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Abstract 

Scania XPI is a Common Rail system that will be standard in new Scania diesel engines. In 
the XPI engine control unit, an ASIC is used to regulate the current pulses controlling the 
fuel injectors. An ASIC is good at performing a specific task but is an inflexible solution, 
in that it allows no reprogrammability. In this Thesis it has been investigated if it is 
possible to replace the ASIC with a programmable logic device, of some kind, and how 
such a solution should be designed and implemented. A flash-based FPGA was found that 
met the specified requirements of this application. By developing current control logic and 
implementing it in the FPGA, the required size of FPGA was determined. The conclusion 
is that it is possible to replace the ASIC with a flash-based FPGA, if the FPGA is classified 
for automotive standard. 
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Sammanfattning 

Scania XPI är ett Common Rail system, som blir standard i Scania’s nya dieselmotorer. På 
motorstyrenheten till XPI sitter en ASIC, som används för att reglera de strömpulser som 
manövrerar bränsleinsprutarna. En ASIC är bra på att utföra en specifik uppgift, men är en 
oflexibel lösning, eftersom den inte är omprogrammeringsbar. I detta examensarbete har 
det undersökts om det är möjligt att ersätta ASIC’en med någon typ av programmerbar 
logik, samt hur en sådan lösning skulle kunna se ut och implementeras. En flash-baserad 
FPGA, som stämmer överens med kravspecificationen, hittades. Genom att utveckla och 
implementera strömstryrningslogik för FPGA’n kunde nödvändig storlek på FPGA 
bestämmas. Slutsatsen är att det är möjligt att ersätta ASIC’en med en flash-baserad 
FPGA, om den är klassificerad för automotive standard. 
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Chapter 1 Introduction 

This Master Thesis was carried out at Scania, Powertrain Control Systems, as part of a 
project aimed at developing a new engine control unit, for Scania diesel engines. Presently, 
there are different fuel injection systems in use in Scania diesel engines. Each fuel 
injection system uses a control unit, which is applicable to only that specific fuel injection 
system. The injection principle considered in the Thesis has been Scania XPI (eXtreme 
High Pressure Injection), a Common Rail System, which will be standard in new Scania 
diesel engines. In the XPI engine control units, an ASIC (Application Specific Integrated 
Circuit) is used to regulate the current pulses which control the fuel injectors. A micro 
processor, in the control unit, sends a request to the ASIC when an injection event will 
occur, and the ASIC maintains the current pulse. An ASIC is excellent at performing a 
specific task, but is an inflexible solution in that it allows no reprogrammability. The 
design process of an ASIC is also complicated. It is therefore normally made on contract 
by an external company. This Thesis explores the possibility of finding a more flexible 
solution, which will enable Scania to easily develop, change and update the functionality, 
which is now implemented in the ASIC. 

1.1 Problem Definition 
The aim of this Master Thesis has been to investigate the possibilities of replacing the XPI 
fuel injection ASIC with a flexible, reprogrammable, solution. The main alternatives 
originally considered were: replacing the ASIC with either a micro processor, or a 
programmable logic device; or removing the ASIC and implement its functionality entirely 
with software, and use only already available hardware in the engine control unit. The 
Thesis was then divided into two branches. One branch, which is covered by this thesis, 
evaluates a PLD (Programmable Logic Device) solution. The other branch, which will not 
be covered in this report, evaluates software and micro processor solutions.  

1.2 Method 
The evaluation was carried out by implementing a PLD based fuel injection system, which 
corresponds to the ASIC solution used today. To determine the requirements of a PLD 
solution, the currently used fuel injection system was studied and analyzed (see Chapter 4). 
To find a suitable PLD the commercial market was surveyed, and different PLD solutions 
were considered (see Chapter 3). A fuel injection system design was implemented based 
on a PLD which matched the stated requirements, and which also was available on the 
commercial market (see Chapter 5). The conclusions from the evaluation are found in 
Chapter 6. Figure 1-1 shows the phases in which the thesis was carried out. 
 

Investigative Phase
(studies of currently used

system)

Commercial Market
Survey Design and Simulation

PLD Requirements Feasible PLD Conclusions

 
Figure 1-1 Sequence of Work 
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Chapter 2 Background 

In this section, an overview of the fuel injection systems used today is provided. In section 
2.1 the different fuel injection principles used in Scania diesel engines are introduced. 
Section 2.2 explains how the injection event is controlled by the ECU (Electronic Control 
Unit, or Engine Control Unit) with help from the ASIC. 

2.1 Fuel Injection principles 
Over the years, different techniques have been used for fuel injection in Scania diesel 
engines. The most commonly used techniques, at the current date, are PDE and HPI, which 
both are so called unit injector systems. XPI, which is a common rail system, will be used 
in the next generation of Scania diesel engines. The evolution of injection techniques has 
been driven by changing emissions restrictions over the years [1]. This thesis will only deal 
with XPI. However, PDE and HPI are introduced for background purpose. 

2.1.1 Scania PDE 
Scania PDE (Pumpe Düse Einheit) was developed for the Euro II emission standard in 
1996. In PDE injectors (Figure 2-1) the injection pressure is built up by the plunger which 
is powered by the engine camshaft. The ECU controls the injection time and the amount of 
fuel to be injected by applying voltage to the fuel inlet valve. Pressure is generated when 
the inlet valve is closed and the camshaft moves the plunger downwards. The injector 
nozzle is normally closed by the needle which is held down by a spring. However, when 
the generated pressure is larger than the spring pressure the needle is pushed open and the 
injection starts. The injection pressure is a function of engine speed and the injected fuel 
amount [2]. 
 

needle

plunger

valve

push rod

spring

nozzle

camshaft

 
Figure 2-1 PDE Unit Injector 
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Figure 2-2 HPI Unit injector 

2.1.2 Scania HPI 
Scania HPI (High Pressure Injection) was taken into use for the Euro III emission standard 
in 2000. In HPI injectors (Figure 2-2), three plungers are used; the upper, the lower and the 
alpha plunger. Between the upper and alpha plunger, “alpha” fuel is led in. It will function 
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as a hydraulic link to regulate the start of the injection. Delta fuel is led to the atomizer 
underneath the lower plunger. The ECU controls the time and amount of fuel to inject by 
applying voltage to the fuel inlet valve actuators. When the camshaft moves the plungers 
downward, pressure is generated in the atomizer. The HPI injector has an open nozzle. 
Delta fuel will be injected to the cylinder when the pressure in the atomizer overcomes the 
cylinder pressure. The injection pressure is a function of engine speed and the injected fuel 
amount [3]. 

2.1.3 Scania XPI 
Scania XPI (eXtreme high Pressure Injection) will be used for the Euro V emission 
standard, which will be the forthcoming standard in 2008. Unlike PDE and HPI, unit 
injectors, Scania’s XPI is a common rail system, which means that the injection pressure is 
generated separately from the fuel injection (see Figure 2-3). The injection pressure is 
generated in an accumulator, called the rail, by a high-pressure pump, which may be 
asynchronous with the injection timing. The camshaft is not needed by the injectors, but 
provides power to the high-pressure pump. The injectors are regulated by solenoids which 
are controlled electrically by the ECU. The time each injector is open, and the system 
pressure defines the how much fuel is injected [4]. 
 
Since injection pressure, timing and duration is not dependent of the camshaft position it is 
possible to have multiple injection pulses. For example: pilot injections that occur before 
the main pulse can be used to improve noise and emissions control; post injections, 
appearing after the main pulse, can be used for NOX-control. The average injection 
pressure for XPI is higher than that utilized for PDE and HPI [1]. As a result the injected 
fuel atomizes easily and burns cleanly with reduced exhaust emissions and increased 
efficiency. XPI is described briefly, since it still is under development, and most available 
information about XPI is confidential. 
 

 
Figure 2-3 Common Rail System [Bosch Automotive Handbook, 5th edition] 

 



 

5 

2.2 Electronic Control Unit 
In Scania trucks, the ECU controls the engine and the various actuators used to operate 
different units belonging to the engine. The ECU is mounted on the engine, inside the 
engine compartment. It is activated by the ignition key, and communicates with the rest of 
the truck through the CAN1-buses. The tasks of the ECU includes such activities as 
controlling the cooler fan, the exhaust brake, the starter motor, the engine speed, the fuel 
actuators, as well as other tasks [5]. The architecture of the ECU depends on the engine 
type and the injection principle used in the engine. The injection event described in this 
Thesis belongs to an XPI fuel injection system. The ECU is described briefly, since it still 
is under development, and most available information about the ECU is confidential. 
 

