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Abstract

The increasing speed gap between processors andmasnunderlines the criticalness of cache
memories. The strong area and power consumptiostr@ints of general purpose embedded systems
limit the size of cache memories. With the develepmof embedded systems provided with an
operative system, these constraints are even strompe selection of an efficient replacement polic
thus appears as critical.

The Least Recently Used (LRU) strategy performd arelmost memory patterns but this performance
is obtained at the expense of the hardware reqeingsrand of the power consumption. Consequently,
new algorithms have been developed and this wodeimted to the evaluation of their performance.
The implementation of a cache simulator allowedtaiscarry out a detailed investigation of the
behaviour of the policies, which among others destraied the occurrence of Belady's anomaly for a
pseudo-LRU replacement algorithm, PLRUmM. The repiaent strategies that emerged from this study
were then integrated in the ARM11 MPCore processut their performance results were compared
with the cache simulator ones.

Our results show that the MRU-based pseudo-LRUargphent policy (PLRUm) approximates the
LRU algorithm very closely and can even outperfatwith low hardware and power consumption
requirements.

Sammanfattning

Det 6kande gapet mellan processorer och datormifinstéirker betydelsen av effektiviteten hos cache
minnena. De kraftiga restriktionerna av yta ochraftkbegransar storleken pa cache minnena. Med
utvecklingen av inbyggda system med operativsysteltie restriktionerna annu mer betydande. S att
vélja en effektiv ersattningsalgoritm ar darfortisit.

LRU algoritmen presterar bra pa de flesta minnaksirer, men det fas till kostnad av hardvaru
specifikationer och elkrafts konsumption. Nya algoer har darfor utvecklats och den har
avhandlingen behandlar evalueringen av deras msstdamplementeringen av en cache simulator har
tillatit oss att utfora en detaljerad undersokningegenskaperna hos algoritmerna, vilket bland tanna
pavisade Beladys anomali for PLRUm, en ersattniggsiam. Algoritmerna som kom fram under
analysen integrerades sedan i ARM11 MPCore prooessth deras prestanda jamférdes med cache
simulatorns.

Vara resultat visar att PLRUm kommer ndra LRU dtguen och till och med kan prestera battre an
LRU:n med lag hardvara- och elkrafts krav.

i Abstract/ Sammanfattning
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Chapter 1

Introduction

B mobom nauunanuu monvko oowa maiina: 6ydem au 3a8epuieHue’?
I'. Anexcanapos®

1. Motivation

As processors become faster and faster, the pefarengap between memories and processors gets
wider and wider. Consequently, different soluti@me proposed to cope with this issue, among them
increasing cache performance. In this perspectiasigning a cheap, low-power and efficient
replacement policy appears as critical, as Eq. p®) shows. Besides, studies 803, Zou04]
demonstrated that there is a significant gap betwthe optimal replacement algorithm and the one
used in most embedded systems’ processors, i.@loRaor FIFO. This observation motivates a deep
study of these policies. However, because of thyh hdcality in instruction caches, using a new
replacement policy is not so critical for instraeticaches [M.03], particularly in comparison with the
designing cost. This thesis is thus focused on ithprovement of data cache performance by
implementing a new cache line replacement algorithm

The word implementation is crucial in this defiaitibecause all the studies published in the lilegeat
up to now deal with a cache simulator model, and thre restricted to the theoretical efficiency of
these algorithms. There is a lack of knowledge dath in this field, particularly in the embedded
world. Moreover, all the works cited above focustbe x86 architecture and aim to find the most
efficient algorithm. The only work found in thediature about replacement algorithms on ARM
processors is [MO03] but they use a simulator of the core and netdbre itself, which could lead to
some significant differences. Moreover, it was thevious generation of ARM cores, whose
architecture has changed a lot. In this work, wé# @éal with a typical embedded processor, the
ARM11 MPCore one. Like other embedded cores, tier® published work about the efficiency of
different replacement cache line algorithms. Theskwvill try to compensate this lack of knowledge.
The originality of this study will be to take inaxcount not only the efficiency of the algorithms b
also their designing cost, their power consumptamd their area; thereby leading to a good
compromise between these factors. This is explamethe fact that whereas these factors are non-
essential for desktop applications, they are aiifior embedded systems.

Finally, all the studies found in the literaturee afocused on mono-processors whereas our
implementation will take care of the process ofaiidating lines. The impact of this feature is not
studied in details in this thesis because of tirestrictions. However, it is dealt with in the
implementation since the ARM11 MPCore processarrizulti CPU system.

2. Methods and plan of the thesis

As explained in the previous paragraph, the aithisfinternship is to implement a cheap, low-power,
efficient and easy to design cache line replacerpelity. In order to reach this goal, the thesis ha
been split into different parts:

& At each beginning, there is only one mystery: wilei completed?
G. Aleksandrov

1 Chapter 1 - Introduction



- study of the literature,
- simulation of the algorithms and deep study ofrtbbaracteristics,
- implementation of one or some algorithms in a hamdwdescription language.

These steps allow dividing the thesis into différparts, with their own objectives. This method
usually leads to a well organized work and simpdifimeeting the requirements because there are
various small frequent steps. This splitting isunat in the sense that we first study the existing
material and try to improve the existing replacet@dgorithms. Then the chosen policies are simdlate
on our particular architecture in order to evaluhtsr performance and finally from these resuhid a
the constraints specific to embedded systems, swenehosen as candidates for implementation, which
is the final step. The plan reflects this partitman

Chapter 2 presents the general features of caches memégegle already familiar with caches can
begin the reading of this thesis at Chapter 3.

Chapter 3 deals with the common replacement strategies #saweheir expected performance. The
advantages and drawbacks of each policy are exdntimeselect the algorithms that may meet
embedded systems’ constraints.

Chapter 4 briefly addresses the characteristics of the ARNMdlementation useful for this work.

Chapter 5 is devoted to the simulations of the replacemégaridghms on a cache model. These results
are then confronted to the literature and to thst evaluations of their integration in the ARM11
MPCore data side architecture, thereby selectingestandidates for an implementation.

Chapter 6 focuses on the Verilog implementation of someaepinent strategies. Different proposals
are examined and the chosen one is addressed aiilsd&imulations are then performed on the
enhanced version of the processor to corroboratpdhformance improvement.

Chapter 7 sums up the results of this work and suggests sdeas for future works on neighbouring
themes.

Study of different cache line replacement algorghhmembedded systems 2



Chapter 2

Theoretical Background

We are therefore forced to recognize the possibift constructing a hierarchy of memories, eachvbich has
greater capacity than the preceding but which is lgsickly accessible.

A. Burks, H. Goldstine, J. von NeumarR®reliminary Discussion of the Logical Design of &tenic Computing
Instrument, Part I, Vol. IReport prepared for the U.S. Army Ord. Dept
1946

Before dealing in details with cache line replacetadgorithms, the main characteristics of the each
memories that will be used in this thesis are lyripfesented. The mapping, which will be intensely
discussed in the final implementation, is dealtwiit details.

1. The need of caches

1.1.Memories

Memories are one of the basic hardware elements pvidcessors and communication. They enable
data and instructions to be saved and they carcbessed thanks to the address of their elements.
There are two types of memory accesses:

- thereadswhich give the value of an element stored at inddfaddress,

- thewriteswhich store a value at a given address.
The access could concern only one word or somesydepending on the executed instruction.

e « Registers
]
: e Cache
r.‘;.,.,___;-
Main

On-line storage

el

Capacity

Near-line storage

Price -
Off-line storage

Figure 1: Repartition of memorigs

Ideally, we would like to have an indefinitely l@&rghemory (with high capacities) which would be able
to immediately access one element as well as ithgteplace one of them. Unfortunately, it is omly
dream. Various types of memories are thus usedffateht levels of the memory hierarchy, each of
them resulting from specific compromises betweeiceprcapacity, speed, reliability, availabifity
These criterions yield the classification of merasrilepicted above.

After the first glance on the figures above, ondiges that the fastest memories are the most
expensive. Apart from cost, fast memories have 8o capacity, thus preventing engineers from

2 These two pictures come fromdd@3]
® For more details about distinction between relighind availability, see [Bu06]
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designing fast and big memories. The different nméssoare usually regrouped as a pyramid in
accordance with the previous observations. Regisieat its top, as they are the fastest and thgt m
expensive memory. Cost per byte, capacity and speecease downwards this pyramid to off-line
storage.

1.2.Caches

During the last years, the gap between processpegd and memories’ speed increased in spite of the
numerous attempts to cope with it (see Figure 3)aAesult, memory access time appears now as a
bottleneck for the design of fast systems. Indéeelaverage access time is 60 ns for DRAM (usually
used for the main memory) whereas a typical ARM1PQdre processor clock period is 2 ns.
Therefore, many endeavours have been performeddiace the average access time. Fast memories
located near the CPU (Central Processing Unit) eottaining the most frequently used data and
instructions should be a good solution to thisesambedded SRAMs (commonly employed in cache
memories) can exhibit an average access time @quiins. Unfortunately, these memories are also
very expensive and their capacities are limitediintue of the principles presented in Section 1.1.
Processors would ideally always access the caexegft for cold misses), thereby requesting greater
and greater capacities of the caches. It is oblyjanpposition with the previous remark.

10,000 [

1000 F

LIILILES PP LS LSS LS ST EESS

Figure 2: Performance gap between CPUs and menfories
Nowadays, processors are thus frequently providéd avsecond level cache (denoted as L2) in order
to solve the cache size issue. This cache acta ageamediary memory between the first level cache
and the main memory. It has greater capacity huetespeed than first level caches (whose symbol is

L1). The corresponding memory hierarchy is drawnFagure 3 for a back-end L2. It can also be
directly connected to the CPU and it is known astiend.

Word Line Lines :
Main

Figure 3: Usual memory hierarchy

In the next chapters, the teupper level memorwill refer to the second-level cache if there isaak-
end L2 or to the main memory for the other systems.

2. Generalities about caches

Various points about the characteristics of ca@dresaddressed in this section: unified or sepdrate
caches, mapping, replacement policies...

& Picture from [HENO3]
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2.1.Definitions

A cacheis a small fast memory located near the procesbiarh contains the data recently accessed.
With caches, the memory access is not determirastyenore but probabilistic.

A cache lines the smallest amount of data that can be tramsfdetween the upper level memory and
the cache. It takes advantage of the locality pletto avoid numerous costing upper level memory
accesses. A cache line is composedafs

A word is the smallest amount of data transferred betvikerprocessor and the cache and usually
corresponds to the size of the processor’s register

If the data/instruction required by the processolocated in the cache, it ishit. Otherwise, it is a
miss

Themappingis the technique used to assign one upper levelaneblock to one cache line.

2.2.Unified vs. separated caches for data and instruain

The information, that the processor needs accessinig the data and the instructions. They can be
saved in the same memory or in two different meembiecause of their particularifies

Separating the data and the instruction cachesle®die bandwidth because the processor can issue
simultaneously an instruction request and a dataest. Indeed, a load or a store simultaneously cal
for a data as well as an instruction. A unifiedlemcan so be a bottleneck of the system in some
specific situations. A separated cache has thusdiantage of a multi-port memory without its cost.
Moreover, the logic that arbitrates priority betwedata and instructions in a unified cache is
suppressed in a separated cache. Another advaoitagparated caches is that the two caches can be
located near the place where they will be used; sawving some nanoseconds in the critical path.

On the other hand, separated caches raise impoanés concerning the enforcement of the
coherency between the two caches, especially ibmremifying codes. A thorny problem must be
solved if data and instructions lie in the same mgnline: each cache can own an erroneous copy of
the memory line, thereby raising the coherency lembFinally, the separation of cache and dataslead
also to an inefficient use of the memory becauseesmemory space is wasted.

2.3. Write-through vs. write-back

When a data is located in the cache, the systentwwsopie& one in the main memory, one in the
cache. Two different policies govern the write:

- write through:the data/instruction is written both in the caahd in the main memory,

- write back: the information is written in the main memory onkhen the line is
removed from the cache. To avoid useless backngstin the main memory, the
cache lines are provided with a dirty bit. If it et to 1, it means that the
data/instruction has been modified in the cachbefise, the data is clean and does
not need to be written back in the main memory\aaten.

The main problem of the write through policy isg@ineration of a lot of unnecessary traffic. lde#o

a situation where the processor may have to waithf® write buffer to perform the writes. With this
policy, the main memory has always an up-to-datpycof the data/instruction, which simplifies
coherency.

& For further details about the locality principbee next chapter.

® On the figure 5.8 p. 406 of [#i03], we see for instance that instruction caches hess miss rates

than data caches.

¢ For systems with a L2 cache, the situation cambee complex: there can be up to three copies, one
in L1, one in L2, one in the main memory. For nookisive L2, there may be a copy in L1 with no
copyin L2.
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The write back policy does not face the programwigh these problems but it has also drawbacks. It
generates fewer stores and is so faster but byitlefi the discrepancies between cache and main
memory last longer and the worst case sequenamgel too. Moreover, the implementation of this
policy is more complex.

2.4.The question of the replacement policy

Since caches cannot contain the whole memory, desigface an important problem: which lines
should be stored in the cache? The answer is oflyialynamic because the needs of the processor
dynamically change over time. Consequently, thélgra can be reformulated: in which emplacement
of the cache should lines be stored, which linesikghbe kept in the cache and which ones should be
discarded? Numerous cache lines replacement digwgitry to answer the replacement question in an
efficient, low power consuming, fast, easy to inmpémt and cheap way. The criticalness of this
question is illustrated by the following equation:

Average access time = Hit ratioAverage cache access time + (1)
(1 — Hit ratio) x (Average cache access time + Average upper levelssdimg
The termAverage cache access tim@mprises the time required for sending the LoanléSinstruction

to the cache, performing the cache lookup and fating the data in case of a hit. This step is
performed by any instruction sent to the cacheterbFor missed accesses, the line must then be
fetched from the upper level memory. Replacing tihees by their typical values in clock cycles,
Average cache access tim& andAverage upper level access timéd 00, one gets:

Average access time102 — 100 >Hit ratio = 100 xMiss ratio (2

Decreasing the miss ratio of only one percent impsothe overall performance of one clock cycle!
This observation explains why the theme of thisithé considered as crucial.

2.5. The mapping

The replacement policy answered only partiallyh® questions formulated in the previous sectioa: th
first one remains. The answer is given by the mapplat assigns an upper level memory block to a
cache line. Three mappings are usually used: dimapped, fully associative anh-way-set
associative.

2.5.1.Fully-associative cache

The mapping of a fully-associative cache is drawnFigure 4. Each memory line can be mapped
anywhere in the cache. This technique thus reqpiee®rming the lookups of all the lines in parhlle
thereby generating a huge amount of hardware icdbbe controller. It implies large access timea$ an
big capacitances. These constraints make thisi@olutable only for small caches.

Word O Word 1 YWord 2 | Word 3 |
Word 0 Word 1 YWoord 2 | Word 3

Word 0 Word 1 YWord 2 | YWord 3

Memory
Word O Word 1 | Woard 2 | Word 3

Word 0 Word 1 Word 2 | Word 3

Info bits Tag
Cache

Figure 4: Fully associative cache

As the main memory block can be mapped anywhemeans is needed to know which upper level
memory address currently lies in the cache: thigiven by the tag, a unique number for each upper
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level memory block. Because of the huge amounitef this piece of information is usually storedain
dedicated RAM.

The memories and the cache are assumed to be dgtesaable therefore any byte of the cache lines
can be accessed individually. The part of the axtdh@ndling these byte accesses is called tha.offse

Let us take the example of a 32-bit address andB2cache wheres is an integer. The memory is
assumed to be byte-addressable and the width ofatlee line equal to 256 bits, i.e. 32 bytes. The
main memory thus containd’dines. This distinction between the lines can b&qrmed according to
the address cut drawn in Figure 5.

27 5
Tag Offser

31 5 0
Figure 5: Address in a fully-associative cache

In Figure 4, the tag is bound with information bithiey allow the cache controller to know the stite
the given cache line. In general, it contains tiWing:

- validity bit the stored line is valid or not,

- dirty bit: the line has been modified since its allocation,

- coherency protocol bitsin multiprocessors environment, some additionis lare
required to ensure coherency between the cachié gifrocessors (MESI for instance
needs four additional bits in one hot encoding).

These bits do not depend on the mapping and wilfobed through the three different mappings.
Depending on the implementation, some other bitsheafound too.

2.5.2.Direct-mapped cache

Here, each memory line is mapped to a particutee bf the cache. The line on which the memory
block is mapped is denoted by a part of the addraksd the index. On Figure 6, the cache lines are
composed of 4 words. A common way to perform thehedine selection is:

Line = (Memoryline addres$ mod (numberof lines)

Line

|

Ward 0 YWard 1 Woord 2 | Word 3

Info bits Tag
Cache

Memory
Figure 6: Direct-mapped cache

Let us retake the example of the previous sectoB2-bit address and BB cache. Thus, the cache
contains 23 bits. Knowing that a line is 256-bit wide, one deds that there are*2 lines per set.
Therefore, the index is{5)-bit wide.

The memories are byte-addressable. Consequentl\32Heit address enables access to>abi
memory. As the width of the cache lines is 256, kite main memory contains theff fines. As a
result, 2°° different lines need to be distinguished per caske The tag is so (2-bit wide.
Moreover, a line is 32-byte wide, giving an offeéb bits. The address cutting is shown on Figure 7
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22-S st+5 5
Tag Index Offset

31 «+1C 5 0
Figure 7: Address in a direct mapped cache

Direct mapping is a simple strategy but poorly efifee. Indeed, as the cache size is smaller than th
upper level memory size, different memory blocks miapped to the same cache line, thereby leading
to numerous conflicts misses. A means to prevert b allow a memory line to be mapped onto

different cache lines. This solution is presentethe next section.

2.5.3.N-way set associative cache
The cache is split inteetswhere each set is composed\btache lines. The cache scheme is drawn on

Figure 8, where a set is represented as the ufithe oed rectangles.

i
[
Wiard 0 VWaord 1| Word2 | Waord 3
Info bits Tag
1st way
Lo
Memory
Word D | Ward1 | Word2 | Ward 3 r
Info bits Tag !I rlf
2nd way A
|
' .'J
.
:
i i ! i ' i
Cache

Figure 8: N-way set associative cache

The upper level memory line is affected to a set @m then be mapped on any of thevays, thereby
giving the possibility to decrease the number offlict misses. Therefore, the cache is associdtive

set; which explains the name of the mapping. Thealection can be performed by:
Set= (Memory line addreganod flumber of sejs

As an example, we will consider here the case23B 2"-way set associative cache. Thus, the cache
contains 2" bits per way. Knowing that a line is 256-bit widee deduces that there afé? lines

per set. Therefore, the index sri+5)-bit wide.
The memories are byte-addressable. ConsequentB2thét address allows access to*atit memory.

As the width of the cache lines is 256 bits, thénmmaemory contains therf2lines. As a result, there
are 2#**" different lines to distinguish per cache set. Tis so (2%+n)-bit wide.
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A line is composed of 32 bytes, yielding an offsEb bits. An address scheme is drawn below.
22-s+n s-n+5 5
Tag Index Offset

31 s-n+1C 5 0
Figure 9: Address in a"way set associative cache

2.6. Different types of misses

A miss occurs when the data (or the instructiogquieed by the processor does not lie in the caithe:
must be then fetched from the upper level memolngr@ are four types of misses:
- compulsory misseshese are the misses on a cold start. Data neufgtbhed at least
once from the upper level memory to be presertiénchche,
- capacity missesthese misses occur when the working set (datedict®ons required
for the program) exceeds the cache size,
- conflict missessuch misses result from the mapping of two défferitems to the same
cache line,
- coherency missesn a multiprocessing environment, the coherencgtqrol may
invalidate a line. The next lookup for this linelae a miss.

This work is mainly devoted to single processoiadcaches. Consequently, we will not deal further
with the coherency misses. The different types ises can be seen on Figure 10. It should be wotice
that thex-axis of the graph is logarithmic.

60

a0

40 \\\\ka —a#— Direct
—— 2-wvay set associstive
4owway set associstive

30

—h— G-way set-associative

Miss ratio (%)

—#— 16-way set associstive

m \ e
m \\\\

2 4 g 512 1024 2048
Cache size (kB)

Figure 10: Miss ratio on different cache configuoats with the PLRUm replacement polfcy

Compulsory misses. First, one sees that for the highest cache §iZ2&8 KB and greater), the miss
ratio is constant and tends to be zero. Howevés,dtbit greater than zero (around 0.06 %). Irgirgp
further the cache size does not influence the masi® anymore. These remaining misses are the
compulsory misses and correspond to the first dsieo data. Thus, they are impossible to avoid,
unless the cache becomes omniscient and predectiatia that will be used on start in order to @elo
them in the cache.

Capacity misses. When the working set cannot be contained incdoghe, useful values evict one
another from the cache. These misses are capagsgsnand they can be seen on the graph in the part
where the hit ratio continuously decreases. Fdam®, one deduces from Figure 10 that the working
set of this program is around 32 KB. They can beidad by increasing the number of cache lines or
by enlarging the size of the lines in the cacheweleer, increasing the size of the lines without
modifying the cache size leads to more conflictsmés So these two solutions extend the size of the

& This graph results from simulations run with a lmsimulator created in this thesis. It will be
presented in details in Chapter 5. The memory r&gueattern was obtained fromaze, a program
looking for a path between two nodes of a tree.
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cache, which will be more expensive, consume mokgep and more area. These solutions have thus
strong negative impact on key points of embeddetesys. Moreover, the size of the cache cannot be
continuously increased because it makes the catesatime longer. Yet, the memory access time
constrains the processor clock cycle and is considas a limit in today’s processors. As a result,

dealing with conflict misses appears as the orfigieht and cheap way to increase the efficiency of

the caches.

Conflict misses. One sees that there is a difference betweertdinapped cache ardway set
associative cache for data cache sizes between 8ndB54 KB. This difference between 16-way set
associative cache and direct mapped cache is dadliteerse influence of conflict misses. Indeed, 16
way set associative cache avoids conflict missegitiyyg more possibilities for the allocation of a
way, thereby leading to fewer conflicts. On the pirathe hit ratios of 8-way and 16-way set
associative cache are almost equivalent. Thus, d&y6-set associative cache can be considered as
efficient as a fully-associative cache for this nogynpattern. The difference between the optimal
algorithm and theN-way set associative caches yields the ratio of lmbnfisses in the given
configuration. This simulation confirms that theégim of conflict misses is the mapping of the upper
memory level blocks to a cache line. Thereforeaxielg the constraints on the mapping should
decrease the number of conflict misses. In thigcepi-way set associative caches (and ideally fully
associative cache) appear as the best solutiohisoigsue according to Figure 10. Nevertheless,
increasing the associativity of the cache is alsablematic because it requires a lot of lookups in
parallel, which is power consuming, the key poiot Embedded processors. For this reason, an
alternative for dealing with conflict misses ispimpose another replacement policy, which wouldde
optimal as possible. When a conflict occurs, theiad of the line to evict at the profit of the imamg

one is crucial since it determines the data preserthe cache. This observation demonstrates the
criticalness of the theme of this thesis.

Through this chapter, different characteristicsttof cache have been presented. Among them, one
appeared critical for the design of an efficientl émw-power embedded cache: the cache replacement
policy. This is the subject of this thesis andhigeistigated in details in the next chapter.
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Chapter 3

Overview of the replacement algorithms

Savoir pour prévoir, afin de pouv8ir

A. Comte

We have seen in the previous chapter that diffenpper level memory lines are mapped to the same
cache line. Thus, when the set of cache lines, wihie upper level memory block can be mapped to, is
full, the line that will be evicted at the profif ohe new data must be chosen. The role of the
replacement algorithms is to select the discaratedds optimally as possible. These algorithms Ishou
be implemented in hardware and execute rapidlyrdemnot to speed down the processor. In this
chapter, the principle of locality — on which alrha8 the replacement policies are based — is ptede
before introducing and comparing the usual replacgralgorithms.

1. The optimal algorithm

This algorithm [BEL66] uses the cache in the optimal way. It repldloedines that will not be used for
the longest period of time. Consequently, it musivk all the future accesses and thus is imposgible
implement. Only simulations on predefined memoritgras can be carried out. As a result, it only
appears as a means to measure the performance refpflacement algorithms. Moreover, Breleolal.
[BREO4] showed that computing the optimal policy is h&d for modern cache structures. Because of
this huge computation time, it will be little usithis thesis.

Since processors are not omniscient, a methodqtireglithe next accessed data is needed to approach
the performance of the optimal algorithm. To thadl,ereplacement policies resort to the principle of
locality.

2. Principle of locality

Programs tend to reuse the data and the instractiat they have used recently: this is the tempora
locality. Moreover, a program tends to use therugtons and the data that are located in the iycin

of the used one. This is the spatial locality. Fmtance, a program spends in average 90% of its
execution time in 10% of its code fNO3]. As a result, we can reasonably predict the negd data
and instructions from the previously accessed oReplacement algorithms try to take advantage of
the locality to be as near as possible to the @tieplacement choice.

3. Usual algorithms

As stated in the previous chapter, the evictioruo@among the cache lines of a given set, whithds
set of anN-way set associative cache or all the cache linesa fully associative cache. Replacement
algorithms are responsible for assigning this mictine. Of course, there is no need of such an

2 From knowledge comes prediction and from predictiction
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algorithm for direct mapped caches where ther@isany selection to operate. Through this chapter,
single cache set will be considered; it is assuthatithe situation is duplicated for the other easéts.

3.1.Random

The replacement policy chosen here is the simptést:discarded line is randomly selected. This
algorithm is easy to implement as a pseudo-randommter for the whole cache, consumes few
resources but performs badly because it is not aibaged. Its performance relies on the real
randomness of the sequence. It can be implemeniiddLimear Feedback Shift Registers but this
solution is poorly efficient. Random is reportedperform 22% worse than LRU on average(B4].
This inefficiency is balanced by another advantafjghe Random policy: in opposition to Round
Robin, its variations depend less on parametets asiavorking set size, number of cache lines.

3.2.Least Recently Used (LRU)

The LRU algorithm evicts the least recently used.liThe idea behind is to keep the data recendgt us
which should be used soon, thanks to the prin@plecality. It has been demonstrated that LRU meve
results in more thap times more misses than the optimal algorithm whgere proportional to the
number of ways [&85]. All the accesses to the blocks are recordebtlam replaced block is the one
which has been the least recently used. It is ¥leug computationally expensive to implement fogkar
caches with a great number of ways. Moreover, ésdwot take into account the frequency of accesses.

Replacement in a set df elements required(N-1)/2 bits with an upper triangular matriX (without
diagonal) if the traditional encoding is used. Whelmei is referenced, rowis set to 1 and columin

is set to 0. The LRU line is the one whose rownisrely equal to O (for those bits in the row besau
the row can be empty) and whose column is entteljhis algorithm should execute rapidly and quite
easy to implement. As the complexity grows with #iee, it is preferable to have small set sizes but
small set size generates more conflicts.

Nevertheless, another solution was developed mthasis, which yields fewer bits, but at the pote

a bit more complicated encoding which would requinere hardware. However, it should be
acceptable considering the fact that the ARM11 datdhe has only four ways. Furthermore, the point
is that the critical factor of the design will Heetsize of the additional storage (see Chaptené)nat

the hardware itself. Amongst other things, it iplained by the sharing of the hardware by all tatad
cache sets. The proposal relies on the squandefrithg storage in the traditional encoding. Letaok

at the example of a sequence successively accessiyg 3-2-0-1 in a 4-way set associative cache.
This situation is drawn in Figure 11. The MRU wésslon the top of the stack and the LRU on the
bottom. The two first ways are encoded with twe.b®nce it is known that the two first ways in the
LRU stack are ways 1 and way 0, only two possieg#itemain: the access order is either 2-3 or|8-2.
is justified by the fact that the stack can alwbgsconsidered as full. Therefore, it can be encaded
one bit instead of the three previously used. Bbisition should save 2 bits per set, which is educi
when keeping in mind that usual cache configuratiane composed of 512 lines{®01]. This
solution is the most compact encoding (for a thimak demonstration, see Appendix A).
Unfortunately, there is no easy expression of thealer of bits in the general case (for more details
see Appendix A).

0 0 Way 0 Way 1 Way 2 Way 3

Set

Set Stacl
Figure 11: Improved LRU stack bits

LRU is widespread in the industry although themaell-known situations where it performs far from
optimal. The classical example is a loog\pfys+1 Steps, each stg¢@ccessing dafa At each step, the

data that will be used at the next access is dischrthereby leading to a miss ratio of 100% percen
whereas the optimal policy generates only 25% (ount of four) of miss. For this reason, other
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algorithms, which require even much more hardware,developed. Therefore, they appear as quite
inefficient candidates for implementation in embedidores.

3.3.First In First Out (FIFO)/ Round Robin

Since the LRU replacement policy is complex to iempént and computational consuming, a popular
approximation, FIFO, has been developed. It remddlesk in the order they were brought in the
cache, thereby taking advantage of the localitpgipie in a simpler way. FIFO yields a miss ratio
12%-20% higher than LRU in averad@wi83] but is far less expensive in hardware and in
computation time. It can be designed with a,(big,,9-bit counter per set, which points to the next
evicted way of the set. This counter is incremeredevery cache miss. Provided that the counter is
initially set to 0 when the cache is cleaned, thed are discarded in the order they entered ttieeca

Apart from its relative poor performance, this altfon presents a major drawback: contrary to thet fi
impression, increasing the size of the cache camnsemothe efficiency of the algorithm. This
phenomenon is known &elady’s anomal{BEL69].

