simulator. It suggests the presence of a bug in the design but 
the output of the cache simulator, running the stored memory requests which have reached the data 
cache, corroborates the obtained result and confirms the validity of the simulator. This outstanding 
phenomenon originates from the nature of the benchmark and the causes are addressed below. 
 
Firstly, it should be mentioned that the performance enhancement was observable on the cache 
simulator only for 8 and 16-KB. Thus, the lack of differentiation for the two highest commercial cache 
sizes is in accordance with the previous simulation. Secondly, automotive_matrix  has the 
particularity to frequently load and store multiple registers and to access the same data routinely. It 
exposes the benchmark to numerous merges and hits in the Store Buffer and in the Line Fill Buffers. 
These features thus modify the overall behaviour of the cache and strongly smoothes the differences 
among the replacement strategies. Therefore, the small difference reported in Chapter 5 shrinks and 
explains the performance leveling. 

Software 

Because of the particularities of maze already evoked in Chapter 5, the results are presented separately 
for the two applications in Table 18. 
 

  Explorer Maze 

Cache size 
(KB) 

Policy 
Miss ratio 

(%) 

Miss ratio 
compared to 

PLRUm 

Miss ratio 
(%) 

Miss ratio 
compared to 

PLRUm 
1-bit 3.55 1.516 22.45 1.869 

PLRUm 2.34 1.000 12.01 1.000 

PLRUt 2.37 1.010 12.30 1.024 
16 

GRR 2.47 1.055 11.80 0.983 

1-bit 2.32 1.096 2.90 1.802 

PLRUm 2.12 1.000 1.61 1.000 

PLRUt 2.13 1.005 1.77 1.098 
32 

GRR 2.32 1.094 1.48 0.917 

1-bit 2.08 1.029 0.51 2.816 

PLRUm 2.03 1.000 0.18 1.000 

PLRUt 2.03 1.002 0.21 1.162 
64 

GRR 2.06 1.016 0.17 0.952 
Table 18: Miss ratio of the candidates on the different ARM11 cache configurations with maze and 

explorer 
 
Comparing these results with the ones obtained by the cache simulator, one sees that they are almost 
equivalent. The numbers of requests differ a bit too but as it has been explained for the benchmarks, it 
can be neglected. Two differences strike the observer: the poor performance of the 1-bit strategy and 
the improved performance of the Global Round Robin strategy. Their causes along with the overall 
interpretation of the policies are addressed in the next subsections. 

6.2.3. Pseudo-LRUs 
The performance hierarchy of the two pseudo-LRU algorithms remains unchanged. The performance 
of PLRUm over PLRUt is particularly noticeable for program maze , as in the previous chapter. 
Besides, the trends are equivalent too: the smaller the cache, the more significant the efficiency 
difference. It must be mentioned that the difference is a bit smaller in gross hit values. All the 
phenomena evoked in the previous sections – reordering and merges of the instructions, execution of 
the lookups while the data has not been fetched from the upper level memory – apply here too and 



73  Chapter 6 - The cache implementation  

explain the overestimation of the previous chapter. Indeed, the status bits are updated during the lookup 
for the cache simulator whereas in the Verilog one, they are modified on the lookup on a hit and during 
the allocation on a miss. These small differences along with cache optimizations such as hits in the 
Line Fill Buffers and in the Store Buffer, which are not modelled in the simple cache model used in the 
previous chapter, induced this slight deviance. Nevertheless, the increased performance of PLRUm 
over PLRUt is visible on all the simulations and is sufficient to justify the selection of this strategy 
despite it requires one additional bit per set in comparison with PLRUt. As a result, PLRUm is the best 
alternative for implementation and is the solution preached in this work. 
 
However, it should be kept in mind that the cache simulator aimed to give clues about the efficiencies 
of the replacement strategies in order to lead us to a final implementation. Moreover, verification and 
timing constraints encouraged the author to write a slight simpler cache but with the assurance that it 
operates in respect with the specifications. The simulations thus confirm these choices: even though 
some particularities were modelled in a too optimistic way or not taken into account – among them the 
reordering of the instructions – the results are globally in accordance with one another.  

6.2.4. Global Round Robin 
Global Round Robin performs much better than it had in the cache simulator. Since all the results are a 
bit shifted due to the distinct means used to count the requests and the hits, the difference between 
PLRUm and GRR is considered as reference. Indeed, the pseudo-LRUs operated almost exactly as in 
Chapter 5. The observed difference is in average 0.73% in the hit ratio over the commercial cache sizes 
for the cache simulator and 0.12% for the Verilog version. Because of its nature, GRR is the algorithm 
which the most took advantage of the instruction merge. Indeed, two successive misses to the same line 
may have led it to be in lag to the most efficient Round Robin algorithm, which induces numerous non-
optimal replacements. This assertion may question the reader: if the accesses are merged then they 
correspond to the same data cache line and thus the second access should not have been considered as a 
miss in the cache simulator. This is true for most requests but it should be reminded that the requests 
generated by LDMIA instructions for instance are globally handled by the cache model and the number 
of misses can thus be incremented twice. In the Verilog one, this does not occur and GRR remains in 
phase with a quite efficient replacement, thereby reducing its distance from optimality. This is 
particularly true for the multiple load-and-store instructions. Furthermore, it is less sensitive to the 
reordering of the instruction since the sequence 1-2 or 2-1 makes it point to the same way. Thus, the 
differences between the cache simulator and the Verilog version are all profitable to GRR; thereby 
increasing its performance.  
 
It must be noticed that expressing these results in function of the miss ratio of the PLRUm policy still 
yields important differences for explorer , around 6%. These differences are in the same order as the 
ones obtained for the benchmarks. On maze, the Global Round Robin policy performs really well as it 
has been already shown in the previous chapter but it is here at a higher degree. The reasons set out 
above apply here too. However, it has been shown during the general study of benchmarks and in this 
chapter that patterns such as maze are rare, as it is confirmed by the simulation results across the other 
benchmarks. But it helps keeping in mind that there is no absolute better algorithm and relativizing the 
results. 

6.2.5. 1-bit 
After examination of Table 17 and Table 18, 1-bit obviously operates poorly. Comparing these results 
with the cache simulator ones, it seems that the algorithm has changed. Yet, the very difference 
between the Verilog implementation and the C one lies in the random generation. In C, the rand()  
routine yields an almost truly random sequence whereas it is produced by four LFSRs in Verilog. It 
could be argued that 4 is a quite low figure and that longer sequences would have been more random. 
Such a study is performed in the table below. All the taps were optimal and obtained from [XIL96]. 
 