2.2.1 Current Pulse 
The injectors are regulated with solenoid based actuators which are controlled with current 
pulses from the ECU. In Figure 2-4 a typical current pulse is shown. The higher current 
level is called the “pull-in level”, and the lower current level is called the “hold level”. To 
compensate for inertia in the solenoids [6] the current level is higher in the injector 
opening phase than it is when the injector is fully opened. The task of the ASIC is to 
produce this current pulse when the CPU signals an injection event to the ASIC [7]. 
 

Pull-in level

Hold level

 
Figure 2-4 Typical Current Pulse 

                                                   
1 The CAN (Controller Area Network) is an ISO standard for serial data communication. The 
protocol was developed for automotive applications. In Scania trucks all electronic control units are 
connected in a network of CAN-buses. 
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2.2.2 CPU 
The CPU (Central Processing Unit) is the coordinator of the tasks that the ECU has to 
execute. There are several peripheral units belonging to the CPU. These units are used for 
analog to digital conversions, communication on the CAN-bus, communication on the SPI-
bus (SPI is explained in Appendix B), as well as for other uses. One of the peripheral units, 
in this Thesis called PU (Peripheral Unit), calculates the motor speed and determines the 
position in the injection event. This unit is in charge of the injection event and sends the 
control signals to the ASIC. When an injection event is about to begin the PU signals the 
ASIC by setting the “injection” signal to logic high. Another signal controls which 
cylinder is active, and a third signal controls whether the current level is “pull-in” or 
“hold”. The “injection” signal is set logic low when the PU determines that the injection 
event is over [8]. 

2.2.3 ASIC 
The ASIC controls the actuators through the source and the sink drivers. Figure 2-5 shows 
how the source and sink drivers are connected to the ASIC, and to a solenoid actuator. The 
source driver, as the name implies, is connected to the current source while the sink driver 
is connected to the ground. Each actuator is connected to a source driver and a sink driver. 
To let current flow through the actuator both drivers need to be activated by the ASIC [9]. 
 

Sink
driver

Source
driverHigh side output

Low side output

Schmitt trigger
comparator

ASIC

Source

Solenoid

PU
(Peripheral Unit)

Injection

pull-in/hold

cylinder
select

 
Figure 2-5 Source and Sink Drivers 

 
When a cylinder is selected by the PU, the sink driver for the corresponding actuator is 
activated by the ASIC. When the “injection” signal switches to logic high, the ASIC 
activates the high side driver, which causes current to flow through the solenoid. The 
current level is measured, and constantly monitored by Schmitt trigger comparators2, 
which are connected in a feedback loop to the ASIC. When a Schmitt trigger indicates to 
the ASIC that the current has reached the appropriate level, the ASIC maintains this level 
by switching the source driver on and off, as a reaction to the feedback from the Schmitt 
trigger [8]. 

                                                   
2 The Schmitt trigger comparator has hysteresis, which means it has two different threshold levels, 
for a rising and a falling current. In this application the threshold level for the rising current is 
higher than for the falling current. This prevents an excessive, on and off, switching as the current 
level drifts around the set point. 
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The set point of the Schmitt trigger defines the current level to be held. The highest current 
level allowed, deviating from the set point, is called the peak, and the lowest is called the 
valley [7] (see Figure 2-6). A rising edge on the Schmitt trigger output indicates that the 
peak current level is reached. When the ASIC detects the rising edge it turns the source 
driver off to let the current level drop. A falling edge on the Schmitt trigger indicates to the 
ASIC that the valley is reached. The ASIC then enables the source driver again. The 
current level is kept until either the “pull-in/hold” signal from the PU changes or the 
“injection” signal turns to logic low [8]. 
 

Peak

Valley

Set point

 
Figure 2-6 Current Peak and Valley 

The ASIC will also diagnose if, and when, “certain” faults occur during and in between 
injection events. Whenever a fault occurs it is indicated in a register called the fault 
register. The fault register can be read by the CPU via the SPI-interface. Depending on 
what the settings are for an occurrence of a certain fault, the ASIC may also execute a 
predefined action as a safety measure. It might for example halt the injection event, or 
move on to the next state [10]. 
 
Because information about the ASIC’s functionality is proprietary of Motorola, no details 
can be revealed in this report. ASIC technologies in general will be explained in 3.1. 
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Chapter 3 ASIC and PLD Overview 

This section gives a short introduction to ASIC and PLD technologies. The JTAG 
interface, which is a common programming and debugging interface used for these 
technologies, is also explained. 

3.1 ASIC 
An ASIC (Application Specific Integrated Circuit) can be generalized as an integrated 
circuit specified for one particular task. An IC (Integrated Circuit) is a collection of one or 
more gates, which are fabricated on a silicon die3 [11]. Not all specialized ICs are however 
generalized as ASICs. Examples of typical non-ASICs are standard parts, such as 
memories and microprocessors. But there is no absolute definition of exactly what an 
ASIC is. Basically there are three types of ASICs; full-custom, standard-cell-based and 
gate-array-based ASICs. The last two types are regarded semi-custom ASICs [12]. 

3.1.1 Full-Custom ASICs 
In a full custom ASIC, logic cells, circuits and layout are specifically designed for the 
ASIC. For different reasons no standardized logic cell libraries are used, typically because 
they do not meet the requirements in a new or specialized ASIC design. Full-custom 
ASICs are the most expensive ASICs to manufacture and design, and there are often 
problems involved with specially designed parts. For these reasons full-custom ASICs are 
the least common type of ASICs [12]. 

3.1.2 Standard-Cell-Based ASICs 
A standard-cell-based ASIC, also called CBIC (Cell-Based Integrated Circuit), is a semi- 
custom type of ASIC. The IC manufacturer has developed libraries of predesigned logic 
cells, such as AND, OR gates, MUXes and flip-flops etc, for use on the CBIC. These 
standard cells can also be connected to larger predesigned blocks such as microprocessors 
or microcontrollers. The designer defines only placement of the standard cells and the 
interconnections between blocks on the CBIC. Custom-cells are created only if absolutely 
necessary [12]. 

3.1.3 Gate-Array-Based ASICs 
The gate-array ASIC is a semi-custom type of ASIC. The structure of the gate-array, or 
GA, is an array of gates in which the interconnections initially are unspecified. The 
designer specifies which gates and interconnections to use by applying custom masks on 
the top metal layer. For this reason the GA is also called MGA (Masked Gate Array). The 
placement of the gates is fixed and cannot be changed. There is no possibility to create 
custom-cells, which makes the chip layout of a GA less optimized than for a CBIC. This 
typically results in a larger die size and therefore a higher cost for the die. The GA design 
time however is normally much shorter than for a CBIC which gives a lower nonrecurring 
engineering cost for the GA [11] [12]. 
 
Basically three kinds of GA exist, channeled, channelless and Structured GA. In the 
channeled gate array the transistors are arranged in rows on the silicon die, and spaces 
between the rows are left for wiring. The channelless gate array has no space in between 
the rows of gates. Instead routing is customized on top of unused gates, which gives a 
more compact layout and allows more logic to be implemented. One of the drawbacks with 
                                                   
3 A die is an IC chip. 



 

10 

the GA is that the array of gates is fixed. This makes implementation of certain logic, such 
as memory cells or microcontrollers, inefficient. The structured gate array has an area, like 
the CBIC, dedicated for such logic circuits. The Structured GA can be either channeled or 
channelless [12]. 

3.2 Programmable Logic Devices 
A PLD (Programmable Logic Device) can be considered a kind of programmable ASIC. 
The PLD die is produced at an IC foundry, and is covered with rows of logical gates. The 
interconnections between the gates are unspecified and designed to let the PLD designer 
program the interconnections, outside the foundry [13]. The technology used to configure 
the interconnections depends on the type of PLD, which is explained in 3.2.1, 3.2.2 and 
3.2.3.   
 
In the design entry both ASICs and PLDs are modeled with a HDL (Hardware Description 
Language). In the next step, the design is synthesized to a logic netlist, which describes the 
actual hardware created from the HDL code. The netlist is then placed on the device and 
the interconnections are routed. For PLDs the routing can be made entirely by the designer, 
while the ASIC is manufactured entirely at a foundry [12] [14]. 
 
In Table 3-1 a few examples of PLDs are shown. PLAs, PALs, GALs and EPLDs are 
regarded SPLD technologies. Often SPLDs and CPLDs are grouped as PLDs and a 
distinction is made between PLDs and FPGAs, because they differ slightly in architecture. 
This distinction will not be made here since an FPGA is also a type of programmable logic 
device. Furthermore, the SPLD and CPLD have different architectures from each other. 
 