3.4.Least Frequently Used (LFU)

This algorithm keeps track of the frequency of ases of the lines and replaces the LFU one.
Therefore, the lines which have been accessedfragyently and that will not be needed again tend t
remain in the cache, preventing useful data todshed. Usually, an aging policy is used to avois th
cache pollution It requires logarithmic implementation complexitycache size and will then not be
studied further in this thesis focused on embedaethardware cheap solutions.

4. Approximations of the LRU policy

The LRU policy gives good performance but it regsila lot of hardware to keep track of the last
accessed data in the cache. This hardware compleai a strong negative impact on the average
access time, thus justifying the use of approxiometito this policy. On the bottom of the LRU stack,

the probability that the processor hits a linelisast constant, so a complete order is not requvaly

a partial one is needed. As a result, approximatadrithe original LRU algorithm should perform well

For all the figures drawn in this section, the deling convention is respected: the green colour
corresponds to blocks considered as Most Recersd UMRU) by the replacement algorithm and the
yellow one stands for the pseudo-LRU lin&(s)

4.1.The 1-bit replacement policy

It is one of the simplest approximations of LRU anedjuires only one bit per setd83]. The bit
partitions the set into two groups: one which com#tahe MRU line, the other that does not contain.
The aim is to protect the MRU line and its neightsoaccording to the principle of spatial locali@n

a cache request, this bit is updated to point ¢opidwt where the MRU line lies. The discarded Ige
then randomly selected in the non-MRU half. A sempeeof the algorithm is shown on Figure 12. After
an access, the pointed half (in green in the sagudelow) is always the one where the access
occurred.

Readd

Write e Reacb

a € (o d a € b d

Figure 12: 1-bit sequence

#There is only one for the pseudo-LRU algorithmsNi,42 for 1-bit policy and 1..N.ysfor Side
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The simplicity of this policy is obtained at thaqar of the performance. For high associativity é&ee
than 8), this policy performs as bad as RandomeNbeless, for low associativity, its results aped
(5-10% worse than LRU), rising it up as a creditdedidate.

4.2.MRU based Pseudo LRU (PLRUm)

In this approximation, each block is assigned a MiUWhen the cache controller replaces a line, it
switches the MRU bit 0 to 1. If all the MRU bitseagqual to 1 after the modification, all the bixsept

the last accessed are reinitialized to 0. AccordingZou04], PLRUm and PLRUt are very good
approximations of LRU. PLRUm outperforms PLRUt dadkven better than LRU for some patterns.
It explains that PLRUmM has been used in IBM compu(ér instance IBM3033). Consequently, it
appears as one leading candidate (cheap, efficdasier to implement) for embedded applications.
This algorithm can be conceptualized by a finitatestmachine, as Faterat al proved [AT94];
thereby leading to different possibilities for thesign of such a system. A sequence is drawn on the
figure below.

Readd
1 0 1 0 1 0 1 1
a b (o d a b (o d

Write e Readb
0 1 0 0 1 1 0 0
a € (o d b € (o d

Reada Readd
1 1 1 0 0 0 0 1
b € a d b € a d

Figure 13: PLRUm sequence

4.3.Tree-based Pseudo LRU (PLRU)

This binary tree approximation of the LRU algorithiidAR94] requiresN-1 bits in an N-way
associative cache. Such a tree is drawn on Figure 1

WA

\

Q PLRUT bit

‘ ]

R ﬁ R | \‘?.
X »:'
|| | r || I Cache se

I

Figure 14: Decision tree for the PLRUt algorithm

The tree bits encode the paths towards the leawgesponding to the different ways of the set.
Reading them points to the pseudo LRU line. On thi¢, bits on the path towards the hit line are
inversed to indicate the opposite part of the aie@seudo LRU. The idea behind is to protect tse la
accessed data from eviction by inversing the nadesrds it. For instance, let us take a look at the
example of a 4-way set associative cache, whermitie data in the set am b, c andd, which points
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to d as the pseudo LRU way (see Figure 15). The triseaid the contents of the set are draftar
the memory access occurred. Let us take the examhphe third instructiorRead b. Datab lies in way
1 of the cache thus the path goes through the ddp and the left leaf one. These bits are modified
point to the other halves, i.e. the top bit poitttshe right half and the leaf bit to its left hafthe
principle is the same for all the other instructiari the sequence.

Readd

Q Q
/ / /
| a b (o d | a b (o d
Write e Readb

|ebcd |ebcd
Reada Readd
Q Q

Q

5§

e | b [ a | d |ebad

Figure 15: PLRUt sequence

The disadvantages of this algorithm come from itety nature, which makes it simple. The node at
the top of the tree contains only one piece ofrimfation (one bit) and cannot reflect sufficiently
exactly the history of the leaves of the tree: gsirbit implies a loss of history. Another problenthat
decoding the bits is a sequential process. Indéednodes must be stridden from the upper node
downwards to a leave. Designers are thus prevdrdedperforming parallel computations. However,
it is widely used in data caches thanks to its lgluced hit ratio (Al-Zoubeét al.reported a miss ratio
1-5% worse than LRU [@u04]).

4.4.Modified Pseudo LRU (MPLRU)

QTBAI (1 bit)

/\ Q MBAI (2 bits)

A
, \ AN
\ B ’ \

SRR A

¥
L LU I I | cache set
F|gure 16. DeC|S|on tree for the MPLRU algorithm

Ghasemzadest al. [GHAO6] introduced an algorithm which is supposed tdigldy solve the issue of
history loss presented above about PLRUt. Theyt #pdi nodes in two groups: the ones that keep
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information about two leaves of the tree (the TwocdR Access Indicators) and the ones which give
information about more than two blocks (the Mukiilock Access Indicators). Two bits model the
MBAIs: one for the previous status and one fordheent status. TBAIs are equivalent to PLRULt tree
bits. On a miss, previous bit is used to determihéch line to discard. The resulting tree is dramm
Figure 16.

For a 32KB 4-way set associative cache, the autfiodsan average miss rate of 2% for MPLRU
whereas around 2.1% for PLRUt. This figure seemintoease with cache size and associativity.
MPLRU performs around 8.5% better than PLRUt whikeping the low overhead of the latter.

Compared to PLRUt, it has few more operations ldgpying bits but their amount is quite

insignificant. The major negative impact is thus ttorage of one more additional bit per MBAI,

which corresponds to a single bit per set for as4-wet associative cache. At first glance, it is an
acceptable amount but it should be kept in mind thia will impact on all the cache sets. Therefore
this could significantly affect the power consuropti The final decision about the relevancy of this
algorithm will then be made with respect to theuhessof simulations.

4.5. SIDE algorithm

Deville [DEV90] introduced a new policy which allies the simjtli of FIFO with an almost LRU
performance. It has one counter per set like FIk®the update of these counters is usage based,
thereby improving the performance of FIFO. The d¢eupoints to an element among the least recently
used. LetN be the set associativity. If there is a hit omedati, the countec is updated tdi+ 1) mod

N if i=c and remains unchanged otherwise. On a missupdated t¢c+1) mod N. Consequently, this
counter partitions the set in two groups: the gigdRU on the left, the surely LRU elements on the
right. The discarded line is the one pointed by ¢bhanter, i.e. the possibly LRU line located at the
frontier with the surely LRU group. All the inforriian is lost at each beginning of a phase, when the
counter is reset to 0 (all the ways are identical the replacement algorithm). The hardware
implementation shows that it can be designed tokwalso in FIFO mode. The additional logic
compared with a FIFO is axrbit-comparator and aN-bit-encoder, which are shared by the sets.

Readc

Write € Reacd

a b c € d b C €

Figure 17: Side sequence

On a 4KB cache, the improvement is around 10-15%afal-way-set-associative. This figure is
strongly dependent on the associativity and therahlgn performs almost as well as LRU (only 0-5%
worse) on low associativity while being much simmpgeimplement.

4.6. Comparison of these policies

We have seen a lot of different policies, undemttwir principle of working but let us now sum up
everything to compare them. This is done in Table 1

5. Enhanced LRU policies

In Section 3.2, it has been shown that LRU perfofangrom optimized on some patterns, although its
results are good on average. Besides, LRU is baffilsient on burst access sequences: data that are
accessed only once are cached and take the pldoeesfthat may be useful. To solve these issues,
improvements have been developed; among them soufé lse implemented on pseudo-LRUs but, up
to now, | have found no data about such an attefifigse algorithms are thus very useful for disk
caches or file copying when a lot of burst accessemecessary. All the policies presented bel@aw ar
based on the same idea: partition the cache irpawts. One part contains the data referenced tinee;
other the data accessed at least twice. The relaizes of the partitions are dynamic or fixed,
depending on the algorithms. The flows betweertwhepools are specific of each algorithm too.
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What to do when

What to do when

Logic required

Policy Bits required 4-wayf hit on i? Miss? (only estimations) Performance to LRU
Random [06(Nway9 2 - Update LFSR LFSRs and XORs to generate theora 22% worse [@u04]
) Increment FIFO | Incrementing logic antllses|0g:(Nwayd-bit-counter registers. 12-20% worse
FIFO Neetsl0G(Nuayd 2 Neets counter Low overhead in principle. [Zou04,Smi83]
LRU Nsets 8. N Update the LRU | Update the LRU Can be implemented in a matrix form. Seems todckek i
Nuways100(Nways) §sets stack stack and computation time consuming for embedded systems
PLRUM New N AN Update the MRU | Update the MRU | AroundN,ays Nseisregisters (for the MRU bitsNyays Nsets 1% worse to 3% better
ets TTways T sets bits bits muxes, 3.Mets 10g(Nyay) AND/OR [Zou04]
i Update the tree 1 AroundNeess ( Nyays-1) registersNeets( Nuays-1) Muxes, 1-5% worse
PLRUt Nsets ( Nways-1) 3. Nets bits Update the tree bitg Naets( Nuaye-1) invertersNaes 10 (Noay) OR (Zow04]
Nsets (3 Nuays/2-2) Update the tree .1 AroundNses (3 Nyays/2-2) registersiNsets (3 Nyays/2-2) 1-4% worse
MPLRU | " appendix A] | 4 Neets bits Update the tree bits MUXES, 2*Neets (3 Nymys/2-2) AND/OR [GHAO6]
- 0,
Update the Increment counter Nsetsl0G(Nuways-bit-registers for the countens,y,ys-bit 0-20% worse. Str_or)g_ly
counterc to (i+1) . . dependent on associativity. ¢
SIDE Nsets 100(Nyays 2. Neets i and random comparator and incrementation. LFSRs and XORs td s
4 modSif i >c . . . ; . low associativity (2-8), 0-5%
A selection generate the random during the discarding selection
Nothing ifi <c [DEVIO]
. 10-20% worse for high
1-bit Neete 1.Neww | Update the bit Update the bit | LFSRS and XORs to generate the random in the LRY associativity:
partition, Nseis Niays OR/AND 5-10% worse for low [688]
Table 1: Comparison of the different simple replaeat policies
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User .
Policy Lists defined What to do when hit on i? What to do when miss? Complexity per|  Performance to
request LRU
parameters
1 LRU list . . : .
and 1 EIFO Move it _the MRU side of the LRU list Move the line to t_he back—gnd of the FIFO 5-10% better
2Q list solit into Kin andKgyt Am. If it was in A1, remove it from | Alin. Move the discarded line to the FIFQ  Constant [JoH94]
pItAP Al. Alout. Discard line from this FIFO.
two sub lists
- . . t Logarithmic Around 50%
LRU- . . Update the CRPof the data and it Select a victim k_)y e_xplorlng the list of 1 time (because| better for very
a K history lists (o]] : . andK access. Initialize the CRP and the : g
K history lists. historv lists of the data of its priority large database
y ' gueue) buffers [ONE93]
Movei to the MRU position of the
2 LRU lists of PtS. Move the LRU line of the PtStq Move the line to the MRU part of the PbS. Around 5% better
SLRU fixed size PbS size the MRU position of the PSS Discard the LRU line of the PbS if Constant y
- X ; [KAR94]
C1+C=C necessary. Discard the LRU line of the necessary.
PbS if necessary.
Miss on the global list:Delete the LRU
page in B1 if [[T1||& in T1 otherwise.
2 LRU lists of . - Movei to the MRU in T1. 50-200% better
ARC sizec - Movei to the MRU position of T2 | 51 the global listUpdatep (addition Constant [MEGO3]
and min/max operations) and mav® the
MRU position of T2,

&The performance figures are here givenkop

Table 2: Summarize of the enhanced LRU policies

® Correlation Information Period: approximately tiree a data accessed only once should stay inatteec
¢ Correlated Related Period: the time since a giaga has not been accessed
4 Protected Segment: segment of fixed size whichates the element accessed at least twice.

¢ Probationary Segment: segment which containsttatéhave been accessed only once recently.

Study of different cache line replacement algorghmembedded systems
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5.1.2Q

The two queues presented above have fixed sizéignimplementation. The first queue, which
contains the data accessed once, is treated @&adtleue and the second one is managed as a LRU
stack. The first queue is also partitioned in twewes (Alin and Alout) because experimental results
showed that the optimal size of the first queuersity depends on the trace. This can be considesed

a trick to dynamically adjust the fixed size of tipgeue K;, andK,, are respectively the size 8fl,
andAly. The reported improvement over the LRU reache®%-1oH94]. However, the problem is
that two queues as well as migrations from onertotleer must be managed, which is hardware
expensive and cycle consuming.

5.2.LRU-K

In this algorithm, O'Neiet al [ONE93,ONE99] split the cache iK different pools which correspond to
the lines that were accessed between 1knisnes quite recently (in reference with a backwird
distance). The idea is basically the same as 2€pikg track of the history to predict the next ases.

A history list of theK last accesses of each data accessed retshtyld be maintained and would be
logic-consuming. On a miss, the victim is choserelploring these lists and finding the data which
has not been accessed quite recently and whoseKfastccess was the LRU. Nevertheless, this
algorithm seems to be really efficient only for Isiges (for instance for disk buffering). A simpd
version may however be efficient also for embedckches too. The issue, which is common to all the
algorithm presented in this section, is to estintageimportance of these patterns on a L1 dataecach
and hence the need of such improvements for emhexiizhes.

5.3.Segmented LRU (SLRU)

As we have seen, LRU caches can be filled by higish are accessed only once, thus discarding from
the cache lines which should be useful. The priachere is similar to LRUk but seems easier to
implement. The cache is divided into two segmelits; protected segment and the probationary
segment. On a miss, data is then pended on the pHRIDLf the probationary segment. Hits are added
to the MRU part of the protected segment. As thlgated segment has a definite size, adding a line
into the protected segment pushes the LRU linehefrotected segment to the MRU part of the
probationary segment. This method avoids floodirggdache with data that will not be reused, because
the protected segment contains lines which have laeeessed at least twice. The supplementary
storage is thus one bit per each cache line (a\ilhigh indicates whether the line belongs to the
protected or the probationary part of the cache)wéler, the hardware needed to handle the two
queues should not be forgotten. Globally, therenis pointer that marks the border between the two
zones. There is extra maintenance due to movindirtbs in the list on a hit. The best results were
obtained when the size of the protected segmearioisnd 80% of the cache. It performs around 3-4%
better than LRU for a cache size of 0.5 Mb§8].

5.4. Adaptive Replacement Cache (ARC)

The algorithm designed by Megiddo and Modha&@@3] maintains the history ofcdines wherec is

the cache size. Thigzhistory is divided in two subgroups: L1 and L2l@fgthc. L1 contains the lines
recently referenced once and L2 the lines recapfgrenced at least twice. These two subgroups are
then dynamically split in two subsets T(op) — whadntains the MRU part — and B(ottom) — which
contains the LRU part — so aBlj|U T2||=c. A parametep represents this partitiop:can be seen as the
target size of the list T1. At a given time, the @Rlgorithm performs as a fixed replacement policy
which keepsp lines in T1 andc-p in T2. This parametep is dynamic and tuned in function of the
demand in order to "invest" in the most active [igte increment and the decrement steps aépend
also on the respective size of the sets B1 and B2.

This algorithm performs as well as the fixed replaent policy with the optima but it is dynamic
and no parameter needs to be tuned before and tammedd perform the same way through all
workloads and cache parameters, contrary to ther giblicies presented above. It is scan-resistead,

2 This recency is defined by the Correlated Infornmaf@riod, which is aa priori defined parameter.
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a constant overhead (with contrast to the logaiittowerhead of the LRFU and LRKJ}:. For instance,
on a SPC1 benchmark, the hit ratio of ARC was 24.82d only 4.24% for the LRU but with a cache
of 4GB. The space overhead seems to be small, 0.g6%e cache according to the authors.
Nevertheless, the huge cost in hardware countertedathe first optimism and assigns this solution
only for desktop systems and possibly for some mbedded caches.

5.5.Summary of the enhanced LRU policies

We have seen a lot of different enhanced policiesierstood their principle of working but they are
quite complex. As it was done for the pseudo-LRUicies, we summarize their principle and

performance in Table 2. The common point of thpskcies is their hardware cost. While LRU

needed to handle one queue, they introduce twasstaith floods between them. This should require
too much hardware for embedded L1 caches. As dtreékay will not be studied further but were

addressed here to give some knowledge about eniante of LRU.

6. Ideas of improvement

Some other algorithms, which are not based on LiRé¥e proposed. Some of them present interesting
features which could be used in further developmehtache policies.

6.1.Cacheable/Non Allocatable

Tysonet al [Tys95,Tys97] present a technique to improve the replacemgotithms using Selective
Cache Line Replacement. The authors point outaHatge percentage of data misses are caused by a
small number of instructions (less than 5% of #dl instructions cause 99% of cache misses). The
idea is thus to mark these instructions as C/NA [plad instructions and not the data!). The degisio
allocating the data is then taken in respect with flag. They develop static and dynamic method.

- Static methodinstructions that cause a miss higher than 75%namne&ked CNA. It is
useless for us because it requires pre-runs qirihgram,

- Dynamic methodeach load instruction has a 2-bit counter, whiglincremented at
each miss and decremented at each hit. On a &itn#truction that brought the cache
line in cache is also decremented. When it reath®s the load instruction is marked
as C/NA. It gives an average improvement of 20%andwidth requirements (for the
SPEC2000 benchmarks) but is insignificant for tihedte (less than 1% on average).

6.2. Selective cache way

Inoueet al [IN0O99] proposed an implementation where the hardwaee to predict which way will be
used and gives power only to this predicted wagaltes power but if the prediction is erroneous, a
cycle is lost. MRU (a 2-bit flag for a 4-way assuitie cache) is frequently used to predict the way.
Reading the MRU bits before accessing the cacheesndlke cache access longer but it can be
performed in an earlier pipeline stage. On the rottaad, it decreases access time because theoe is n
way selection delay.

Various replacement policies were presented indhégpter. Balancing the estimated hardware cost and
the power consumption with their expected perforcealed us to select a class of replacement policies
in respect with the constraints of embedded systémespseudo-LRU algorithms. The latter will be
simulated on the ARM11 architecture to comparerttheoretical performance with the simulated one.
For that end, a study of the ARM11 data cacheisitbeforehand required.
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Chapter 4

The current cache implementation

Any sufficiently advanced technology is indistisgable from magic.

A. Clarke,Profiles of the Future: An Inquiry into the Limi$ the Possible

The different cache lines replacement policies istlidh the previous chapter raised the issue of the
hardware implementation. Before dealing with it dietails, the main features of the ARM11
architecture, which will be useful in this thesase addressed. In this work, the target processani
ARM11 core, so the presented microarchitecture@sARM11 one, an implementation of the ARMv6
instruction set architecture fM11,Cor02].

1. The ARM11 microarchitecture

1.1. Architecture vs. microarchitecture

Thearchitectureis the general description of the behaviour ofrthieroprocessor, its interface with the
outside world, but without specifying the interrddsign. So it can be seen as a description of the
instruction set and of the programmer’s model.

The microarchitectureis the detailed definitions of the internal desamd hardware, which support a
given architecture. These specifications usuallyceon points that are invisible to the programmer.

For the ARM11 MPCore processor, the architectursR#v6.

1.2.Memory

The ARM processors must work withbgteaddressed memory and suppose the alignment. Double
word, word, half-word and byte accesses are supgoBuring the three first accesses quoted above,
bits [0:2], [0:1] and O are respectively ignoredudlly, the main memory is cacheable and bufferable
The memory system endianness and the ARM procebsoitd match one another or be configured for
that aim in CP15 register 1.

1.3. System Control Coprocessor

All the memories and the system features are cltedrdy coprocessor 15 (CP15), also known as the
System Control Coprocessor. It contains up to eixt82-bit primary registers, whose permission
(read-only, write-only or read-write) depends oeitliunctionality.

The characteristics of the caches are accessitbegh register O of the system control coprocessor.
This register indicates the type (unified or sefmtp the size of the data and instructions cadhes,
write policy (write-through or write-back) and tbhache associativity.
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Caches, MMU, write-buffers, branch prediction aadlacement strategy can be enabled or disabled on
register 1 of the System Control coprocessor. Farenmformation about other registers of CP15, one
can read Chapter B2 8RM Architecture Reference ManJalrRmMO1].

1.4.Memory Management Unit (MMU)

The MMU converts the virtual address into a phylsaidress. It is also responsible for controlling
whether a program is allowed to access a memogy dites permission depends on the running mode
(User, Privileged) and ensures improved securithefsystem.

1.5.Generalities about caches

The caches are separated for data and instruciadsno coherency is implemented. A detailed
examination of the ARM11 MPCore levell data sidemogy system will follow this brief overview of
the main characteristics of the data cache in tR¥A1 MPCore processor.

1.5.1.Data cache characteristics

The data cache is available in three configurations
- 64 KB 4-way set associative cache: 512%86tbit index, 18-bit tag, 5-bit offset,
- 32 KB 4-way set associative cache: 256 sets, Buibéx, 19-bit tag, 5-bit offset,
- 16 KB 4-way set associative cache: 128 sets, ifdbétx, 20-bit tag, 5-bit offset.
The data cache is write-back write-allocate.

1.5.2.Replacement policy

One of the most important characteristics of th&adache for the present study is the replacement
policy. In ARM11 MPCore, an altered version of fReund Robin algorithm is implemented. It will be
denoted Global Round Robin (GRR) in this thesidistinguish it from the usual Round Robin. Two
major design decisions distinguish it from therbtere algorithm. First, it cares about the presesfc
free ways in the set before allocating a way. lmaue processor environment, this does not enhance
the overall performance. Yet, it should give a gigant improvement in multi-processor systems due
to the invalidation of shared lines after writedjioh creates free lines disassociated from the Boun
Robin counter. The second and the most signifidéference is the global nature of the counter Whic

is not owned by a set anymore. This ensures usihga 4-bit register to save the counter but at the
expense of a loss of performance. Nevertheless,ishacceptable (see Chapter 5) and justifies the
current implementation.

1.5.3.Non-blocking misses

One of the most interesting features in the datheananagement of the ARM11 microarchitecture is
the non-blocking and hit-under-miss operationlltives the processor not to stall, if a memory reque
results in a cache miss. The cache immediatelyesssuline fill request and waits for the data to be
fetched from the upper level memory. The pipelgmes on and performs the next instruction,
provided that there is no dependency between thiguttions: the processor is not blocked. If the
instruction is a Load, the microarchitecture avgidscessor’s stalling if the look-up yields a Hitt{
under-misk the data cache handles the lookup while waiforgthe line fill. Up to two successive
cache read misses are supporte@d®b] before stalling the processor.

1.5.4.Lockdown blocks

The cache improves in general the performance ohanies but also worsens the worst case: as it has
been stated in Eq.2, an instruction resulting éaehe miss is executedAverage cache access time +
Average upper level access timmad not onlyAverage upper level access tinghis overhead for
misses can be problematic for some programs whespidntly accessed data are evicted from the
cache whereas useless or simply unimportant dditadtute it. This issue can be solved by locking
the ways where these critical data are storedreéptacement algorithm will never discard the lines
located in these ways. As a result, these crueit dre protected from eviction, thereby improwimg

% The number of lines, index width, tag width andseffwidth are derived from equations of section®.5
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overall performance. In ARM processors, only wagd aot parts of cache sets can be locked. This is
performed in two phases:
- modifying CP15 register 9 (data cache lockdownateg) to lock ways O,
- fetching the data in the cache. If there are ngtfaee ways, the data is allocated to
(one of) the locked way(s).
Once this is completed, the replacement algorithiinnat discard ways OW until CP15 register 9 has
been modified.

1.6.ARM11 vs. competitor configurations

An overview of the solutions chosen up-to-now bffedent leading companies is drawn in Table 3.
One can see the predominancéNefvay set associative caches among the presengecoafions, with

N = 2 or N = 4 for the embedded processors. These figures agthethe different configurations
available on ARM processors, which are 4-way sebeiative. This quite low figure is explained by
the overhead of the cache lookup for higher aswitia which significantly increases the accessd;j

the area and the power. Four appears as a quiteaoopromise, as it will be demonstrated in Chapter
5 Section 4.

The ARM11 block size lies in the range [32:64] ydital values for embedded processors. This figure
can be explained by the will to take advantagéeflbcality principle and not to pollute the caetith
neighbour data which will not be accessed soon.

LRU and pseudo-LRUs are widespread in the deskysfems thanks to the high induced hit rate.
However, they have a negative impact on area andepa@onsumption. Nowadays, this class of
replacement policies enters the embedded worldTtbe.introduction of a system-on-chip L2 platform
based on a pseudo-LRU replacement policy by MIRShésexample [MP0O6]. Therefore, integrating a
modified low-power version in ARM processors must ibvestigated and considered as one of the
permanent ARM efforts aiming better performancehiea embedded world without sacrificing power
and area.

The major technical features of the ARM11 microéediure have been addressed. A detailed
examination of the ARM11 data cache managemeravismeeded. The following section deals with it.

2. The ARM11 MPCore level 1 data side memory system

The data side memory block organization is drawrrigure 18. The different modules and their role
are described below.

2.1.Slots Unit

The Slots Unit is responsible for handling the mgmequests from the core. It is composed of three
slots, each of them being in charge of a single argraccess When a request arrives, the micro-TLB
converts the virtual address to a physical addaedsgets the protection and cache attributes.speet
with these attributes, the slot then generatedart & needed. In case of a write, the requeser# to

the Store Buffer and the slot is freed. If the 8tBuffer is full, the request waits in the slotilittie
Store Buffer accepts it. If the access is a rda&lstot asks the arbiter for an access to the RAMBe
lookup results in a miss, a line fill request isitsto the Line Fill Buffer. Otherwise, the data is
forwarded to the processor through the Droute nedul

The Slots Unit also computes the sequentialityhefdccess. The information is then used to powfer of
the four Tag RAMs and some Data RAMs. Indeed, &f first lookup of the burst access succeeds, the
slot is aware of it on the second sequential acdésswing that the data lies in the cache, only the
Data RAM containing the requested data is enablkd ¢ther RAMs are disabled). This feature
ensures saving much power.

%1t is a single access and not a single memoryestqundeed, processor's memory requests can be
merged (for instance two successive reads at thee dame) or can induce more than one memory
access (for instance instructions like LDMIA, STMIA

23 Chapter 4 - The current cache implementation



AMD Athlon Hitachi Intel Intel IBM PowerPC Sun DEC Alpha DEC Alpha Freescale
SH3-DSP Pentium Ill | Pentium 4 405 CR UltraSparc Il 21064 21364 PowerQuicc
[AMDO2] [SPAO3] [Wik06] [WiK06] 1]
[SH3] [HENO3] [INTO6] [HENO3] [HENO3] [HENO3] [HENO3] [GENO4]
Instruction 80x86 SuperH 80x86 80x86 PowerPC SPARC 9 Alpha halp | PowerQuicc
architecture
Inte_ndgd desktop Communication, desktop desktop embedded server Workstations, | Workstations, Wireless,
application embedded servers servers embedded
Instructions/ 3 ? 3 3 1 4 1/2.51 1/0.6 ?
clock
Clock rate 1400 MHz QOI\%}ZZOO 3 GHz 266 MHz 600-900 MHZ  100-200 MHg 80&;_};00 1.3-1.5 GHz
64 KB 2-
. 16 KB 4-way
Instruction way/64 KB - 16 KB2- | _ i 32 KB 4- . 64 KB 2- 32 KB 8-
cache /Data|  2-way unified way/ 16 kg | “ 20 KB/8 | 16KB2-wayls |\ ) yp 4. | Directmapped  e1kp 2| way/ 32 KB
L d Way 2 and 3 KB 4-way KB 2-way 8 KB /8 KB
cache divided into 2-way way way 8 way
lockable
8 banks
On-chip L2 | 2°6 KB 16- 2562048 | 20 KBE- 1536 KB 6- | 256 KB 8-
way - way (not - - -
cache . KB 8-way . . way way
(exclusive) inclusive)
Off-chip L2 - - - - - 8MB 1-way | 2 MB 1way - -
cache
Block size
(bytes) L1/L2 64 32 64/128 32 32 32 64 32/32
Replacement| | o, LRU Pseudo | peeudo LRU ? ? . ? Pseudo LRU
Policy LRU
. . Write- Write- Write-through Write-back/
\Fl,vor;;f uff/itze Write-back V\\,/Vrr'itti'_?ﬁr%ﬁaﬂd through/ through/ ? no-write Write-through |  Write-through Write-
y 9 Write-back | Write-back allocate through

Table 3: Cache characteristics of commercializedcgissors
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Data return path Integer core Integer core

t | |
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STB Bus Cache Slot Slot 0 Slot 1 Slot 2
Buffer
Interface
Unit |
A 4 A 4
Arbit N Cache
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Dirty Tag Data CP15
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Unit (BIU) LineFill Buffer O LineFill Buffer 1 Eviction Buffer

Figure 18: Level 1 data side memory implementatibthe ARM11 MPCore proces$or

2.2.Micro Translation Lookaside Buffer

The micro-TLB (micro Translation Lookaside Buffés)an 8-entry fully associative cache of the main
TLB. The lookup is performed very quickly and theypical address and page attributes are available
in the same clock cycle as the arrival of the @ltaddress. In case of a miss, the address igc#m
main TLB which will handle it.