Amount of LFSRs 4 8 16 32 
Hit ratio on explorer (%) 96.181 96.144 96.156 96.112 

Table 19: Impact of the LFSR width for 1-bit with a 4-way set associative and 16KB data cache 
 
The impact of the LFSR width is almost insignificant and even decreases the hit ratio. The origin of the 
inefficiency must then be searched elsewhere and probably comes from the reorganization of the 
instructions and of the merge of the requests. Since the 1-bit policy protects the MRU half from 



Study of different cache line replacement algorithms in embedded systems  74 

eviction, the merges and the reorganization of the data significantly influence its behaviour. While the 
other algorithms protect the MRU way and consider the four ways of the cache, everything happens for 
1-bit as if the associativity is equal to two. It is then easily understood that it is more sensitive to the 
instructions merge. Let us suppose that the processor memory access sequence is a-b-a where a and b 
are mapped to the same set and initially do not lie in the cache. If the requested data are independent 
and if the requests are sufficiently near from one another in time, it could be seen in the data cache as 
a-b. On the next miss, the policy will evict a way of the first half, so the MRU data of the processor, i.e. 
a, can be discarded… This high sensitivity of 1-bit explains the loss of performance. 

6.2.6. Need of a new implementation 
The final issue is to compare PLRUm with the current ARM11 implementation and to put these results 
in perspective with the cache simulator conclusions.  
 
The specificity of maze brings into question the need for such an enhancement. Although the working 
sets were altered, the algorithms principles were not modified and the manner the software deals with 
the data is kept constant. Consequently, we are exposed to the particularities of some programs and 
their relative frequency should be evaluated. To that end, benchmarks are very useful since they enable 
that the simulation range is wide enough and stands for the real embedded systems, at least for its main 
characteristics. Looking at the results of the cache simulator, it is deduced that the characteristics of the 
program explorer  are nearer to the typical values than maze. This assertion is based on the 
comparison of the behaviours of benchmarks on the one hand and on maze and explorer  on the other 
hand. For this reason, more credit is given to the results of explorer  than to maze’s ones, although 
this last should not be forgotten.  
 
The difference between the PLRUm strategy and the GRR algorithm is 0.25% in gross miss ratio on 
average across the benchmarks and explorer . As Eq. (2) demonstrated in Chapter 2, this difference 
can be considered as sufficient to justify the implementation of the PLRUm policy. Moreover, the same 
reasons as the ones presented in Chapter 5 advocate for the introduction of such a policy in the current 
data cache architecture. The development of on-chip L2 caches reduces the size of L1 caches and thus 
reinforces the call for an efficient replacement policy. Besides, real systems are faced with an operative 
system and numerous applications running in the meantime; which further reduces the efficient cache 
size. This justifies the focus of the conclusions on the low-size end of the experiments. In this part, the 
performance enhancement is noticeable yet not outstanding. For all these reasons, PLRUm is 
recommended for implementation in embedded systems. For the chosen implementation of Section 5, 
the implementation cost in terms of power consumption and hardware is negligible. As a result, it 
pleads for the integration of the PLRUm replacement policy in the ARM processors. 

7. Conclusion 

After having examined the different replacement strategies in details along with their impact on the 
data cache architecture, PLRUm appears as the most well-adapted replacement algorithm to embedded 
systems. In spite of the acceptable performance of the Global Round Robin policy, PLRUm 
outperforms it on almost all the memory patterns and can be easily integrated in the current 
implementation with low power and area costs. Though the target processor of this work was ARM11 
MPCore, the conclusions and the results should be extended to the other processors since the memory 
workload should not be altered so significantly. 



75  Chapter 7 - Conclusion  

 
 
 

Chapter 7  
 
Conclusion 
 
 
 
 
Корни всякого открытия лежат далеко в глубине, и, как волны, бьющиеся с разбега о берег, много раз 
плещется человеческая мысль около подготовляемого открытия, пока придет девятый вал. 

 
 В. Вернадскийa 

 

1. Results 

After having addressed the different replacement policies characteristics along with their expected 
performance, the algorithms were simulated on a cache model designed for this purpose. The relative 
fast running time of this simulator allowed us to deal with numerous replacement proposals across a 
broad range of embedded applications and benchmark suite. Belady’s anomaly for the PLRUm 
replacement strategy has been thus disclosed and reported for the first time in a scientific document. 
Three candidates for a final design emerged from performance and coarse power and area 
considerations: 1-bit, PLRUm and PLRUt. The proposed integration of these algorithms meets all the 
constraints of the embedded systems: negligible increase in power consumption and in area as well as 
performance enhancement. Finally, the simulations performed on the enhanced ARM11 MPCore 
processor confirmed the improved hit ratio, even if the final results are a bit smaller than expected. 
Nevertheless, it justifies the integration of such a strategy in the next generation of processors. Whereas 
it is not crucial for the highest data cache sizes, it significantly improves the efficiency of the 
replacement for low data cache sizes.  

2. Future work 

This work was devoted to the first level data caches. For the second level data caches, modifying the 
replacement policy can even improve the efficiency of the system in a more significant way, because 
the average access time is even greater (see Eq. 2). The results of this thesis can partially be applied to 
L2 caches but these ones have their own characteristics. For instance, the associativity and the size of 
the blocks are parameters among others which differ and imply different constraints for the two 
solutions. Some studies have already been performed [WON00] but they were dedicated to desktop 
systems and then not optimized for embedded processors’ points of concern such as power, area… 
Carrying out such a study would then be a potential source of improvement. 
 
The influence of the multiprocessing environment has not been studied in this thesis too. It introduces 
new data cache actions (invalidation by the coherency protocol) whose impact has not been the object 
of a deep study yet. In this work, the actions were taken into account in the implementation part but 
their interaction with the replacement policy has not been investigated. At first glance, it should not 
influence significantly the replacement algorithms but improvements such as taking into account the 
MESI state of the line for eviction should be examined in further details. Indeed, at the end of the stack, 
the probability of hit is almost equivalent and adding the shared state information to this eviction could 
be useful. In fact, for the two last elements of the stack or of the pseudo-stack, data that are modified or 
exclusive may be preferentially kept in the cache to shared data that could soon be modified by another 

                                                           
a The roots of each discovery go deep and like a wave lapping again and again the coast, human ideas come back 
and forth many times preparing the discovery until the huge wave comes. 

V. Vernadsky 



Study of different cache line replacement algorithms in embedded systems  76 

core. Of course, this is a potential error if the data will be modified by this processor. It is only some of 
the possible ideas, which could improve the data cache efficiency in multiprocessing systems.  



77  References 

 
 
 

References 
 
 
 
 
 

[AMD02]  AMD Athlon™ Processor x86 Code Optimization Guide, http://www.amd.com/us-
en/assets/content_type/white_papers_and_tech_docs/22007.pdf, February 2002 

[ARM01] ARM Architecture Reference Manual, Addison-Wesley, 2nd edition, 2001 

[ARM11] ARM11 Family, http://www.arm.com/products/CPUs/families/ARM11Family.html 

[BEL66] L.A. BELADY , A Study of Replacement Algorithms for a Virtual-Storage Computer, 
IBM Systems Journal, Vol. 5, N.2, 1966 

[BEL69] L.A. BELADY , R.A. NELSON AND G.S. SHEDLER, An Anomaly in Space-Time 
Characteristics of Certain Programs Running in a Paging Machine, Communications of 
the ACM, Vol.12, N.6, 1969 

[BRE04] M. BREHOB, S. WAGNER, E. TORNG AND R. ENBODY, Optimal Replacement is NP-hard 
for Nonstandard Caches, IEEE Transactions on computers, Vol. 53, N. 1, pp. 73-76, 
2004 