Table 3-1 Programmable Logic Devices 

PLA Programmable Logic Array 
PAL® (AMD) Programmable Array Logic 
GAL® (Lattice Semiconductor) Generic Array Logic 
SPLD (often just called PLD) Simple Programmable Logic Device 
CPLD Complex Programmable Logic Device 
EPLD Erasable Programmable Logic Device 
FPGA Field Programmable Gate Array 

 
Programming of a PLD is often made through the JTAG interface (explained in 3.3). 
Depending on the technology, the PLD can be either one-time-programmable or 
reprogrammable. 

3.2.1 SPLD 
The PLA was the first type of PLD to be invented. It is based on programmable arrays of 
AND, and OR gates. The PAL is an enhanced PLA which has one programmable AND 
plane and a fixed OR plane. This makes the PAL faster and cheaper than the PLA, but less 
flexible since it only has one programmable plane. Programmable logic devices are often 
based on the PAL or PLA structure. For this reason the PAL and the PLA are commonly 
referred to as PLDs. To avoid confusion with other types of PLDs this type of device can 
be generalized as an SPLD (Simple PLD) [11] [15]. When an SPLD is unprogrammed it 
has fusible links at all connection points. By blowing the fuses for all unwanted 
connections the SPLD is configured. 
 
The EPLD was originally developed by Altera and is similar to the PAL. It differs in that it 
uses EPROM/EEPROM technology (explained below) for configuration which allows it to 
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be reprogrammed. The GAL is a variant of the EPLD which was developed by Lattice 
Semiconductor. Both the EPLD and GAL are regarded SPLD technologies [15]. 
 
EPROM (Electrically Programmable Read Only Memory) is based on floating-gate MOS 
(Metal Oxide Semiconductor) transistors. In the initial state, the floating gate of every 
transistor in the EPLD is uncharged. This makes all transistors connected as logical links. 
The EPLD is programmed by applying a high programming voltage to the drain of each 
transistor where the connection shall be removed. This forces electrons to the floating gate 
and disconnects the transistor. When the programming voltage has been removed the 
electrons remain on the floating gate. By exposing the EPROM to strong ultraviolet light 
the configuration can be erased. The EEPROM, (Electrically Erasable Programmable Read 
Only Memory) differs from the EPROM by using an electric field to erase the 
configuration [13]. 

3.2.2 CPLD 
The AND-OR structure, of the SPLD, can only be scaled to a certain size before the 
performance is degraded due to occurrences such as capacitive effects, and leakage 
currents. Also the chip area would be used very inefficiently. In terms of silicon use, it 
would be more efficient to use several SPLDs rather than one large SPLD. This is also how 
the structure of a CPLD (Complex Programmable Logic Device) is arranged. The CPLD 
structure (Figure 3-1) is basically a collection of SPLDs, called macrocells, and a 
programmable interconnection area in between, on the same silicon die [11] [16]. The 
fixed structure of the CPLD makes the internal delays easy to predict, but also sets limits to 
the logic utilization of the area on the CPLD die [18]. CPLDs are commonly based on 
EPROM or EEPROM techniques [15]. 
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SPLD
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Programmable
interconnect

 
Figure 3-1 Structure of CPLD 
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3.2.3 FPGA 
The FPGA (Field Programmable Gate Array) is another kind of PLD with a different 
structure than the SPLD and the CPLD. The FPGA was developed around the same time as 
the CPLD, but with a different approach to create larger programmable logic devices. The 
FPGA (Figure 3-2) contains a much larger number of small individual logic cells, 
compared to the CPLD macrocells [11]. It also has a large interconnection matrix structure, 
surrounding the logic cells, covering the entire chip. The FPGA structure is similar to that 
of the MGA, but the FPGA can be configured just as easy as any PLD [12]. The 
programmable logic blocks, or basic logic cells, of an FPGA looks different depending on 
the manufacturer but are usually based on flip-flops and MUXes or LUTs (Look Up 
Tables) [17]. The propagation delay of FPGAs is greatly affected on how the routing is 
made internally. It is therefore difficult to predict the performance of a circuit before it has 
been completed [18]. 
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Figure 3-2 Structure of FPGA 

 
There are both reprogrammable and OTP (One Time Programmable) FPGAs. OTP FPGAs 
are based on antifuses. An antifuse is the contrary of a fuse. Unprogrammed it is an open-
circuit, but when a programming current is forced upon it a connection is created [13]. 
Once programmed the configuration is permanent. Reprogrammable FPGAs use SRAM 
(Static Random Access Memory) or Flash technology to store the configuration [19]. 
 
The SRAM is volatile and needs power supplied to retain its configuration. At every 
startup an SRAM FPGA must be reconfigured. Usually an external PROM (Programmable 
Read Only Memory) is used to load the FPGA with its configuration, but the FPGA can 
also be configured from an MCU (Micro Controller Unit) or an internal PROM. An FPGA 
with an internal PROM has a power-up time above 200 µs. With an external PROM the 
startup time is above 200 ms [19]. 
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Flash is a type of compact and fast EEPROM. Flash FPGAs are faster than any other PLD 
technology, and faster than antifuses, according to Actel, who produces both flash and 
antifuse FPGAs. The Actel ProASIC3 flash FPGA has a power-up time of only 50 µs 
whereas an antifuse device needs 60 µs [19]. 

3.3 JTAG 
ASICs and PLDs are often equipped with the JTAG interface. For PLDs this interface is 
used for programming and debugging, and for ASICs it is used for debugging, since an 
ASIC can not be programmed.  
 
JTAG (Joint Test Action Group) was originally a group of European manufacturers, which 
then was called JETAG (Joint European Test Action Group), which formed in 1985, with 
the purpose to study board testing. When North American companies joined in 1986, 
JETAG became JTAG [20]. The JTAG introduced two IEEE standards, which will be 
explained here. IEEE 1149.1, also known as boundary-scan, was first developed, followed 
by IEEE 1532, which is known as ISP (In-System Programming) [21]. 

3.3.1 Boundary-scan 
The JTAG 2.0 test standard formed the basis of “IEEE 1149.1 Test Access Port and 
Boundary-Scan Architecture” or simply Boundary-scan. It is a method of testing boards, 
ASICs, FPGAs or any device supporting the JTAG standard [20]. 
 
In an ASIC boundary-scan, logic is added on top of the actual design. Adding boundary-
scan may affect the performance of the ASIC negatively, and considerable development 
time may be needed for optimization of the design [20]. In an FPGA boundary-scan logic 
is often already included and optimized by the manufacturer [22], and hence performance 
is not affected. 
 
Boundary-scan uses a four wire test interface (with an optional fifth master reset) called 
TAP (Test Access Port, see Table 3-2). The TAP interface is connected to the TAP 
controller, which is located inside the device (see Figure 3-3). The TAP controller is a 4-bit 
state machine controlling the test event. It is clocked on the rising edge of TCK whereas 
TMS controls state transitions in the state machine. The optional TRST pin is dedicated to 
reset the TAP controller. [20] [23]. 
 

Table 3-2 Test Access Port 

TDI Test Data Input 
TDO Test Data Output 
TMS Test Mode Select 
TCK Test Clock 
TRST (optional) Test Reset Input Signal
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Figure 3-3 PCB with two devices hooked up in a boundary-scan chain 

 
Each I/O pad has a special logic cell, called BSC (Boundary-Scan Cell), to monitor signals. 
These cells are joined together in a serial chain around the device and form the Boundary-
scan register, where TDI is input and TDO is output. When the device is not in test mode, 
the input and output signals are allowed to just pass the BSCs without any action taken. In 
test mode however, the TAP controller tells each BSC to either monitor its inputs, capture 
received data, shift data to the neighboring cell or output data. Defects show as 
discrepancies between the expected and the actual data [20]. 
 
The Bypass Register is selected whenever no tests are to be performed on a particular IC 
during board level test mode. The ID register is read-only and provides information about 
the device manufacturer, part number and revision. It is used to ensure that the device is at 
the correct location in the boundary-scan chain [20]. 

3.3.2 In-System Programmability 
ISP (In-System Programmability) means that a programmable device can be programmed 
while it is installed in a system, as opposed to being programmed prior to assembly. 
Devices that support ISP typically have hardware logic that can generate the special 
programming voltage from the voltage supply rail, and serially communicate with the 
programmer. ISP can be performed from an external programming device or from an 
external MCU [21]. 
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IEEE 1532 adds programming instructions and associated data registers to JTAG 
compliant devices. It is complementary to the JEDEC-approved Jam™ STAPL (Standard 
Test and Programming Language). While IEEE 1532 is a hardware standard that defines 
the actual ISP algorithm for each device, Jam STAPL is a software standard that defines 
the file format that stores the programming information [21]. 
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Chapter 4 PLD Requirements 

The automotive environment is very hostile for electronic systems. Temperatures are high, 
there are electromagnetic pulses from the ignition system, and violent transients on the 
power supply lines [24]. The current control system must be able to tolerate this hostile 
environment. But most importantly it must produce the current pulses to the injection 
actuators at exactly the right moment, and it will have to diagnose faults whenever they 
occur. Furthermore the system must not be too expensive. It is preferable to have a system 
with as few components as possible since each physical unit in the design will increase the 
cost of the ECU. 