2.3. Arbiter

The arbiter deals with the accesses to cache lfemng the requesting modules, a single one is
granted access, in respect with fixed prioritigsalso transmits the information (particularly the

address) to the Dirty RAM, the Tag RAMs and theeDBAMs. The different requesting modules are
the two Line Fill Buffers, the Eviction Buffer, ttgtore Buffer, the Slots Unit, the CP15 controded

the Cache Coherency Controller Block.

2.4.RAMs

In the current implementation, the RAMs can be gaged in three types: the Tag RAMs, the Data
RAMs and the Dirty RAM. All the RAMs are physicallgddressed: the cache is said to be PIPT
(Physically Indexed Physically Tagged).

2.4.1.Tag RAMs

The Tag RAMs store the tag of the different caghesl as well as their validity bits. Since the @ach
size is up to 64 KB, the Tag RAMs comprise up t@ Sfes of 22 bits (20 tag bits, 1 validity bit afhd
MESI exclusive bit).

2.4.2.Data RAMs

It stores the data and is organized in the sameasdfe Tag RAMs. Its capacities are up to 51Xline
of 32 bytes (8 words).

The original picture from [Mc05] has been modified so that it only presentst#sential modules.
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2.4.3.Dirty RAM

The Dirty RAM contains the information of a setrtiiess and MESI protocol bits. One line is 24-bit
wide and stands for the information of the four way a given index.

2.5. Hit stage

This is the module responsible for computing théniss information. This information is returned to
the module which was granted access by the arhitease of a miss, the evicted way is also passed
to the requesting module.

2.6. Store Buffer (STB)

The Store Buffer is composed of four slots. Eacit Bhs space for the 64-bit data and for the 32-bit
physical address. It receives the write request® fihe Slots Unit and merges them with the existing
one when it is possible, thereby avoiding numeaehe accesses. If the request is non-cacheable, th
write is transmitted to the Bus Interface Unititlfs cacheable, the Store Buffer requests an adoes
the RAMs for the lookup. If a miss occurs, the skxjuests for a line fill. In case of hit, the shaks

for a new access to write the data: in overalleast two cycles are necessary to handle the reques
The overhead of writes over read does not reallitenbdecause the reads can hit in the Store Buffer.
Indeed, from the point of the view of the core,rgtteing happens as if the data is already writtethe
cache.

2.7.Line Fill Buffer (LFB)

Two 256-bit Line Fill Buffers are responsible fatéhing a line from the upper level memory. They
are endowed with the merging ability, which allosessing power and bus traffic. Another important
enhancement is the LFB hit ability: a lookup rasgltin a miss can hit in one LFB and the data bl
forwarded to the processor as soon as possible nviiee words are received from the upper level
memory, they are streamed to the CPU; preventifrgnt waiting that the whole line has been fetched
to get the requested data. Once the line fill leenbcompleted, the LFB asks the arbiter for ansscce
to the RAM. When granted, it writes the whole linene clock cycle: tag, data and attributes.

2.8.Eviction Write Buffer (EWB)
This buffer receives the line that has been dismafdom the cache. Then it requests access touke b
and writes back the data in the upper level memory.

2.9.Droute

It only selects the valid data from the differentices and returns it to the core. It can be censitlas
a multiplexer.

In this chapter, the different modules which argolwed in handling a data cache request were
presented. With this technical background, theassfugetting results about efficiency of the diffet
replacement policies can thus be discussed.
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Chapter 5

Replacement policies simulation

In der Praxis muR der Mensch die Wahrheit, d. &.Wirklichkeit und Macht, seines Denkens beweisen.

K. Marx, Thesen Uber Feuerbach

In order to compare the replacement policies aralr thfficiency for ARM processors, a cache
simulator has been developed. A detailed interpogtaof the simulation results will follow the
presentation of the simulator assumptions and fnitplementation. It will allow us to select the
replacement strategies whose hardware realizatibbevcarried out in the next chapter.

1. Principles

1.1.Source files

The cache simulator and its replacement policie® weitten in C. For further details of the codago
can see Appendix B.

1.2.Choice of the policies

The cache simulator affords different replacemeniicies: 1-bit, Global Round Robin, Modbits,
MPLRU, non-MRU, Optimal, PLRUm, PLRUt, Random, RduRobin, Side and true LRU. They can
be divided into two subgroups: the academic pdicready presented in Chapter 3 and some
additional algorithms simulated to confirm or infisome hypotheses.

1.2.1.Academic policies

These algorithms were chosen because they areywigeld (particularly in desktop applications),
should enhance the cache performance significamitlyshould not cost so much in terms of gates and
power, which is a major point of concern for theM\Rmbedded processors. This selection is based on
the study presented in the previous chapters,cpgatly on Table 1.

The algorithms may not correspond exactly to ttezdiure because they were implemented in the way
they will be used in the ARM processor. Indeed, glmaple modification of calling the replacement
policy only when there is no free ways yields impgd performance for the Random algorithm. The
aim of the thesis being to implement the most &ffit algorithms, this solution is simulated in this
chapter. Section 3.1 demonstrates that this enhaanteis at the origin of the slight difference
observed between the results published in thetitee and the ones obtained in this work. Besithes,
ARM architecture differs a bit from the x86 one,i@fis the tested architecture in most articles. It
partially contributes to the reported deviance too.

& Man must prove the truth - i.e. the reality and flosver - of his thinking in practice.
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1.2.2.Additional policies

Modbits and non-MRU are quoted for the first timethis work. They do not come from the literature
but are ideas for costless replacement policide the other replacement strategies, both polies

on the locality principle. They also helped venifyi some hypotheses and better understanding the
behaviour of the replacement algorithms.

Non-MRU. Like 1-bit, non-MRU’s aim is to protect the mastcently used line from eviction.
Contrary to 1-bit, it stores the MRU way and therefrequireglogz(Nwaysﬂ storage bits per cache set.
The expected performance is slightly better thdunit kince it does not induce any collateral protect
Nevertheless, it can be balanced by positive effetthe spatial locality provided that the MRUimg

is wider than a way. This assumption is in accocdanith the work of Set al.[S088].

Modbits. Modbits deduces the recently accessed ways fnenditty bits of a set. Indeed, it considers
the dirty bits as an approximation of the LRU imf@tion and examines them in the same way as the
MRU bits for PLRUm. Using the dirty bits creategligcrepancy between the writes and the reads;
which can lead to some strange patterns. Howetier,cost of this policy is negligible because it
requires no additional bits. Yet, it is at the exgee of continuously accessing the dirty bits. Delpgmn

on the cache implementation, this access can thdyhégpensive in terms of power, turning on a RAM
for instance. The behaviour of the simulations Wélp making decision about this algorithm.

1.3.Cache simulator

A cache simulator was designed in order to getschlmut the efficiency of the different replacement
algorithms. The hypotheses of the written modeldagicted below.

1.3.1.Physical parameters

First, the cache characteristics (cache size, nuwibeays) can be modified in the configuratiorefil
and are given as a range: the program will simwditthe legal cache configurations corresponding t
these ranges. The block size and the line width fexed settings that filly with the ARM11
implementation. The other cache attributes (nunatbéines, amount of sets...) are inferred from these
basic ones. In order to be as close as possibleedb cache’s behaviour, the latency is also
implemented: the time needed to get a line fromugbger level memory (L2 cache or main memory) is
simulated. Only when the data is available, theriptes cache block is discarded; i.e. the evictathea
block is available while fetching the data from tingper memory. This latency is characterized by
three parameters:

- the transfer timé , from L2 cache,

- the transfer timé, from the main memory,

- the average hit ratg , of L2 cache.
The set L2 cache — main memory is modelled asgiesmodule which forwards the requested data in
a timet, , with a probabilityh, , and in a time,, with a probability (1+,,).

As it will be seen in the next chapter, a consideiraplementation of the replacement algorithms
requires a fully-associative cache of the RAM sigrithe status bils The physical parameters
describing the cache are its number of lines amdumber of elements per cache line. The behaviour
of this cache — particularly its hit ratio — wasalinvestigated to estimate the efficiency of this
solution. Like the latency time to fetch a datanfrthe upper level memory, this specialized cachme ca
be enabled or disabled in the configuration fileweéver, its results will be presented in the next
chapter.

1.3.2.Inputs of the simulator

The inputs feeding the cache simulator are memenguests from an ARM11 core, on which different
benchmarks run. Because of the huge size of thélésg the original TARMAC [8A01] disassembler
was modified to lighten log files, which supply thery single information that we need:

- time when the core requests a data from the memory,

- type of the access (read or write),

- address of the wanted data.

& Status bits is the name given in this thesis ¢obiits required by the replacement policies. Thaine
comes from the fact that they encode the statascatche set for eviction.
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From these information, the memory request pattetrish will feed the cache simulator are deduced,
thus preventing from running time-consuming Systesimulations of the core for each policy but only
once for each benchmark. Of course, the way thbecaeacts can impact on the memory request
pattern from the core but it should be negligibte the scope of this study considering that the
difference can only be seen for the requests whaxdaip result has been changed and for which the
core is stalled. Yet, the tested core is providéd the hit-under-migsfeature, so this situation seldom
occurs. It must be noticed that the data itselsdos matter because data values are needed byrine
itself, which is simulated as a fixed parametethis model in the sense that the modificationshef t
data cache implementation do not influence the Wieba of the processor in a first approximation.
Therefore, the model addressed in this sectionimsnml: only the very necessary information and
parameters are taken into account.

The MMU was turned off in order to speed up thet&y€ simulations. Indeed, it does not alter the
behaviour of the cache since the address convefigiam virtual address to physical address is a flat
one by default. Furthermore, the software has diyrdaeen verified so there is no access to an
unauthorized domain from the benchmarks.

1.3.3.Multiple loads and stores

The ARM assembly provides instructions to load atate multiple registers from tteame memory
line. This particular feature must be specifically Haddin the cache simulator. Indeed, considering
them as usual memory accesses would overestimatatihe hit ratio: the first instruction is a nss

a hit but all the other lookups would result inig provided that the latency simulation is disable
Now, in case of a miss, the cache does not have tonfetch the data from the main memory.
Consequently the following memory accesses ofdbig instruction must be marked as a miss too. In
order to detect them, the timestamps of the instms are monitored. If the timestamps are egbah t
the memory access result (hit or miss) is consttlasethe same as the previous one. If the latency i
enabled, this test appears redundant. Thus, érfemned only when the latency is disabled.

1.3.4.0Optimal algorithm

The optimal algorithm implemented in this work it mhe real optimal version of the algorithm as the
name could suggest. It is only a very good appreaiion of optimality in the sense it looks for the
future accesses of a set and evicts the way thatdessed the last. This is a sufficient condifan
optimality under usual circumstancese[B9]. The issue raised in modern optimized data esch
originates from instructions such as LDMIA. As &shalready been stated previously, this class of
instructions generates many memory accesses thettbmeuglobally considered either as a hit or as a
miss and not as independent memory requests. Theenaf the ARM assembly yields some
equivalent situations. A solution could be to affdfem a weight equal to the number of data cache
line accesses that it induces, but determining dhissxecution would be almost impossible since it
assumes the exact knowledge of the cache contadt®faits precise internal organization at every
rising clock edge. However, this could be roughbprmximated by assessing the number of bits it
requires and dividing it by the width of a datalwadine. It would be a quite optimistic approxinoati

but the deviance from optimality should be tinyskles, state-of-the-art data caches are optimized i
numerous manners, which prevent researchers fratimg@ realistic overview of the next lookups. It
explains the NP-hardness of the optimality issueg[Bl]. Since this thesis aimed to find and to
implement a cache replacement policy and keepimgii that the optimal algorithm is only a view of
spirit and not a realistic replacement strategyyas decided to keep this good approximation of the
optimal algorithm. Indeed, it is sufficient to gebme absolute clues about the efficiency of the
considered replacement algorithms. Moreover, ireotd avoid numerous reads of the TARMAC file,
this replacement policy has been enhanced witHfartto allow faster simulations.

1.4.Benchmarks

The benchmarks running on the SystemC model of R AL processor come from different sources:
- 3D graphics it is a benchmark suite that stands for the grakérnel of Quake2. The
benchmarks are available in 32-bit floating poimd &anteger version,
- 500 benchmarks: these benchmarks perform usual opesatike quick sorting,
computation of Huffman bits,

& See Chapter 4 Section 1.5.2 p.22 for more details.
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- EEMBC benchmarks (versions 1 andtBese benchmarks are supposed to account for
usual application work in the embedded world, patérly for automotive,
telecommunication and networking (for more inforimatabout each benchmark and
the datasheets, seecj#06]).

Combined together, these benchmarks should represgood overview of the work and of the
memory access patterns required by usual embeduditations, which is the market of the ARM
processors. For a deeper description of these baargls, one can have a look at Appendix C.

In this work, all the simulated benchmarks exhthiite large data sets since this property inducg®e m
realistic patterns and ensures that the hit ratmsot reflect the filling of the cache or the hogt
phase. Indeed, the impact of the replacement psligiust not be overwhelmed by these unavoidable
effects, which would lead us to wrong conclusions.

Selection. From all the tested benchmarks, a selectiorepfasentative benchmarks was performed.
By representative, it is meant that the cache nssséd and that some differences in the hit ratio
between the different cache sizes are observahls.ldst element insures that we do not lie inghe

of the compulsory misses, on which the replacemelity does not impact at all (see Figure 10 in
Chapter 1). Moreover, these representative bendtsnexhibit realistic hit ratio (i.e. their hit rat are

not all equal to 99.91-99.94%).

Representativeness. All the benchmarks needed to be adapted to fR# Aalidation environment.
Nevertheless, they remained quite useless evennaéidification since they lead to hit ratio ove289

in their original form, thereby raising the issUdlwir representativenesesides, if benchmarks were
completely trustworthy, there would be no needdd2 cache, which is obviously not the case in real
embedded applications. For this reason, these bwarils were tuned in order to obtain larger cache
misses ratio. Unfortunately, although it gave usenmesting characteristics about the different
replacement algorithms, it was not sufficient tess$ the largest data caches (64 KB and even 32 KB)
Benchmarksnpeg4_decode andmpeg4_encode show the worthlessness of increasing the sizaeof t
inputs data: the proportion of conflict misses rameahe same because the algorithms work only on a
local window of the working set at a given momemd @ot on the whole set. As a result, increasieg th
size of data does not influence the hit ratio.

A scale factor can be evoked to extend the coratssof the smallest data cache sizes to the gteates
ones but this is not a true scaling. Indeed, rdhalcache parameters which potentially bias Hehe
behaviour can be scaled down: block size, cacleeslire, word size remain unchanged. Consequently,
a new means to measure the relative performantleeodifferent algorithms was required. Software
directly run on the processors without any opeeasiystem seemed a good solution. Indeed, the aim of
the benchmarks is to be synthetic and thus they mioldel the typical behaviours of the programs. So,
they do not exhibit useless memory requests whalp ktressing the data cache. Furthermore, the
introduction of these useless accesses complitatemanagement of the data cache sets and thereby
should lead to greater differences between theecegilacement strategies.

1.5. Software

The lack of representativeness reported above éas loentified for a long time, thus some pieces of
software have already been developed in the compmasglve this issue. They are reused and adapted
a bit to the needs of this work. These softwardiegiions perform different operations:
- Maze finds a path between two nodes through a conmestt
- Explorer computes a factorial, evaluates if different nursbare primes or not,
performs permutation on different strings, calcegathe remainder of integer divisions
(modulo operations).

The software applications’ characteristics, amdmgnt data sets, can be easily modified in order to
stress the caches. The simulations on the corésmoch longer time, preventing us from carrying out
the study only on these more realistic patterndeda, in opposition to the benchmarks, design sssue
lead us to simulate the software applications an\lerilog core and not on the SystemC version.
Besides, basing this work only on the two softwapplications would have exposed us to specific
characteristics of the programs, thereby negatiegstatistical average performed over the wideeang
of benchmarks.
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1.6.Remarks about the simulations

1.6.1.Data cache parameters

One of the first questions raised before launclsingulations is the range of the data cache sizex At
first glance, only the data cache sizes 16 KB,  &hd 64 KB should be studied since they
correspond to the cache configurations availabté e target architecture of this work, the ARM11
one. However, after the first simulations, it clgappeared that this will not be sufficient foetecope

of this work: stressing the 32-KB and even morekledata cache was extremely complicated and the
observed differences for the 16-KB cache were sritaikrefore, it has been decided to add the value
8-KB to the simulation set. It is firstly needed the stressing issue presented above. Secondsy, it
justified by the fact that benchmarks stand forl @g#plications but are a sum up of some of their
patterns and therefore the cache is less strekseditt will be in the real life. Finally, it shoulde
reminded that the data cache will be faced withenoosmplicated patterns in real products: many
threads will preempt one another and a light vergib an operative system will be responsible for
handling these threads, their priority and intetiarps from the outside world. All these factors
contribute to stress the data cache much more agivé it a smaller efficient cache size. For these
reasons, the simulated values of the data cacheasiz8, 16, 32 and 64 KB.

The simulator is able to deal with up to 32 waysypled that true LRU is not used and 8 ways i€tru
LRU is the replacement strategy. However, the numtfeways of almost all the simulations
introduced in this chapter will be four becausenitresponds to the implementation of the data cache
the ARM11 MPCore processor. Simulations were aksdopmed with 2-way, 8-way and 16-way set
associative caches to evaluate the impact of tlsecaivity but their results will be separately
presented in Section 4.

1.6.2.Smoothing

Before dealing with the interpretation of the résuit should be reminded that the results presente
here were performed on numerous tests. Since emthhas its own characteristics, figures can be
smoothed because of the mathematical average.idtparticularly the case for tests, which have
different significant zones: for instance, one benark should exhibit interesting features for 8 KB
and 16 KB data cache but not for higher cache dieesuse its working set would entirely fit in the
data cache. If the others benchmarks do not exaihitdifference between the replacement algorithms
for these cache configurations, this specific featwill not be visible in the final data, averageekr

all the benchmarks. For these reasons, each benchesalt has been studied independently from the
others and only then the overall results were aealy When a benchmark exhibits an interesting
feature, it is specifically mentioned in the tertlaexplained why it should be important. In otheses,
only the averaged results are addressed. Yet, fingots essential because it prevents us from
founding the conclusions on a particular and rdsenpmenon specific to a program.

1.6.3.Validity of the results

In this work, we are faced with an almost unsoleaislsue: in order to stress the data cache at a
significant level, we were forced to use specifidtware which should reflect the usual observed
values patrtially; it implied relying a part of ostudy on a restricted number of software, thereby
exposing us to some particular behaviours spefifia software or a special data alignment because
they are not smoothed anymore among a statistieshge. A solution would have been to run a lot of
different real software and to compare their resulinfortunately, this would have been very much
time-consuming and would have prevented us fronindiinto the design part, which was a major
point of the original theme of the thesis. Furthere) it would have required writing the different
programs in order not to stress the same way tteeadahe and to face it with various memory request
patterns. However, it can be admitted that progeapiorer  already performs it in this way but at a
lower scale: it runs different small programs likectorial, computing the power of a number,
permuting strings, computing the modulo of a numipapping off and pending elements from/to
stacks. Therefore, the best solution is aftercalaep this issue in mind and to examine the oéthin
results carefully.
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2. Simulation results

The relative efficiency of the different replacerhaigorithms must be examined in details for some
candidates of implementation to emerge from thersthTo that end, simulations were performed. A
comprehensive analysis of their results will follte presentation of the obtained figures. In st fir
time, only the results of the replacement polidppearing as potential enhancements are introduced
and then a comparison with the current implememtatf the ARM11 MPCore processor (Global
Round Robin) will be performed. Finally, the re@atent strategies will be submitted to the memory
requests of real programs. This complete procebsalldw us to get an almost thorough overview of
the possibilities of each policy.

2.1.Benchmarks with usual replacement policies

The results of the benchmarks’ simulations arergiveTable 4. The corresponding graphs are drawn
on Figure 19. From these results, one can distsguiifferent groups of efficiency among the
replacement policies: Random and Round Robin, 1Siite and LRU and the pseudo-LRUs (PLRUm,
PLRUt, MPLRU). According to the obtained figuretetlatter appear as the best candidates for
implementation, even though 1-bit must be furtt@rsidered too.

All benchmarks Representative benchmarks
Cache Hit Average Hit Average
Policy size | Ways : Miss ratio | 9 : Miss ratio | , . 9 /
(KB) ratio /LRU Miss ratio | ratio /LRU Miss ratio
(%) / LRU (%) LRU
8 4 96.32 0.987 97.04 0.984
. 16 4 97.15 0.983 97.90 1.010
1-bit 32 4 98.28 0.999 0.985 98.74 0.997 0.996
64 4 98.56 0.972 99.10 0.991
8 4 96.27 1.000 97.00 1.000
16 4 97.10 1.000 97.92 1.000
LRU 32 4 98.27 1.000 1.000 98.74 1.000 1.000
64 4 98.51 1.000 99.09 1.000
8 4 96.26 1.002 97.01 0.994
16 4 97.13 0.988 97.94 0.989
MPLRU 32 4 98.27 1.001 0.997 98.78 1.007 0.997
64 4 98.52 0.998 99.09 1.000
8 4 96.34 0.981 97.0Y 0.975
16 4 97.17 0.977 97.94 0.988
PLRUmM 32 4 98.30 0.982 0.981 98.78 0.968 0.976
64 4 98.54 0.985 99.11 0.974
8 4 96.26 1.003 97.01 0.995
16 4 97.13 0.989 97.94 0.988
PLRU 32 4 98.27 1.003 0.999 98.78 1.010 0.998
64 4 98.51 1.000 99.09 1.000
8 4 96.25 1.004 96.92 1.024
16 4 97.15 0.984 97.84 1.037
Random | ) 4 | o826 1007 | %99 o871 1026 9%t
64 4 98.52 0.999 99.09 0.998
8 4 96.18 1.023 96.86 1.045
Round 16 4 96.98 1.042 97.79 1.063
Robin 32 4 98.27 1.000 1.018 98.76 0.990 1.031
64 4 98.50 1.008 99.06 1.026
8 4 96.23 1.010 96.99 1.001
16 4 97.10 0.999 97.90 1.008
SIDE 32 4 98.25 1.015 1.009 98.74 0.994 1.009
64 4 98.50 1.001 99.06 1.033

Table 4: Hit ratio for the different policies wittenchmarks on a 4-way set associative cache
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a) Selection of henchmarks b) All the benchmarks
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Figure 19: Hit ratio of the different usual replament policies averaged over benchmarks

At first glance, it could be surprising that the tatios are higher for the representative growm tfor
the usual one, although it has been claimed tlegt pinesent more realistic hit ratios. It is simglye to
the presence of some specific benchmarks — amolmgrsst00_mandeld , consumer_rgbcmyk
consumer_rgbcmy ... — in the complete set. These benchmarks exhibityadifference between the
different replacement algorithms across the diffeache sizes but yield a quite important amodint o
misses (miss ratio around 2-3%). Capacity missegergothe behaviour of these benchmarks.
Therefore, the study can be pursued with the sigglep of representative benchmarks.

2.2.Non-MRU and Global Round Robin study

In the continuity of the previous section, the aigons were compared to the current replacement
policy of the ARM11 MPCore processor, Global RouRdbin. Non-MRU is investigated in this
section too since it is a comparison for 1-bithe same degree as GRR for the other strategies. Thi
study is carried out in this section and the rasaite given in Table 5. The benchmarks ran correspo
to the selection of representative benchmarks.tk®rsake of clarity, only the policies, which were
short-listed in pursuance of the first benchmarksults, along with some reference algorithms (Roun
Robin and Random), are presented below. This clafieéggorithms also provides us with a continuous
range of complexity of implementation, from no Bir Random to 4 bits for PLRUm, where the
complexity is still acceptable.
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Figure 20: Average hit ratios on representative tiemarks with GRR and non-MRU
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From these figures, it is striking that the datehes are not stressed enough for 64 KB and evesifor
KB where the observed hit ratios are abnormalihhghope distinguishing usage-based policies from
one another. This comment justifies the appeabtiovare applications in the next section.
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Polic Cache Wavs Hit Miss ratio / Average miss
y size (KB) y ratio PLRUm ratio / PLRUm

8 4 | 9538 1.108

Global Round 16 4 | 96.92 1.097 1095

Robin 32 4 | 9859 1.147 '

64 4 | 99.08 1.026
8 4 | 9558 1.059
. 16 4 | 96.84 1.126

Round Robin 32 4 98.74 1026 1.070
64 4 | 99.04 1.070
8 2 | 9580 1.006
. 16 4 | 97.09 1.037

1-bit 32 4 98.69 1.061 1.031
64 4 | 99.07 1.019
8 4 | 9583 0.999
16 4 | 9718 1.005

Non-MRU 32 4 08.68 1.072 1.056
64 4 | 98.98 1.148
8 2 | 9560 1.055
16 4 | 96.90 1.106

Random 32 4 98.64 1.101 1.075
64 4 | 99.07 1.038
8 2 | 9571 1.028
16 4 | 9711 1.029

PLRUt 32 4 | 9872 1.041 1.034
64 4 | 99.07 1.036
8 2 | 9583 1.000
16 4 | 97.19 1.000

PLRUmM 32 4 98.77 1.000 1.000
64 4 | 9911 1.000

Table 5: Average miss ratios on representative berarks of GRR and non-MRU

2.3.Software
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Figure 21: Hit ratio of the interesting replacemequdlicies on the software applications

The results are given in the figures above. Foe gdlclarity, only the policies that emerged befare
represented here as well as Random and Round Rehieferences. The applications usednaaee

and explorer . Their data sets are modified so that caches eamdre or less stressed. However,
changing the work set does not change the glolitdrpaaccess scheme: the program is the same and
performs the same operations, only on a differepti. Nevertheless, these modifications can be very
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important and impact on the global memory patteimeme, for instance on trees. Moreover, one of
their advantages is that the result can be chegheidg a means to be certain that the memory patte
reflect reality. Of course, the correctness of ithsults does not prove that the program operates as
wanted but the probability is very high. For thee of this work, it will be considered as a suéit
verification. The graphs show that even with thesiware applications, it was hard to stress tlohea

for 64 KB; it is almost constant between cachessZ2KB and 64 KB. However, we should keep in
mind that the usual configurations sold by ARM apeto 32KB. This is all the more true since all
cores are now provided with an on-chip L2 cachdckvbxplains that the size of L1 caches is reduced.

3. Interpretation

The results presented in the previous section snesgfiee with the figures reported in the literature
[DEVI0, MILO3, SMI83, Zou04]. In opposition to the articles cited above, thajor point of this
chapter will be to explain the behaviour of thatggies, analyzed one after another.

3.1.Random

3.1.1.General considerations

As expected, the Random policy is less efficierantithe other algorithms; it is almost always
outperformed by pseudo-LRUs. A difference of 5-®he LRU figures is observed, which disagrees
with the results of Al-Zoubét al [Zou04]: they reported a performance loss roughly etuab-25 %

on the SPEC CPU2000 benchmarks suitee]8]. In some of the benchmarks simulated in thiskwo
(3d_persptris_f32 , networking_ospf , office_bezier ), Random is even slightly better than
the LRU policy. It is the expression of specifidtpans where the width of the history retained IRLL

is inadequate (loops M,.yst1 steps for instance). This explanation is cordidnby the observation of
the same behaviour for the pseudo-LRUs. This phemom will be more precisely studied in Section
3.8. Though it is not the common situation, it otiwrates the absence of an absolute replacement
policy; this choice must be performed in accordanith the average characteristics of the running
programs. This explains the improved performanceepked on themaze pattern too since the
exploration of the connections of the tree doesyietl strong spatial locality. Thus, evicting tlirees

in a random manner gives a better probability thatnodes, which will be accessed in the futurerwhe
the program searches back from a leaf, are stifltkd in the cache.

The comparison of Random with Round Robin showsdhghly equivalence of the two algorithms in
terms of performance. The efficiency then depemdihe specificities of each benchmark.

3.1.2.Lack of stress

If we restrict our study to the small cache size p&the benchmarks (where the conflict misses are
more frequent), greater differences up to 25% ateed. The figures are given in Table 6 for sorhe o
these benchmarks.
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Figure 22: office_rotate hit ratio in a 4-way setsmciative cache
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Their average miss ratio compared to the LRU ones a
- 1.27 for 8 KB data cache,
- 1.10 for 16 KB data cache,
- 1.04 for 32 KB data cache,
- 0.96 for 64 KB data cache.