[COR02] D. CORMIE, The ARM11 Microarchitecture, ARM Ltd,  
http://www.arm.com/pdfs/ARM11%20Microarchitecture%20White%20Paper.pdf, 
April 2002 

 [DEV90] Y. DEVILLE , A Low-Cost Usage-Based Replacement Algorithm for Cache Memories, 
SIGARCH Comput. Archit. News, Vol.18, N.4, ACM Press, pp. 52-58, 1990 

[DOU06] E. DOUBROVA, Fault-Tolerant Design: an Introduction, Kluwer Academic Publishers, 
Draft, 2006 

[EEM06] EEMBC: Embedded Microprocessor Benchmark Consortium, http://www.eembc.org 

[FAT94] O. FATEMI, F. IDRIS, AND S. PANCHANATHAN , FPGA Implementation of the LRU 
Algorithm for Video Compression, IEEE Transactions on Consumer Electronics, Vol. 
40, N. 3, pp. 337-344, 1994 

[GEE93] J.D. GEE, M.D. HILL , D.N PNEVMATIKATOS AND A.J. SMITH , Cache performance of the 
SPEC92 Benchmark Suite, IEEE Micro, vol. 13,  no. 4,  pp. 17-27,  Jul/Aug,  1993 

[GEN04] P. GENUA, A Cache Primer, Freescale Semiconductor, Inc., AN2663, 2004 

[GHA06] H. GHASEMZADEH, S. MAZROUEE AND M.R. KAKOEE, Modified Pseudo LRU 
Replacement Algorithm, ECBS '06: Proceedings of the 13th Annual IEEE International 
Symposium and Workshop on Engineering of Computer Based Systems (ECBS'06), 
IEEE Computer Society, pp. 368-376, 2006 

[HEN03]   J.L. HENNESSY AND D.A. PATTERSON, Computer Architecture: A Quantitative 
Approach, 3rd edition, Morgan Kaufmann Publishers, 2003 

[INO99] K. INOUE, T. ISHIHARA, K. MURAKAMI , Way-Predicting Set-Associative Cache for High 
Performance and Low Energy Consumption, ISLPED '99: Proceedings of the 1999 
international symposium on Low power electronics and design, pp. 273-275, ACM 
Press, 1999 



Study of different cache line replacement algorithms in embedded systems  78 

[INT06] IA-32 Intel Architecture Optimization Reference Manual, 248966-013US, 
http://download.intel.com/design/Pentium4/manuals/24896613.pdf, 2006 

[JOH94] T. JOHNSON AND D. SHASHA, 2Q: A Low Overhead High Performance Buffer 
Management Replacement Algorithm, VLDB '94: Proceedings of the 20th International 
Conference on Very Large Data Bases, Morgan Kaufmann Publishers Inc., pp. 439-
450, 1994 

[KAR94] R. KAREDLA, J. S. LOVE AND B.G. WHERRY, Caching Strategies to Improve Disk 
System Performance, Computer, Vol. 27, N. 3, IEEE Computer Society Press, pp. 38-
46, 1994 

[MEG03] N. MEGIDDO AND D.S. MODHA, ARC: A Self-Tuning, Low Overhead Replacement 
Cache, FAST '03: Proceedings of the 2nd USENIX Conference on File and Storage 
Technologies, USENIX Association, pp. 115-130, 2003 

[M IL03] A. M ILENKOVIC , M. M ILENKOVIC AND N. BARNES, A Performance Evaluation of 
Memory Hierarchy in Embedded Systems, Proceedings of the 35th South eastern 
Symposium on System Theory, pp. 427- 431, 2003 

[M IP06] MIPS Technologies, SOC-it L2 Cache Controller, 
http://www.mips.com/content/Products/Platforms 

[MPC05] ARM11 MPCore Processor r0p3 Technical Reference Manual, Ref DDI0360C, 
http://www.arm.com/pdfs/DDI0360D_arm11mpcore_r1p0_trm.pdf, Dec 2005 

[ONE93] E.J. O'NEIL, P.E. O'NEIL AND G. WEIKUM , The LRU-K Page Replacement Algorithm 
for Database Disk Buffering, SIGMOD '93: Proceedings of the 1993 ACM SIGMOD 
international conference on Management of data, ACM Press, pp. 297-306, 1993 

[ONE99] E.J. O'NEIL, P.E. O'NEIL AND G. WEIKUM , An Optimality Proof of the LRU-K page 
Replacement Algorithm, J. ACM, Vol. 46, N. 1, pp. 92-112, 1999 

[SCU03] T. SCHWARZ, Santa Clara University, Computer Engineering, COEN 180, 
http://www.cse.scu.edu/~tschwarz/coen180/LN/MemoryHierarchy.html, Memory 
Hierarchy, 2003 

[SH3] Hitachi SH3-DSP: Processor Overview, Berkeley Design Technology, Inc. (BDTI), 
http://www.bdti.com/procsum/sh3-dsp.htm 

[SHA01] D. SHARP, TARMAC, A Dynamically Recompiling ARM Emulator, University of 
Warwick, http://www.davidsharp.com/tarmac/, 2001 

[SLE85] D.D. SLEATOR AND R.E. TARJAN, Amortized Efficiency of List Update and Paging 
Rules, Communications of the ACM, Vol. 28, N. 2, pp.202-208, 1985 

[SMI82] A.J. SMITH , Cache Memories, ACM Computers Survey, Vol. 14, N.3, ACM Press, pp. 
473-530, 1982 

[SMI83] J.E. SMITH AND J.R. GOODMAN, A Study of Instruction Cache Organizations and 
Replacement Policies, SIGARCH Computer Architecture News, Vol. 11, N. 3, ACM 
Press, pp. 132-137, 1983 

[SO88] K. SO AND R.N. RECHTSCHAFFEN, Cache Operations by MRU Change, IEEE 
Transaction Computers, Vol. 37, N. 6, IEEE Computer Society, pp. 700-709, 1988 

[SPA03] Ultra-Sparc Family, http://www.sun.com/processors/Ultra-Sparc-III/index.xml 

[SPE00] CPU-Intensive Benchmark Suite SPEC CPU2000, http://www.spec.org/cpu/ 

[TYS95] G. TYSON, M. FARRENS, J. MATTHEWS AND A.R. PLESZKUN, A Modified Approach to 
Data Cache Management, MICRO 28: Proceedings of the 28th annual international 
symposium on Microarchitecture, IEEE Computer Society Press, pp. 93-103, 1995 



79  References 

[TYS97] G. TYSON, M. FARRENS, J. MATTHEWS AND A.R. PLESZKUN, Managing Data Caches 
Using Selective Cache Line Replacement, Int. J. Parallel Program., Vol. 25, N. 3, 
Kluwer Academic Publishers, pp. 213-242, 1997 

[W IK06] WIKIPEDIA, DEC Alpha, http://en.wikipedia.org/wiki/DEC_Alpha, 2006 

[WON00] W. WONG, J.-L. BAER, Modified LRU Policies for Improving Second-Level Cache 
Behavior, Sixth International Symposium on High-Performance Computer 
Architecture, 2000. 