4.1 Temperature Range 
Integrated circuits are normally available in different classifications, for commercial, 
industrial, automotive and military standards. While the chip normally is the same for all 
standards, the standard specifies what the chip has been tested for. In this case, the PLD 
should be available in automotive standard with a temperature range from TA= -40°C to 
+125°C. TA specifies the ambient temperature which refers to the temperature of the 
surrounding environment. Often devices are specified for the junction temperature, TJ, 
which refers to the temperature on the die surface. The relationship between TA and TJ is 
shown in Equation 3.2, which is derived from Equation 3.1. Since the ambient 
temperature, TA, is a subset of the junction temperature, TJ, a device specified for a 
junction temperature in the same range would be less tolerant to the ambient temperature, 
and would not be sufficient for use in the ECU. 
  
Junction-to-air thermal resistance [25] 
 

P
TT AJ

JA
−

=θ   (Equation 3.1) 

 
TJ = junction temperature 
TA  = ambient temperature 
θJA = junction to air thermal resistance 
P = power dissipation 
 

PTT JAAJ θ+=   (Equation 3.2) 

4.2 Price Range 
An appropriate price range for a PLD was determined to around $5.00 USD for a volume 
of 50k units. This was decided from discussions with Tomas Logge, who at the time was 
manager for the ECU project, and Jens Svensson who is the new ECU project manager and 
also Thesis supervisor. Cost of development has not been considered in the calculations. 

4.3 Real Time Requirements 
Controlling the current pulse (see Figure 2-4) is essential for the injection event. It 
determines if and when the injectors are opened or closed. If the injectors do not open or 
close at the exact right moment, it could affect the emissions, create more engine noise and 
degrade the performance of the engine. Or in the worst case the engine would not function 
at all. Control of the injection event is a hard real time requirement that must be met. The 
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injection event shall be deterministic, meaning that the beginning and end of the injection 
occurs when determined. The current rise and fall times must be kept within limits, and the 
current levels (see 2.2.1) held according to the configuration. It is also important that the 
injection starts immediately as the ignition key is turned, by the driver. There must not be 
any noticeable delay before the engine starts. 
 
When the injection event is held, at either pull-in or hold level (see 2.2.1), the current pulse 
to the actuators is switched on and off rapidly, in reaction to the Schmitt-trigger 
comparators. Maintaining this current “ripple” by switching the current on and off at the 
exact right moment is the fastest event that will occur on the outputs. This is the maximum 
frequency that will be required on the outputs. In section 4.3.1 the current ripple is 
analyzed. In a PLD the internal logic will be similar to that of the ASIC. By analyzing the 
timers in the ASIC, the requirements could be further specified (see 4.3.2). 
 
Running the diagnoses is another hard requirement. Setting the fault registers may not be 
critical to the injection event, but when “certain” faults occur immediate action must be 
taken (e. g. if the injection event must be halted in order to prevent damage). The 
diagnoses are dependent on the same timers as the rest of the design, and are therefore 
covered in section 4.3.2. 

4.3.1 Analyzing Current Ripple 
To get an idea of the switching frequency when a current level is being held, 
measurements were made with an oscilloscope on the inputs to the actuators (screen dumps 
from the oscilloscope are found in Appendix A). It is shown that the fastest transition 
between peak and valley is 8.60 µs. But the impedance and operating voltage of other 
types of injectors can be different and thus change the slope of the rising and falling 
current. According to Equation 3.4, which is derived from Equation 3.3, the current slope 
over time is dependent on the electrical characteristics of the solenoid coils, used in the 
injector actuators. A higher operating voltage or a lower coil resistance will cause a steeper 
current slope. 
 
The current, iL, during the inductor storage phase [26] 
 

( )( )RLt
L e

R
Vi /1 −−=   (Equation 3.3) 

 
iL = current through  coil 
R = coil resistance 
V = voltage applied over coil 
L = coil inductance 
 

L
Rt

e
L
V

dt
di −

=    (Equation 3.4) 

 
Knowing this however, does not provide many details about how fast the PLD will have to 
operate. The current ripple does not reveal much about the internal operation of the ASIC. 
Therefore the ASIC had to be analyzed. 
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4.3.2 Analyzing Timer Resolutions 
By analyzing the various timers used in the ASIC it is possible to determine the minimum 
clock frequency of the ASIC. For example, a frequency of 1 MHz is required for a timer 
with the resolution of 1µs, and 2 MHz is required for a 0.5 µs resolution. In the ASIC there 
is one timer with a resolution at 62.5 ns [27]. With a counter that triggers on every positive 
clock edge the corresponding frequency will be 16 MHz (see Equation 3.5). 
 

MHz
nsT

f 0.16
5.62
11 ===  (Equation 3.5) 

 
f = frequency 
T = period 
 
A PLD solution would be constructed with digital hardware logic like the ASIC. Since 16 
MHz is the highest frequency required, for any timer in the ASIC, it can be used as a 
guideline for the PLD. Basically it proves that most PLD solutions are fast enough since 
they commonly can operate in frequencies above 100 MHz.  
 
In a micro processor solution, it would be necessary to schedule every timing critical 
event, and make sure that the clock frequency is fast enough to handle them all. The micro 
processor kernel executes instructions in sequential order, and such a solution would be 
implemented very differently from the ASIC, or a PLD, that operates in parallel without 
the need of any kernel. 
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Chapter 5 Design and Implementation 

In this section, it is explained how a PLD technology was chosen, and how the PLD based 
fuel injection system was designed, and implemented. 

5.1 Choice of PLD 
Before even considering designing a PLD based solution, it was necessary to determine if 
there were any feasible PLDs available on the commercial market, which would meet the 
requirements (stated in Chapter 4). Otherwise a PLD solution would have been rejected by 
Scania.  
 
To decide which type of PLD to use, it was necessary to know the approximate amount of 
logic implemented in the ASIC. Scania only possess a document describing the 
functionality of the ASIC [28], but no HDL code or hardware netlist is available. Since the 
ASIC is custom made, it is hard to estimate the number of logical gates implemented in it. 
There is however an earlier prototype for the ASIC, made on an FPGA. Scania possess no 
information about the design in the FPGA, but datasheets for the FPGA can easily be 
downloaded from the manufacturer’s website. 
 
No CPLD4 was found large enough to match the size of the prototype FPGA. The 
corresponding CPLD solution would require more than one CPLD, if all the logic cells of 
the prototype FPGA are utilized. Therefore, an FPGA solution was considered more 
suitable than a CPLD solution. However since both CPLDs and FPGAs are coded with a 
HDL, the code can be moved between the two technologies.  
 
SRAM FPGAs are not very suitable for this particular application, mainly because the 
configuration must be reloaded on every start-up (see 3.2.3). The SRAM FPGA has a 
power-up time above 200 ms [19] which may be reasonable, if it is booted in parallel with 
the rest of the system. But adding this delay to the start-up of the entire system would not 
be acceptable, since it would delay the start of the engine, when the ignition is turned on. 
SRAM FPGAs also normally require an external non-volatile memory, to store the 
configuration (see 3.2.3). Since one of the aims of the thesis was to minimize the number 
of external units, this was undesirable. The SRAM FPGA is further sensitive to transients 
on the supply voltage (see section 3.2.3). It might need to reboot if a temporary current dip 
or brown-out in the electric system occurs. 
 
Antifuse FPGAs add a little flexibility since the device can be programmed once. 
Antifuses are non-volatile and do not require any additional components. But once 
programmed the configuration is permanent. No field updates can be made to an already 
programmed device, if it is not entirely replaced (see 3.2.3). 
 
Flash is a type of fast and compact EEPROM [29]. Flash FPGAs are both non-volatile and 
reprogrammable, but are not as common as SRAM FPGAs. Lattice Semiconductor has 
made SRAM FPGAs non-volatile by storing the configuration in internal flash memory. 
The startup time of such an FPGA is 1 ms [30]. 
 