Cache LRU Hit Miss ratio / LRU miss ratio

Benchmarks | 76 (kB) | ratio (%) [ Random| PLRUmM| PLRUI
8 9867 | 1373 | 1.062|  1.003

automotive 16 99.01 | 1076 | 0863| 0.906
aifftr 32 99.48 | 1.052 | 0884| 0924

64 99.95 | 1.017 | 1.001| 0.998

8 9923 | 1.048 | 0993|  0.993

automotive 16 9928 | 1.012 | 1.016|  1.002
tblook 32 9929 | 1.000 | 1.002|  1.000

64 9929 | 1.000 | 1.000|  1.000

8 9787 | 1.063 | 1.002| 1007

mpeqd decode] 16 9801 | 1.032| 1.003| 1.003
32 9821 | 1.049 | 1.004|  1.002

64 9825 | 1.019 | 1.001|  1.002

8 98.24 | 1047 | 1.000| 1004

mpegd encode| 16 9835 | 1.024 | 1.002| 1.003
32 9856 | 1.055 | 1.006|  1.002

64 9857 | 1.013| 1.000|  1.000

8 99.60 | 1.889 | 1.000|  1.067

networking 16 99.97 | 1071 | 1.002| 1.376
route lookup 32 99.97 | 1.002 | 1.002|  1.000
64 99.97 | 1.000 | 1.000|  1.000

8 9939 | 1.235 | 0097 | 0.983

e dither 16 99.43 | 1143 | 0993|  0.962
32 99.47 | 1.012| 1.008| 0988

64 99.73 | 0673 | 0695| 0.766

8 96.88 | 1271 | 1.030| 1041

e rotate 16 9861 | 1.366| 0973| 0972
32 99.88 | 1135 | 0987| 1.546

64 99.90 | 0999 | 1.001|  0.999

Table 6: Miss ratios of LRU, Random and PLRUm at#jg benchmarks

One sees that the figures match the study of AleZéar small cache sizes. For bigger cache sites, t
cache is probably not stressed enough for us terebsthese differences at the same intensity. A
typical graph of these benchmarks is shown on Ei@®. The issue of lack of stress for high cache
sizes is striking for all the replacement strategiEor sake of concision, it will not be further
mentioned in the chapter but it should be reminithed it applies to each policy. However, this only
explains the difference for these benchmarks. Agrogiarameter may significantly affect the overall
performance.

3.1.3.Importance of looking for free ways

It should not be forgotten that the implementedatgm differs from the academic one. Indeed, the
latter does not look for a free way before allawgta way whereas the simulated one does. This may
partly explain the difference between the simulatesllts and the literature ones, which are famfro
optimal. The impact of this hypothesis is studiestehwith a simple probabilistic model. Let us
consider only a set of the data cache (the other®ng symmetrical). Denotirng(k,n)the probability

that there arexactlyk free ways in the set aftarallocations to the set, the initial conditions:are

P(0) =[ p(4.0), p(3,0), p(2,0), p(1,0), p(0,0)] = [1, 0, 0, O, 0]
whereP(n) is the probability vector. With the same notatiassaboveS(k)is the state corresponding

to the assertioexactlyk ways store a valid data. The transitions betwéendifferent states can be
represented by the Markov chain drawn on Figure 23.
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Figure 24: Evolution of the probabilities p(k,n)function of the
allocations in the cache set

Since the replacement policy is Random and sinedathr ways of the set are equivalent, the trassiti
rate between stateS(k) and S(kt1) equals (4k)/4. The invalidations of the lines which enable a
transition between the states in the inverse cademeglected here because of their tiny probgliit
multi-processing platforms and their absence in saprocessing environments. Evictions would have
the same effect but at the difference that an alloo at the same line immediately follows themeTh
set thus remains in the same state. As a resoéinibe assumed in a first approximation that ttsene
transition between stat&k)andS(k41). Combining this to the fact that only one line d¢enallocated

at a time, it implies that all the possible traiosis have been dealt with.

The transition matri is then:
1 0 0 0 |
025 075 O 0
0 05 05 O
0 0 075 025
| 0 0 0 1|

<
I
O O 0o o o

And the state evolution is given by:
P(n) =PO)xM"

The evolution of stateS(k)in function of the number of allocations is drawmigure 24. From these
probabilities, the average number of busy widys) can be easily deduced by the simple equation:

N(n)=4p(0,n)+3.p(1,n)+2.p(2,n)+p(3,n)

The resulting curve is drawn on Figure 25 as welhe result for the ARM implementation.
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Figure 25: Average number of busy lines in functiéthe allocations in the cache set

There exists a significant difference between the implementations for the values miying in the
range [2:10]. Supposing that the accesses arermifospread among the 512 data cache sets, it
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implies that the effect can be detected on theadlveache behaviour only for the first 5,000 cache
misses. For these requests, the implemented solutioghly performs 1.25 times better than the
literature one: its number of busy lines, whichaisneasure of the effective capacity of the cache in
some manner, is 1.25 greater than the value olotaini the literature method. On the benchmarks
simulated above, the average hit ratio is 95-99%er&@fore, a good approximation would be to
evaluate the 5,000 cache misses roughly equivdes®0,000 cache requests. As a result, a differenc
around 1.25 is observed between the two implementatp till 500,000 requests.

Let us apply this reasoning to the benchmaatworking_ospf which issued 673,677 data cache
requests. It then corresponds well to the bounfésrad above. Its hit ratios are 94.46% for Random
and 94.30% for LRU. At a first approximation, wencapply the 1.25 factor to the whole benchmark
(the bound 500,000 is a very rough approximatiajich yields a corrected miss ratio for Random of
6.925%. Expressing it in function of LRU miss ratiane obtains a ratio of 1.21. The corrected
difference is then in the same range as the onaingat by Al-Zoubiet al Moreover, it should be
noticed that the benchmarks presented in Tableséed a huge amount of cache requests (over
2,000,000). Because of this huge amount of requéstsdifference has been pad out in the overall
pattern. Consequently, after examination with aegqobarse model, the simulated results match the
literature ones.

3.2.Round Robin

After examination of the simulation results, it eaps that Round Robin performs as bad as Random on
benchmarks and on software applications. Thereoilvious better policy between Random and
Round Robin: on some benchmarks, one is betterptbar benchmarks, it is the opposite. The
comparison with the LRU policy yields even worssuks (around 1-5%). This result disagrees with
the work of Al-Zoubiet al. which found a difference of 15-20% but agrees i figures of Deville
[DEVIO0] for low associativity. This discrepancy is pably due to the lack of stress on the caches for
most benchmarks. It is corroborated by the softvetmely. Onexplorer  patterns, the difference is
9% on average with peaks to 15% on low size. Theease of the gap for low sizes reinforces the
hypothesis of lack of stress. @raze, Round Robin performs on average 2% better thad.L®nce
more, it underlines the specificity ofaze which helps putting the conclusions in perspectiith the
particular characteristics of each program.

Cache | | byt Miss ratio / LRU miss ratio
Benchmark size ratio (%) .

(KB) PLRUm| PLRUt| Round Robin
8 93.49 0.924 | 0.950 1.091
automotive 16 97.82 0.894| 0.978 1.098
matrix 32 99.02 0.975| 1.028 1.078
64 99.77 1.006| 1.129 1.150
8 99.60 1.000| 1.067 1.888
networking 16 99.97 1.005| 1.372 1.073
route lookup 32 99.97 1.002| 1.00d 1.002
64 99.97 1.000| 1.00(¢ 1.000
8 79.85 0.955| 1.001 1.000
networking tcp 16 86.25 0.807 0.914 0.999
mixed 32 98.76 0.980| 1.009 1.005
64 98.97 0.845| 0.911 1.005
8 99.39 0.997 | 0.983 1.222
office dither 16 99.43 0.993| 0.962 1.146
32 99.47 1.008| 0.988 1.071
64 99.73 0.695| 0.764 1.207

Table 7: Miss ratios of PLRUm, PLRUt, Random andriRioRobin on specific benchmarks

Although Round Robin is not a so bad approximatérthe LRU policy in overall (see Table 4), a
significant difference is observed with the follegi benchmarks: automotive matrix ,
networking_route_lookup , hetworking_tcp_mixed , and office_dither . One notices that
these are almost the same benchmarks as Randorabytheontradicting the potential hypothesis
according to which only the benchmarks demonsigatihat we expect are selected. The figures of
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these specific benchmarks are given in Table 7.Rdwnd Robin performance appears here as 10-15%
worst than the LRU one, which is in the range efibsults given by Al-Zoulst al. The figures are:

- 1.300 for 8 KB data cache,

- 1.079 for 16 KB data cache,

- 1.039 for 32 KB data cache,

- 1.091 for 64 KB data cache.
The results are the worst for the smallest datdeaizes, where the conflict misses are the most
important. It confirms the hypothesis of a lackstiess to explain the difference between Al-Zoubi’s
results and ours. The difference in handling tkee fivays which explained the discrepancy for Random
does not apply here. Indeed, as long as the livglidations are negligible, the Round Robin policy
assigns the four free ways in the increasing orflleen the cache set is full and the ways are aVicte
the order they came in.

The strong dependence of the Round Robin repladepwity on the cache configuration emerges
from the simulations. Even for patterns appareatjyivalent, the results are quite different. It tan
explained by data alignments inside the memory iomply a high sequentiality of the optimal
replacement in some cases. The overall poor pesiocen of the Round Robin strategy can be
explained by the lack of history in its computingdeed, it is well adapted for patterns where the
accesses are performed sequentially but its reardtpoorly efficient as soon as the ways of aaset
not accessed in the same order as the counterhwhit lead the policy to evict the MRU line. As a
result, the relatively poor observed efficiencyég surprising.

3.3.Global Round Robin

These simulations demonstrate that Round Robin witiobal counter performs worse than true
Round Robin and worse than the pseudo-LRU algosthfhe figures correspond well to the intuition
since GRR is a pseudo-random strategy. As theealitly is strong due to the spatial locality, tBRR
counter can be seen as an efficient counter orotwibree sets, thereby presenting the same drawback
as Round Robin without its advantage of well-fithie highly sequential accesses.

On the other hand, Global Round Robin performs ¥eb onnetworking_tcp_mixed and 3%
better ormaze (up till 5% on small cache sizes) than Round Ratltiereas the latter outperforms it of
1-2% onexplorer . | expected that Round Robin would perform mucttdoethan Global Round
Robin because there are quite common situationgsenBéobal Round Robin evicts the last written
line. For instance, let us consider four lifgsA,, As, Ay mapped to distinct sets and which are not
lying in the cache. Let us now assume that aliis mapped to the same sef\asThen the execution
of the sequencky, A,, Az, A4, As Will evict the lineA; which was the MRU of its set! Such situations are
not so rare and should have a negative impact ®@ovbrall hit ratio. True Round Robin avoids these
situations and then should be more efficient. Hawvegimulation results differ with this hypothesis:
the difference is not as significant as expectethsotype of situations is not as common as thbagh
first glance. This is confirmed by the results bé thon-MRU which slightly performs better than
Random. Yet, non-MRU aim is to avoid evicting thstlwritten line. The results are thus consistent.

The difference of efficiency between Global RounobR and its competitors is sufficient to justify
implementing a pseudo-LRU algorithm. Indeed, inraitio — which is the interesting figure which
reflects the most accurately the efficiency of teplacement algorithms — the difference is a st le
than 1% but the hits here are important and théecacust be stressed further to study in depth this
feature. Besides, the difference reaches two pe&rceh the memory requests on benchmarks
networking_route_lookup , office_rotate andnetworking_pktflow

3.4.1-bit

The 1-bit policy aims to protect the MRU region gratticularly the last written line from evictiohs
results are good and better than Random. The ptilicy seems quite efficient at a low cost but there
are some applications patterns where it perforntlybéts performance is not steady across all the
benchmarks. While it performs a bit and even sigaiftly better than LRU for some applications, the
gap separating it from the best simulated replacémelicy is important on some benchmarks. A
typical graph of these situations is drawn on FegR6. The random assignment inside the non-MRU
half benefits from the same features as Randonthwtould explain the instability of the policy.
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Figure 26: Hit ratio for automotive_aifftr in a 4ay set associative cache

This solution yields an improvement compared to @&ebal Round Robin, up to one percent in hit
ratio. Furthermore, using only one bit insteadhoéé or four for the pseudo-LRUs would save noyonl
area but also power, because there would be feweesses to the RAMs storing these bits.
Consequently, this policy suits the aims of thissih and is one final candidate for implementation
spite of its unsteadiness.

The choice of encoding this policy with one bit fe@is also the neighbofrsf the last written line. In
order to investigate whether this protection aabie overall hit ratio significantly, an algorithmas
implemented: the non-MRU policy.

3.5.Non-MRU

The principle is the same as for 1-bit but the LR&y — and not its half — is stored so that themois
collateral protection. Thus, 2 bits per set arauireql instead of one. After examination of the Hssu
non-MRU performs roughly the same as 1-bit and th@pears as a quite non-optimal solution: 1-bit
requires less additional storage and its updatimydecoding processes cost less hardware. Thus, the
hypothesis raised in the previous section is noified. Splitting the cache into two halves is well
adapted to 4-way set associative caches with reh$odata line width. It gives clues about the size

the MRU region of typical embedded programs toshibuld be included in the range 1-2 lines. Non-
MRU will not be further considered in this work laese of its ratio hardware cost-replacement
efficiency.

3.6.Modbits
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Figure 27: Hit ratio of the dirty bits implementati averaged over the selection of benchmarks

While looking for the cheapest algorithm, using thiy bits was an idea whose ratio efficiency-cost
might be interesting. The results of the simulatiovere quite disappointing: around 2 % worst in hit
ratio as it can be seen on Figure 27. The differeaven reaches 3% in hit ratio on low size where

2 By neighbours of waw is meant: § O N / EW/2) = E¢/2) }\ {w}, i.e. simply 2.E2) + (1w mod
2) = 1w+ 4.EW/2) in the case of a 4-way set associative cache.
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conflict misses are more important. It may be exgld by the fact that this policy does not tak® int
account the read and can even evict them whenatteelyIRU. Moreover, once all the ways of a set are
written, there is no means to differentiate therd @ns equivalent to the Random policy until thexh
allocation. As a result, the read requests evie another whereas writes remain in the cache and
pollute it. One solution to this issue would beaidd an aging policy to this algorithm but then the
design cost would be too expensive: the Dirty RAMEd be powered on at each access, thereby
leading to high power consumption, which is spealfy what must be avoided in embedded systems.
As the age should be stored somewhere (flip-flapRAM), it will increase the power consumption of
this policy. Considering this complexity with iteqr efficiency, it will not be mentioned further tihis
work.

3.7.Side

As expected and stated ing200], Side performs a bit better than Round Robid i hit ratios are
roughly equivalent to the 1-bit policy. The updgtiprocess of the counter is based on usage, which
provides the algorithm with a better adaptabildythe patterns. This counter splits the cache tinto
groups and thus establishes a parallel with 1Hbis the origin of the close performances of the t
algorithms. However, it still partially exhibitse¢tsame drawback as Round Robin: in the absence of a
hit, the ways are discarded in the growing ordesrédver, it is strongly dependent on data alignsient
non-cyclic accesses and cache parameters sucklas siae, block size... Thus, it does not appear as a
good candidate. Compared with 1-bit, Side thus appeot so efficient: it uses a 2-bit counter pr s
instead of one additional bit.

3.8.LRU and pseudo-LRUs

3.8.1.Results

The LRU algorithm and the pseudo-LRU ones preseite dhe same performance and much better
than Global Round Robin since they are usage-bd3edending on the benchmarks, their relative
efficiencies change but the differences are slighteudo-LRU algorithms are an efficient
approximation of the LRU replacement policy. Consagly, implementing a true LRU algorithm is
not worthy because of its high complexity — whishthie origin of bugs in general —, its overheasl, it
consumption and the amount of required hardwareudRsLRUs yield the same performance with
simpler, cheaper and faster implementation. Theeigs now to choose a pseudo-LRU algorithm.

The algorithms are different in nature: PLRUt anBINRU implement a tree implementation whereas
PLRUm is MRU based. Inside the first group, thdedénces are small: MPLRU performs a bit better
than PLRUt but at the price of one additional ket pet and additional complexity in interpreting th
status bits. This result is consistent with theudation results obtained in [@06] where a significant
improvement was only observed for high associatiygight and above). Moreover, for the same
amount of bits in a 4-way set associative cachdRh performs much better and the decoding is
simpler. A difference between PLRUt and PLRUm isaived: while PLRULt is a good approximation
of LRU, PLRUm outperforms it on almost all the ingatterns. This superiority of PLRUmM over
PLRULt is confirmed when examining in details thendliation results. Depending on the data sets,
PLRUm is 1-5% better in hit ratio than PLRUt and UW,Rparticularly for small cache sizes, where
misses occur more often. Thus, PLRUm appears atter implementation candidate but the tree-base
version will still be considered further. The cataties among pseudo-LRUs are then:
- PLRULt : only three bits per set and as efficientL&U in spite of its acceptable
unsteadiness observed across the different benkbmar
- PLRUm: four bits per set but simpler to encode podecand interpret. Moreover, its hit
ratios are the highest in average and on mostrpatte

Compared to Global Round Robin, PLRUm performs madoR% better in hit ratio as it is shown in
Figure 21. However, there is a case when GlobahBdrobin performs better than the pseudo-LRUs:
on maze with a very small data cache. This is probablypectic resonance between the data and the
global Round Robin designation. Other algorithms|uding true Round Robin, do not exhibit such a
feature, confirming that it should be a specialgmient which produces this performance.
Furthermore, this is corroborated by the hit rati@asured for the next data cache sizes: Global dRoun
Robin performs much worst. Finally, this specifeafure has not been observed on the benchmark
suite; thereby reinforcing our idea that it is oalgpecific alignment created by the application.
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3.8.2.The origin of the discrepancies

The improved performance of PLRUm has already lveported in the literature [M03,Zou04] but
no explanation about this enhancement has beemeeldgyet. This paragraph will try to fill this lack
of knowledge. To that end, some typical sequencestadied; which will help us understanding the
underlying phenomena governing replacement stedegehaviour.

3.8.2.a. PLRUmM vs. PLRUt

First, let us be interested in the two pseudo-LRydrithms and have a look at Table 8. In this table
the errors in designing the LRU way are highlightedyrey: the darkest one for an error of 2 in the
LRU stack and the lightest one for an error of ddecourse, error is a quite inappropriate terncein
an “error” in the LRU stack can help being neacethie optimal choice. While PLRUt misled us three
times, PLRUmM made only two mistakes but one watedmiportant in the sense that it designed a way
located at the second place of the MRU stack. @aisance originates from the reset of the statiss bi
whereas element 0 was accessed during the pregmps The erroneous interpretation is then
transmitted to the next step. Thus, the reset phaeens to be the major inconvenient of PLRUm.
However, it constitutes its superiority over PLRUb as it will be seen in the next paragraphs.

Step 1 2 3 4 5 6 7 8 9 10 11 12 13
Sequence 0 1 2 3 0 3 1 2 1 0 3 0 1
PLRUmM

PBRUway| 1 2 3 ©0 1 1 2 o0 o0 3@ 1 2
status bitsy 00010011 0111 1000 1001 1001 1011 0100 0110 0111 1000 1001 1011
PLRUt
PLRU way| 1 2 3 0 1 2 2 3 0 3 2 1 2
status bitsy 011 110 101 000 011 010 110 001 100 1D 011 110
LRU way 1 2 3 0 1 1 2 0 0 3 2 2 2
Optimal way 0 1 2 2 0 3 3 2 2 2 23 0-26-1-2-3
Table 8: Pseudo-LRU ways for PLRUm and PLRUt

3.8.2.b. Amount of information held by the status bits

As it has already been stated in Chapter 3, then miffierence between the pseudo-LRU algorithms
consists in the binary tree of PLRUt, which assigaisous efficient weights to the different stahits.
Over the first ten accesses of Table 8, PLRUmM gi#he exact LRU way whereas PLRULt is mistaken
twice since node 0 does not held sufficient infaioraabout the previous accesses. Indeed, if thee tr
LRU way is a neighbour of the last accessed wawilitnot be discarded. This could lead to far from
optimal evictions. As all the MRU bits are almogui&valent, PLRUm does not exhibit this property.
Nevertheless, a slight discrepancy is introducethbyorder of examination. While computing the way
to be discarded, the algorithm looks for a MRUdgjtial to O from bit O to bM,.ys1; bitk is thus more
probably subjected to eviction than any jbfor j>k. This discrepancy is however far less significant
than the one observed in PLRULt. Therefore, it catify the superiority of PLRUm over PLRUL.

Another example of the lack of information in PLRBtgiven in Table 9, where this issue is striking.
The sequence corresponds to the execution of aQeb0-5-0-6 after the data cache has been filled
with elements 0-1-2-3. This type of loop is quiteronon and the principle of temporal locality is
strongly verified for this pattern. Since the loogntains only four elements, a protection of theplo
elements is expected and hence a quasi-optimabmpeahce should be reached. LRU performs
optimally whereas PLRUmM misses once more befor@ikgethe four data as requested. Regarding
PLRUY, its performance deceives the expectatiomsesivay 1 is never evicted and pollutes the cache

although it is not required in the loop. Once mdhés discrepancy originates from the tiny amount o
information held in node 0.

If this phenomenon was the only one explaining pleeformance of PLRUt, MPLRU would lead
improved efficiency over PLRUt and a performancegiiy equal to PLRUm. This is obviously not
the case on Table 4 and can be explained in loakiricgable 8 more precisely. The sequence presented
there is a target sequence of the MPLRU algoritivimere the MBAIs should help reaching a better
approximation of LRU. In MPLRU, the replacement idam is based on the previous state of the
MBAIs but the issue of the amount of informatiorichby a bit partially remains since the neighbours
are still protected due to the tree structure. Tdtained history is a bit longer, which explaing th
slightly better observed results on some benchmawksn insignificant improvement in overall. The
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advantage of PLRUm over PLRULt is then the greattoty that it can retain in spite of its reset gha
even over MPLRU which considers the previous access

Sequenc| O 1 2 3 0 4 0 5 0 6 0 4 0 5 0 6

PLRUn

way O] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D
way 1 1 1 1 1 4 4 4 4 6 6 6 6 6 6 6
way 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5
way 3 3 3 3 3 3 3 3 3 4 4 4 4 4

statug0001 0011 01001000100110111011010001010111011110001001110111010010

PLRU!

Way Ol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D
Way 1 2 2 2 2 2 2 2 2 2 2 2 2 2 p.
Way 2 1 1 1 1 4 4 4 4 6 6 6 6 5 5 5
Way 3 3 3 3 3 5 5 5 5 4 4 4 4 6

statug 011 110 101 000 011 110 111 010 011 110 111 010 011 110 111 010

LRU

way 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D
way 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4
way 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5
way 3 3 3 3 3 3 3 6 6 6 6 6 6 6
Optima

way 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D
way 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4
way 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5
way 3 3 3 3 3 3 3 6 6 6 6 6 6 6

Table 9: Non-optimality of PLRUt and quasi-optinhabf PLRUmM on a loop

On the other hand, PLRUm performs also far frominogitin certain situations where the reset leads to
discard the way lying in the second position of MiiRU stack (see step 11 of Table 8), which explain
that it is outperformed by PLRUt on some benchmara@wvever, this situation is much rarer than the
loss of information for PLRUt and then the impactinier.

3.8.2.c. PLRUm outperforming LRU

Sequenc | O 1 2 3 4 0 1 2 3 4 0 1 2 3 4
PLRUnN
way 0| O 0 0 0 4 4 4 2 2 2 0 0 0 3 3
way 1 1 1 1 1 0 0 0 0 4 4 4 4 4 4
way 2 2 2 2 2 1 1 1 1 1 1 1 1 1
way 3 3 3 3 3 3 3 3 3 3 2 2 2
status bits] 00010011 0111 1000 1001 1011 0100 0101 1101 0010 0011 0111 1000 1001 1011
PLRU!
wayO| O 0 0 0 4 4 4 4 3 3 3 3 2 2 2
way 1 2 2 2 2 1 1 1 1 0 0 0 0 4
way 2 1 1 1 1 0 0 0 0 4 4 4 4 3 3
way 3 3 3 3 3 2 2 2 2 1 1 1 1
status bitsy 011 110 101 000 011 110 101 000 011 11 OO0 011 110 10
LRU
wayO| O 0 0 0 4 4 4 4 3 3 3 3 2 2 2
way 1 1 1 1 1 0 0 0 0 4 4 4 4 3 3
way 2 2 2 2 2 1 1 1 1 0 0 0 0 4
way 3 3 3 3 3 2 2 2 2 1 1 1 1
Optima
way 0| O 0 0 0 0 0 0 0 0 0 0 2 2 2
way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
way 2 2 2 2 2 2 2 3 3 3 3 3 3 3
way 3 3 4 4 4 4 4 4 4 4 4 4 4

Table 10: Sequence of 3 loops Qi1 steps for LRU, PLRUm and PLRUt

The remaining mystery is now the unexpected goafopaance of PLRUmM on some benchmarks
where LRU can be clearly outperformed. The nonroglity of the LRU algorithm has already been
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reported in many articles but the fact that it usperformed by its own approximations is strangee T
explanation advanced in this thesis relies on ¢setrfeature, which allows PLRUm to be more flexibl
for some specific patterns and specifically for ibeps composed dfl,.yst1 allocations to the same
set per loop. This contributes also to the enhampeztbrmance of PLRUm over PLRULt. Indeed, the
reset ensures a more adaptive history, therebyngegvoiding the cache pollution by less usefubdat
One example is given in Table 10.

Sequenc | 1 2 0 3 4 0 1 2 3 4 0 1 2 3 4

PLRUn

wayO| 1 1 1 1 4 4 4 2 2 2 0 0 0 3 3
way 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1
way 2 0 0 0 0 0 0 0 4 4 4 4 4 4
way 3 3 3 3 3 3 3 3 3 3 2 2 2

status bits, 00010011 0111 1000 1001 1101 0010 0011 1011 0100 0101 0111 1000 1001 1101

PLRUt

way 0| 1 1 1 1 4 4 4 2 2 2 2 1 1 1 1
way 1 0 0 0 0 0 0 0 4 4 4 4 3 3
way 2 2 2 2 2 2 1 1 1 1 0 0 0 0 4
way 3 3 3 3 3 3 3 3 3 3 2 2 2
status bitsg. 011 110 101 000 011 001 100 111 010 Q@D 111 010 001 10Pp
LRU
way 0| 1 1 1 1 4 4 4 4 3 3 3 3 2 2 2
way 1 2 2 2 2 2 1 1 1 1 0 0 0 0 4
way 2 0 0 0 0 0 0 0 4 4 4 4 3 3
way 3 3 3 3 3 2 2 2 2 1 1 1 1

Table 11: The sameNst+1-step sequence with a different filling order.

Whereas PLRUt and LRU miss at each access, PLRitimest better and yields three hits over the
fifteen requests. Nevertheless, it is far fromdp&mal algorithm which misses only seven timessTh
discrepancy in the behaviour of such patterns cpaldially explain the improvement observed for
PLRUm. But one noticed in Table 4 that PLRUt outpens LRU too but at a slighter degree than
PLRUm. At first glance, it is in contradiction witlhe results of Table 10 since PLRUt apparently
exhibits the same drawback as LRU. Yet, the fillorgler of the set is a parameter that affects the
overall performance significantly (see Table 11 drable 12). Indeed, the replacement strategies
deduce the future accesses from the previous amkara then sensible to the first filling. One sthed

the best improvement is observed for PLRUm butdiiference between PLRUt and LRU is not
negligible too since it is a 0.5 miss for a seqaent 15 elements. This type of loops can be quite
common in embedded systems where numerous matitiphwations are called for picture computing
and telecommunications for instance. The phasedélilling” of the cache corresponds to the statte
the set before the loop begins and is then strodgpendent on the initialization operations perfdm
on the matrix. For this reason, there is no comattern for the initial state and the 24 possib#it
must be studied, which is done in Table 12. Theoitgmce of the initial state of the cache refleoes
hysteresis of the considered algorithms.

Start sequend®12301320231]0213/0312/0321]10231032] 12031230/ 1302/ 13202013
LRU 0 1 1 1 2 2 1 2 1 1 2 2 2
PLRUmM 3 4 2 4 5 3 4 5 4 3 5 4 5
PLRUt 0 1 2 1 2 3 1 2 2 2 3 1 .
Start sequenge031/2103/2130[2301/2310,3012/3021)3102/3120/3201]3210] Average
LRU 2 2 2 2 2 3 3 3 3 3 3 1.92
PLRUmM 3 5 4 3 4 6 4 6 5 4 5 4.17
PLRUt 3 3 3 3 2 3 4 4 4 4 3 2.42

Table 12: Number of hits for the,Ns+1-step loop with different filling orders

4. Cache set associativity

The question seems evident but as it asked oniyadl additional effort to check it, simulations wer
performed to investigate the impact of associativh the hit ratio. The results are split in two
categories: on one hand the reasonable valuesnfoleinentation and on the other hand the results
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lightening the behaviour of the replacement stiategThis division is performed in accordance with
the number of requested parallel lookups, whiclugedmportant power consumption.

4.1.2-way vs. 4-way set associative caches

4.1.1.Equivalence of the policies

This simulation allowed us to check the equivaleat&RU, MPLRU, non-MRU, PLRUm, PLRU,
Side and 1-bit in a 2-way set associative cacleretly validating the coded algorithms. In accoréanc
with the theoretical equivalence of these strafie 2-way set associative cachegactlythe same
hit ratios were observed.