[X IL96] P. ALFKE, Efficient Shift Registers, LFSR Counters and Long Pseudo-Random 
Sequence Generators, XAPP052, http://www.xilinx.com/bvdocs/appnotes/xapp052.pdf,  
1996 

[ZOU04] H. AL-ZOUBI, A. M ILENKOVIC AND M. M ILENKOVIC , Performance Evaluation of Cache 
Replacement Policies for the SPEC CPU2000 Benchmark Suite, ACM-SE 42: 
Proceedings of the 42nd annual southeast regional conference, ACM Press, pp. 267-
272, 2004 





81  Appendix A - Number of status bits 

 
 
 

Appendix A  
 
Number of status bits 

 
 
 
 

A.1. PLRUt algorithm 

A decision tree for the PLRUt algorithm is drawn on Figure 14 p.14. The tree comprises Nsteps = 
log2(Nways/2) steps. This is equivalent to the following formulation: 

( ) [ [ ϑϑ −=









×∈∃ steps

ways
steps N

N
N

2
log,1,0,! 2N  

Each step i is composed of 2i nodes. Therefore, the number of required additional bits per set is: 

∑
=

+

−=
−

−=
steps stepsN

i
ways

N
i N

0

1

12
21

21
2 ϑ  

For a 2n-way set associative cache, Nsets.(Nways-1) additional bits are thus required for the whole cache. 

A.2. MPLRU algorithm 

A decision tree for the MPLRU algorithm is drawn on Figure 16 p.15. One sees that the tree is 
composed of Nsteps = log2(Nways/2) steps. Contrary to PLRUt, there are two types of nodes: the 
MBAIs, which require 2 bits, and the TBAIs, which require 1 bit. The TBAIs are the last step of the 
tree, and the MBAI the other ones. From this observation, one deduces the required number of 
additional bits: 

22
221

21
2

2
22

2

1

0

−+











=

−
−+












=+












∑

−

=
ways

ways
N

ways
N

i

iways
N

NNN stepssteps
ϑ  

 
For a 2n-way set associative cache, the MPLRU algorithm requires Nsets.(3Nways/2-2) additional bits. 

A.3. LRU algorithm 

Number of ways.   There are two means to encode the status bits for the LRU algorithm. The first 
version is the simplest one but quite expensive in terms of bits. This method is derived from the 
expression of the number of status bits found in [ZOU04]. A stack of Nways elements must be maintained 
in this method where each element of the stack contains the number of the way it points to, hence 
requiring log2(Nways) bits for each stack element. For the whole cache, the number of required bits is: 

Nsets. Nways. log(Nways) 
 

In opposition, the coding developed in this thesis (see Chapter 3 Section 3.2) requires N bits where: 

( )  1log     with
2

log
2

2
0

21
−=










= ∑

=
+ ways

k

p
p

ways

p

ways

sets

Nk
NN

N

N
 

One thus obtains: 














−= ∑ ∑

= =
++

k

p

k

p
pp

ways
ways

sets

pN
N

N

N

0 0
11

2

22

)(log
 



Study of different cache line replacement algorithms in embedded systems  82 

Restricting our study to the 2n-way set associative cache, one gets: 














−

−
∑

=
+

k

p
p

ways

ways
waysways

p

N

N
NN

0
12

2

1
)(log

 
It is impossible to get a beautiful expression of this sum, so we only give an equivalent: 

1

2

1
1

1

4

1

2

1
)1(

4

1

2 2
00

1
=








 −

≈






+=
∞→==

+ ∑∑
k

pk

p

k

p
p

p
p

 

For a high number of ways, the number of required bits is then: 
( )( )1log2 −≈

∞→
wayswayssets

N
NNNN

ways

 

 
The first values obtained with this encoding are N(2) = 1, N(4) = 5 and N(8) = 17. 
 
 These figures are to be compared with the previous ones and the one presented in the general section 
N(N-1)/2. This encoding is much more compact but at the price of complexity of decoding, encoding. 
In the case of our design, we save 1536 bits compared to the first situation, thereby leaving free space 
in the Dirty RAM for future improvements. One could argue that this encoding is only valid for the 
situations where the set stack is full. However, it is not the case. Indeed, as long as some lines are 
invalid, giving an order of preference between them does not matter because there is no loss of 
information. Once the line is filled, the stack is updated to be consistent with the access order. Thus, 
free or invalid ways are equivalent and can be encoded in this way. It introduces a slight dissymmetry 
but which would be seen on the whole life of the product (maybe faster deterioration of some hardware 
modules but it can be considered as harmless). The scheme of this implementation is done below for 
four ways. 

 
Figure 40: Improved LRU stack bits 

          
Compacity.   In Chapter 3 Section 3.2, it was stated that this algorithm is the most compact one. The 
proof of this assertion is given here as well as the assumptions made. 
 
Proof.   The information that we want to store is the sequence of access. According to the previous 
remark, the stack can always be considered as full. Thus, there are 4! different sequences to encode. 
Apart from the filling of the cache, the ways can be considered as equivalent. Indeed, during the filling 
of the cache, the ways are filled from 0 to 3. Apart from this slight dissymmetry, they are equivalent 
and all the sequences have the same probability p=1/24. Therefore, the Shannon entropy is: 

∑
=

≈=−=−=
23

0
222 585.424loglog24log

i
ii ppppH  

 
According to Shannon’s theorems, it is thus impossible to find a code whose average length is less than 
H. The word average is crucial in the previous assertion. Indeed, finding a coding as near as optimal as 
we want usually implies to have words of various lengths. This would imply to completely reorganize 
the way the status bits are addressed: decoding the address width would not allow one to directly access 
the elements because the widths of its predecessor are not known. In order to avoid this intricate issue, 
it is requested that all the code words have the same length. Indeed, if we do not assume this and if we 
want in the same time to keep a simple addressing for the elements, it would lead us to select the upper 
bound of the code widths as the basic width and would be a far from optimal solution. Therefore, the 
code width is the same for all the codes. Combining this with the entropy equation, it yields that the 
optimal width is 5 (a physical width must be an integer whereas an average one is a real). 
Consequently, the encoding proposed in this thesis is one of the optimal ones.  

0 1 

0 0 

0 

Set Stack 

Way 0 Way 1 Way 2 Way 3 

Set  



83                                                                                                           Appendix B - The cache simulator 

 
 

Appendix B  
 
The cache simulator 

 
 
 
 
As we have seen before, an implementation in C of the different cache algorithms was performed. 
Before giving the TARMAC outputs as input patterns of our implementation, some tests were 
developed to check the different features of the replacement policies. They are presented here to help 
understanding the behaviours of the cache lines replacement strategies.  
 

B.1. How to use the cache simulator 

The program is implemented in such a way that the number of ways can be modified but it must be a 
power of two. However, when the true LRU policy is used, the number of ways must be less or equal 
than 8. For the other algorithms, it must between 1and 32, since the status bits are represented as an 
integer (more than 32 ways is an uncommon situation in most caches as shown in Table 3 p.24). 
 