                                                   
4 SPLD/CPLD manufacturers checked (October 2005): Altera, Atmel, Cypress Products, ICT, 
Lattice Semiconductor, Texas Instruments, and Xilinx. 
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Actel is the only manufacturer of FPGAs based solely on flash5. Because the flash 
technology is faster and more reliable than SRAM technology, and because it allows 
reprogrammability (which the antifuse technology does not), a family of flash FPGAs 
called ProASIC3 (described in Appendix C) was chosen from Actel. This FPGA family 
will be available in the automotive standard during the later half of 2006 or during 2007 
[31]. In the mean time it is possible to start prototyping on a non-automotive ProASIC3 
FPGA, since this project is still in a pre-study phase. 
 
Actel tests their automotive flash FPGAs for a junction temperature, TJ, range between -
40°C and +125°C [32]. This is not a limitation of flash, but is the standard test range for 
automotive flash FPGAs. Actel also produces military flash FPGAs which are defined for 
TAmbient = -55°C to + 125°C. The silicon chip is the same for all standards. Only the tests 
and possibly the packages are different [31]. For large sales volumes Actel can perform 
custom tests. 

5.2 System Design 
The rough estimation of size based on the prototype FPGA does not reveal any details of 
how much logic, inside the FPGA, is actually utilized. Since this information is not 
available to Scania it was necessary to develop a new design. The description of the Fuel 
System ASIC [28] served as a guideline for the FPGA design. An attempt has been made 
to minimize the FPGA by moving as much logic as possible into the already available PU 
(explained in 2.2.2). The system was modeled as shown in Figure 5-1. The internal design 
of the FPGA is unique, but the components surrounding the FPGA are basically identical 
to the ASIC solution (the schematic is greatly simplified). Some “rewiring” was made due 
to the functionality that was moved to the PU.  
 
The FPGA design is synchronous and clocked with a 16 MHz external oscillator, but is 
asynchronous to the PU circuit. The PU signals to the FPGA when an injection event will 
start and the FPGA controls the different states in the injection event. The FPGA design is 
divided into two parts, called Bank A and Bank B. Each bank controls four cylinders with 
the source and boost drivers.  
 
The description of the FPGA design is in this report is restricted, due to confidentiality 
issues. 

                                                   
5 FPGA manufacturers checked (October 2005): Actel, Altera, Aeroflex UTMC, Atmel, Lattice 
Semiconductor, NEC, QuickLogic, and Xilinx. 
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Figure 5-1 FPGA Fuel  System Schematic 

5.2.1 Cylinder Selection 
The greatest difference from the ASIC is the cylinder selection, which is controlled by the 
ASIC in the currently used design. By moving this part to the PU it was possible to get rid 
of a set of control signals between the ASIC and the PU. Some of the not timing critical 
diagnoses were also implemented in the PU. 
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5.2.2 Output Finite State Machines 
The most essential modules in the FPGA are two finite state machines (FSMs), called 
Output FSMs, which control the current driver circuits that maintain the current pulse. One 
Output FSM belongs to each bank, and controls the source and boost driver of that bank. 
The Output FSMs are enabled by control signals from the PU and uses the input signals 
from the comparators, and a set of timers to advance between the states. Details about the 
Output FSMs will not be explained here due to confidentiality issues, but is available for 
Scania personnel in document NE06165. 

5.2.3 Diagnosis 
The diagnoses run in parallel with the Output FSM on each bank. When a fault occurs, a 
signal called fault_temp_x (where x represent the fault bit) is set. This is the fault check, 
which reports when a fault has occurred. The fault checks are implemented as flip-flops. 
When the fault_temp_x signal is set, a bit corresponding for that fault bit is set in a “fault 
vector”. Each bit in the fault vector has its own register where the bit is stored. The bit will 
remain set until the register is reset, or until the power to the FPGA is turned off. There is 
one fault vector for each bank. Details about the diagnosis will not be explained here due 
to confidentiality issues, but is available for Scania personnel in document NE06165. 

5.2.4 Refout Finite State Machines 
There are a total of six FSMs, called Refout FSMs, which control the reference signals to 
the Schmitt trigger comparators. The reference signals are created with PWM (Pulse Width 
Modulation) and define the current levels that the FPGA must keep. Three Refout FSMs 
belong to each bank. The Refout FSMs are identical but are typically configured to produce 
different reference signals, which are equal on each bank. 
 
The Refout FSM has three states: On state in which the reference output signal is turned on, 
Off state in which the reference output signal is turned off, and Idle state in which is the 
output is also turned off. Two clock signals are used: the 16 MHz system clock (clk) and a 
62.5 kHz clock (clk_2), with a period 256 times the period of the system clock. 
 
The FSM is always initiated in Idle state but is advanced to On state in the first positive 
clock edge of clk_2, if the enable signal is ‘1’ and if reset is ‘0’. Every time the FSM is in 
On state the Refout output is turned on and a counter, clocked by clk, is enabled. When this 
counter reaches a value of X, between 0 and 255, which is specified in an 8-bit register, the 
FSM moves to Off state. In Off state, Refout is turned off and the counter is reset. The FSM 
remains in this state until the next positive clock edge of clk_2 occurs. It then moves back 
to On state again, and the whole procedure is repeated. If enable turns to ‘0’ or reset turns 
to ‘1’ the FSM is returned to Idle state. 
 
The value X divided by 255 determines the duty cycle of the PWM, Figure 5-2. If X is ‘0’ 
the output will constantly be low and if X is 255 the output will constantly be high.  
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Figure 5-2 Refout PWM Signal 
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Figure 5-3 Refout FSM State Diagram 

 

5.2.5 SPI-Slave and Interconnection Switch 
An SPI-Slave, IP (Intellectual Property) core, will be implemented for communications 
with the CPU. Register values for timers in the FPGA are configured by the CPU via the 
SPI-interface. An interconnection module translates the address requests from the SPI and 
routes the address to the corresponding register. 

5.2.6 In-System Programmability 
ISP is made from the CPU via the JTAG-interface. For this purpose a special software 
module called Direct C must be implemented in the CPU. This module provides C code 
files containing the ISP programming algorithm. DirectC requires 100 KB of the system 
memory and the programming file size depend on the size of the FPGA [33]. DirectC is 
available to download for free from Actel’s website [34]. 

5.2.7  Phase Locked Loop 
The PLL (Phase Locked Loop) is a circuit available on the FPGA chip, which can be used 
for frequency division or multiplication. It can produce up to three global clock signals, in 
a range from 0.75 MHz to 350 MHz, which are synchronous to the oscillator input 
frequency. The PLL will be used in the design to provide different clock frequencies for 
the timers with different resolutions, which are utilized throughout the entire design.  
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5.2.8 Watchdog Timer  
A watchdog timer module resets the FPGA to its initial state if the oscillator signal is 
absent. This prevents the FPGA from getting stuck in a state in which the outputs are 
opened, therefore preventing a situation with an ever increasing current level from 
occurring. This protects the hardware components from possible damage. The watchdog 
needs a reference clock signal from the CPU. The reference clock has a higher frequency 
than the oscillator clock. On every clock cycle of the reference clock, a counter increases 
its value. On every clock cycle of the oscillator clock the counter is reset. If the oscillator 
clock signal, for some reason would be absent, the counter value would continue to 
increase, and eventually exceed its timeout value (defined in a register). In this case the 
watchdog timer would reset the entire FPGA circuit. The reset signal forces all FSMs to 
return to idle state, where they will remain until the oscillator clock is active again. 

5.3 FPGA Functional Description 

The PU combines information from the CPU with calculations of the position of the 
engine crankshaft angle to determine the length of the injection pulses, when they will 
occur, and which cylinder to activate. In an injection event the PU first selects a cylinder 
by activating its sink driver, and then it activates the FPGA by setting INJ_TTL for that 
side of the FPGA to logic high. The PU code was implemented and verified by Johan 
Hansson, Thesis student at Scania, and will not be explained any further in this report. 
Documents about this implementation are available for Scania personnel only. 
 
At startup, the FPGA configuration registers are loaded from the CPU via the SPI 
interface. These values specify current rise and fall times, transition times and diagnosis 
values.  
 
When the FPGA is in idle state, it waits on either one of the INJ_TTL control signals. If a 
signal turns to logic high, the Output FSM is initiated for the corresponding bank. The 
main task of the Output FSM is to control the source and boost drivers. When the source 
driver is opened, current is allowed through the active actuator and the current level starts 
to rise. The boost driver controls a voltage source higher than the normal supply voltage, 
which can be used to raise the current level faster. 
 
The current level is measured by the current sense circuit and monitored by the Schmitt 
trigger comparators. Each comparator monitors only one current level. The current level is 
controlled by the corresponding Refout FSMs which uses PWM (Pulse Width Modulation) 
to create the reference current level for the comparator. 
 