4.1.2.Impact on hit ratio

The results of Table 13 demonstrate the performanpeovement due to the associativity increase, on
average 0.5% in gross figures of the hit ratio. figares are given here for the software because it
seemed important to stress the data cache asmegality as possible. The gain is 5-10%, depending
on the policies and on the memory request patténngeasing the associativity releases constraints
the placement of a line and then implies less anfhisses. This explains the observed performance
enhancement that justifies the use of four wayteats of two. This is all the more true as the power
consumption and the hardware cost of performing kmok-ups in parallel are still reasonable.

Replacement policyl 1-bit | LRU | MPLRU | PLRUm| PLRU{ Random ROUM | sige

Robin
Aways/2waysin| ogec | gg51l  0923| 0900 0954 0921 0945 0.959
miss ratio

Table 13: Miss ratio in 4-way and 2-way set asstiagacaches for software averaged over the
different cache sizes

Specificity of 1-bit. The specificity of the 1-bit improvement comesnfi its particular good results
on themaze program. Indeed, its structure seems very welptathto such a program. An explanation
can be obtained by examining the C code in detkilst, the structures node and connections are
respectively 12 and 20-byte wide. Thus, a nodeigk two neighbour nodes on its cache line; the
relative positions inside the line depend on dégmments. The MRU node should be protected from
eviction in order to be available if the algorithras to come back from a dead path. All the policies
perform it but another important point is not teadird the neighbour nodes too because they are very
likely to be accessed too. Indeed, the nodes awellysnumbered so that it is connected to its
neighbours. This characteristic feature explaiesghrticular good performance of 1-bit. Apart frém

bit, the results are the same for all the replacgmelicies. In the further study of associativipnly

the candidates for implementation will then be dated.

4.2.High associativity

Although the increases in power and area of thewian of eight or even sixteen lookups in parallel
appear as too important, associativities of eigiat sixteen were simulated in order to investighte t
behaviour of the replacement policies. The resarésgiven in Table 14. The selection of benchmarks
was used to smooth the 1-bit specificityroaze a bit.

Replacement policy 1-bit GRR PLRUm| PLRUt
8 ways / 4 ways in miss ratio | 0.997 1.004 1.000 0.998
16 ways / 8 ways in miss ratio| 1.000 1.006 1.003 1.000
Table 14: Impact of high associativity on missadtir software and the selection of benchmarks

Increasing the associativity to eight still yielstsme improvements. The benchmarks and the software
applications can be regrouped in two sets: thé dne where the improvement is almost zero and the
other where the enhancement is significant. Thessnpdse maze, telecom_viterbi ,
networking_pktflow , networking_ospf , automotive_matrix and office_bezier ; they
correspond to an important working set, which eixlahat the impact is visible. For the othersyonl
side-effects can be detected. Finally, these nusnibenst be confronted with the improvements
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obtained by the replacement algorithms. An improaeinof one percent from 4 to 8 thus appears as a
quite small increase. Adding it to the cost of lops, it justifies keeping the current organization.

One notices that increasing to 16 ways is uselEB&s figure seems strange in the sense that the
performance degrades with higher associativitytbist phenomenon has been already reported in the
literature [ML03,Z0ou04]. For 1-bit, there is a loss of performancedintost insignificant. This can be
explained by the fact that the original aim of ghgorithm (protect the MRU region) is pervertedtbg

fact that the region it protects for high assowitti is greater than the MRU region, thereby
contributing to a pollution of the cache. This igldnced by the impact of the evolution on higher
associativity caches for programs such as maze phienomenon of the Belady’s anomaly is a well-
known phenomenon for the FIFO algorithme[89]. GRR obviously presents the same anomaly,
which can partially explain the above evolution.

Sequence 3 2 1 0 3 4 1 2 3 4 0 2 3 1 (
3-way
way 0 3 3 3 0 0 4 4 2 2 4 4 2 2 1 1
way 1l - 2 2 2 3 3 3 3 3 3 3 3 3 3 3
way 2| - - 1 1 1 1 1 1 1 1 0 0 0 0 0
status bits 001 011 100 101 010 011 100 101 010 011 100 101 @uA 100
4-way
way 0| 3 3 3 3 3 3 3 2 2 2 0 0 0o 1 1
way 1| - 2 2 2 2 4 4 4 3 3 3 2 2 2 0
way 2| - - 1 1 1 1 1 1 1 1 1 1 3 3 3
way 3| - - - 0 0 0 0 0 0 4 4 4 4 4 4
status bits0001 0011 0111 1000 1001 1011 0100 0101 0111 1000 1001 1011 0100 0101 0111

Table 15: Equivalent of Belady’s anomaly for PLRUm

Belady’s anomaly for PLRUm. Like Round Robin, PLRUm exhibits Belady’s anomasyit is shown

in Table 15 where the accesses resulting in a ans$ighlighted in grey. The number of misses is 11
for the 3-way implementation and 13 for the 4-waaplementation. Belady’s anomaly comes from the
reset phase which induced an erroneous assignnighe gpseudo-LRU block on step 6. Although
Belady’s anomaly is a well-known phenomenon andughopseudo-LRUs are widespread in the
industrial world, it is surprisingly the first timsuch a phenomenon is reported, at least at the
knowledge of the author of this thesis and of ésearches through the internet. Besides, this dgoma
could significantly affect the overall behaviouns® it seems a not so rare situation and can by eas
encountered in implementations allowing the desigméock some ways.

5. Conclusion: which replacement algorithms will be dected?

In pursuance of the detailed investigation perfatmethis chapter, three candidates are eligibte fo
implementation:

- PLRUm: its performance is the best one observedaiit easily be implemented in
hardware. Unfortunately, it requires four bits pet, which is one more than PLRUL. It
can be a crucial design criterion when there &rge number of cache lines,

- PLRUL: it is a very good approximation of the LRlya@ithm, although it is always
outperformed by PLRUmM. Whereas its encoding/deapdira bit more complex than
the PLRUmM one, it requires only three bits per easét, thereby saving some storage
space in comparison with PLRUm. This could be actler for the implementation
where a status bits cache is designed,

- 1-bit: it performs quite well, almost in the sanage as PLRUt but is also unsteady.
Furthermore, it raises the problem of generatindytrandom sequences for the
selection of the evicted line among a set half. éftheless, it should be acceptable,
considering its low designing cost and the finatisien concerning this strategy will
be taken in the next chapter.

The other replacement algorithms do not suit tlmesadf this thesis: either their performance is not
sufficient or they design cost is too importanteTreplacement policies studied further are therwioe
pseudo-LRU algorithms PLRUt and PLRU as well asittst strategy.
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Chapter 6

The cache implementation

Theory is when everything is known but nothing wdPkactice is when everything works but nobody knows why
If practice and theory are spliced, nothing work&lanobody knows why.

A. Einstein

In the previous chapter, different replacementgiesi were studied and their impact was compared
with their estimated designing cost. The choicalifferent candidates naturally leads us to dealh wit
the different solutions for implementation. Theyliviie presented in this chapter but before dealing
with the details of each proposal, general charstizs common to the three implementations are
handled, among them replacement policies’ hardwaseription.

1. Replacement policies implementation

The specific characteristics of the ARM11 architeet which will have to be handled in this thesid a
which have already been presented in Chapter 4raefy addressed here as well as their interastio
with the replacement strategies.

1.1. Integration of the lockdown feature

As it has already been stated in Chapter 4, theswyhe data cache can be locked: they must not be
replaced and not considered as candidates fori@viby the replacement policy. This feature can be
handled thanks to the following methods suggesiegdch algorithm:

1-bit: if the bit points to a completely locked half, thiscarded way is randomly chosen among the
MRU group. Otherwise, the random selection is penfed in the pointed half.

PLRUm: while examining the ways to see if a reset is iregyl the locked ways must be counted as 1
even if their status bit is 0. On update, they nalsd be considered as high. During the reinitaitn
of the status bits, the bits corresponding to tlo&éd ways must be set to 1 too.

PLRULt: the situation depends on bit 0. If it points téully locked half, it must be inversed provided
that the other half is not locked too. Though a plate locked set is a situation rejected by the ARM
specification, this algorithm is able to handleGtherwise, the bit only stands for the negationhef
hit half. The process is identical for bits 1 andx2Zept that these bits represent a fully lockedigr In
this case, it is decided that they point to thiegt half (i.e. they are set to 0).

Therefore, the locked ways are always considerddcied, on update as well as on allocation; thereb
avoiding any conflict between the lockdown featanel the integration of a new replacement policy in
the ARM11 architecture. In respect with the speaifon, the lockdown is reversible for the
replacement policy too. At any moment, the ways liatocked/unlocked and the replacement strategy
will immediately adapt its computations.
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The only point is that the algorithm remembers ¢hesmys as recently accessed. Yet, removing the
locking on these ways is a programmer action, theseirely meaning that these data are useless now
and can be evicted not to pollute the cache. Tmemented solution does not take care of thistbut
should be an interesting improvement for the sygtetast: while removing the locking on some ways,
these ways are marked as LRU on their next acceS€desourse, this would imply many technical
issues since a cleaning of these status bits amtldccur without degrading significantly the cuntre
performance. A solution would be to perform thisdification only on the next access on this setibut
assumes that the information whether the modificathas been done and which ways have been
unlocked should be stored somewhere. Because sé tieehnical problems, the lack of time and the
quite rare occurrence of these patterns, this piateenhancement was not studied in this thesis.
However, it should be an interesting idea for farttvorks on neighbouring themes.

1.2. Hazards

Like any digital systems, the data side architectsirfaced with hazards that have already beeredolv

by the ARM engineers. These issues are brieflyestdd in this subsection to evaluate their impact o
the considered implementations. The other hazhmatsare specific to the proposals of implementation
will be handled in the following sections.

RAW (Read After Write) and WAR (Write After Read). These patterns do not modify the updated
status bits because they access the same datalicechequentially. Indeed, accessing twice theesam
line is transparent for the replacement policiesalbse the status bits point to the same evictedoin
evicted group.

Cache line hazards. If the data has been modified between the logihgse and the write of a data, a
new cache lookup is performed. Thus, a new comiputaif the status bits will be done; which makes
the status bit compliant with the state of the.line

1.3. Updating the status bits

Before addressing the different implementationsdetails, the updating process of the different
algorithms are dealt with in this section. They m@ependent of the implementation and it will allo
us examining the impact of the replacement polityterms of gates and power. The sigwal,
present in the codes below, is either the dataechithway or the way used by allocation, write... The
other signals’ names are transparent. In the cbeéésv, the following convention is applied: all
signals whose name‘isreg are flip-flops, those which finish in are inputs of the module.

1.3.1. Sharing the updating hardware

Since only one data cache set is accessed at @ tijine, there is a need for a single status biatgrd

for the data cache. The hardware may be shared qaadbthe data cache sets. Yet, the presence of
modules dedicated in the RAM and of buffers on soffrthe implementations presented in this chapter
will increase the need of updating modules to tlmemur. This result depends on the implementation
and will be addressed in details in the next sastio

1.3.2. 1-bit

The Verilog code of the updating process for 1pailicy is shown below. It is a bit more complicate
than the original algorithm to take care of thekkeat ways.

wire first_half;

wire second_half;

wire first_half_locked;
wire second_half_locked;
wire updated_sb;

reg [3:0] Ifsr_reg;

wire Ifsr_feedback;

/I Before updating, a check on locking is performed

assign first_half_locked = cpl5_locked_ways_i[0] & & cpl5_locked_ways_i[1];
assign second_half_locked = cp15_locked_ways_i[2] & & cpl15_locked_ways_i[3];

/l Update with 1-bit
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assign first_half = way[0] || way[1];
assign second_half = way[2] || way[3];

assign updated_sb = (first_half && ~second_half_lo cked) || first_half_locked;

I/ Assigning the way to evict

always @(posedge clk_i or negedge nreset_i)
if (~nreset_i) Ifsr_reg <= 4'b0100;
else Ifsr_reg <= { Ifsr_reg[2:0], Ifsr_feedback};

assign Ifsr_feedback = ~(Ifsr_reg[2] ~ Ifsr_r eg[3]);

assign alloc_way_busy_1bit = { status_bits_reg && Ifsr_reg[3],
status_bits_reg && ~Ifsr_reg[3],
~status_bits_reg && Ifsr_reg[3],
~status_bits_reg && ~Ifsr_reg[3]};

Code 1: 1-bit allocation and update of the statiis With lockdown feature

The overall required hardware for the 1-bit polisythus around 10 gates and one 4-bit register with
negative reset for the generation of the randomesgzp. The random sequence is performed thanks to
a Linear Feedback Shift Register whose tap cordiipm is optimal according to [X96]. The LFSR
width is a good compromise between the wanted peeace and the hardware cost. Nevertheless, it
should be easily modified to be nearer to a tralydom sequence by incrementing the width of the
LFSR sequence. This study will be performed in i8ac6.2.5. The initial value set on a reset is not
important, provided that it is non zero. Eventuaihe cost of the implementation of the 1-bit pplis
negligible in amount, area and power.

1.3.3. PLRUm

Let us write Verilog code which implements the ugdaf the PLRUm status bits and compute the
allocated way in Code 2. The status bits are finstlified to be compliant with the current locked
ways. Then the update is performed in accordante tiwe hit information. If the lookup resulted in a
miss, the computation of the way to discard is Basethe status bits altered to take the lockdawn i
account.

wire reset_status_bits;

wire [3:0] new_status_bits;
wire [3:0] status_bits_pregated;
wire [3:0] sb_initial_value;

wire [3:0] sb_initial_value_int;

//Locked ways must be considered locked
assign status_bits_pregated = status_bits_reg |
assign status_bits_gated_plrum = (&status_bits_preg
status_hits_pregated;

cpl5_locked ways_i;
ated) ? cp15_locked_ways_i :

//Update of the status bits with PLRUm

assign sb_initial_value_int = cpl5_locked_way s_i| plru_way;

assign sb_initial_value = (&sb_initial_va lue_int) ? cp15_locked_ways i :
sb_initial_value_int;

assign new_status_bits = plru_way | stat us_bits_gated_plrum;

assign reset_status_bits = &new_status_bit S;
assign updated_status_bits_plrum = ( {4{reset_stat us_hits}} & sb_initial_value) |
({4{~reset_status_bits}} & new_status_bits);

//Allocation of the evicted way with PLRUmM
assign status_bits_alloc_init = status_bits_reg | |
assign status_bits_alloc = (&status_bits_alloc
status_bits_alloc_init;

fb_cpl5_locked_ways;
_init) ? Ifb_cp15_locked_ways :

always @(status_bits_alloc)

if (~status_bits_alloc[0]) alloc_way_busy_plrum = 4'b0001;

else if (~status_bits_alloc[1]) alloc_way_busy_pl rum = 4'b0010;
else if (~status_bits_alloc[2]) alloc_way_busy_pl rum = 4'b0100;
else if (~status_bits_alloc[3]) alloc_way_busy pl rum = 4'b1000;

else alloc_way_busy_plrum = 4'bXXXX;

Code 2: PLRUm allocation and update of the staitswveith lockdown feature
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On examination of the code, one notices that ardihdates and a 4-bit register with asynchronous
negative reset are required. Once again, this eacobsidered as negligible in amount of gates and
power in comparison with the figures of the core.

1.3.4. PLRUt

Let us write Verilog code which implements a PLRtétus bits update, in order to evaluate the area o
these update features. This is done in Code 3pideess is similar to the one presented for PLRUm.

wire [3:0] updated_plrut;
wire first_half;

wire second_half;

wire first_half_locked;
wire second_half_locked;

/I Before updating, check on locking is performed

assign first_half_locked = cpl5_locked_ways_i[0] &
assign second_half_locked = cp15_locked_ways_i[2] &
assign first_half = way[0] || way[1];

assign second_half = way[2] || way[3];

// Update with PLRUt

assign updated_plrut[0] = (first_half && ~second_ha

assign updated_plrut[1] = cp15_locked_ways_i[0] ||
(first_bhalf && way[0] || second_half && status_bits

assign updated_plrut[2] = cp15_locked_ways_i[2] ||
(second_half && plru_way([2] || first_half && status

assign updated_status_bits_plrut[3] = O;

/I Allocation of the evicted way with PLRUt

assign Ifb_first_half_locked = Ifb_cpl5_locked_way

assign Ifb_second_half_locked = Ifb_cp15_locked_way

assign sb_gated_plrut[0] = Ifb_first_half_locked ||

status_bits_reg[0]);

assign sb_gated_plrut[1] = Ifb_cp15_locked_ways[0]

status_bits_reg[1]);

assign sb_gated_plrut[2] = Ifb_cp15_locked_ways[2]

status_bits_reg[2]);

assign alloc_way_busy_plrut ={sb_gated_plrut[0] &&
sb_gated_plrut[0] &&
~sb_gated_plrut[0] &&
~sb_gated_plrut[0] &&

& cpl5_locked_ways_i[1];
& cpl15_locked_ways_i[3];

If_locked)|| first_half_locked;

(~cp15_locked_ways_i[1] &&
_reg[1]));

(~cp15_locked_ways_i[3] &&
_bits_reg[2]));

s[0] & Ifb_cp15_locked_ways[1];
s[2] & Ifb_cp15_locked_ways[3];
(~Ifb_second_half locked &&

|| (~Ifb_cpl5_locked_ways[1] &&
|| (~Ifb_cp15_locked_ways[3] &&
sb_gated_plrut[2],
~sbh_gated_plrut[2],

sb_gated_plrut[1],
sb_gated_plrut[1]};

Code 3: PLRUt allocation and update of the statis Wwith lockdown feature

The PLRUt updating and allocating module is estadab around 30 gates and a 4-bit register. The
difference between the figures of the two pseud®&Rnay question. However, this is explained by
the nature of the algorithms. Indeed, PLRUmM mustamby modify the original status bits in regards
with the locked ways like PLRULt but also performeset check on these status bits. This additional
step is the origin of the additional hardware afdtoimproved performance. Nevertheless, the two
implementations require a negligible amount of khan® and their power consumption will be
insignificant too.

The required hardware for updating the statusibitegligible for the three different policies. Fsgrs
storing the status bits must be added to this esthm but it is only four flip-flops... The power
consumption will be insignificant too. The updadeone of the two aspects of the replacement policy,
the other being assigning the evicted way. Thikéstheme of the next subsection.

1.4. Allocating a way

The question of allocating a way can appear siraplirst glimpse. However, it must be noticed that
the allocation is not immediate: the Line Fill Bar§ require time to fetch the data and only then
request an access to the Data RAMs. As a reselte tis here a possibility of hazards: a way ofta se
may be allocated twice successively, thereby lgatbrthe eviction of the MRU line. Fortunately,shi
can be quite easily solved by storing the lastcalled lines in registers. According to the speaifan,
only two successive misses dealt by the Line Filff&s will not stall the processor. Consequently,
keeping information about the two last allocateted and their index will enable avoiding these
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hazards. Of course, this piece of information iased once the corresponding allocation has been
performed. These lines will then be considereceagpbrarily locked by the replacement policies & th
index matches the index of the current access. Thisplicates the allocation of the way by the
algorithm but is necessary. After all, it adds oslyme gates but the cost is more important for
registers. The 9-bit wide index as well as the wayst be stored, thereby increasing the overallsgate
by an amount of 26 registers. Considering the itapme of such a hazard which may lead to
inefficient replacements of the MRU line of a ghts cost is acceptable and the solution approvkd.
codes presented above already integrate this &eathe signalfb_cpl5_locked_ways integrates

the locked ways and the way where the Line Fillfugf will write if the current index matches the
allocated indexes.

According to the codes given above, the hardwageired for updating the status bits and allocating
the way to discard in accordance with these pditsenegligible in comparison with the size of a
processor. The real impact on the system will leeatcess to the status bits and the way they will b
stored and accessed. This issue is addressed mexhsection.

2. Status bits implementation

2.1. How to update the status bits

When the hit information about a memory requestvisilable, the address presented at the RAMs has
already changed and may differ from the data addoéshe hit/miss computed in hit stage. It is thus
impossible to update directly the status bits ia BRAM as soon as we receive the old status bits
because they would be written to a wrong addressmrerroneous update based on wrong hit
information would be computed. A specific systensweing the status bits to be written must be
designed. In the implementations presented heeeypidlated status bits are computed by module hit
stage. This calculation can be done only when ttiemiss and hit way computation are performed.
Status bits thus need to be registered before imggathich explains the 4-bit registers alreadyrted

in the previous section. According to the estimagiof the previous subsections, only four stages of
basic gates are required, which should not comstraiher the critical path in hit stage since eglent
operations are performed in the current implementat

2.2. Storage of the status bits

The replacement policies evoked in the previouptdra need to store pieces of information for each
data cache index. This observation raises the is$ustoring these additional bits. The different
considered solutions are presented in the subssadtibove. Hereafter, the term status bit grouphwill
used to designate the status bits of a data cathé-er PLRUm, it would be four-bit wide and for
PLRULt only three.

2.2.1. Flip-flops

The first solution is to store the status bits lip-flops. As the status bits can be read for mgmor
accessn+1 and updated for memory accasgduring the same clock period, there would be two
different addresses: one for writing and one fadieg. It would suppose to latch the data address a
the output of the arbiter to ensure that this asklig available when the hit stage module comphies
updated value. There should be some hazard if a@adwrite addresses are equal but this can be
further studied and solved if this solution wilhdilly be chosen.

The advantage of this solution is its simplicityimiplementation but it is at the price of gatesided,

it would require for a 64 KB cache 51R flip flops (N is the number of bits required by the
replacement policy from 1 for 1-bit to 5 for LRU our encoding) and 2 9-bit decoders handling
accesses to the different flip-flops.

2.2.2. Reuse the available RAMs
Because of the large size and the important consampf the flip-flops, another solution has been
naturally investigated: storing the status bitsoie of the available RAMs. Indeed, the data side is
already provided with RAMs which store tags, dittits, modified bits, MESI bits... The two
possibilities are examined: Dirty RAM and Tag RAM.
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Dirty RAM. The Dirty RAM presents the advantage of beingemuaitural because it is a stock per
set. We will need up to four bits so there is erosgace and keeps the advantage of modularithéor t
choice of the replacement policy.

Tag RAM. This possibility seems not very functional besmthe information is specific to a cache
set and not to a way but one bit per way can beedton each Tag RAM. This solution would be
practical for PLRUmM but wastes space and givesig&acontrol for the other replacement policies.
Moreover, it would require activating the four TR\Ms to get the status bits whereas the Dirty RAM
will require powering on only one RAM. Definitelit,does not appear to be the smartest choice.

Reusing the Dirty RAM and not the Tag RAM seems aramefficient and less power consuming
possibility. The drive of the enable signals onusadial accesses would have to be modified a bkt wi
this solution. The main advantage is to be integtat the actual architecture and then does natineq
any additional control hardware for the accesdfitgelot of area is also saved by avoiding so many
flip flops. Finally, only a few additional bits arequired so there remains “virtual free bits” foture
evolutions.

Figure 28: Memory requests of a core on a test henc

The inconvenient is the growing complexity to deéh the RAM but it allows us to include ourselves
in the actual architecture and to mime the manmehtzards are solved. Moreover, there will besa lo
of cycles for non-sequential reads to allow stotimg updated status bits. Fortunately, this will lne
seen by the core provided that the read data wilatailable at the same moment as before. As the
ModelSim simulation shows (see Figure 28), them @wsually a quite important number of cycles
between two memory requests from the core, thegiing us the possibility to use some of these
“lazy” cycles to store our updated bits.

2.2.3. A new RAM

The solutions above present some important dravebacckerms of power: the Dirty RAM has to be
activated on almost each cache access... Theref@rereation of a dedicated RAM has been studied.
Indeed, the accessed data are neighbours in tinrespace in virtue of the principle of localityhi
principle will also apply to the requested cachis.s€onsequently, many accesses to the RAM could
be merged, thereby saving power. This gain coulé\m®n more significant if this RAM is endowed
with a small fully-associative cache, which woulthble updating the status bits in the same cycle as
the hit information is provided.

The main problems considering the storage of thristbits have been addressed in the two sections
above. Three possibilities of implementation emérigem the previous study:
- reusing the Dirty RAM for its simplicity of impleméation and its probably interesting
results,
- storing the status bits in a dedicated RAM in ordemerge the different accesses and
saves some power,
- storing the status bits in a dedicated RAM endowtth a small fully-associative
cache in order to decrease the number of powecoing RAM accesses.
These propositions are examined in details in ¢leviing sections. Their advantages and drawbacks
will be evoked, thereby leading us to the finalickmf implementation.

3. In the Dirty RAM

The implementation inside the Dirty RAM is develdpeelow and the resulting architecture is given

on Figure 29. On this figure as well as on FiguBead Figure 32, the modules that should be
significantly modified are represented in orangeesglas the blue colour stands for created modules
and connections.
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Figure 29: Architecture of the Dirty RAM solution

3.1. Creation of a status slots module

In the previous section, it has been shown thatugigiated bits cannot be stored as soon as they are
available and thus some clock cycles could be wasteorder to avoid stalling the RAM while storing
the updated status bits, a small module is cremteghich the updated status bits to be stored are
stocked, waiting for the arbiter to give them ascesthe RAMs. This module will be called the sgatu
slots module. The advantage of this solution iadcess the RAM only when no other module requests
it. Provided that the module is well-dimensionedwill not influence the replacement policy’s
performance but will induce a better usage of #zg tycles presented on Figure 28.

3.1.1. Priority of the module

The system performance is dictated by the coreitaugquests must have priority for accessindéo t
RAMs. This would be a pity if the increase in perfiance due to the new replacement policy would be
compensated by delaying core memory accessescgdarty the sequential ones). To avoid this
situation, the module should be granted a low fiyiceven lower than the Store Buffer: the other
features are essential for the functioning, nosois there are unused clock cycles, the updaiblés

to be performed later.

3.1.2. Dimensioning the status slots module

The module is divided into slots, each of them egponding to the status bits of a single cache set.
Therefore it stores thirteen bits, four of themngeihe binary representation of the status bitsthad
nine remaining encoding the cache set informatfmgood comparison for the dimensioning of this
module is the size of the Store Buffers and ofS$hats Unit, which are approximately faced with the
same workload. Considering that the new module neikive fewer requests than these §lohsee or
four slots should be sufficient. However, it mustrmoticed that the module is given the least fyipri
thus it will be difficult for it to be granted acgg which balances the observation of a less irmpbrt
traffic. As a result, four or five slots should hegood compromise. Of course, the implementation is
worthy as long as there are lazy cycles to avasihtptoo many status bits. Indeed, if the module is
full, the LRU information for the corresponding setll be lost since it is non-essential for the
functioning of the data side. This comparison with Store Buffer and the Status Slots Unit istadl t

& As it is explained on the behaviour of the moduléhe subsections below, the Status Slots Unit wil
receive only the lookups that resulted in a hit.
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more valid since the Status Slots Unit will be atolenerge data which are already present with new
data. The data being regrouped in the Status Blutsthe locality should be even stronger.

3.2. Actions on memory requests

We have seen that the status slots module willivecthe updated status bits and store them before
writing them back when it receives grant from thbiter. Unfortunately, this situation wastes some
clock cycles only to update the status bits ancbizssequently not optimal. As a result, the stoofg
the updated status bits can be improved by perfaritimeanwhile other cache actions occurring at
the same data cache index: eviction, invalidatitata write of a write request, second sequentizss

of a burst... This optimization is enabled by therelation of these actions: either the last one dedu
the modification of the status bits, or they re$idim a cache action which implied the update ef th
status bits too. This optimization has also drawbathe updated status bits ready to be stored ipack
the Dirty RAM can be stored on different emplacetagnot only the status slots module but other
modules too. However, each of these modules haxeuasive copy: only this module and the RAM
own the status bits of the set. When a module aveapy, the RAM copy is dirty and the module one
is clean. When no module owns the cache set stitijshe copy in the RAM is up to date. This issue
is dealt with in much more details in Section 3.3.

In the subsections below, it is thus assumed tiastatus bits entering the hit stage module ar® up
date and it is not cared where they come from. diffierent types of cache actions available in thtad
side of the ARM11 MPCore processor are addressiesvtznd are the following:

- read request: sequential or not,

- write request: sequential or not,

- eviction of a line,

- invalidation of a line.

3.2.1. Read requests

If the lookup results in a miss, the allocated visageduced from the status bits and then senteto th
Slots Unit. In case of hit, the hit stage also catap the updated status bits. The action then dispen
on the type of the transaction:

- if it is a sequential access (i.e. burst), the sdcgequential acceésf it exists) can be
used to update the status bits. Indeed, the séguesquests access to the same line
and thus do not alter the status bits. So, thesSJaiit can write the update bits on a
sequential access. The Dirty RAM must be speclfiaahabled for this purpose during
the second sequential access.

- if it is not sequential or if the sequentialityléss than 3, the updated status bits are sent
to the status slots module. This sequentialitynevin by the Slots Unit and it should
forward this signal to the status slots moduleifdo be aware of taking the updated
status bits on a hit or not.

This feature may save a bit clock cycles but maybeamplemented in a first version.

3.2.2. Line Fill

During a line fill, all the information relevant tbe line is written; among them some are storetthén
Dirty RAM. As a result, it seems possible to writee updated status bits in the same time as the
dirtiness information. Three solutions were consde
- The Line Fill Buffer writes itself the updated statbits and fetches them from hit stage
on a miss. The role of hit stage here is only angmit the status bits. The drawback of
the implementation is that the two Line Fill Buemust be significantly modified and
that the storage for the status bits should be chddesach buffer (up to 5 bits). It
creates a copy of the status bits in a differentuf® and may create additional
conflicts. Nevertheless, it appears efficient ve sense that it optimizes the RAM
access usage,
- The status bits are stored in the status slots isa tno and the Line Fill Buffer gets
them when granted access. This assumes that tkeHillrBuffer communicates with

& The second sequential access is the third acdetbe dourst. Indeed, the first one has never been
considered as sequential since the second accesgused to compute it. The information is thus
really available on the third one.