The cache size corresponds to the three possibilities of the ARM caches available up to now on the 
ARM processors (16, 32 and 64 KB respectively encoded here as 0, 1 and 2). All the other parameters 
are derived from the data found in replacement.cfg . This file has to be present in the same directory 
as the executable file and must be structured like: 
 

NUMBER_OF_WAYS_MIN=2 
NUMBER_OF_WAYS_MAX=4 
CACHE_SIZE_MIN=-1 
CACHE_SIZE_MAX=2 
CLK_PERIOD=10 
TIME_TO_L2=10 
TIME_TO_MAIN=100 
HIT_L2=90 
INSTRUCTION_SIZE=8 
DEBUG_ALGO=0 
DEBUG_LOOKUP=0 
LFB_ENABLE=1 
SBCACHE_ENABLE=1 
SBCACHE_SIZE_MIN=6 
SBCACHE_SIZE_MAX=16 
NB_SBC_LINE_ELTS_MIN=4 
NB_SBC_LINE_ELTS_MAX=10 
LOG_EVICTION=1 

 
The minimal and maximal values correspond to the bounds of the simulations done by the cache 
simulator. The output file can be then read with any spreadsheet or data software. The parameters are: 

- NUMBER_OF_WAYS: number of ways of the data cache; this should be a power of two to 
match the usual implementations relying on cutting the memory address, 

- CACHE_SIZE: cache size encoded as 24+CACHE_SIZE KB, 
- CLK_PERIOD: clock period defined in ns, 
- TIME_TO_L2: average time required to fetch a data from L2 cache in clock cycles, 
- TIME_TO_MAIN: average time to fetch a data from the main memory in clock cycles, 
- HIT_L2: average hit ratio in the L2 cache given in percentage, 
- LFB_ENABLE: boolean which enables the latency simulation, 
- SBCACHE_ENABLE: enables the Status Bit Cache defined in Chapter 6, 



Study of different cache line replacement algorithms in embedded systems  84 

- SBCACHE_SIZE: size of the status bits cache defined in number of lines, 
- NB_SBC_LINE_ELTS: number of status bits groups per line of the status bits cache. 

The parameters DEBUG_LOOKUP and DEBUG_ALGO simply activate printing of the results of elementary 
operations of the cache lookup and of the replacement algorithm. As its name suggests, 
LOG_EVICTION activates logging the different cache lookups and the result of these lookups (hit/miss, 
evicted way, true evictiona or not…). 
 
The status bits are defined after the access has been performed, as the contents of the ways. All the bits 
are written in big endianness, i.e. bits = “001”  is equivalent to: 

bits[0] = 1 ,  bits[1] = 0  and bits[2] = 0 . 
 

Finally, the command to launch a simulation is: 
replacement input_file policy1 [ policy2 policy3...] 

where policy is one of the following: GRR, LRU, ModBits, MPLRU, non-MRU, OPTIMAL, 
PLRUm, PLRUt, RANDOM, 1-bit, ROUNDROBIN or SIDE. 

B.2. Basic cache behaviour 

The first thing to test is the mapping: each main memory line should be mapped on the appropriate 
cache line. It is done with a “modulo” computation, as defined in Chapter 2, section 2.5 p. 6. Writes 
and reads on random addresses are checked and match the expected behaviour. The replacement 
algorithms must be called only where the set is full. Thus, a test independent of the policy was written 
to check that the cache simulator uses free ways when available. It only fills a data cache set and after 
some accesses in other sets, it requests once more all the data of this cache set. The case where the core 
accesses another word of the line while the LFB fetches a data is tested too.  

B.3. Test sequences of the replacement policies 

In this chapter are addressed some of the tests developed for the verification of the cache simulator. 
One is presented for each algorithm and its results are dealt with if there is a complication. These 
sequences were written such that they test the particularities of each algorithm and their result on each 
step is checked. 

a. Remark about the filling of the cache 

In this appendix, all the sequences begin with the filling of the cache set considered by the replacement 
policies. The addresses are computed such that they match to the same cache set for sizes of 8, 16, 32 
and 64 KB. This part is identical for all the algorithms, since it is managed by the free ways part of the 
program. The filling sequence 0x300, 0x4300, 0x8300, 0xc300 is not represented on the tables. 

b. Optimal algorithm 

Cache set 
Address 
accessed Way 0 Way 1 Way 2 Way 3 

Next 
accessed 

data 

Evicted 
way 

Hit/ 
Miss 

0x1000 - - - - - - - 
0x10300 0x300 0x4300 0x10300 0xc300 1,3,0,2 2 Miss 
0x4300 0x300 0x4300 0x10300 0xc300 - - Hit 

0xa378bc10 - - - - - - - 
0xc300 0x300 0x4300 0x10300 0xc300 - - Hit 
0x300 0x300 0x4300 0x10300 0xc300 - - Hit 
0x8300 0x300 0x4300 0x10300 0x8300 0,1,2 3 Miss 

0xaaaaaaaa - - - - - - - 
0x300 0x300 0x4300 0x10300 0x8300 - - Hit 
0x4300 0x300 0x4300 0x10300 0x8300 - - Hit 
0x10300 0x300 0x4300 0x10300 0x8300 - - Hit 
0x4300 0x300 0x4300 0x10300 0x8300 - - Hit 

Table 20: Test sequence of the optimal algorithm 

                                                           
a A true eviction occurs when there was a valid line in the way 



85                                                                                                           Appendix B - The cache simulator 

The optimal algorithm is the reference algorithm of our study. Its implementation was developed to get 
an absolute reference of the performance of a replacement algorithm. The TARMAC file provides us 
with the knowledge of the future accesses of the core and makes this algorithm feasible. Unfortunately, 
it has not been used intensively in this thesis since the computation time was too important and since 
the cache optimizations were not taken into account. The feature tested is the computation of the next 
accessed data, which gives the evicted line. The cases where the four ways are accessed in the future 
and where only a part of them is requested are studied. The simulated results match the theoretical 
result of Table 20. The implementation of the buffer has also been checked in a similar way as before. 
The test was made for sake of simplicity on the configuration with 2 ways and then checked on 4 ways. 

c. SIDE 

The update of the counter on misses and on hits in the surely LRU and possibly MRU part is checked 
here. The value of the evicted way is also tested. The representative test sequence is given in the table 
below. 
 