When a comparator detects that a current level is reached a signal is sent to the Output 
FSM. This activates the corresponding bank to switch to the next state. The diagnosis, 
running in parallel with the FSM, also monitors the Schmitt trigger inputs and the timers 
utilized by the Output FSM. If the values are out of range it is indicated in a fault register, 
which later can be read from the CPU via the SPI-interface.  
 
Because information about the ASIC is confidential and details about this implementation 
reveals much about the ASIC’s functionality, the full details on the implementation are 
available to Scania personnel only, in document NE06165. 

5.4 Implementing the FPGA 
The implementation was made according to the design explained above. Some modules 
are, however, not yet implemented. The time has been the limiting factor of the 
implementation. 
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All eight FSMs have been implemented, including the timers, counters and registers 
needed for their operation. The diagnoses have to a large part been implemented, but there 
is still no action taken when faults occur. When a fault occurs, a bit specific for that fault is 
set in the fault register. But there are still fault checks unimplemented. The reason for this 
is that some fault checks corrupted the output signals of the Output FSM, which became 
obvious after place & route. These fault checks were simply removed, because the 
troubleshooting would have been too time-consuming. Place & route is explained in 5.4.5. 
 
The PLL has not yet been implemented in the design, because it does not affect the size of 
the design in whole (there is dedicated PLL logic on the FPGA chip). 
 
The watchdog timer is not essential for the functionality of the FPGA, but it is 
recommended for the final design. It would be unwise to not have one, in case of a failure 
on the oscillator signal. The watchdog timer has not yet been created. 
 
The SPI-slave module will possibly be based on a “black box” IP-core, possibly developed 
by Inicore Corporation. It is not necessary to implement the SPI-slave module in the design 
to determine its size on the FPGA. Figures of the amount of logic that various IP-cores 
occupy on different Actel FPGA families are available from Actel [35]. Hence both 
development time and money is saved. Actel, also, provides their own SPI-module which 
can be configured as either a master or a slave, but Inicore's SPI-module requires less 
logical cells [35]. 
 
The design has first been developed, simulated and verified for one side of the FPGA, 
Bank A. Bank B has then been copied from Bank A, renamed and integrated with the rest of 
the design. There has not been time to simulate and verify both banks together. Only Bank 
A has been verified, but Bank B is identical to Bank A and should therefore behave 
identically. 
 
Table 5-1 shows which modules have been implemented and verified. Changes and 
additions that need to be made are minor and will not greatly affect the number of logic 
tiles the design occupies on the FPGA. 
 

Table 5-1 Modules in the FPGA Design 

Module Implemented Verified 
Bank A Output FSM Yes Yes 
A 1st level Refout FSM Yes Yes 
A 2nd level Refout FSM Yes Yes 
A 3rd level Refout FSM Yes Yes 
Interconnection switch Yes Yes (with Bank A) 
Bank B Output FSM Yes No 
B 1st level Refout FSM Yes No 
B 2nd level Refout FSM Yes No 
B 3rd level Refout FSM Yes No 
PLL No (it will be based on a 

SmartGen core) 
- 

SPI-Slave No (it will be based on a black 
box IP-core) 

- 

Watchdog Timer No - 
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5.4.1 Design Flow and Design Environment 
Actel's Libero IDE (Integrated Design Environment) was used during the design process. 
In Libero, all the EDA (Electronic Design Automation) tools for the design process are 
included (see Table 5-2) together with a design manager that keeps track of the design flow 
(Figure 5-4). Each step in the design process will be explained in 5.4.2-5.4.5. 
 

Table 5-2 EDA Tools Included in Libero IDE 

Tool Vendor Description 
HDL-editor Actel VHDL or Verilog editor 
SmartGen Actel Core generator 
ViewDraw Actel Schematic capture tool 
ModelSim Mentor Graphics Simulator 
WaveFormer Lite SynaptiCAD Test bench generator 
Synplify Synopsys Synthesis 
Designer Actel Physical implementation 
 
To run Libero IDE a license must be acquired. There are three types of licenses available: 
Gold, Platinum and Eval. In this project the Gold license, which is free of charge proved to 
be sufficient. The Platinum license offers more features but must be purchased. The Eval 
license offers the same features as Platinum but is valid for only 45 days [36]. 
 

 
Figure 5-4 FPGA Design Flow In Libero IDE 
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Each module was coded in VHDL, and then simulated in ModelSim (pre-synthesis 
simulation). Each module was then verified individually, before being integrated with the 
rest of the modules. To connect all modules a schematic capture was drawn with the 
ViewDraw software. The schematic capture was, in turn, simulated (pre-synthesis 
simulation) and verified in ModelSim. In the next step the design was run through the 
synthesis software, Synplify, which creates a hardware netlist from logic described in 
VHDL. After simulating (post-synthesis simulation) and verifying the netlist, it was 
prepared for physical implementation, using the Designer software. At this point the layout 
was planned on the FPGA, and resources such as logic cells and I/O (Input/Output) cells 
were allocated. From this last step it is possible to see exactly how much logic the design 
occupied on the FPGA. After the place and route, the design was again simulated (post-
layout simulation) and verified. 

5.4.2 VHDL Design entry and Schematic Capture 
Since the FPGA design must be realizable in hardware, all the modules inside the FPGA in 
(see Figure 5-1) have been modeled with synthesizable VHDL (Very high speed integrated 
circuit Hardware Description Language) syntax [37] [38]. While developing VHDL code 
for the design, scalability has been a main issue. The design is built from smaller modules 
in a structural design style to allow for easy replacement of individual parts in the design. 
In this approach a module can easily be replaced as long as the new or modified unit has 
the same set of input and output signals as the old part. In the design environment there is 
software called SmartGen which can generate a number of simple logic modules, such as 
registers and counters etc. These modules, or cores, have been used whenever possible 
since they are based on Actel's own library of hardware components, and hence are 
optimized for Actel FPGAs. The downside is that these cores only are applicable for the 
specified Actel FPGA family. But because of the scalability of the design they can easily 
be replaced with generic VHDL code. 

5.4.2.1 Timers 
Along with the major modules explained above there is a set of timers. Each timer has 
been built from a counter, a register and a comparator, that were all created in SmartGen. 
Conditional statements control the operation of the timer. The timer resolution is 
dependent on the frequency of the PLL clock signal that is connected to it. The counter 
value increases on every clock cycle. The register stores the timeout value for the counter, 
and the comparator checks the value reached by the counter with the register value. In 
timers used with the diagnoses, an additional register stores the last value reached by the 
counter. This allows the timer value to be controlled (e. g. when a fault code appears).  

5.4.2.2 Schematic Capture 
The design was put together with Actel’s ViewDraw, which is a schematics tool that 
creates VHDL code from schematic files. ViewDraw automatically creates a VHDL file 
with port maps for all components in the design (if the schematic capture is feasible). 
Unfortunately ViewDraw did create redundant interconnections in VHDL that appeared as 
warnings during synthesis. These signals were automatically removed by Synplify, and the 
design was unaffected. To avoid getting these warnings during synthesis the redundant 
code can be removed or commented away manually. 
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5.4.3 Simulation 
For every different module in the design a unique test bench was created. The same test 
bench was used for pre-synthesis, post-synthesis and post-layout simulation. It was created 
with the WaveFormer Lite software. When creating a test bench in WaveFormer Lite, a 
stimulus file is first created. The stimulus file contains waveforms that are intended as 
input signals to the test object. The stimulus file is then exported as a VHDL test bench, to 
be used in ModelSim. Generally, only typical input waveforms have been tested. There has 
not been enough time to create test benches that cover every possible event that can occur. 
Nor has it, during simulation, been possible to analyze all internal signals of the simulated 
unit. The main focus has been to verify that the output signals, of the design, behave as 
expected. 

5.4.4 Synthesis 
After the schematic capture was created the design was synthesized in Synopsys Synplify, 
where the hardware netlist was created. In Synplify, the option: Symbolic FSM compiler 
was enabled, which means that Synopsys recognizes state machines in the design and 
optimizes them. Resource Sharing was also enabled, meaning that resources are shared, to 
optimize the chip area of the FPGA. The frequency was set at 16 MHz. Figure 5-5 shows 
the project view in Synplify where these choices were made. All other settings were 
default. 
 