Study of different cache line replacement algorghhmembedded systems 54



the status slots before being granted; which iseqebmplex and somehow far from
optimal because it introduces unnecessary commitimrcia the system,
- The Line Fill Buffer does not write the updatedissabits and does not store it. It is left
to the Status Slots Unit but the utilization of fRAM accesses is then non optimal.
The first solution is preached despite its greatanplexity since it should have strong positiveeef§
on the power consumption.

3.2.3. Write requests

The hit stage computes the updated status bitfamards them to the Line Fill Buffer and to the
Store Buffer. If it is a hit, the Store Buffer apte it and the Line Fill Buffer does not. On a misss
the opposite. The case of a write miss is so mahbge Line Fill Buffer. These requests have alyead
been evoked in the previous section so only théevimokups resulting in a hit are considered furthe
here.

On a hit, the Store Buffer stores the updated sthits in a slot and then requests the arbitercanss
to the RAMSs as usual. When it gets grant, it witire the updated status bits in the Dirty RAM wiiile
stores the data in the cache. The Store Buffer ptaygs an equivalent role to the Line Fill Buffeits:
stores the updated status bits which it will soerable to write in the Dirty RAM. Some bits mustal
be added to the basic slot to make this solutiasilde.

3.2.4. Eviction

The line is marked as invalid and is now recogniasdfree by the replacement policies. These
algorithms taking care of this piece of informatidhere is no need to modify the status bits on
eviction; it will be done when the set of the lww#l be used again.

3.3. Obtaining the up-to-date version of the status bits

The status bits are stored in the Dirty RAM andlifferent modules: STB, status slots, LFBO, LFB1...
The exclusivity of this copy among the modules haen admitted. This hypothesis is checked after
examination of the actions on different memory esis. Indeed, it has been shown by construction
that only one module receives the status bits fgivan action and these status bits are the moshte
ones. Therefore, either a single module has theate version of the status bits and the DirtyMRA

a dirty copy of it or no module is in possessiorit @ind the up-to-date copy lies in the RAM.

As a result, while the address is presented toRIAMS, it can also be sent to the storing elements
which will transmit whether they own the given sttbits. This lookup will be fast because it is
performed on flip-flops and it is a parallel ex@ontacross all the modules that forward the owriprsh
information to the hit stage module (this signalsinbe gated to arrive at the same time as the data
from the RAMSs). If none of the signals is high, #tatus bits from the RAM are up to date. If one of
them is high, the status bits from the given modare taken. This allows us to get the up to date
version of the status bits. This feature relieshenproperty demonstrated in the previous paragraph

3.4. Sum up

Compared with the ARM11 MPCore processor versioa additions are:

- the Status Slots Unit (five 13-bit registers, f4bit comparators and the control logic),
Line Fill Buffer: 2x4 bits and 2 comparators anfta gates to handle these registers,
- Store Buffer: 4x4 bits, 4 comparators and a littlgic,
logic for updating the status bits (roughly 10 stgis and 50-100 gates per algorithm)
- Slots Unit;: 3x4 bits and the logic needed to hatiobespecificity of sequentiality.

These elements seem quite acceptable additionthéormplementation of a new system. However,
attempts to reach optimality as near as possitdei¢olarly in consumption) lead us to implement a
solution where the status bits are widespreaddrstistem. Exclusivity should be ensured but it seem
a quite intricate system to manage and source menous hazards (especially if the killing signaid a
other ARM11 optimizations are taken into accou@mbining this with the numerous writings in the
Dirty RAM, it makes us thinking of a new implemetida. The first idea is to store the status bitarn
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external RAM, where a line will store different ts bit groups. This solution relies on the priteipf
locality and should yield interesting enhancement® detailed study is presented below.

4. In a new RAM

Using the Dirty RAM presented the drawback of astes a whole RAM line to store the updated
status bits whereas the other components of the diill remain unchanged in most cases. This
proposal is then far from optimal. Moreover, itpgssible to take more advantage of the principle of
locality: a separated RAM solution would allow ws drder the RAM in a more efficient way by
regrouping neighbouring sets, thereby decreasiagthount of accesses to the RAM and thus saving
power. This is beneficial provided that a signifitamount of accesses is merged. Apart from the
organization of the RAM, which is dealt with in tlellowing subsection, the designed system is
almost the same as the previous solution. Fordaison, the other parts are briefly addresseceatnt

of this section. The resulting architecture is drawm Figure 30.
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Figure 30: Architecture with the new RAM solution

4.1. The RAM

We suppose that a new RAM is created where fotustzits groups are located on the same line. This
figure can be explained by the capacity of the RAW® single information that must be stored on a
status bit RAM line is the status bits groups. Huor sake of convenience and of decoding of the
addresses, it is a common solution that the nurabgrays is a multiple of two. Indeed, the address
cutting is very simple and fast — one of the mgjomts of concern — for these configurations. The
replacement policies that have been evaluated radidates for implementation require up to four bits
per status bit group. If four sets are stored, rdwuired storage is sixteen bits for the replacemen
strategy. For the next step (eight status bit gsduthirty two bits must be stored, which wouldare
acceptable figure for the RAM. However, this choadso impacts on the slots module. Indeed, the
implementation of a slot will require keeping traoét only of the status bits but also of the stdtiis
tag. For a data cache size of 64 KB, there aresBi If we store 4 status bit groups, the staitusidp
will be 7-bit wide and 6-bit wide for 8 status gitoup. A slot of the slots module must then contain

- 8x4 + 6 = 38 bits if 8 status bit group are stqoedstatus bit RAM line,

- 4x4 + 7 = 23 bits for 4 status bit groups.
Of course, this is multiplied by the number of slof the slot module. Therefore, saving four stéitis
group seems a good compromise to avoid adding raumeegisters which are power consuming.
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Using the previous data, it is deduced that thateceRAM has up to 128 lines. Therefore, addressing
it requires seven bits which are derived from tlvR32-bit address. Applying the same reasoning as
in Chapter 2 Section 2.5.3, one deduces that &g bits are the MSBs (Most Significant Bit) loé t
index part of the address. The cutting is therefore

31 14 12 ] 0
Fhysical address T 8
ag Tndex
to the data cache E’C:)|
12

14 7 5
Status Bit RANM o
address Tag HC:)'

Figure 31: Addressing the status bit RAM

At the output of the RAM, the full 16-bit wide lirie forwarded. A multiplexer (whose selector widl b
the two LSBs (Least Significant Bit) of the indearpof the address) multiplexes them and yields the
requested output.

4.2. Slots module

The slots module is adapted in the same mannéigméw storagelhe external constraints applied to
the module in terms of power and capacity diffetstdrom the first implementation. Indeed, theyonl
significant difference is the width of a slot bhtstissue has already partially been taken int@waac
while ordering the status bit RAM. However, theegter width of the slot makes us select
preferentially a solution with a bit fewer slotsiat should be sufficient when it is noticed thatl@t s
corresponds to 16 data cache lines and that ther®aly” two Line Fill Buffers. Thus, a slot staad 6
bits for the replacement policy and 7 bits for 8tatus Bit Cache tag. This is consistent with tigidr
locality of the module.

In opposition to the first implementation, the maggfeature will be critical here. On free cyclédse
slots module will be granted access to the RAM waildupdate the corresponding lines. It should be
noticed that there is no need to enable the othé&idRwhen this module is granted access. If thedyuff
is full, the LRU information will simply be lost lbause it is not strictly required for the core pemte
correctly. The merging feature helps limiting thember of slots to only two.

4.3. Actions on memory requests

The situation is identical to the first proposacept that the status bit RAM will be checked and
invoked instead of the Dirty RAM when stated befofderefore, this version is faced with the
widespread of the status bits through the system ltomust be highlighted that all the memory
requests are read for the status bit module. Thglesdifference between writes and reads is that th
cache hit way is used for the read requests whdaheaspecified way is invoked for the write and
allocation requests. The writes on the Status Bihe is then performed by the updater module.

4.4, Sum up

In comparison with the original ARM11 MPCore prosmsimplementation, the additional hardware is:

- the Status Slots Unit (two 23-bit registers, twbi7ecomparators and a few gates to
handle the registers),

- Line Fill Buffer: 2x4 bits, 2 comparators and alditiogic,

- Store Buffer: 4x4 bits and 4 comparators,

- logic for updating the status bits (around 10 regssand 50-100 gates per algorithm),

- Slots Unit: 3x4 bits as well as the logic requirtal handle the specificity of
sequentiality.

One of the important improvements is to take furthdvantage of locality: different accesses to
neighbouring sets are merged, thereby preventomg ending write requests to the RAM. However,
the other drawbacks of the first implementation a@amAmong them the necessity of going through
the arbiter and a still important amount of regsidstthe RAM can be cited. It is observed that the
module can act nearly as a cache if the workloawh fihe core is sufficient. This remark sows thedsee
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of an idea of improvement: avoiding even furtheeless accesses to the RAMs which are power
consuming by endowing the status bit RAM with itwnodedicated cache. This solution that is
implemented in this work is dealt with in the negttion.

5. In a new RAM with a small cache

Taking further advantage of the principle of lotalthis implementation should avoid useless a@ess
to the RAM and thus will save power. The statusRAM is named hereafter SBT (Status Bit Table)
and the cache of the SBT is SBC (Status Bit Cacfige architecture is presented graphically below.
The newly created modules are drawn in blue.
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Figure 32: Architecture of the RAM and cache soluti

This solution will be advantageous as long as teatmon of the cache allows us to save clock cycles
and thus to update directly the status bits, as saothe hit information is known. Therefore theCSB
must be implemented in logic (flip-flops). It impé a small cache size but ensures full associativit
and requires less power. An order of 16 should bk adapted, which is confronted to simulations in
the next subsection.

The updating feature is now performed by the updaidule which is also responsible for computing
the evicting line. Since this module is integraitedhit stage, there is no modification with the\poeis
proposal. This split is the result of modularitigetmodule is now instantiated in hit stage as a®lin

the two Status Bit Read Buffers which will requirpdating the status bits that they fetched from the
Status Bit Table.

If there is a hit in the SBC, the situation is #amne as before. If it misses, the evicted lineidetby
Round Robin for instance) must be written backhie EBT and the requested line must be fetched
from the SBT before being stored in the SBC. SiheeSBT is a RAM and cannot be immediately and
simultaneously accessed to two different addresisese pieces of information must be stored. Bsiffer
are therefore created:
- Status Bit Write Buffer (SBWB) which contains thed discarded by the SBC and
writes it back in the SBT,
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- Status Bit Read Buffer (SBRB) which stores the liead from the SBT. It stores the
hit information to update the read line. This liaghen written back in the SBC.

5.1. Status bit RAM

The internal organization of the RAM is kept ideatito the version described in the previous sactio
because the constraints remain roughly unchangedamount of bits to be stored is not altered, the
impact of the number of status bit groups on thtustbit Slots Unit is replaced by the influencettos
width of the Status Bit Cache line and on its flgps, the external workload does not change... is th
configuration, the SBT stores up to 128 lines, eafcthem contains four status bit groups. Seven tag
bits are required to distinguish the lines. Consetjy, an SBT line is 23-bit wide, assuming that th
replacement policy’s bits number is four (PLRUm iftstance).

5.2. Status Bit Cache

From the previous paragraph, it is deduced thaB@ fne is 23-bit wide. We suppose that the SBC
controller is included in the term SBC. In orderdiotain some clues about the real efficiency of the
dedicated cache, some simulations have been pextbmwith an enhanced version of the cache
simulator, which implements a status bits cache Jdrameters describing this cache are:
- the number of lines,
- the number of status bit groups it contains pehedime (i.e. the number of data cache
sets a Status Bit Cache line stands for).

As it is only a simulation, it is supposed thatcimse of miss, the data is immediately available. Of
course, this is only an approximation but it istguiealistic considering that the access to the RAM
takes in average 1 clock cycle provided that theVR& available. In comparison with the time
required to fetch data from a L2 cache (10 clockles) or even from the main memory (100 clock
cycles), this time can be really considered as.Z€he only equivalent time is the time of a cache
access and thus the only issue would be in a ségliaccess if the cache hits and the Status Bih€a
misses. However, considering the probability of sequential accesses and the average hit ratiein t
SBC and in the data cache, this is a quite uncomsitaation. For the scope of this work, this wid b
considered as a sufficient enough description ®Status Bits Cache.

5.2.1. Dimensioning

One of the problems raised by the dedicated canpémentation is the dimensioning of this cache.
The number of lines is constrained by the fullyoagativity of the Status Bit Cache: there must be a
small number of lines in order to limit the contiogic (which grows quickly for a fully associative
cache) and not to waste power in the flip-flopsn§ldering it, an interval [4, 16] seems good bounds
for this study even if the figure 16 appears quitportant. Simulations will show whether it can be
further constrained.

The amount of status bit groups per cache line rhastlecided too. For sake of convenience and
dealing with the different addresses, it shouldabgower of two but other integer solutions can be
simulated for knowledge and trends. Since a St8itsGroup is up to 4-bit wide, the range of
simulations will be [2, 5] Status Bit Groups perdi It will allow us to confront the dimensioning o
the RAM already performed with the simulation ahds confirm or infirm the hypothesis.

59 Chapter 6 - The cache implementation



SBC hit ratio (%)

Figure 33: Status Bit Cache hit ratios for a 16-KBvay set associative cache on the selection of
benchmarks

Figure 34: Status Bit Cache hit ratios for a 16-dBd 4-way set associative cache on software
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Figure 35: Status Bit Cache hit ratios for a 4-wsmt associative data cache with different Stattis Bi
Cache configurations and different data cache siwethe selection of benchmarks

After examination of these figures, it appears ti@ improvement on the SBC hit ratio is not so
important above 8 or 9 lines: the surface flattdrss justifies the choice of 8 for this implemetita.

Note that the fact that it is a power of 2 does matter here because the cache is fully associative
Regarding the SBC elements, increasing their amsignificantly impacts on the hit ratio only for a
tiny number of lines. Consequently, the couplengdiand 4 elements per SBC line appears as a good
compromise between performance in hit ratio and whof logic and power involved. The
performance simulations corroborate the SBT dimmrisg where four appeared as the best
compromise in respect with capacity and consumptight lookups in parallel will not consume so
much power since it will be done on registers agace will not require powering on a RAM.

WP 92100
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E99.94-09 96
99925994
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9983999
E99.26-09 83

3 32 i
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Figure 36: Hit ratio for a 4-way set associativect@& on the SPEC92 benchmark s{@ee93]
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The results obtained by these simulations are mptiance with the trends reported ing&@3] for a
data cache submitted to the SPEC92 benchmark dliite. figure above shows this information
graphically. The block size of this figure is ecalent to the number of SBC elements and the cache
size almost corresponds to the amount of SBC lifiks.flattening for high cache size is observed too
whereas the description for high block size is maymplete than ours in the sense that it goesdurth
and then it exhibits the decrease of the hit rafier the most efficient value. However, our sintiolas
showed this flattening and hence confirm that ege simulation was well-defined. This comparison
confirms that the characteristics of the SBC candbeved from the general data cache ones, in
agreement with the first impressions. Indeed, tBE€ &ccesses reflect the data cache requests asid thu
are faced with almost the same constraints withighen locality; which justifies that the optimal
number of elements is much smaller than the optiiwadk size of Geet al!s work.

The average obtained hit ratio is around 90% orclearks and 80% on software, which strengthens
the hypothesis of power saving. The real efficiemdy depend on the chosen replacement policy in
the sense that 1-bit would store much more statagbr line and hence its hit ratio would be geeat
Indeed, the SBT could almost be generated in légicl-bit. However, 1-bit is not the favourite
candidate for implementation because of its depetel®n an almost true random sequence, which
costs a lot of hardware and is quite intricate. Tihg width of a status bit group of the 1-bit afiglom

is at the origin of the cache structure differeriiee address cuttings are then a bit dissimilaratod

are dealt with in the next subsections.

5.2.2. Addressing

Pseudo-LRUs. The cache aims to store the status bits correlipg to an index of the data cache. As
it has been seen in the previous section, a googhmise between all the constraints is to design a
Status Bit Cache which has eight lines of fourustddit groups each. Therefore, the offset of tlusSt

Bit Table address is 2-bit wide. Moreover, the sysisupports three data cache sizes: 16 KB, 32 KB
and 64 KB, which respectively tally with 512, 256dal28 data cache sets. Consequently, the SBT
contains 128, 64 or 32 lines. The Status Bit Cdmgirg fully associative, the status bit tag is Br G-

bit wide. The cutting is drawn on Figure 37.a.

a) Pseudo-LRUs mmplementation b) 1-bit implementation
31 14 12 5 0 31 14 12 5 ]
Physical address Tag Thivilosz E Physical address Tag L|T Index &E
to the data cache &) to the data cache =]
13 13
14 75 14 3 5
SBT address Tag % SET address LIT Tag Offset

Figure 37: Deriving the address of the Status Bibl€ for the two SBC configurations

1-bit. The only difference with the pseudo-LRU impleméiotais the number of status bit groups per
line: sixteen instead of four. Thus, the offsettibit wide and the tag up to 5-bit wide. The addres
cutting is drawn on Figure 37.b.

5.2.3. Replacement policy inside the Status Bit Cache

Like any cache, the SBC needs its own replacemelityp Since the cache is fully associative, the
replacement policy must not only be efficient blgoamust cost little power and require few gates.
According to Chapter 5 and its conclusions, thatstjies that meet these constraints are 1-bit, PhRU
and PLRUt. Because of its poor efficiency for hig$sociative caches, 1-bit is discarded. The two
remaining candidates are the two pseudo-LRUs. Hhected replacement policy will be PLRUm
because it is a bit easier to implement and tolctiest PLRUt, especially when taking into accoua t
last evicted ways for the allocation of the victiay.

5.2.4. Behaviour of the Status Bit Cache

Generalities

The Status Bit Cache aims to afford the statusdsitsoon as they are required and to immediatefyg st
their updated value. By immediately, it is meant the next rising edge of the clock. The hit
information is computed in less than one clock eyitlanks to the implementation in flip-flops. The
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Status Bit Cache is then able to handle simultasigoa write and a read request, even if they
correspond to the same status bit line. In thie,ct®e value returned by the read request is tiee on
which will be written and not the one which curilgries in the registers. This simultaneity of tiead
and write requests is the main advantage of tlikeaver the RAM implementation. Moreover, the
power consumption is quite small thanks to therietstd size of the Status Bit Cache.

The single requester for a read is the RAM arhitkich is always granted access. Indeed, the Status
Bit Write Buffer gets the evicted line as soon las hew one is written; thereby avoiding a specific
access for the SBWB. As a result, the core requéBiteever be delayed.

Two modules compete for an access to the writeqfatte cache: the updater and the Status Bit Read
Buffers. Since the updater deals with the curreoess and cannot store the whole SBC line but anly
status bit group, it is assigned the highest gyiolt must be underlined that it does not conatrai
further the Status Bit Read Buffer. The presencarofipdater request implies that the previous SBC
lookup resulted in a hit, thus the Status Bit RBadfers are not faced with a request (see Figu)e 39
Besides, the hit-in-SBRB feature ensures that #dayithg of the SBRB request does not affect the
overall behaviour. For a more detailed explanatibthis feature, one can refer to Sections 5.356d
The actions one each type of data cache requestavaibe addressed.

Actions on memory requests

The cache accesses can be split into two grougsilatbkups and the writes. The first category
comprises the reads and the write lookups wheteasdcond one is composed of the second phase of
the write and of the line fill. The evictions arengehow particular and their handling is addressed
before.

Eviction. The line is marked as invalid and is now recegdias “free”. Consequently, there is no
need to modify the status bits; it will be done wilee way of this line will be used again.

Lookups. The status bits are looked up in the SBC whikedache request is forwarded to the RAMs.
The result of the SBC lookups dictates the follayéttion:

- on a hit, the updated status bits are written laditke next rising edge of the clock,

- on a miss, a SBRB fetches the status bits fronS8i€, update them and compute the

way to discard if needed. Finally the updated instored back in the SBC.

It must be noticed that the status bits are upditedny lookup, which may seem queer for the write
lookup but which prevents the SBC from allocatihg tvay a second time in the near future. Indeed, if
a miss at the same cache set occurred betweewthphiases of the write, it would assign the same
way to the two requests. Thus the MRU line wouldebieted, which is clearly what must be avoided.

Writes. The process is identical to the one describedelexcept that the updated value of the status
bits is not computed from the hit way value buiirthe way given by the write requests. This way is
obtained by the preliminary lookup that yieldedheitthe hit way value to the Store Buffer or theywa
to allocate for the Line Fill Buffer. Therefore etltatency time required to fetch a data from thd SB
does not impact on the overall performance, pralittat this time is smaller than the latency time
from L2. It will be demonstrated in the next sentithat this is equal to two clock cycles, which is
negligible in comparison with the L2 latency timresighly equal to 10 clock cycles.

5.3. Read Buffers

The need for buffers has already been stated. Jédtition focuses on the read buffers. A detailed
examination of its assumptions and of its architecis followed by the investigation of the minimal
amount of read buffers.

5.3.1. Architecture of a read buffer

Each SBRB is provided with an updater, which allate update the status bits if there was a hia or
miss in the data cache. This module is a sligbgifmized version of the one located in the higsta
module.
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Figure 38: Wave diagram of a SBRB

The two Status Bit Read Buffers’ behaviour was enpénted as a Finite State Machine. Indeed, it
seemed very well adapted to this kind of logicalclions. Six states were defined:

- s0 (000):the buffer is free and is waiting for a miss ie thtatus Bit Cache,

- sl (100):the buffer becomes busy and asks for an acce®tStatus Bit Table. If
there is a new miss in the SBC that matches the IBBTaddress of the buffer, it goes
to states2 Otherwise, the next statesS. The higher priority of the read buffers over
the SBRB for an access to the SBT prevents them Breing blocked. Moreover, they
cannot simultaneously request an access to thesB®E€ it would imply that the two
buffers reacted to the same SBC miss. It is avoldedonstruction. Therefore, it is
ensured that the read buffer has been granted satwebe SBT when it leaves this
state,

- s2 (001):the buffer fetches the status bits from the RAM apdates them in respect
with the hit information stored at the previousifige edge of the clock. In case of a
SBC miss, this state is responsible of sendingdliecated way to the Line Fill
Buffers. If a SBC miss matches the SBT line starethe buffer, it goes to statl
Otherwise, it goes to stasd,

- 83 (011):the buffer asks for a write to the SBC arbiter aedds the stored updated
value to it. If a SBC miss matches the data stamettie buffer, it goes to statl. It
stays in this state as long as the SBC has notagtéirthe access,

#Here addresses 1, 2 and 3 correspond to the sBimér, i.e. their bits [8:2] are the same.
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- s4 (101):a SBC miss matched the SBT line stored in the bedfgr. The stored status
bits are updated using the data cache hit infoomatceived during the previous clock
cycle. As long as a SBC miss matches the SBT lioeed in this buffer, this state is
not leaved. Otherwise, it goes to stsde

- s5 (111):this state is similar to stag3 it asks for a write to the SBC arbiter but the
sent value is directly updated from the SBT one.

The numbers written in parentheses are the birepsesentation of the states. These encoding are the
results of optimizations in order to reduce the hamof gates describing the control signals. An
example of its behaviour is given on Figure 38.

5.3.2. Amount of read buffers

Two read buffers are sufficient to ensure theoadliichat no Status Bit Cache line is lost, asait e
seen on the wave diagram of Figure 38. This limit be understood if it is kept in mind that a lgoku
results in a single request to the read buffersthatithe latter need only two clock cycles to tietc
data from the Status Bit Table. The priority of ttatus Bit Read Buffers being higher than theuStat
Bit Write Buffers’ one, it ensures that up to twéatss Bit Cache misses can be active at a time.
Indeed, the SBRB is not able to take the requelst while in statesl, s2 or s4 and thus only these
states are further considered for the study of ghigperty. As long as the SBC miss matches the SBC
index stored by this SBRB, the buffer remains iatest4 and there is no need for another buffer
(situation on Figure 38). If a SBC miss index diffethe considered buffer goes to its final staté a
will be able to take the next SBC miss. Hence, ttieoretical upper bound of the amount of read
buffers is two.

Policy Software _Cache Number Hit ratio E_xecution
size (KB) | of buffers (%) time (ns)
w | 1 | g o
Explorer 22 1 97.691 | 308503725
PLRUM 2 97.69:¢ 30850237 i
16 1 80.755 279179622%
Maze 2 80.75: 279117642 |
32 1 97.177 1658053275
2 97.234 1654942675
5 | 1| | oo
Explorer 22 1 97.691 | 308503725
PLRUt 2 97.69:¢ 30850237
16 1 80.112 2835813825
Maze 2 80.09: 283822237
32 1 96.999 1670535925
2 96.997 1670541025

Table 16: Impact of the number of read bufferstandverall performance of maze and explorer

Yet, the situations where the two status bit bgffere active at the same time are not common. Thus,
simulations were performed to investigate the lfisperformance if only one buffer is implemented.
This is evaluated in terms of hit ratio and of tume, which is one of the most important factonstfe
user. This figure can be biased by the long booseguence which does not depend on the
implementation. However, the boot is equivalenttfeg two proposed systems and the execution time
can still be considered as an interesting mea3ine results of the different simulations on theilgr
code are given in Table 16. For 1-bit, such a pnobis not faced since the Status Bit Cache holyi ei
lines of sixteen status bit groups and thus stémd$28 sets. As a result, the SBT is not needethi®
16-KB data cache. For 32 KB and 64 KB, the prireipf locality should allow us to use only one
Status Bit Read Buffer. Consequently, Table 16 gmigsents the two pseudo-LRU replacement
strategies.

The introduction of a second buffer, which enaltles application of the strict replacement strategy,
does not yield a significant performance improvem&omparing this small enhancement with the
number of gates of a SBRB, the best solution fobeaded systems is thus to design only one such
buffer. Two would be all the more unjustified besauhe single read buffer implementation even
exhibits better hit ratio on some patterns. Inssimg a second buffer can be useful for desktop
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systems in order to enforce a strict replacemeagarahm but it is not the case for embedded systems
where area and consumption are the major pointsootern. Nevertheless, includingdefine
TWO_SBRB#® the Verilog code instantiates the second radféh

5.4. Write buffer

For the write buffer, it could be thought that twnstraints are the same but the modified bit essur
writing back only the lines altered. Combining @ the strong locality of the accesses which
consequently do not change the status bits for neggtests, it relaxes the constraints on the SBitus
Write Buffer. By the way, it justifies the higherigrity of the read buffers for accesses to theustait
Table. It should be noticed that this prioritizatifiorces the write buffer to wait longer for a grént

the principle of locality guarantees that read &ufivill not access to the SBT RAM continuously,
thereby letting the write buffer performing its teriback in the SBT RAM. Furthermore, the original
ARM11 design has only one victim buffer for its bacand thereby confirms the need of a single write
buffer. Consequently, a single buffer will be themplemented in this design.

5.5. Updater

The updater is equivalent to the one presentechénother proposals. The output of the SBC is
registered to ensure that the module receives aite chche hit information and the status bits of a
given set during the same clock cycle. The oridithts delaying is striking on Figure 39. Apart fino

it, the module tallies with the code written in Sec 1.3.

The behaviour of the SBC system has been explainddt has been demonstrated thatdbesidered
status bits always describe the current state efitita cache: either they are located in the Situs
Cache and immediately updated on a memory accetiseyare fetched from the Status Bit Table and
the induced value of the way to discard is tran®aiito the Line Fill Buffers. The worcbnsidereds

of utmost importance in the assertion since thtusthits may temporarily not reflect the statusaof
data cache set — they have not been fetched frenSBT or have not been updated yet... — but they
will be up-to-date once these status bits are reduiThe assertion must also be understood in cespe
with the loss of accuracy introduced by the restnc of the amount of the status bit buffers.
Nevertheless, it has been shown that this lossegtigible and that the assertion is valid. In aiddito

this basic behaviour, the design was optimizedettrehse the power consumption and to increase the
performance of the design. These features are éamdlthe following section.

5.6. Optimizations

5.6.1. Updater

The Status Bit Cache is designed to take advargitjee principle of locality. Therefore, successive
accesses on the same set often occur. This waadddeunnecessary writes in the Status Bit Cacbe an
could prevent the Status Bit Read Buffers fromiwgita line in SBC since the updater has priority fo
a write access to the SBC. A trick has been intteduo solve this issue: the updater checks tleat th
updated value differs from the incoming one befrding it to the cache. The required hardware is
only a four-bit comparator, so the cost is quiteyveegligible in comparison with the potential gain

5.6.2. Status Bit Cache

This optimization is based on the modified bit coomhy found in modern caches. This bit states
whether the Status Bit Cache line has been altgirex it was fetched from the Status Bit Table. As
the status bit line could have been modified by ofe¢he two Status Bit Read Buffers, the latter
forward this piece of information on a SBC lind.filhis avoids useless writings to the Status Biblé
and also helps maintaining the number of Statu$\Bite Buffers to one.