Cache set 
Address 
accessed Way 0 Way 1 Way 2 Way 3 

Next 
accessed 

data 

Evicted 
way 

Hit/ 
Miss 

0x4300 0x300 0x4300 0x8300 0xc300 2 - Hit 
0x300 0x300 0x4300 0x8300 0xc300 2 - Hit 
0x8300 0x300 0x4300 0x8300 0xc300 3 - Hit 
0x1c300 0x300 0x4300 0x8300 0x1c300 0 3 Miss 
0x10300 0x10300 0x4300 0x8300 0xc300 1 0 Miss 
0x4300 0x10300 0x4300 0x8300 0xc300 2 - Hit 
0x14300 0x10300 0x4300 0x14300 0xc300 3 2 Miss 
0x300 0x300 - - - 1 0 Miss 
0x4300 0x300 0x4300 - - 2 1 Miss 
0x8300 0x300 0x4300 0x8300 - 3 2 Miss 
0xc300 0x300 0x4300 0x8300 0xc300 0 3 Miss 
0x4300 0x300 0x4300 0x8300 0xc300 2 - Hit 

Table 21: Test sequence for SIDE 

d. Round Robin 

A quite simple test is written for a simple algorithms with not so many features. The sequence 
0x10300, 0x4300, 0x1c300, 0x8300, 0x14300, 0x16300, 0x12300, 0xe300, 0xa300, 0x2300, 0x18300 
gives the following succession of evicted ways: 0, -, 1, -, 2, -, -, -, -, - and 3. The italic numbers 
correspond to set which do not lie in the current set. 

e. Global Round Robin 

The test is almost the same as Round Robin but now the Round Robin counter is global and this could 
lead to situations where the MRU line is evicted. The same sequence as above was tested. The evicted 
ways are 0, -, 1, -, 0, 1, 2, 3, 0 and 1. 

f. PLRUm 

The sequence is explained in the table below and matches the result obtained with the simulation. The 
accesses are done in the set 1. Those that are not mapped onto this set are marked in this table as -. The 
values shown below correspond to the value after the instruction has been taken into account. 

Cache set 
Address 
accessed Way 0 Way 1 Way 2 Way 3 

Status 
bits 

Evicted 
way 

Hit/ 
Miss 

0x8300 0x300 0x4300 0x8300 0xc300 1100 - Hit 
0x10300 0x10300 0x4300 0x8300 0xc300 1101 0 Miss 
0x14300 0x10300 0x14300 0x8300 0xc300 0010 1 Miss 
0xc300 0x10300 0x14300 0x8300 0xc300 1010 - Hit 

0x10300 0x10300 0x14300 0x8300 0xc300 1011 - Hit 
0x1c300 0x10300 0x14300 0x1c300 0xc300 0100 2 Miss 
0x10300 0x10300 0x14300 0x1c300 0xc300 0101 - Hit 
0x20300 0x10300 0x20300 0x1c300 0xc300 0111 1 Miss 

0xaaaaaaaa - - - - - - - 
0x1c300 0x10300 0x14300 0x1c300 0x1c300 1000 - Hit 

Table 22: Test sequence of PLRUm algorithm 



Study of different cache line replacement algorithms in embedded systems  86 

In this sequence, there are 5 hits. The different features tested are: 
- the global phase (the bits status are reset in order to avoid that all bits are high), 
- the eviction with respect to the status bit (the discarded way is the first one encountered 

with a low status bit). 

g. PLRUt 

The features tested are the 
designation of the evicted 
way and the update of the 
status bits on miss/hit. 
The numbering is 
described in Figure 41. In 
the algorithm, one needs 
the relation between a 
node and its children. Let 
k be a node. The node k 
lies on step s = 
E(log2(k+1)) where E(x) 
gives the integer part of x. 
Let n1 be the number of 
nodes between our node k 
and the last node of the 
step s (including the 

 
Figure 41: PLRUt tree nodes numbering 

boundary node) and n2 the number of nodes on the stage s+1 between the first node and the first child 
of k (including boundaries). The children of node k are then k+n1+n2 and k+n1+n2+1. By 
construction of the tree, we thus get that the upper boundary nodes of a step s are 2k+1-2. The 
numbering described above is then used for the modification of the tree bits and their reading is 
presented. Noting the bits in big endianness, the sequence 0x10300, 0x300, 0xc300, 0x18300 induces 
the status bits 011,110,010 and 001. The decoding of them assigns the ways to discard 0, 2, -(hit) and 1. 

h. MPLRU 

 
The numbering is given 
in Figure 42 where the 
notation n/n+1 stands for 
the couple previous-
current bits of a MBAI. 
As before, the status bits 
are written in big 
endianness. The tested 
features are the 
computation of the way 
to discard and the update 
of the status bits. 

 

 
Figure 42: MPLRU tree nodes numbering 

 
 

Cache set 
Address 
accessed Way 0 Way 1 Way 2 Way 3 Status bits 

Evicted 
way 

Hit/ 
Miss 

0x300 0x300 0x4300 0x8300 0xc300 0110 - Hit 
0x8300 0x300 0x4300 0x8300 0xc300 1101 - Hit 
0x10300 0x300 0x4300 0x8300 0x10300 0100 3 Miss 
0xc300 0x300 0xc300 0x8300 0x10300 0010 1 Miss 
0x300 0x300 0xc300 0x8300 0x10300 0111 - Hit 

0x14300 0x300 0xc300 0x14300 0x10300 1101 2 Miss 
0xc300 0x300 0xc300 0x14300 0x10300 1010 - Hit 
0x4300 0x4300 0xc300 0x14300 0x10300 1111 0 Miss 

Table 23: Test sequence of MPLRU algorithm 

TBAI bit  

Cache set 

0/1 

2/3 4/5 

10/11 12/13 6/7 8/9 

MBAI bits  

PLRUT bit  

Cache set 

0 

1 2 

5 6 3 4 



87                                                                                                           Appendix B - The cache simulator 

i. LRU 

Cache set 
Address 
accessed Way 0 Way 1 Way 2 Way 3 MRU→LRU 

Evicted 
way 

Hit/ 
Miss 

0x10300 0x10300 0x4300 0x8300 0xc300 0,3,2,1 0 Miss 
0x300 0x10300 0x300 0x8300 0xc300 1,0,3,2 1 Miss 

0x10300 0x10300 0x300 0x8300 0xc300 0,1,3,2 - Hit 
0x14300 0x10300 0x300 0x14300 0xc300 2,0,1,3 2 Miss 
0x18300 0x10300 0x300 0x14300 0x18300 3,2,0,1 3 Miss 
0x300 0x10300 0x300 0x14300 0x18300 1,3,2,0 - Hit 
0xc300 0xc300 0x300 0x14300 0x18300 0,1,3,2 0 Miss 
0x300 0xc300 0x300 0x14300 0x18300 1,0,3,2 - Hit 
0x4300 0xc300 0x300 0x4300 0x18300 2,1,0,3 2 Miss 
0x18300 0xc300 0x300 0x4300 0x18300 3,2,1,0 - Hit 

Table 24: Test sequence for LRU 

j.  Dirty bits 

The principle of the test is the same as before. However, to distinguish dirty cache locations and non-
dirty cache locations, a distinction between reads and writes is done. The corresponding test sequence 
is given in the table below. The filling is done by three successive writes and a read request. 
 