 
Figure 5-5 Synplify Project View 

 
Figure 5-6 shows, as an example, the netlist generated in synthesis for one of the FSMs. 
When the design passed the synthesis it was simulated again in ModelSim (post-synthesis 
simulation) and verified. The identical test bench was used for both post-synthesis 
simulation and pre-synthesis simulation.  
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Figure 5-6 Example of Generated Netlist for One of the FSMs 

5.4.5 Place & Route 
Following the synthesis, the netlist was prepared for placement on the FPGA with Actel’s 
Designer software. Designer optimizes the netlist, checks for errors and verifies that the 
design fits into the selected device. The chip layout is affected by the settings and 
constraints, which are set in Designer. LVCMOS 3.3V was chosen as the default I/O 
standard. The junction temperature range was specified to: -40°C to +150°C. All other 
constraints and settings were default. The goal here was to determine the required FPGA 
size, and get an idea of how much logic the netlist occupies on the FPGA die. The design 
can, and will most certainly be modified in the continuation of this project, and therefore 
no time was spent on optimization. ProASIC3 A3P250 144 FPGA was the smallest FPGA 
that the design could be implemented in. The resulting layout can be viewed in Figure 5-7, 
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which is a view from the Designer software. Filled squares in Figure 5-7 represent utilized 
tiles. 
 

 
Figure 5-7 Tiles Occupied by the Design in the FPGA 

 
From the generated log file, it is possible to see exactly how much of the FPGA’s 
resources were utilized, see Table 5-3. The core logic was utilized to 63 %. Global (chip + 
quadrant) shows that 11% of the routing resources were utilized. When implemented, the 
PLL will not occupy any core cells, since it has its own dedicated logic cells. No 
Differential I/O ports, or RAM/FIFO, or FlashROM cells have been used in the design. 
 

Table 5-3 Resources Utilized in ProASIC3 A3P250, 144 FBGA 

FPGA utilities Used Total Percentage used 
CORE 3872 6144 63.02% 
IO (W/ clocks)            77 97 79.38% 
Differential IO 0 24 0.00% 
GLOBAL (Chip+Quadrant)   2 18 11.11% 
PLL 0 1 0.00% 
RAM/FIFO 0 8 0.00% 
FlashROM 0 1 0.00% 

 
An estimated 80 % to 90 % of the design has been implemented. Inicore’s SPI-Slave 
module occupies 128 tiles [35] which would give a total utilization of 4000 tiles (65.10 %). 
Actel’s Core-SPI module occupies 328 tiles [35] and gives a total of 4200 tiles (68.84 %). 
It can however be configured as slave only, occupying 142 tiles [39], which would give a 
total of 4014 tiles (65.33 %). 
 
It is not likely that the remaining circuits will occupy any substantial amount of logic cells. 
Still to implement are: the WDT, which probably will be based on a counter, a comparator, 
a register and a few flip-flops; and the remaining diagnoses, which would use a few flip-
flops and registers. Originally most of the diagnoses were implemented, and behaved as 
expected during pre-synthesis and post-synthesis simulation. During post-layout 
simulation, however, the output signals were corrupted. One of the likely reasons for this is 
that no timing constrains were set in Designer, during place & route. After removing some 
diagnoses the output signals were correct again. 
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The utilization of I/O cells is high mainly because the SPI-slave not yet has been 
implemented. Because of this, two 16 bit buses6, one 8-bit bus, and two control signals 
were routed directly to I/O cells instead of routed to the SPI module. This alone occupies 
42 I/O cells. The SPI-slave will use only four I/O cells, for the miso, mosi, sck and ss_n 
signals (see Appendix B). Moreover since the PLL is not yet implemented there are three 
input clock signals instead of one. The PLL will use only one or possibly two I/O cells. By 
implementing these two modules the number of occupied I/O cells can be reduced to a 
total of 37 (instead of 77), therefore a smaller FPGA package will be required. 
 
The post-layout simulation showed that the output signals were unaffected by the place & 
route. This was however only tested for Bank A. There was no time to create a test bench 
for the whole design, or to simulate and verify it. Bank B is however identical to Bank A, 
and should have identical output signals, if the same test bench is used for both banks. The 
only other change made in the design is the Interconnection Switch, which must handle 
communication signals to and from both banks. It is therefore the double size, when both 
banks are implemented, compared to when only one bank is used. 
 

                                                   
6 These buses are temporarily 16-bit. To match the input pins on the SPI-slave module they must be 
changed to 8-bit. 
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Chapter 6 Discussion 

In section 6.1 the conclusions from the project are discussed. In 6.2 further areas of work 
are suggested. 

6.1 Conclusions 

6.1.1 Flash FPGAs 
Flash FPGAs are currently the only FPGAs that are non-volatile, live-at-power-up, 
reprogrammable, and tolerant to the extended automotive temperature range (TAmbient = -
40°C to +125°C). Actel is the only developer of flash FPGAs. 
 
High temperatures affects the performance retention time of the FPGA (Table 6-1). This 
may be the greatest weakness of the flash technology for this application. Actel does not 
guarantee the FPGA’s performance if the performance retention time is exceeded. 
Therefore the FPGA must be reprogrammed within the performance retention time [41], 
either manually or automatically. Actel automotive flash FPGAs are only classified for 
TJunction in the range -40°C to +125°C. But Actel can perform custom tests, for large sales 
volumes [31], if required7. 
 

Table 6-1 Performance Retention Time 

Junction Temperature 100 % of the time Minimum Performance Retention Time 
110°C 20 years 
125°C 10 years 
135°C 5.0 years 
150°C 2.5 years 
 

6.1.2 The Implementation 
The implementation, accounted for in 5.4, shows that it is possible to implement the 
current control circuit in an Actel, ProASIC3 A3P250, flash FPGA. An exact price quote 
has not been available for this FPGA, but an estimate in the range of $5.00 USD has been 
given by both Acal and Actel, for sales volumes of 50k units [42] [43]. 

6.1.3 The Design 
Dividing the circuit into two modules (the PU and FPGA), as explained in 5.2, is eligible if 
it allows the design to fit into a smaller FPGA. The only other advantage gained by doing 
this, would be that fewer control signals are required between the two components. A 
disadvantage of having the current control divided into two units is that it is difficult to 
overview, particularly since one part is implemented in software (the  PU ) and the other 
part in hardware (the FPGA).  
 
If the FPGA size is large enough, it is probably better to move everything implemented in 
the PU to the FPGA, and let the FPGA have full control of the actuators. Adding control of 
the sink drivers to the FPGA does not require any major changes of the design. Possibly 
one or two more states will be needed in the Output FSMs to determine that one, and only 
                                                   
7 Flash memory cells currently used in the ECU are only classified for T(junction)= -40°C to + 
125°C [40] 
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one, cylinder is selected at a time. The sink driver output is just another signal assignment 
in each state of the FSM. The diagnoses (implemented in the PU) will also require a few 
conditional statements to be coded in VHDL, but it is convenient to have all the diagnoses 
for the injection event gathered at the same place (rather than shared between the PU and 
the FPGA). 

6.1.4 Soft Kernels 
Another Thesis project, performed in parallel with this Thesis [44] evaluated current 
control with processor based solutions. One of the conclusions was that real time 
requirements were difficult to meet. One option, which has not been evaluated, is a soft 
CPU kernel as a module inside the FPGA. With this approach, parts of the design that are 
not timing critical can be implemented in software for the soft kernel, while timing critical 
parts can be implemented as hardware logic modules, in a similar fashion as the 
implementation was made in this Thesis. If implemented wisely, no internal modules 
within the FPGA would need to be reprogrammed, when changes are made in the sequence 
of the injection event. Such changes could all be made in software, coded for the soft 
kernel. 
 
The ProASIC3 family has the option of using an ARM7, 16 or 32-bit, CPU as a soft 
kernel. The ARM7 kernel occupies around 6000 tiles and the smallest ProASIC3 that 
allows this option is the A3P250, which then is called M7A3P250. An ARM7 CPU kernel 
implemented in this FPGA would occupy all of its core logic and hence no other modules 
could be implemented. For this project the next size of FPGA, M7A3P400, would be 
required. M7A3P400 has 9,216 logic tiles which would leave approximately 3000 tiles for 
other modules, when the kernel is implemented. 
 
Even though Actel provides the ARM7 kernel without any licensing fees or royalties [45], 
it is questionable as to whether the cost would stay close to $5.00 USD per unit, 
considering the added cost of a larger FPGA. Besides, more development time would be 
required for the FPGA because of the added complexity of the system. This solution 
should be considered, only if it is found desirable to configure the FPGA in software. 

6.1.5 Mixed Signal FPGAs 
The added flexibility that an FPGA provides only applies to the digital circuits, which are 
easily configured in an FPGA. In the ECU, however, there are also analog circuits around 
the FPGA, such as the current sense circuits, the driver circuits and others. These analog 
circuits cannot be changed without replacing the components. To change the analog 
circuits in the ECU, the whole PCB (Printed Circuit Board) would have to be replaced. 
 