5.6.3. Status Bit Read Buffers

The SBRBs are probably the most optimized parthefdesign. First, the design supports hit in the
SBRBs: if a request misses in the SBC and hits buffier, this one waits for the data cache hit
information and updates the line in consequencethEumore, the same tip as in the updater of hit
stage module is used here in order not to marls lasmodified, when the update has not altered the
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line. Finally, SBRBs are able to fetch a data frSBWB if the requested line lies in this buffer. $hi
consists in the means used to avoid some hazasds¢e next subsection). In this case, the SBWB is
prevented from writing its line in the cache andsiders in the next cycle that it is empty.

5.7. Hazards

The implementation was source of different hazafdey all come from the fact that the status bits
travel through the system, thereby leading to urti@dsituations. In this section, the terms read an
write refer to reads and writes to the Status Bitl.

The first hazard corresponds to a situation whetukaneous read and write occur at the same address
The read value must be equal to the value writtehearising edge of the clock. Indeed, if the read
value was the value lying at this moment in theust&8it Cache, the updated value currently presente
to SBC would be lost or even could lead to unpttatlie... Thus, on a write and a read at the same
address, the value returned by the cache is the tdatvrite in conformity with the specifications
asserted in Section 5.2.4. This assignment bypdahsesegisters of the Status Bit Cache and hence
leads to numerous bugs and infinite loops in thikadeomputation. Fortunately, all these problems
have been solved by carefully caring the signatkénfinite state machine of the SBRBs.

The priority of SBRB over SBWB for an access to 8T induces the possibility of a hazard. Let us
assume that the evicted line still lies in the SBWf#8 that a request to the same line is preseatdebt
cache arbiter. The SBRB deals with the requestfetaties data from the SBT. Since the updated data
have not been written back yet, it receives thevalde of the status bits which will then be wiriti@

the cache. However, it should be noticed that aizard occurs only with two SBRBs. Indeed, the
SBWB must be prevented from accessing to SBT. Simeenly other requester is the SBRB module,
it implies that one of the buffers requests foremsing to SBT. As the buffer which will deal withet
last request was at the previous clock cycle eithestatesO or one of the two final states8 or s5, it
cannot have sent this request. Thus, it was trateshfrom the second buffer. Nevertheless, thistthz

is avoided by the hit in SBWB feature that has bemsented in the section about optimizations. When
a SBC request misses, SBWB compares the tag dihthé stores and the tag of the requested line. |
case of equality, the line is forwarded to the &td&it Read Buffer which receive these data andelan
its request to SBT arbiter.

It is seen on Figure 39 that the status bits anayd updated on the next clock cycle. Thus, thg onl
possible hazard has been already solved: it iptlsentation of the same read and write addresses.
Otherwise, the read data is the valid one. Theneremain some peripheral hazards but none has been
detected.

5.8. Validation of the design

In order to test the design and to verify thatpetes as it should, different tests were perfdrme
First, the design was written in a modular manmérich ensures checking each level after its sub
modules have been validated. To that end, testlesnahd some small C programs were developed to
help performing automatically these verificatioBesides, some signals controlling that the behaviou
is not crazy were also introduced. For instancggnal asserts that there are not two lines ottuhe
holding the same data. These signals efficienthtrifouted to the detection of bugs.

Some basic assembly programs were written andratied) into the validation environment in order to
test more accurately the newly created modules. ikguctions were then followed through the
design and their interpretation studied. Of coulseyas not as simple as it seems because of
optimizations inside the data cache side. The nmzgant of concern was the out-of-order execution of
instructions which reorders the instructions. Tikig problem for validation and for the replacement
strategies. Indeed, it is equivalent to modifyihg brder of the memory accesses and can yieldaa dat
cache status different from the expected one. Wpoitance of this issue has already partially been
addressed in the previous chapter and may expilaislight difference observed between the restilts o
Chapter 5 and the ones given in Section 6.

Thus, the issue was approached in another manmesjsting in launching some basic tests, such as
Dhrystone, which calls for various data. The instians and their impact on the status bits throalgh
the design were then investigated and compared tivéhresults manually obtained. This method is
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obviously quite far from optimal and very much-timensuming. Nevertheless, it helped correcting
some errors and better understanding all the cteaistics of the system.

In order to enable an automatic validation of tkesign, the Verilog code was modified to store the
memory requests reaching the data cache. It digshgs itself from the TARMAC logs by the point of
view: whereas TARMAC keeps track of the memory e=gs of the processor, this logger stores the
memory requests which enter the data cache. Memamyyests are thus seen after reordering in the
case of out-of-order execution and after potentiatges. These log files fed the cache simulator of
Chapter 5, whose results were compared with thdddefigures. It raises the issue of the diversify
points of view on this thesis. Since a single desigthe author of this work, implemented the C and
the Verilog versions, some interpretation errord qaossibly be found in the two versions.
Nevertheless, it must be reminded that the caghalator’s results matched the values reportedén th
literature. Hence the bug probability can be cosr®d as tiny though non null.

Finally, the system was submitted to real softwareing on the processor. No error on the output of
the system or on any of the inner controlling sigrteas been observed, thereby validating the module
For more information on each step of the validapmacess, one can refer to Appendix D.

5.9. Sum up
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Figure 39: Wave diagram of a sequence for the d/&BC side

The system finally designed corresponds to the veiagram drawn in Figure 39. This solution saves
some power though it adds a small cache along wéthpower consumption. This addition is
overbalanced by the reduction the number of aceemsthe RAM, which is one of the most power
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consuming elements of a design. The high SBC ki abserved with only 8 lines of sixteen bits (i.e
128 bits) which avoids numerous accesses to thB RKM (up to 128 lines of sixteen bits) ensures an
important gain in energy and in performance. ltutide stated too that this implementation avoids
numerous costly accesses to the L2 as shown by EQi® power consumption of the module must
then be compared to the value of the power condompuif an access to the L2 cache. The power
consumptions are denot¥dand the hit ratiok. It is easily obtained that:

AW = Whew— Wrrent = (1 - hsgd Wsgr+ Wsgc+ Ah 1. W, . with  Ahy1=hi 1 new—N 1,current

AW stands for the power consumption increase betwreetwo implementations. From the simulations
performed in this chapter and in the previous dhe,following typical values are deduclgsc =
0.9andAh; ;= -0.005. Thus:

AW/ V\(_g = O-1WSBT/WL2+ WSBC/WL2 —0.005

Let us evaluate the activity of a register of that$s Bit Cache. The probability that one of tmed is
modified on an access is fitggd. The eight lines being equivalent to one anottier probability that a
given line is altered is then 0.125¢dzJ. Finally, the probability that a given bit of thiee is modified
knowing that the line is modified is 0.5 sincesitassumed that 1s and Os are evenly distributed. As
result, the probability that a given register iteadd is (1-hsgd/16=6.25x1C. Adding it to the tiny
power consumption of a register in comparison &Li# access, the SBC power consumption can thus
be neglected in spite of its 128 registers. Finahg power difference is:

AW/ W, = 0.1(2/250)-0.005 =-0.0042

One thus sees that the impact on the power congamigtnull, even a bit beneficial. In spite of the
quite coarse evaluation, it demonstrates that tlopgsed implementation is very well adapted to
embedded systems’ constraints.

One means to estimate the area and is to countuimber of registers created in overall. For the
pseudo-LRUs, it is roughly equal to 330 flip-flopeluding the SBRB the SBC, the updater and the
SBWB. The SBT RAM must be added to this amount. TH@t implementation requires little less
hardware with only 320 flip-flops in average. Iresle two cases, the major part of the required flip-
flops is due to the Status Bit Cache and its cdimigplogic. This is consistent with the negligible
amount of logic required for the update of the ligslf. The slight difference between 1-bit ané th
pseudo-LRUs originates from the width of the tafshe SBC lines which impacts on the amount of
registers required by the SBRB and the SBWB, a$ agebn some intermediate register. The figure
given for 1-bit is obtained and depends signifizaah the amount of flip-flops.

Finally, the implementation of a RAM endowed with dedicated cache appears as the most promising
solution because of the power it will save and tihg amount of hardware required. Moreover, it
prevents us from continuously accessing the DirfMRand avoids significant modifications in the
current module, which ensures that the verificattan be performed in an easier and more modular
manner.

6. Results of the simulations

In the continuity of Chapter 5, the selection ohttemarks and the software applications were
simulated on the enhanced version of the proce3s$ar.results and their interpretation are presented
here.

6.1. Obtaining the hit ratio

Computing the hit ratio, the means used to meabarefficiency of the policies, required getting th
number of requests and counting the cache hitdirgttsight, this task seems trivial but realityfés
from that. Indeed, numerous problems have to beeddlo get this figure. Assuming that we got the
means to count the cache request, getting hitrimdtion is obvious: when there is a cache request, t
counter is incremented in concordance with therfidgrmation, which is available on the next clock
cycle. Therefore, the problem can be summed upntomerating the cache requests. This issue is
handled in the sections below.

& The implementation of a single Status Bit Readf@uf assumed.
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6.1.1. Read requests

The situation for the read requests is quite simipléeed, the Slots Unit asks for a cache lookap th
induces a line fill if it misses. Consequently, ritoring the cache lookup requests from the Slotg Un
would be a simple means to count the read reqétreststhe core. Unfortunately, the situation is aet
simple as it seems, because the data cache sidgtimized and lookups are merged when it is
possible. Moreover, the order of instructions isguis not preserved in the data cache side for data
which are independent from one another. It leads $tuation a bit different from the one expedigd

the enforcement of the replacement algorithm on riemory requests of the processor. These
optimizations common to state-of-the-art processarmot be ignored and must be studied. Relying
once more on the TARMAC disassembly could helpalgirsg this issue. Unfortunately, correlating
the memory requests of the TARMAC file with the mmiformation of the data cache is a very tough
task since there is no fixed time interval or fixedler between the different accesses and all these
parameters impact on the merge of the requeststigir€onsequently the read lookups are considered
as an appropriate indicator of the read requests.

6.1.2. Write requests

The issue raised by the write requests is a bitenmmmplicate. The writes are constituted by two
phases: the lookup and the write or line fill. fst split up was permanent, monitoring the lookups
issued by the Store Buffer would be sufficient emldce the number of the write requests. However,
the writes as well as their lookups can be mergedptimize the data cache accesses. This is quite
similar to the read requests but the problem isméarder when the sequential accesses are taken int
account. The lookup is performed by the first ascasd provided that there is no intervention of any
other requester on this data cache line, the athiggs are performed without any lookup, eitherthg
Store Buffer in case of a hit or by the Line Fillfier in case of a miss where the writes are merged
This pathological situation is not faced by thedreaquests since the read is still visible. Moriitgr

the write accesses thus appears as the best repthé issue would have been even more intricate
since the writes reflect only the write requestogéhlookup resulted in a hit. Therefore, the Liile F
Buffer accesses should have been counted too bih&rading to a tortuous design where the Line Fill
misses from the Store Buffer and from the Slotst mist be distinguished whereas these misses can
have been merged if they correspond to the saree Adding the fact that the Store Buffers can hit
into the Line Fill module, one understands easibt this solution would not have been efficient.

For these reasons and in spite of its drawback taheusequential accesses, the choice was made to
count the write lookups, which is the means thiiects the best the situation seen from the carns. |
all the more justified since sequential accesskel®seoccur.

6.1.3. Other requesters

Among the modules requesting a data cache accelgsthe following ones remain: the Coprocessor
15 Controller, the Cache Coherency Controller,Ekieetion Buffer and the two Line Fill Buffers. All
these accesses can be considered as cache madeténahe sense they are either consequences of
data cache accesses which have already been takeaccount or pure cache maintenance:

- the requests from CP15 controller are pure cachetemance and should not be taken
into account (invalidating, flushing...),

- the Cache Coherency Controller’'s requests are pacbe maintenance due to multi
processing,

- the eviction and the line fill requests are duenisses. Yet these misses are the results
of the Slots Unit lookup or of the Store Buffer kmps and have thus already been
counted in the number of requests.

As a result, these cache accesses are ignoredasheting the requests.

6.2. Simulations

6.2.1. Simulated benchmarks and software

Since the Verilog simulations are very time consugrénd since they must be performed for the four
replacement policies and for two cache sizes (64c&Hd be simulated too but it is very hard tosdre
specifically for the benchmarks as it has been gee@hapter 5), only a subset of the benchmark
selection was considered. The benchmarks whicldgiethe most significant differences between the
replacement strategies for the low data cache sifdhe ARM11 MPCore processor form it, i.e.
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automotive_matrix , mpeg4_decode , office_rotate and networking_tcp . Indeed, the
difference in gross hit ratio on all the benchmasksmall for the commercial sizes of the data each
even for 16 KB. Whereas the main reported diffeesria Chapter 5 concerned 8KB, differences were
however still observable in gross hit ratio figurefer some patterns. Among them,
automotive_matrix , office_rotate andmpeg4_decode were the most significant contributors.
It should be noticed that they belong to differeplication fields and afford a broad range of
embedded workload. As a result, it should not ietstne extent of this work.

In the same optics of optimizing the simulatior® software applicationmaze andexplorer  are
investigated too. Fagxplorer , the elementary functions as well as the datawsets altered to stress
the cache differently whereas only the input tneese modified fomaze.

The striking issue of restricting the study to tiw® pieces of software and some benchmarks is the
exposure to the particularities of the latter. Akds already been stated in the previous chaptes
exhibits very good results for the Global Round Ropolicy, particularly for low-size caches, in
contradiction with the other benchmarks and softwdtr has however been kept as a reference test
since it constrains well the cache and remindfi@®xceptions of some patterns.

6.2.2. Results and general interpretations

Benchmarks

Among the simulated benchmarksjtomotive_matrix exhibited a specific behaviour. For this
reason, its detailed examination follows the genenesentation.

Cache size
Policy 16 KB 32 KB 64 KB
1-bit 98.21 98.80 99.82
PLRUm 98.70 99.81 99.82
PLRUt 98.69 99.81 99.82
Global Round Robin 98.39 99.81 99.82

Table 17: Hit ratio of the Verilog version withrighmark office_rotate

Conformity of the simulations. The results of a typical benchmark are giveTable 17. As the
figures are in compliance with the cache simulatoes (see Figure 22 p.35), the Verilog simulation
seems to match the previous study performed in t€h&p However, a slight difference is observed
between the two simulations but it is very tinysehan 0.05% in hit ratio). This deviance canlbe a
the more neglected since the relative efficienoiethe replacement strategies remained the same and
the exhibited trends are identical. The small disament in absolute hit ratio originates from the
implementation of the cache simulator. Indeedinifaits are memory requests from the core but they
are then reordered and merged if there are sugeessads or writes to the same memory lines.
Because of these merges, the requests are a bitunted and the impact of a hit can be overestinate
or underestimated. It should be however kept indnivat the cache simulator took the multiple load-
and-store instructions’ particularity into accowvhich explains that the observed difference ig tim
overall.

Another interesting feature is the dissonance ohted instructions between the cache simulator and
the Verilog implementation. This issue has alrelaelgn addressed in Section 6.1 and is evoked briefly
here. Whereas the cache simulator considers alimgmory requests, the latter only deals with the
accesses once they have entered the data cachtherfore, if successive memory requests
correspond to the same cache line, they are caomsides distinct requests by the cache simulator
whereas they may be merged in one in the realarerginother factor interferes but at a slightest
degree: the cache simulator was not aware of timntyion of the data cache and then dealt witkhell
requests, even the booting ones and the CPl5nstarteaning of the cache. Obviously, this is
significant only for the short running programs amaild be ignored for the long-running ones. Since
the benchmarks were chosen in part for their higlount of instructions, this factor is not the major
contributor to the observed discrepancy.
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According to the concise presentation of the gdnkehaviour, the Verilog simulation seems to
corroborate the cache simulator’'s results perfe@tyomotive_matrix demonstrates the opposite
below.

The particular case of autonotive_matri x. In opposition to the other benchmarks,
automotive_matrix did not exhibit any significant difference betwetive replacement strategies,
which appears discordant with the cache simuldt@uggests the presence of a bug in the design but
the output of the cache simulator, running theestamemory requests which have reached the data
cache, corroborates the obtained result and cosftha validity of the simulator. This outstanding
phenomenon originates from the nature of the beackand the causes are addressed below.

Firstly, it should be mentioned that the perforn@arenhancement was observable on the cache
simulator only for 8 and 16-KB. Thus, the lack dfetentiation for the two highest commercial cache
sizes is in accordance with the previous simulati®econdly, automotive_matrix has the
particularity to frequently load and store multipkgisters and to access the same data routirtely. |
exposes the benchmark to numerous merges anchitite iStore Buffer and in the Line Fill Buffers.
These features thus modify the overall behaviouthefcache and strongly smoothes the differences
among the replacement strategies. Therefore, tladl slifference reported in Chapter 5 shrinks and
explains the performance leveling.

Software

Because of the particularities mbze already evoked in Chapter 5, the results are ptedeseparately
for the two applications in Table 18.

Explorer Maze
Cache size Policy Misi ratio cgﬂrlrfp?ar?et:joto Misi, ratio cgﬂrlrfp?ar?et:joto
(KB) (%) PLRUmM (%) PLRUmM
1-bit 3.55 1.516 22.45 1.869
16 PLRUmM 2.34 1.000 12.01 1.000
PLRUt 2.37 1.010 12.30 1.024
GRR 2.47 1.055 11.80 0.983
1-bit 2.32 1.096 2.90 1.802
32 PLRUmM 2.12 1.000 1.61 1.000
PLRUt 2.13 1.005 1.77 1.098
GRR 2.32 1.094 1.48 0.917
1-bit 2.08 1.029 0.51 2.816
64 PLRUm 2.03 1.000 0.18 1.000
PLRUt 2.03 1.002 0.21 1.162
GRR 2.06 1.016 0.17 0.952
Table 18: Miss ratio of the candidates on the défife ARM11 cache configurations with maze and
explorer

Comparing these results with the ones obtainechbycache simulator, one sees that they are almost
equivalent. The numbers of requests differ a lbthiat as it has been explained for the benchmarks,
can be neglected. Two differences strike the olesetiie poor performance of the 1-bit strategy and
the improved performance of the Global Round Rdatiategy. Their causes along with the overall
interpretation of the policies are addressed im# subsections.

6.2.3. Pseudo-LRUs

The performance hierarchy of the two pseudo-LRWitlgms remains unchanged. The performance
of PLRUm over PLRULt is particularly noticeable fprogrammaze, as in the previous chapter.
Besides, the trends are equivalent too: the smétiercache, the more significant the efficiency
difference. It must be mentioned that the diffeeens a bit smaller in gross hit values. All the
phenomena evoked in the previous sections — rdagdand merges of the instructions, execution of
the lookups while the data has not been fetcheoh fitee upper level memory — apply here too and
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explain the overestimation of the previous chapteteed, the status bits are updated during theulpo
for the cache simulator whereas in the Verilog dhey are modified on the lookup on a hit and dyirin
the allocation on a miss. These small differendeagawith cache optimizations such as hits in the
Line Fill Buffers and in the Store Buffer, whicheamot modelled in the simple cache model useddn th
previous chapter, induced this slight deviance. éxiéeless, the increased performance of PLRUmM
over PLRULt is visible on all the simulations andsigficient to justify the selection of this strgje
despite it requires one additional bit per setdmparison with PLRUt. As a result, PLRUm is thetbes
alternative for implementation and is the solutiweached in this work.

However, it should be kept in mind that the cadhautator aimed to give clues about the efficiencies
of the replacement strategies in order to leadbuws final implementation. Moreover, verificationdan
timing constraints encouraged the author to wrigdight simpler cache but with the assurance that i
operates in respect with the specifications. Theukitions thus confirm these choices: even though
some particularities were modelled in a too optiimig/ay or not taken into account — among them the
reordering of the instructions — the results aobaglly in accordance with one another.

6.2.4. Global Round Robin

Global Round Robin performs much better than it inaithe cache simulator. Since all the resultsaare
bit shifted due to the distinct means used to cabetrequests and the hits, the difference between
PLRUm and GRR is considered as reference. Indeedpseudo-LRUs operated almost exactly as in
Chapter 5. The observed difference is in averag?.in the hit ratio over the commercial cachessize
for the cache simulator and 0.12% for the Verilegsion. Because of its nature, GRR is the algorithm
which the most took advantage of the instructiomgmelndeed, two successive misses to the same line
may have led it to be in lag to the most efficiBiotund Robin algorithm, which induces numerous non-
optimal replacements. This assertion may questienréader: if the accesses are merged then they
correspond to the same data cache line and thisstiond access should not have been considered as a
miss in the cache simulator. This is true for nresfuests but it should be reminded that the reguest
generated by LDMIA instructions for instance arebgllly handled by the cache model and the number
of misses can thus be incremented twice. In théld{eone, this does not occur and GRR remains in
phase with a quite efficient replacement, therebglucing its distance from optimality. This is
particularly true for the multiple load-and-storstructions. Furthermore, it is less sensitive lte t
reordering of the instruction since the sequen@ect-2-1 makes it point to the same way. Thus, the
differences between the cache simulator and théodeversion are all profitable to GRR; thereby
increasing its performance.

It must be noticed that expressing these resultsrintion of the miss ratio of the PLRUm policylisti
yields important differences faxplorer , around 6%. These differences are in the same aslthe
ones obtained for the benchmarks. i@are, the Global Round Robin policy performs really has it

has been already shown in the previous chapteit imithere at a higher degree. The reasons set out
above apply here too. However, it has been showimgithe general study of benchmarks and in this
chapter that patterns suchrasze are rare, as it is confirmed by the simulatiornultssacross the other
benchmarks. But it helps keeping in mind that theneo absolute better algorithm and relativizing t
results.

6.2.5. 1-bit

After examination of Table 17 and Table 18, 1-liviously operates poorly. Comparing these results
with the cache simulator ones, it seems that tigerdhm has changed. Yet, the very difference
between the Verilog implementation and the C oes in the random generation. In C, thad()
routine yields an almost truly random sequence edmit is produced by four LFSRs in Verilog. It
could be argued that 4 is a quite low figure arat thnger sequences would have been more random.
Such a study is performed in the table below. idl taps were optimal and obtained from_P6].

Amount of LFSRs 4 8 16 32
Hit ratio on explorer (%) | 96.181| 96.144 96.156 96.112
Table 19: Impact of the LFSR width for 1-bit witd-avay set associative and 16KB data cache

The impact of the LFSR width is almost insignificamd even decreases the hit ratio. The origimef t
inefficiency must then be searched elsewhere aotiaily comes from the reorganization of the
instructions and of the merge of the requests. éSthe 1-bit policy protects the MRU half from
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eviction, the merges and the reorganization ofdéim significantly influence its behaviour. Whikeet
other algorithms protect the MRU way and consitierfour ways of the cache, everything happens for
1-bit as if the associativity is equal to two. dtthen easily understood that it is more sensttivthe
instructions merge. Let us suppose that the procesemory access sequenceds-a wherea andb

are mapped to the same set and initially do nanlitne cache. If the requested data are indep&nden
and if the requests are sufficiently near from anether in time, it could be seen in the data cashe
a-b. On the next miss, the policy will evict a waytbé first half, so the MRU data of the processaer, i

a, can be discarded... This high sensitivity of 1explains the loss of performance.

6.2.6. Need of a new implementation

The final issue is to compare PLRUm with the cur@RM11 implementation and to put these results
in perspective with the cache simulator conclusions

The specificity ofmaze brings into question the need for such an enhaanenlthough the working
sets were altered, the algorithms principles wetenmodified and the manner the software deals with
the data is kept constant. Consequently, we aresexpto the particularities of some programs and
their relative frequency should be evaluated. Tad &nd, benchmarks are very useful since they enabl
that the simulation range is wide enough and stéordthe real embedded systems, at least for iiga ma
characteristics. Looking at the results of the easimulator, it is deduced that the characteristidbe
programexplorer  are nearer to the typical values thamze. This assertion is based on the
comparison of the behaviours of benchmarks on tizehand and omaze andexplorer  on the other
hand. For this reason, more credit is given tordwilts ofexplorer  than tomaze’s ones, although
this last should not be forgotten.

The difference between the PLRUm strategy and tR& @lgorithm is 0.25% in gross miss ratio on
average across the benchmarks exdorer . As Eq. (2) demonstrated in Chapter 2, this déffee
can be considered as sufficient to justify the enpéntation of the PLRUm policy. Moreover, the same
reasons as the ones presented in Chapter 5 adfoc#te introduction of such a policy in the cunre
data cache architecture. The development of ondchipaches reduces the size of L1 caches and thus
reinforces the call for an efficient replacemeniiqyo Besides, real systems are faced with an djvera
system and numerous applications running in thentimee; which further reduces the efficient cache
size. This justifies the focus of the conclusionstiee low-size end of the experiments. In this e
performance enhancement is noticeable yet not andstg. For all these reasons, PLRUm is
recommended for implementation in embedded systEprsthe chosen implementation of Section 5,
the implementation cost in terms of power consuomptaind hardware is negligible. As a result, it
pleads for the integration of the PLRUmM replacenparicy in the ARM processors.

7. Conclusion

After having examined the different replacemenatsjies in details along with their impact on the
data cache architecture, PLRUm appears as thewatishdapted replacement algorithm to embedded
systems. In spite of the acceptable performancethef Global Round Robin policy, PLRUmM
outperforms it on almost all the memory patterngl aan be easily integrated in the current
implementation with low power and area costs. Thotlge target processor of this work was ARM11
MPCore, the conclusions and the results shouldxtended to the other processors since the memory
workload should not be altered so significantly.
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Chapter 7

Conclusion

Kopnu ecaxozo omxpvimus nexcam oanexko 6 enybume, u, Kak 601Hbl, Oblowuecsa ¢ pasdeza o bepez, MHO20 pa3
naeujemcs 4eno8euecKas MolCiib OKOJI0 NOO20MOBIAEMO20 OMKPbINIUS, NOKA NPUOem 0eamblil 6d.1.

B. Bepnanckuii®

1. Results

After having addressed the different replacemenicips characteristics along with their expected
performance, the algorithms were simulated on &eawodel designed for this purpose. The relative
fast running time of this simulator allowed us teatlwith numerous replacement proposals across a
broad range of embedded applications and benchmaitk. Belady’'s anomaly for the PLRUm
replacement strategy has been thus disclosed aodted for the first time in a scientific document.
Three candidates for a final design emerged fromfopmance and coarse power and area
considerations: 1-bit, PLRUm and PLRUt. The proploisgegration of these algorithms meets all the
constraints of the embedded systems: negligibleease in power consumption and in area as well as
performance enhancement. Finally, the simulatioedfopmed on the enhanced ARM11 MPCore
processor confirmed the improved hit ratio, evethd final results are a bit smaller than expected.
Nevertheless, it justifies the integration of sacttrategy in the next generation of processoreréés

it is not crucial for the highest data cache sizeéssignificantly improves the efficiency of the
replacement for low data cache sizes.

2. Future work

This work was devoted to the first level data cacher the second level data caches, modifying the
replacement policy can even improve the efficieatyhe system in a more significant way, because
the average access time is even greater (see Efh&Yesults of this thesis can partially be agapto

L2 caches but these ones have their own chardatsrifor instance, the associativity and the size
the blocks are parameters among others which d#fet imply different constraints for the two
solutions. Some studies have already been perfofive00] but they were dedicated to desktop
systems and then not optimized for embedded pror®sgoints of concern such as power, area...
Carrying out such a study would then be a poteatiatce of improvement.

The influence of the multiprocessing environmerg hat been studied in this thesis too. It introduce
new data cache actions (invalidation by the colmrgmotocol) whose impact has not been the object
of a deep study yet. In this work, the actions wiafeen into account in the implementation part but
their interaction with the replacement policy had been investigated. At first glance, it should no
influence significantly the replacement algorithing improvements such as taking into account the
MESI state of the line for eviction should be exaed in further details. Indeed, at the end of thels

the probability of hit is almost equivalent and eddthe shared state information to this evictionld

be useful. In fact, for the two last elements & stack or of the pseudo-stack, data that are raddif
exclusive may be preferentially kept in the caahehared data that could soon be modified by anothe

% The roots of each discovery go deep and like a \lapging again and again the coast, human ideas coaui
and forth many times preparing the discovery wuhtl huge wave comes.
V. Vernadsky
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core. Of course, this is a potential error if tlaadwill be modified by this processor. It is oslyme of
the possible ideas, which could improve the dathe&fficiency in multiprocessing systems.
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Appendix A

Number of status bits

A.1l. PLRULt algorithm

A decision tree for the PLRUt algorithm is drawn Bigure 14 p.14. The tree comprishgeps =
ﬂogz(NwayJZﬂ steps. This is equivalent to the following forntida:

N
o (’-9' Nsteps)EI [OJ{x N, |092[ v;ast = Ngieps— 7

Each step is composed of hodes. Therefore, the number of required additibitalper set is:
Nsteps ) 1- 21+Nsteps

22'— T =27 Ny -1

For a 2-way set associative cacmlgets,(NwayS 1) additional bits are thus required for the whzdehe.

A.2. MPLRU algorithm

A decision tree for the MPLRU algorithm is drawn Bigure 16 p.15. One sees that the tree is
composed 0fNgieps = rlogz(NwayJZﬂ steps. Contrary to PLRUt, there are two types adies: the
MBAIs, which require 2 bits, and the TBAIs, whickquire 1 bit. The TBAIs are the last step of the
tree, and the MBAI the other ones. From this oleiom, one deduces the required number of
additional bits:

Nways Nsteps™® Nwa S 1- ZNSlepS Nwa S
WS §0 = 142 = Y214+ 29 N e = 2
{ 2 ; 2 1-2 2 s

For a 2-way set associative cache, the MPLRU algorithnuiregNses (3Nwayd2-2) additional bits.