Cache set 
Address 
accessed 

Type of 
the 

request Way 0 - D0 Way 1 - D1 Way 2 - D2 Way 3 - D3 
Evicted 

way 
Hit/Miss 

0x10300 R 0x300 - 1 0x4300 - 1 0x8300 - 1 0x10300 - 0 3 Miss 
0x300 R 0x300 - 1 0x4300 - 1 0x8300 - 1 0x10300 - 0 - Hit 
0xc300 R 0x300 - 1 0x4300 - 1 0x8300 - 1 0xc300 - 0 3 Miss 

0x18300 W 0x300 - 1 0x4300 - 1 0x8300 – 1 0x18300 - 1 3 Miss 
0x10300 R ? - ? ? - ? ? - ? ? - ? ? Rand. Miss 

Table 25: Test sequence for ModBits 

B.4. Advanced behaviour of the cache 

Finally, the advanced features of the modelized cache were investigated too. The latency to fetch the 
data from the upper level memory and the behaviour of the Status Bit Cache are tested here. Like the 
replacement algorithms, different tests were written to verify that it performs as expected. The latency 
tests are based on the time analyses and the management of the buffers.  The ARM11 hit in LFB is not 
implemented here since it would have assumed to model the arrival of data in different groups 
whenever the requested address matches the one stored in LFB. This optimization is considered as 
negligible in a first approximation. The data is then not present until the time limit it has been asserted 
on miss (depending on the random number) and then is present on next access and written immediately 
in the cache. These two phases of assigning the time limit and waiting on the one hand and writing the 
data back in the cache are validated thanks to some different tests which include the extreme conditions 
too. For the SBC, the tests were a bit simpler since it is almost the same implementation as the 
simulated cache. The single difference relies on the fully associativity of this cache and on the fact that 
all the memory requests can be considered as reads for the SBC. Besides, it is made easier by the non-
simulation latency for this cache since the aim is to have coarse clues about the optimal size. In this 
optics, tests equivalents to the data cache one were run. 
 
 
 
The different operations of the cache simulator were tested and the major sequences were presented in 
this chapter. The validation of the Verilog implementation is performed in Appendix D. 





89                                                                                                   Appendix C - Selection of benchmarks 

 
 
 

Appendix C  
 
Selection of benchmarks 

 
 
 
 

C.1. Benchmarks 

As it has been seen before, the benchmarks came from different sources. The simulated benchmarks are 
listed below: 

- 3d_geometry_f32 : usual geometry transformations used in 3D graphics, 
- 3d_persptris_f32 : computes 3D perspective, 
- 500_huffmann : implements the Huffman coding, 
- 500_mandeld : computes a Mandelbrot set (fractals), 
- 500_qsort : quick sort algorithm, 
- automotive_aifftr : computes the inverse FFT (Fast Fourier Transform) on 

complex inputs (two arrays of real and imaginary parts), 
- automotive_idctrn : computes an inverse discrete cosine transform used in digital 

videos and graphics applications such as image recognition, 
- automotive_iirflt : computes an IIR (Infinite Impulse Response) on fixed-point 

values, 
- automotive_matrix : computes the LU (Lower x Upper) decomposition of a matrix, 

its determinant and its product with another matrix, 
- automotive_tblook : simulates a table lookup particularly used in ABS, ESP…, 
- consumer_rgbcmy : performs the conversion from RGB to CMY especially used in 

printers, 
- consumer_rgbcmykv : performs conversion from RGB to CMYK conversion 

extensively used in printers, 
- mp3: decodes a mp3 input, 
- mpeg4_deblock : heart routine of the MPEG4 algorithm, 
- mpeg4_decode : decodes an MPEG4 file, 
- mpeg4_encode : encodes in MPEG4 format, 
- networking_ospf : implements the Dijkastra/Shortest Path First algorithm which is 

widely used in routers, 
- networking_pktflow : simulates a network router work but focused on checksum 

and comparison operations, 
- networking_route_lookup : implements an IP tree and simulates the work of a 

router, 
- networking_tcp : simulates TCP traffic in networks (the number of packets and the 

size of the segments can be modified to simulate networks from FTP to Gigabit 
Ethernet), 

- office_bezier : computes Bezier curves, 
- office_dither : uses the Floyd-Steinberg Error Diffusion dithering algorithm to 

convert a greyscale picture for printing, 
- office_rotate : it rotates clockwise a binary image of 90 degrees. This operation is 

common in printers, 
- telecom_viterbi : it implements the Viterbi algorithm widely used in Error 

Correcting Codes (ECC). 



Study of different cache line replacement algorithms in embedded systems  90 

C.2. Selection of benchmarks 

The criteria which governed the selection of benchmarks were the following: 
- the cache is stressed: there are evictions from the data cache and the replacement policy 

is called many times to select the victim line, 
- there are differences in the ratio hit between the different cache sizes: this element 

insures that the impact of the replacement policy is visible and that the simulation 
environment does not correspond to the high data cache size of the curves. This term 
high ends refers to the ratio data cache size over working set size. For high values of 
this ratio, compulsory misses are the main verily the single contributors to miss ratio. 
As it has already been stated, replacement policies do not influence this type of misses 
and thus these simulations are meaningless for the scope of this work. This element is 
also checked by the number of true evictions, 

- the representative benchmarks exhibit realistic hit ratio (i.e. they are not all equal to 
99.91-99.94% even for small data cache), which should ensure that the memory 
patterns are realistic. 

 
Finally, the group of representative benchmarks is composed of:  

- 3d : 3d_persptris_f32 ,  
- 500: 500_huffman ,  
- EEMBC: automotive_aifftr, automotive_iirflt, automotive_ma trix, 

consumer_mpeg4_decode, consumer_mpeg4_encode, netwo rking_ospf, 
networking_pktflow8, networking_route_lookup, netwo rking_tcp, 
office_bezier, office_dither, office_rotate, teleco m_vitterbo.  

 
This selection thus affords a wide range of embedded applications that stress the data cache noticeably. 
Among this selection, some are more interesting for the scope of this study since they exhibit a greater 
differentiation of the replacement strategies. The benchmarks above mentioned are: 
automotive_matrix, consumer_mpeg4_decode, networkin g_tcp and office_rotate . 



91                                                                    Appendix D - Validation of the implementation in Verilog 

 
 
  

Appendix D  
 
Validation of the implementation in Verilog 

 
 
 
 
Different checks have been performed at each step of the development in Verilog and the main lines of 
these verifications are handled in this appendix. Knowledge about the solution implemented in this 
thesis – the Status Bit Table endowed with the Status Bit Cache – is assumed. If it is not the case, you 
are kindly advised to read the relevant chapter. 

D.1. Status Bits Updater 

For the updating process, the module was submitted to different inputs, generated by test benches 
written to this purpose. The outputs were monitored and compared to the results obtained by the 
replacement algorithms written in C. Obviously this automatic check is valid for the configurations 
without locked ways. Indeed, this feature was not taken in account by our cache simulator, since 
locking is seldom used and not on a long time slot. Otherwise, the results were checked manually. 
 
Different conflict signals are asserted in the test bench in order to detect any bug like allocating a 
locked way, allocating a valid way when there is a free one, not including the locked ways in the 
updated status bits. All these verifications helped assuring that the updater operates correctly. 