An alternative not investigated in this thesis is the use of a mixed signal FPGA with 
support for both analog and digital signals. Actel is the only producer of this kind of 
FPGA, which they call Fusion. While the smallest Fusion, AFS090, is in the $5.00 USD 
segment, for large volumes, it only has 2,304 core tiles. Since the implementation in this 
Thesis required 3,872 core tiles, the AFS090 is not feasible unless it is possible to optimize 
the logic very much. The next size of FPGA is the AFS250, which has the same amount of 
core tiles, 6,144, as the A3P250. This device will cost approximately $12 USD/unit, for 
large volumes [46]. This could be an interesting alternative, depending on how much of the 
system’s analog circuits it can implement. Fusion further eliminates the need of an external 
oscillator, since it is provided on the chip. 
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6.2 Further Areas of Work 
• To finish the design, all modules in Table 5-1 should be implemented, simulated 

and verified thoroughly. Modules that have not been implemented are the PLL, 
SPI-Slave and the Watchdog timer. 

• The PLL is easily generated in SmartGen but it should be determined if and how 
the powerdown and lock signals should be used in the design. 

• The watchdog timer is explained in the description of the ASIC. A watchdog 
module for the FPGA can be modeled with this description as a basis. 

• In the current implementation all timers use the same clock signal (with the 
exception of one timer that has been given its own clock signal). The FPGA will 
however require timers with different resolutions. For this purpose, different clock 
frequencies will be needed. As a guideline, the timer resolutions of the ASIC can 
be viewed [27]. Some timers used in the ASIC require lower frequencies than the 
PLL can create. This can either be solved by: dividing down the clock signal, with 
a module that counts clock pulses; or by setting higher timeout values for the 
timers. 

• The registers should be optimized. In the current design all implemented registers 
are 16-bit, and every configuration value has its own register. In the ASIC the 
configuration values often require less than 16-bits, and one register is often used 
for configuration of several values. It should be investigated if the RAM/FIFO 
cells on the FPGA can be used to replace some or all of the registers. If this is 
possible the required number of core logic cells on the FPGA can be reduced. 

• It should be determined if the register values should be loaded through the SPI 
interface or if it is possible to use the internal FROM (Flash Read Only Memory) 
in the FPGA to store the configuration values. The FROM can only be written 
through the JTAG interface, but it can be read from the FPGA. 

• A decision should be taken if the SPI-Slave module should be based on Inicore's 
module or Actel's module, or a module from another developer. It may be 
worthwhile for Scania to develop an SPI-Slave module. In any case this module 
should be integrated with the rest of the design. 

• There are filters in the ASIC to reduce the noise susceptibility. These still need to 
be implemented in the FPGA. 

• It is necessary to create a set of test benches that thoroughly tests the design. Also 
it must be verified that the design functions perfectly, before synthesis, after 
synthesis and after layout. 

• During synthesis and layout it should be determined which constraints can be used 
to optimize the design for area. 

• During “place & route” it is necessary to set timing constraints for the design to 
function properly. 

• Actel devices have support for encryption of the configuration data and this should 
be used to protect the design. 

• An FPGA Starter Kit should be invested in so that the design can be downloaded 
into an actual FPGA that can be tested with the CPU and PU hardware. 
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Appendix A The Current Pulse 

The Current pulse was measured with an oscilloscope when a Cummins XPI injector was 
connected to the ASIC’s high- and low- side driver circuits.  Figure A-1 shows that the 
hysteresis fall time, during pull-in level, is approximately 18 µs. This is the shortest 
interval in which the ASIC output signal, controlling the high side driver circuit, will have 
to switch from low to high.  
 
 

 
Figure A-1 Pull-in Level, Peak to Valley Hysteresis 

 
Figure A-2 shows that the hysteresis rise time, during pull-in level, is approximately 11 µs. 
Figure A-3 shows that the hysteresis fall time, during hold level, is approximately 55 µs. 
Figure A-4 shows that the hysteresis rise time, during hold level, is approximately 9 µs. 
This is the shortest interval in which the ASIC output signal, controlling the high side 
driver circuit, will have to switch from high to low. 
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Figure A-2 Pull-in Level, Valley to Peak Hysteresis 

 

 

Figure A-3 Hold level, Peak to Valley Hysteresis 
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Figure A-4 Hold level, Valley to Peak Hysteresis 
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Appendix B The SPI-Bus 

The SPI (Serial Peripheral Interface) is a four wire serial communication interface, which 
was established by Motorola. When two devices communicate on the SPI-bus, one is 
referred to as the “master” and the other as the “slave”. Communication is synchronous, 
and operates in full duplex (both directions). It is initiated as well as controlled by the 
master.  Table B-1 shows the four SPI communication pins8. 
 

Table B-1 The SPI pins 

SS – Slave Select 
SCK – Serial Clock 
MOSI – Master Out Slave In
MISO – Master In Slave Out

 
The master selects which slave to communicate with, by setting the corresponding “slave 
select” (SS) signal to logic low. When the SS signal is logic high, the slave ignores the 
system clock, and sets its MISO (output) pin to high impedance. The number of slaves that 
can be connected to the SPI-bus is only limited by the number of SS output pins on the 
master device. Each Slave device on the SPI bus requires a separate SS output pin on the 
master device8 (see Figure B-1). 
 

SPI Master
SPI Slave 1

SPI Slave 2

MOSI

MISO

SS 1

SS 2

SS

SS

SCK SCK

SCK

MOSI

MISO

MOSI

MISO

 
Figure B-1 Master and Slave(s) on the SPI bus 

 

                                                   
8 Motorola, M68HC11 Reference Manual, 1996, pp. 8.1-8.22 
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Appendix C The Actel ProASIC3 Flash FPGA 

This is a brief introduction to the Actel ProASIC3 Flash FPGA, which was utilized in the 
Thesis. For a full and detailed view of all the features available in this FPGA family please 
refer to the datasheet9. 

C.1 Flash Technology in ProASIC3 
The ProASIC3 chip is covered with flash switches (Figure C-1) which are used for 
programming of the device. Each Switch is based on two transistors, which share a floating 
gate. The floating gate stores the configuration of the switch. One of the transistors is 
called the sensing transistor. It is used for writing, and verification of the floating gate 
voltage. The other transistor is called the switching transistor. It is used to connect, or 
separate routing nets; and to erase the floating gate. 
 

 
Figure C-1 ProASIC3 Flash-Based Switch 

C.2 Device Architecture 
Figure C-2 shows the architecture of the ProASIC3, A3P250 device, which was utilized in 
this Thesis. This device is equipped with six Clock Conditioning Circuits (CCCs) that each 
can implement up to three global clock buffers, and can create phase shifts and delays. A 
phase locked loop (PLL) can alternatively be implemented in one of the CCCs. The PLL 
can be used for frequency division/multiplication, and can produce up to three global clock 
signals. 
 
On chip the ProASIC3 FPGA has embedded blocks dedicated for SRAM/FIFO operation. 
A FROM (Flash Read Only Memory) of 1kbit is also available on chip, which can be 
utilized for non-volatile storage. The FROM can only be written to from the IEEE 1532 
JTAG interface, but can be read from the internal logic of the FPGA. 
 

                                                   
9 Actel Corporation, ProASIC3 Flash Family FPGAs, Advanced v.05, January 2006 
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Figure C-2 A3P250 Device Architecture 

The routing structure is designed in four different levels: ultra-fast local lines, efficient 
long-line resources, high-speed, very long-line resources, and the high-performance 
VersaNet global network (see Table C-1). 
 

Table C-1 Routing Resources 

Ultra-fast local lines Connects the output of each VersaTile directly to the inputs of 
the adjacent VersaTiles. 

Efficient long-line 
resources 

Spanning over 1, 2 or 4 VersaTiles, runs both horizontally and 
vertically and cover the entire FPGA area 

High-speed, very long-
line resources 

Spanning the entire device, with minimal delay, for high fan-out 
nets of 12 VersaTiles in the vertical direction, and 16 VersaTiles 
in the horizontal direction 

High-performance 
VersaNet global 
network 

Accessible from both external pins and internal logic. It is 
typically used for clock, reset and other high-fan-out signals 
which require minimum skew 

 
The largest chip area is occupied by the core logic cells, which are called VersaTiles. 
These are the basic logic cells that can be defined as: combinatorial devices, such as AND, 
OR, NAND, NOR, XOR; or as sequential devices, such as flip-flops and latches. Figure C-
3 shows the architecture of a VersaTile cell. 
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Figure C-3 ProASIC3 Core VersaTile 

 