A.3. LRU algorithm

Number of ways. There are two means to encode the status bithéLRU algorithm. The first
version is the simplest one but quite expensivéeims of bits. This method is derived from the
expression of the number of status bits found mUY#4]. A stack ofNyays€lements must be maintained
in this method where each element of the stackapamtthe number of the way it points to, hence
requiringrlogz(Nwaysﬂ bits for each stack element. For the whole caitteenumber of required bits is:

Nsets Nways |_IOQ(Nwayg-|

In opposition, the coding developed in this thésee Chapter 3 Section 3.2) requikekits where:
N_ -3 Noays [ Nueys with k= [l0g, (Nyays) -1
Noes 4 2P0 [ 2° s
One thus obtains:

N _ K logz(Nways) k p
_ Nway{z 2p+1 - Z 2p+1

N sets p=0 p=0
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Restricting our study to thé'-2vay set associative cache, one gets:

N -1 K p
Nway{log 2 ( Nways) l\:lvays - Z oL ]

ways p=0

It is impossible to get a beautiful expressionhi$ sum, so we only give an equivalent:
k

k p
P _12( (1} _ 1 1 _
5 =N (p+p[ =] = i =
— 2p+1 4~ 2 koo 4 2
p=0 p=0 (1_;j

For a high number of ways, the number of requiriéglib then:
N = NsetsN Ways(IOQZ (Nways) _1)

Nways 0

The first values obtained with this encoding B(8) = 1,N(4) =5 and\(8) = 17.

These figures are to be compared with the previmes and the one presented in the general section
N(N-1)/2 This encoding is much more compact but at theepoif complexity of decoding, encoding.

In the case of our design, we save 1536 bits comdptar the first situation, thereby leaving freecspa

in the Dirty RAM for future improvements. One cowddgue that this encoding is only valid for the
situations where the set stack is full. Howevelisihot the case. Indeed, as long as some lines are
invalid, giving an order of preference between thédoes not matter because there is no loss of
information. Once the line is filled, the stackuigdated to be consistent with the access orders,Thu
free or invalid ways are equivalent and can be éadan this way. It introduces a slight dissymmetry
but which would be seen on the whole life of theduct (maybe faster deterioration of some hardware
modules but it can be considered as harmless).stheme of this implementation is done below for
four ways.

0 Way 0 Way 1 Way 2 Way 3

Set

Set Stacl
Figure 40: Improved LRU stack bits

Compacity. In Chapter 3 Section 3.2, it was stated that #hgorithm is the most compact one. The
proof of this assertion is given here as well @sabsumptions made.

Proof. The information that we want to store is theusage of access. According to the previous
remark, the stack can always be considered asThils, there are 4! different sequences to encode.
Apart from the filling of the cache, the ways candonsidered as equivalent. Indeed, during thadill

of the cache, the ways are filled from 0 to 3. Agewm this slight dissymmetry, they are equivalent
and all the sequences have the same probapilti24. Therefore, the Shannon entropy is:

23
H ==Y p, log, p; =-24plog, p=log, 24= 4585
i=0

According to Shannon’s theorems, it is thus impussio find a code whose average length is less tha
H. The wordaverageis crucial in the previous assertion. Indeed,ifigca coding as near as optimal as
we want usually implies to have words of variousgihs. This would imply to completely reorganize
the way the status bits are addressed: decodinaditieess width would not allow one to directly a&sce
the elements because the widths of its predecassarot known. In order to avoid this intricateuss

it is requested that all the code words have theedangth. Indeed, if we do not assume this amekif
want in the same time to keep a simple addressinthé elements, it would lead us to select thestpp
bound of the code widths as the basic width andldvba a far from optimal solution. Therefore, the
code width is the same for all the codes. Combirnimg with the entropy equation, it yields that the
optimal width is 5 (a physical width must be aneg#r whereas an average one is a real).
Consequently, the encoding proposed in this thesise of the optimal ones.
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Appendix B

The cache simulator

As we have seen before, an implementation in Chefdifferent cache algorithms was performed.
Before giving the TARMAC outputs as input patterof our implementation, some tests were
developed to check the different features of th@aement policies. They are presented here to help
understanding the behaviours of the cache lindacement strategies.

B.1. How to use the cache simulator

The program is implemented in such a way that tmalbrer of ways can be modified but it must be a
power of two. However, when the true LRU policyused, the number of ways must be less or equal
than 8. For the other algorithms, it must betweandl32, since the status bits are represented as an
integer (more than 32 ways is an uncommon situationost caches as shown in Table 3 p.24).

The cache size corresponds to the three possbilidf the ARM caches available up to now on the
ARM processors (16, 32 and 64 KB respectively erddtere as 0, 1 and 2). All the other parameters
are derived from the data foundréplacement.cfg . This file has to be present in the same directory
as the executable file and must be structured like:

NUMBER_OF WAYS_MIN=2
NUMBER_OF_WAYS_MAX=4
CACHE_SIZE_MIN=-1
CACHE_SIZE_MAX=2
CLK_PERIOD=10
TIME_TO_L2=10
TIME_TO_MAIN=100
HIT_L2=90
INSTRUCTION_SIZE=8
DEBUG_ALGO=0
DEBUG_LOOKUP=0
LFB_ENABLE=1
SBCACHE_ENABLE=1
SBCACHE_SIZE_MIN=6
SBCACHE_SIZE_MAX=16
NB_SBC_LINE_ELTS_MIN=4
NB_SBC_LINE_ELTS_MAX=10
LOG_EVICTION=1

The minimal and maximal values correspond to thands of the simulations done by the cache
simulator. The output file can be then read with spreadsheet or data software. The parameters are:

- NUMBER_OF WAYmsumber of ways of the data cache; this should peveer of two to

match the usual implementations relying on cuttmgmemory address,

- CACHE_SIZE cache size encoded a§%“HE—S“EKB,

- CLK_PERIOD clock period defined in ns,

- TIME_TO_L2: average time required to fetch a data from Lzhean clock cycles,

- TIME_TO_MAIN average time to fetch a data from the main mermogjock cycles,

- HIT_L2: average hit ratio in the L2 cache given in percgata

- LFB_ENABLE: boolean which enables the latency simulation,

- SBCACHE_ENABLEenables the Status Bit Cache defined in Chapter 6,
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- SBCACHE_SIZE: size of the status bits cache defined in numbdnes,

- NB_SBC_LINE_ELTS: number of status bits groups per line of the sthits cache.
The parameterBEBUG_LOOKUSNdDEBUG_ALGG@imply activate printing of the results of elenamt
operations of the cache lookup and of the replaoenagorithm. As its name suggests,
LOG_EVICTION activates logging the different cache lookups #mradresult of these lookups (hit/miss,
evicted way, true evictidror not...).

The status bits are defined after the access hes frformed, as the contents of the ways. Albite
are written in big endianness, itéts = “001” is equivalent to:
bits[0]=1  , bits[1]=0 andbits[2] = 0

Finally, the command to launch a simulation is:

replacement input_file policyl [policy2 policy3...]
where pol i cy is one of the following: GRR, LRU, ModBits, MPLRUhon-MRU, OPTIMAL,
PLRUm, PLRUt, RANDOM, 1-bit, ROUNDROBIN or SIDE.

B.2. Basic cache behaviour

The first thing to test is the mapping: each maemury line should be mapped on the appropriate
cache line. It is done with axfodulo” computation, as defined in Chapter 2, sectionp2.6. Writes
and reads on random addresses are checked and that@xpected behaviour. The replacement
algorithms must be called only where the set ik Tthus, a test independent of the policy was emitt

to check that the cache simulator uses free wayalvailable. It only fills a data cache set artdraf
some accesses in other sets, it requests onceathtine data of this cache set. The case wheredte
accesses another word of the line while the LFBhies$ a data is tested too.

B.3. Test sequences of the replacement policies

In this chapter are addressed some of the teselapmd for the verification of the cache simulator.
One is presented for each algorithm and its resuktsdealt with if there is a complication. These
sequences were written such that they test theplartities of each algorithm and their result @tle
step is checked.

a. Remark about the filling of the cache

In this appendix, all the sequences begin withfithieg of the cache set considered by the replaseim
policies. The addresses are computed such thatntlaégh to the same cache set for sizes of 8, 16, 32
and 64 KB. This part is identical for all the algloms, since it is managed by the free ways pathef
program. The filling sequence 0x300, 0x4300, 0x830@300 is not represented on the tables.

b. Optimal algorithm

Cache set
Address Next icted Hit/
accessed Way 0 Way 1 Way 2 Way B accessed Evicte Miss
data way
0x1000 - - - - - - -
0x10300 0x300 0x430 0x10300 0xc300 1,3,0,2 2 Miss
0x4300 0x300 0x4300 0x10300 0xc300 - - Hit
0xa378bcl0 - - - - - - -
0xc300 0x300 0x4300 0x10300 0Oxc300 - - Hit
0x300 0x300 0x4300 0x10300 0xc300 - - Hit
0x8300 0x300 0x4300 0x10300 0x8300 0,1,2 3 Miss
Oxaaaaaaaa - - - - - - -
0x300 0x300 0x4300 0x10300 0x8300 - - Hit
0x4300 0x300 0x4300 0x10300 0x8300 - - Hit
0x10300 0x300 0x430 0x10300 0x8300 - - Hit
0x4300 0x300 0x4300 0x10300 0x8300 - - Hit

Table 20: Test sequence of the optimal algorithm

& A true eviction occurs when there was a valid linéhe way
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The optimal algorithm is the reference algorithnoaf study. Its implementation was developed to get
an absolute reference of the performance of a eceplant algorithm. The TARMAC file provides us
with the knowledge of the future accesses of the amd makes this algorithm feasible. Unfortunately

it has not been used intensively in this thesisesithe computation time was too important and since
the cache optimizations were not taken into accoliné feature tested is the computation of the next
accessed data, which gives the evicted line. Teescahere the four ways are accessed in the future
and where only a part of them is requested areiestudhe simulated results match the theoretical
result of Table 20. The implementation of the buffas also been checked in a similar way as before.
The test was made for sake of simplicity on thefigomation with 2 ways and then checked on 4 ways.

c. SIDE

The update of the counter on misses and on hitiseirsurely LRU and possibly MRU part is checked
here. The value of the evicted way is also testéa. representative test sequence is given in the ta
below.

Cache set

Address Next Evicted Hit/

accessed Way 0 Way 1 Way 2 Way 3 accessed way Miss
data

0x4300 0x300 0x430Q 0x830Q 0xc300 2 - Hit

0x300 0x300 0x4300 0x8300Q 0xc300 2 - Hi
0x8300 0x300 0x4300 0x8300 0xc300 3 - Hit
0x1¢300 0x300 0x4300 0x830( 0x1¢300 0 3 Miss
0x10300 0x10300 0x430( 0x830( 0xc300 1 0 Miss
0x4300 0x10300 0x430( 0x830( 0xc300 2 - Hit
0x14300 0x10300 0x430( 0x14300 0xc300 3 2 Miss

0x300 0x300 - - - 1 0 Miss
0x4300 0x300 0x4300 - - 2 1 Miss
0x8300 0x300 0x430Q 0x8300Q - 3 2 Misis
0xc300 0x300 0x430Q 0x830Q 0xc300 0 3 Miss
0x4300 0x300 0x4300 0x8300 0xc300 2 - Hit

Table 21: Test sequence for SIDE
d. Round Robin

A quite simple test is written for a simple algbnits with not so many features. The sequence
0x10300, 0x4300, 0x1c300, 0x8300, 0x1430816300, 0x12300, 0xe300, 0xa300, 0x23DBA8300
gives the following succession of evicted ways=-,01, -, 2,-, -, -, -, -and 3. The italic nhumbers
correspond to set which do not lie in the current s

e. Global Round Robin

The test is almost the same as Round Robin buttheiRound Robin counter is global and this could
lead to situations where the MRU line is evicteHe Bame sequence as above was tested. The evicted
ways are0,-,1,-,0,1, 2,3,0and 1.

f. PLRUm

The sequence is explained in the table below ardhea the result obtained with the simulation. The
accesses are done in the set 1. Those that amappted onto this set are marked in this table ake.
values shown below correspond to the value afteirttruction has been taken into account.

Address cace set Status Evicted HiY
accessed Way 0 Way 1 Way 2 Way 3 bits way Miss
0x8300 0x300 0x4300, 0x830 0xc300 1100 - Hi
0x10300 0x10300 0x4300 0x830p  0xc300 1101 0 Miss
0x14300 0x10300| 0x1430p 0x8300  0xc300 0010 1 Miss
0xc300 0x10300| 0x1430Q0 0x830D0  0xc3Q0 1010 - Hit
0x10300 0x10300| 0x14300 0x8300  0xc300 1011 - Hit
0x1c300 0x10300| 0x1430p 0x1c300 0xc300 0100 2 Miss
0x10300 0x10300| 0x1430D0 0x1c300  0xc300 0101 - Hit
0x20300 0x10300[ 0x20300 0x1c300  0xc300 011p 1 Miss
Oxaaaaaaaa - - - - - - -
0x1c300 0x10300| 0x1430p 0x1c300 0x1c300 100D - Hit

Table 22: Test sequence of PLRUm algorithm
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In this sequence, there are 5 hits. The differeatures tested are:
- the global phase (the bits status are reset irr dockevoid that all bits are high),
- the eviction with respect to the status bit (thecdrded way is the first one encountered
with a low status bit).

g. PLRUt

The features tested are the
designation of the evicted
way and the update of the
status bits on miss/hit.
The numbering is
described in Figure 41. In
the algorithm, one needs
the relation between a
node and its children. Let
k be a node. The node
lies on step s =

E(log2(+1)) where EX) ‘,K
!I|

Q PLRUT bit

gives the integer part of ‘!
Let n1 be the number of | “ “ “ “ “ “ “ | r
nodes between our nodéte BEs
and the last node of the Figure 41: PLRULt tree nodes numbering

steps (including the

boundary node) and2 the number of nodes on the stagéd between the first node and the first child
of k (including boundaries). The children of nodteare thenk+nl+n2 and k+nl+n2+1. By
construction of the tree, we thus get that the wpgpmindary nodes of a stepare #*-2. The
numbering described above is then used for the finaton of the tree bits and their reading is
presented. Noting the bits in big endianness, #ugisnce 0x10300, 0x300, 0xc300, 0x18300 induces
the status bits 011,110,010 and 001. The decoditigen assigns the ways to discard 0, 2, -(hit) and

h. MPLRU

| I I [ ] cachese

The numbering is given
in Figure 42 where the
notationn/n+1 stands for
the couple previous-
current bits of a MBAI.
As before, the status bits
are written in big
endianness. The tested

features are the v /
computation of the way f K

Q TBAI bit

Q MBAI bits

/

to discard and the update
of the status bits.

IV~

\
L B
b ] cachese

Figure 42: MPLRU tree nodes numberlng

Address Cache set Evicied Hit/
accessed | WayO | Way1l Way 2 Way 3 Status hjits \\:\I,gt; Miss
0x300 0x300 | 0x4300 0x830( 0xc300 0110 - Hijt
0x8300 0x300| 0x4300  0x830( 0xc300D 1101 - Hit
0x10300 0x300| 0x4300 0x830 0x10300 0100 3 Mjss
0xc300 0x300| O0xc30Q0 0x8300 0x10300 0010 1 Miss
0x300 0x300 | 0xc300 | 0x8300 | 0x10300 0111 - Hit
0x14300 0x300 | 0xc300 | 0x14300| 0x10300 1101 2 Miss
0xc300 0x300 | 0xc300 | 0x14300| 0x10300 1010 - Hit
0x4300 0x4300 | 0xc300 | 0x14300| 0x10300 1111 0 Miss

Table 23: Test sequence of MPLRU algorithm
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i. LRU

Address Cache set Evicied Hit/
accessed Way 0 Way 1 Way 2 Way 3 MRAULRU \\:\'Igt; Miss
0x10300 0x10300{ 0x430( 0x8300 0xc300 0,3,2,1 0 Miss
0x300 0x10300{ 0x300 0x830Q 0xc300 1,0,3,2 1 Miss
0x10300 0x10300 0x300 0x8300) 0xc300 0,1,3,2 - Hiit
0x14300 0x10300] 0x300, 0x14300 0xc300 2,01,3 2 Miss
0x18300 0x10300 | 0x300 | 0x14300 | 0x18300 3,2,0,1 3 Miss
0x300 0x10300 | 0x300 | 0x14300 | 0x18300 1,3,2,0 - Hit
0xc300 0xc300 | 0x300 | 0x14300 | 0x18300 0,1,3,2 0 Miss
0x300 0xc300 | 0x300 | 0x14300 | 0x18300 1,0,3,2 - Hit
0x4300 0xc300 | 0x300 | 0x4300 | 0x18300 2,1,0,3 2 Miss
0x18300 0xc300 | 0x300 | 0x4300 | 0x18300 3,2,1,0 - Hit

Table 24: Test sequence for LRU

j- Dirty bits
The principle of the test is the same as beforevé¥er, to distinguish dirty cache locations and-non
dirty cache locations, a distinction between reaus writes is done. The corresponding test sequence
is given in the table below. The filling is done thyee successive writes and a read request.

Address | Type of Cache set . o
accessed| etqhuee | Way0-DO | way1-D1| Way2-DJ  Way3-Dj E:,’\',‘;;ed HitMiss
0x10800 | R 0x300-1 |  0x4300-1]  0x8300-1  0x10300- _ 3 Miss
0x300 R 0x300-1 |  0x4300-1|  0x8300-4  0x10300-0 - Hit
0xc300 | R 0x300-1 |  0x4300-1]  0x8300-1 0xc300-0 3 Miss
0x18300 | W 0x300-1 |  0x4300-1]  0x8300—1  0x18300- 3 Miss
0x10300 | R ?2-7 -7 ?7-7 ?7-7 7Rahd. __ Migs

Table 25: Test sequence for ModBits

B.4. Advanced behaviour of the cache

Finally, the advanced features of the modelizecheagere investigated too. The latency to fetch the
data from the upper level memory and the behawduhe Status Bit Cache are tested here. Like the
replacement algorithms, different tests were wmiti@ verify that it performs as expected. The layen
tests are based on the time analyses and the mmaeagef the buffers. The ARM11 hit in LFB is not
implemented here since it would have assumed toeitie arrival of data in different groups
whenever the requested address matches the oma $totFB. This optimization is considered as
negligible in a first approximation. The data isthnot present until the time limit it has beereass

on miss (depending on the random number) and thpresent on next access and written immediately
in the cache. These two phases of assigning theltimt and waiting on the one hand and writing the
data back in the cache are validated thanks to shiffieeent tests which include the extreme condiio
too. For the SBC, the tests were a bit simpler esiiticis almost the same implementation as the
simulated cache. The single difference relies enftily associativity of this cache and on the fdeit

all the memory requests can be considered as feattee SBC. Besides, it is made easier by the non-
simulation latency for this cache since the ainoifiave coarse clues about the optimal size. k& thi
optics, tests equivalents to the data cache one wer

The different operations of the cache simulatoresested and the major sequences were presented in
this chapter. The validation of the Verilog implertetion is performed in Appendix D.
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Appendix C

Selection of benchmarks

C.1. Benchmarks

As it has been seen before, the benchmarks cammedifferent sources. The simulated benchmarks are

listed below:

3d_geometry f32 : usual geometry transformations used in 3D graphic
3d_persptris_f32 : computes 3D perspective,

500_huffmann : implements the Huffman coding,

500_mandeld : computes a Mandelbrot set (fractals),

500 _gsort : quick sort algorithm,

automotive_aifftr . computes the inverse FFT (Fast Fourier Transfoiom)
complex inputs (two arrays of real and imaginargt9a

automotive_idctrn : computes an inverse discrete cosine transforrd useligital
videos and graphics applications such as imageyreton,

automotive_iirflt : computes an IIR (Infinite Impulse Response) owedipoint
values,

automotive_matrix : computes the LU (Lower x Upper) decompositioraghatrix,
its determinant and its product with another matrix

automotive_tblook : simulates a table lookup particularly used in ABSP...,

consumer_rghcmy : performs the conversion from RGB to CMY espeyialsed in
printers,

consumer_rgbcmykv : performs conversion from RGB to CMYK conversion
extensively used in printers,

mp3: decodes a mp3 input,

mpeg4_deblock : heart routine of the MPEGA4 algorithm,

mpeg4_decode : decodes an MPEGA4 file,

mpeg4_encode : encodes in MPEG4 format,

networking_ospf  : implements the Dijkastra/Shortest Path First algm which is
widely used in routers,

networking_pktflow . simulates a network router work but focused orcé&lum
and comparison operations,

networking_route_lookup . implements an IP tree and simulates the work of a
router,

networking_tcp  : simulates TCP traffic in networks (the nhumbermatkets and the
size of the segments can be modified to simulatevarés from FTP to Gigabit
Ethernet),

office_bezier : computes Bezier curves,

office_dither : uses the Floyd-Steinberg Error Diffusion dithgrialgorithm to
convert a greyscale picture for printing,

office_rotate . it rotates clockwise a binary image of 90 degrddds operation is
common in printers,

telecom_viterbi . it implements the Viterbi algorithm widely usedh iError
Correcting Codes (ECC).
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C.2. Selection of benchmarks

The criteria which governed the selection of benatks were the following:

- the cache is stressed: there are evictions frordatee cache and the replacement policy
is called many times to select the victim line,

- there are differences in the ratio hit between diferent cache sizes: this element
insures that the impact of the replacement polgyisible and that the simulation
environment does not correspond to the high dathecaize of the curves. This term
high ends refers to the ratio data cache size weeking set size. For high values of
this ratio, compulsory misses are the main vetily single contributors to miss ratio.
As it has already been stated, replacement polatesot influence this type of misses
and thus these simulations are meaningless fosdabpe of this work. This element is
also checked by the number of true evictions,

- the representative benchmarks exhibit realisticrdtiio (i.e. they are not all equal to
99.91-99.94% even for small data cache), which lsh@nsure that the memory
patterns are realistic.

Finally, the group of representative benchmarksisposed of:
- 3d :3d_persptris_f32 ,
- 500:500_huffman ,

- EEMBC: automotive_aifftr, automotive_iirflt, automotive_ma trix,
consumer_mpeg4_decode, consumer_mpeg4_encode, netwo rking_ospf,
networking_pktflow8,  networking_route_lookup, netwo rking_tcp,
office_bezier, office_dither, office_rotate, teleco m_vitterbo.

This selection thus affords a wide range of embedagplications that stress the data cache notigeabl
Among this selection, some are more interestingtferscope of this study since they exhibit a gmreat
differentiation of the replacement strategies. ThHeenchmarks above mentioned are:
automotive_matrix, consumer_mpeg4_decode, networkin g_tcp andoffice_rotate
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Appendix D

Validation of the implementation in Verilog

Different checks have been performed at each dtédpealevelopment in Verilog and the main lines of
these verifications are handled in this appendirowledge about the solution implemented in this
thesis — the Status Bit Table endowed with theuStBit Cache — is assumed. If it is not the case, y
are kindly advised to read the relevant chapter.

D.1. Status Bits Updater

For the updating process, the module was submitiedifferent inputs, generated by test benches
written to this purpose. The outputs were monitoaedi compared to the results obtained by the
replacement algorithms written in C. Obviously thistomatic check is valid for the configurations
without locked ways. Indeed, this feature was radeh in account by our cache simulator, since
locking is seldom used and not on a long time €dtherwise, the results were checked manually.

Different conflict signals are asserted in the teshch in order to detect any bug like allocating a
locked way, allocating a valid way when there ifree one, not including the locked ways in the
updated status bits. All these verifications helpssuring that the updater operates correctly.

D.2. Status Bits Cache

As for the updater, different signals are assetdetheck the different modules: particularly onekesa
certain that there is no double copy of an eleniesitle the Status Bit Cache. Besides, a modular
approach was adopted which enables to debug sieaitg of hardware which are independent one
from another, and then to dive into the issue efrthelative timing and behaviours. A dedicated tes
bench was written for each module to test its fiamctDifferent types of inputs fed the Status Bit
Cache and this work was eased by the developmeatsafiall C program which interprets a text file
where the input sequences are written in a moreahuniendly manner. Then it writes a Verilog file a
where the different signals were asserted and enasls This Verilog file was included directly inet
test bench with afinclude  directive. This program ensured to save a loimétand to test quickly
different configurations. This “human friendly” lgnage comprehends the following instructions:

- wlin line_number address status_bits_to_be_written . writes a complete line,

- wstb line_number address status_bits_to_be_written : writes a status bit group,

- rflinaddr  :reads a whole line,

- rstbaddr : reads a status bit group,

- wrll write_line_number write_address read_address
status_bits_to_be_written : writes and reads two (different or not) wholeskn
- wrls write_line_number write_address read_address
status_bits_to_be_written : writes a whole line and reads a status bits group
- wrsl write_line_number write_address read_address
status_bits_to_be_written : reads a whole line and writes a status bit group
- WISS write_line_number write_address read_address
status_bits_to_be_written : writes and reads status bit groups.

One sees that the line number is required for thitesv Indeed, it assumes that the write is syiiru
two phases by the arbiter which is located befbeeSBC. Thus, seen from the cache, the write lookup
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is a read and the write phase is a write wherdirtieehas already been known. A sequence example is

given in the table below, where the grey shadeskslitorrespond to the filling of the cache.

H'.t or Data Allocated Allocated SBC line S.BC Data to
Access| SBC Index written from way to LSU | way to LFB changed line SBT

way SBT data
readh | 001001011 0010 3a51 - - 1 3a51 -
readh | 011011010 - 91bc - 0010 0 91bc -
readh | 110001000 0001 ab47 - - 2 ab47 -
readh | 101010101 0100 871e - - 3 875e -
readh | 101010001 0001 1072 - - 4 1072 -
readh | 101000110 0100 4301 - - 5 4701 -
readh | 011001111 1000 7al13 - - 6 8al3 -
readh | 101110010 0010 1047 - - 7 1247 -
readm | 010000100 - 2034 - 0001 20 2034 3a51
Ifill 010000100 0010 3146 - - 0 2036 -
lookh 101010101 0010 ab67 - - (3) - -
wdata | 101010101 0010 ab67 - - 3 8774 -
lookm | 010000001 - 481e - 0010 1 481¢ ¢ -
Ifill 010000001 1000 481e - - 1 489¢ -
lookm | 110001000 - 2479 1000 - (2) (ab47) -

Table 26: Test sequence of the Status Bit Cachi kdth PLRUmM replacement policy

D.3. Integration of Status Bit Cache in the ARM11 MPCore processor

Once the modules worked outside the ARM11 Data sidel level, it had to be included in the
ARM11 MPCore processor. This integration had atsbd checked and the sequences and methods of
these verifications are presented in the tablesvherhe tests were run on T1-32 and Dhrystone. 21-3
was used for the first verifications. The testsumeally split into two main parts:
- the beginning of the sequence after having turmeMIbIU and Data Cache,
- the normal running mode which corresponds to aesesgth status bits already
different from zero and thus more complicated $ituns.

The issue of relying on existing programs is the tache is not stressed as strong as it would be
necessary. For this reason, some basic assemhiyapne were written to stress more efficiently the
cache and to test specific situations of the dathe. These verifications are made tough by reimgler

of the instructions and potential merges. Neveegl they were very useful for the validation & th
implemented modules.

All together, these programs tested all the posshiliations:
- Fast path cache lookup with hit,
- Fast path cache lookup with miss,
- Hit in Status Bit Cache and miss in data cache,
- Miss in Status Bit Cache and miss in data cache,
- Hit in Status Bit Cache and hit in data cache,
- Miss in Status Bit Cache and hit in data cache,
- Line Fill...

The final tests targeted real applications whiclousth go through numerous situations. Thus,
benchmarks and software were run on the modifiedime of the processor. There were two types of
verification. Firstly, the control signals ensurtbét the behaviour of the cache was not crazy hed t
checking of the results of the programs confirnteat it operated correctly. But, it was not suffiti¢o
assure that the implementation was correct. Thexedosecond and more comprehensive check was
performed. All the memory requests entering the daiche were logged and the obtained log file fed

@ Because the replacement policy is PLRUm and iadilbf the cache is the beginning of a new phase
where the information about last accesses is tog8y the MRU line is protected from eviction at the
beginning of a new phase but it is a better sahutimn accessing free ways in order 7..0

® There is a write-back of line 0 in Status Bit Tabkcause the line has been modified on its firsew

in Status Bit Cache

° The status bits have not been modified (itiisa@m ) and there is no need to write back the statiss bit
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the cache simulator designed previously. The regidlthis last one were then compared to the result
the Verilog implementation. However, this was véime consuming since the files needed to be
modified for the requests to match the input rezgmients of the cache simulator. It explains why this
verification has been carried out on some benchsnanty, especially at the beginning of the overall
verification phase, and not on all the simulateftvgre and benchmarks.

The steps presented above allowed us to detect@mect bugs in a hierarchical manner. The final
tests ensure that the design works properly fortroases. However, it could not be assured certainly
that the design is bug free since the verificati@as not formal and since the testing vectors ateano
generating family of the space of possibilitiesisTiemark raises the issue of the validation oésigh

and of its fault-tolerance. This theme is beyorel shope of this thesis and the performed verificesti
are considered as sufficient to assert that thgdeperates properly.
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