D.2. Status Bits Cache 

As for the updater, different signals are asserted to check the different modules: particularly one makes 
certain that there is no double copy of an element inside the Status Bit Cache. Besides, a modular 
approach was adopted which enables to debug small pieces of hardware which are independent one 
from another, and then to dive into the issue of their relative timing and behaviours. A dedicated test 
bench was written for each module to test its function. Different types of inputs fed the Status Bit 
Cache and this work was eased by the development of a small C program which interprets a text file 
where the input sequences are written in a more human friendly manner. Then it writes a Verilog file as 
where the different signals were asserted and unasserted. This Verilog file was included directly in the 
test bench with an `include  directive. This program ensured to save a lot of time and to test quickly 
different configurations. This “human friendly” language comprehends the following instructions: 

- wlin line_number address status_bits_to_be_written : writes a complete line, 
- wstb line_number address status_bits_to_be_written : writes a status bit group, 
- rlin addr : reads a whole line, 
- rstb addr : reads a status bit group, 
- wrll write_line_number write_address read_address 

status_bits_to_be_written : writes and reads two (different or not) whole lines, 
- wrls write_line_number write_address read_address  

status_bits_to_be_written : writes a whole line and reads a status bits group, 
- wrsl write_line_number write_address read_address 

status_bits_to_be_written : reads a whole line and writes a status bit group , 
- wrss write_line_number write_address read_address 

status_bits_to_be_written : writes and reads status bit groups.  
 
One sees that the line number is required for the writes. Indeed, it assumes that the write is split up in 
two phases by the arbiter which is located before the SBC. Thus, seen from the cache, the write lookup 



Study of different cache line replacement algorithms in embedded systems  92 

is a read and the write phase is a write where the line has already been known. A sequence example is 
given in the table below, where the grey shaded lines correspond to the filling of the cache. 
 

Access SBC Index 
Hit or 
written 

way 

Data 
from 
SBT 

Allocated 
way to LSU 

Allocated 
way to LFB 

SBC line 
changed 

SBC 
line 
data 

Data to 
SBT 

readh  001001011 0010 3a51 - - 1 3a51 - 
readh  011011010 - 91bc - 0010 0 91bc - 
readh  110001000 0001 ab47 - - 2 ab47 - 
readh  101010101 0100 871e - - 3 875e - 
readh  101010001 0001 1072 - - 4 1072 - 
readh  101000110 0100 4301 - - 5 4701 - 
readh  011001111 1000 7a13 - - 6 8a13 - 
readh  101110010 0010 1047 - - 7 1247 - 
readm  010000100 - 2034 - 0001 0a 2034 3a51b 
lfill  010000100 0010 3146 - - 0 2036 - 
lookh  101010101 0010 ab67 - - (3) - - 
wdata  101010101 0010 ab67 - - 3 877e - 
lookm  010000001 - 481e - 0010 1 481e -c 
lfill  010000001 1000 481e - - 1 489e - 
lookm  110001000 - 2479 1000 - (2) (ab47) - 

Table 26: Test sequence of the Status Bit Cache Logic with PLRUm replacement policy 

D.3. Integration of Status Bit Cache in the ARM11 MPCore processor 

Once the modules worked outside the ARM11 Data side of L1 level, it had to be included in the 
ARM11 MPCore processor. This integration had also to be checked and the sequences and methods of 
these verifications are presented in the tables below. The tests were run on T1-32 and Dhrystone. T1-32 
was used for the first verifications. The tests are usually split into two main parts: 

- the beginning of the sequence after having turned on MMU and Data Cache, 
- the normal running mode which corresponds to accesses with status bits already 

different from zero and thus more complicated situations. 
 
The issue of relying on existing programs is that the cache is not stressed as strong as it would be 
necessary. For this reason, some basic assembly programs were written to stress more efficiently the 
cache and to test specific situations of the data cache. These verifications are made tough by reordering 
of the instructions and potential merges. Nevertheless, they were very useful for the validation of the 
implemented modules. 
 
All together, these programs tested all the possible situations: 

- Fast path cache lookup with hit, 
- Fast path cache lookup with miss, 
- Hit in Status Bit Cache and miss in data cache, 
- Miss in Status Bit Cache and miss in data cache, 
- Hit in Status Bit Cache and hit in data cache, 
- Miss in Status Bit Cache and hit in data cache, 
- Line Fill… 

 
The final tests targeted real applications which should go through numerous situations. Thus, 
benchmarks and software were run on the modified version of the processor. There were two types of 
verification. Firstly, the control signals ensured that the behaviour of the cache was not crazy and the 
checking of the results of the programs confirmed that it operated correctly. But, it was not sufficient to 
assure that the implementation was correct. Therefore a second and more comprehensive check was 
performed. All the memory requests entering the data cache were logged and the obtained log file fed 

                                                           
a Because the replacement policy is PLRUm and a filling of the cache is the beginning of a new phase 
where the information about last accesses is lost: only the MRU line is protected from eviction at the 
beginning of a new phase but it is a better solution than accessing free ways in order 7..0 
b There is a write-back of line 0 in Status Bit Table because the line has been modified on its first write 
in Status Bit Cache 
c The status bits have not been modified (it is a readm ) and there is no need to write back the status bits 



93                                                                    Appendix D - Validation of the implementation in Verilog 

the cache simulator designed previously. The results of this last one were then compared to the result of 
the Verilog implementation. However, this was very time consuming since the files needed to be 
modified for the requests to match the input requirements of the cache simulator. It explains why this 
verification has been carried out on some benchmarks only, especially at the beginning of the overall 
verification phase, and not on all the simulated software and benchmarks. 
 
The steps presented above allowed us to detect and correct bugs in a hierarchical manner. The final 
tests ensure that the design works properly for most cases. However, it could not be assured certainly 
that the design is bug free since the verification was not formal and since the testing vectors are not a 
generating family of the space of possibilities. This remark raises the issue of the validation of a design 
and of its fault-tolerance. This theme is beyond the scope of this thesis and the performed verifications 
are considered as sufficient to assert that the design operates properly.  



Study of different cache line replacement algorithms in embedded systems  94 

 
 
 

Index 
 
 
 
 
Architecture .................................................. 21 
Cache 

direct-mapped............................................. 7 
fully associative.......................................... 6 
N-way-set-associative ................................ 8 

Cache line ....................................................... 5 
Coherency protocol bits.................................. 7 
Dirty bit .......................................................... 7 
Global Round Robin..................................... 22 
GRR...........................See Global Round Robin 
Hit................................................................... 5 
Hit-under-miss.............................................. 22 
Lockdown..................................................... 22 
LRU...........................See Least Recently Used 
Memory Management Unit .......................... 22 
Microarchitecture ......................................... 21 
Miss ................................................................ 5 

capacity ...................................................... 9 
coherency ................................................... 9 
compulsory................................................. 9 
conflict ....................................................... 9 

MMU..............See Memory Management Unit 
Principle of locality ...................................... 11 
Replacement algorithm 

1-bit ..........................................................13 
Least Frequently Used ..............................13 
Least Recently Used .................................12 
Modbits.....................................................28 
MPLRU ....................................................15 
non-MRU..................................................28 
optimal......................................................11 
PLRUm.....................................................14 
PLRUt.......................................................14 
Random ....................................................12 
Round Robin.............................................13 
SIDE .........................................................16 

SBC...............................................................58 
SBRB ............................................................59 
SBWB...........................................................58 
Status Bit Group............................................51 
Status Bit Read Buffer ..................................59 
Status Bit Table.............................................58 
Status Bit Write Buffer .................................58 
Status bits......................................................28 
Validity bit ......................................................7 
Word ...............................................................5 
Write through..................................................5 
Write update....................................................5 

 
 
 


