
6 Optimal Model Order Reduction in the Hankel Norm

In this lecture, we discuss optimal model reduction in the Hankel norm. There is no known compu-
tationally efficient solution to the optimal model reduction problem in the H∞-norm. Since there is a
connection between the Hankel norm and the H∞-norm, the presented method is still interesting to
us, and gives a lot of insight. The analysis also establishes a link to SVD.

6.1 The Hankel Norm and the Hankel Operator

The Hankel norm of a system G = (A,B,C,D) ∈ H∞ is defined by

‖G‖2H := sup
u∈L2(∞,0]

∫∞

0 y(t)2dt
∫ 0
−∞

u(t)2dt
, where y(t) =

∫ 0

−∞

CeA(t−s)Bu(s)ds.

The Hankel norm tells how much energy can be transferred from past inputs into future outputs
through the system G. In Exercise 3.4 b), we showed that ‖G‖H =

√

λmax(PQ) = σ1. One defines the
Hankel operator ΓG of the system G by,

ΓG : L2(−∞, 0] → L2[0,∞) : (ΓGu)(t) =

∫ 0

−∞

CeA(t−s)Bu(s)ds, t > 0.

The induced norm of ΓG is equal to the Hankel norm of G, ‖ΓG‖ = ‖G‖H .
A nice property of ΓG is that it has finite rank, with the rank being equal to the minimal number

of states required to realize the input-output map G,

Rank ΓG = n.

Furthermore, one can make an SVD of ΓG, with the dyadic expansion

(ΓGu)(t) =

n
∑

i=1

σiui(t)(vi, u)L2(−∞,0], (6.1)

where σi are the Hankel singular values of G, and the singular vectors are vi ∈ L2(−∞, 0], ui ∈
L2[0,∞). Maybe one would think it is more natural to consider the operator G directly,

G : L2(−∞,∞) → L2(−∞,∞) : (Gu)(t) =

∫ t

−∞

CeA(t−s)Bu(s)ds+Du(t).

This operator is not of finite rank, however, and has no finite dyadic expansion such as (6.1). This
make further analysis difficult.

Since one can make an SVD of ΓG, one can essentially apply the Schmidt-Mirsky theorem to prove
that

‖ΓG − ΓGr‖ = ‖G −Gr‖H ≥ σr+1, (6.2)

for all Gr of order r. From the definition of the Hankel norm it should also be clear that ‖G‖H ≤ ‖G‖∞
for all G ∈ H∞. Hence, the bound (6.2) also holds for the H∞-norm, as has already been stated in
earlier lectures.

Relation between the Hankel norm and the L∞-norm

To proceed, we need to introduce more system spaces, namely L∞, H−
∞, and H−

∞(r). A transfer
function G(s) belongs to L∞ if, and only if,

‖G‖∞ := sup
ω

‖G(jω)‖
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is finite. Hence G(s) may have poles in both C+ and C−, but not on the imaginary axis. A transfer
function G(s) belongs to H−

∞ if, and only if, G(−s) ∈ H∞. Hence, unstable systems with no stable
poles belong to H−

∞. Such systems are called anti-stable. A transfer function belongs to H−
∞(r) if it

belongs to L∞ and it has at most r poles in the complex left half plane, C−.
We can now state the following fundamental theorems.

Theorem 12 (Nehari). Suppose that G ∈ H∞, and F ∈ H−
∞. Then G− F ∈ L∞, and

min
F∈H−

∞

‖G− F‖∞ = ‖G‖H (= σ1).

Hence, one interpretation of ‖G‖H is that it is the minimum distance between G and an anti-stable
system, measured in the L∞-norm.

The following important extension to Nehari’s theorem is available.

Theorem 13 (Adamjan-Arov-Krein). Suppose that G ∈ H∞ and Q ∈ H−
∞(r). Then G−Q ∈ L∞, and

min
Q∈H−

∞(r)
‖G−Q‖∞ = σr+1, (6.3)

where σr+1 is the (r + 1)-th largest Hankel singular value of G.

Denote an optimal Q ∈ H−
∞(r) by Q∗, i.e., ‖G−Q∗‖∞ = σr+1. A stable/anti-stable decomposition

of Q∗ can be performed such that Q∗ = Gr + F , where Gr ∈ H∞, degGr ≤ r, and F ∈ H−
∞. It follows

that
‖G−Gr‖∞ = ‖G−Q∗ + F‖∞ ≤ ‖G−Q∗‖∞ + ‖F‖∞ = σr+1 + ‖F‖∞. (6.4)

If we can show that the L∞-norm of the unstable term F is small, then the stable part of Q∗ can be a
good candidate for H∞ model reduction. A bound on ‖F‖∞ is derived in Section 6.3.

Note that the stable part Gr of Q∗ solves the optimal Hankel norm approximation problem, since

‖G−Gr‖H = min
F∈H−

∞

‖G−Gr − F‖∞ = min
Q∈H−

∞(r)
‖G−Q‖∞ = σr+1,

and we know that a lower bound of the problem is σr+1, see (6.2). Note also that the direct term Dr of
Gr is not determined by Hankel norm approximation since it does not appear in the Hankel operator.

6.2 State-Space Formulas for Construction of Q∗

In this section, we give state-space formulas for the computation of an optimal Hankel approximation
Q∗ whose existence is guaranteed by Theorem 13.

Suppose the system G = (A,B,C,D) ∈ H∞ is of order n, and that it is square (m = p). The for-
mulas for non-square systems are slightly more complicated, and are given in Linear Robust Control.
Assume the realization of G is such that the Gramians take the form

P =

[

P1 0
0 σr+1Il

]

, Q =

[

Q1 0
0 σr+1Il

]

,

where l is the multiplicity of the singular value σr+1. One can choose a permuted balanced realization
of G, for example. Conformably to P,Q, partition the state-space realization of G,

A =

[

A11 A12

A21 A22

]

, B =

[

B1

B2

]

, C =
[

C1 C2

]

.

One can prove (Exercise 6.3) that under the given assumptions, there is a unitary matrix U ∈ R
p×m,

UTU = I , such that
B2 = −CT

2 U. (6.5)
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Also define
E1 := Q1P1 − σ2

r+1I.

A realization of the optimal approximation Q∗ is now given by

Â = E−1
1 (σ2

r+1A
T
11 +Q1A11P1 − σr+1C

T
1 UBT

1 )

B̂ = E−1
1 (Q1B1 + σr+1C

T
1 U)

Ĉ = C1P1 + σr+1UBT
1

D̂ = D − σr+1U.

The transfer function Q∗(s) = (Â, B̂, Ĉ, D̂) is of order n − l and belongs to H−
∞(r). In fact, it has

exactly r stable poles and n− r− l unstable poles. We verify below that E(s) := G(s)−Q∗(s) satisfies

E(s)∼E(s) = σ2
r+1I,

where E(s)∼ = E(−s)T , and thus ‖E‖∞ = σr+1. Note that ‖E(jω)‖ = σr+1 for all ω.
The given Q∗ solves the optimization problem in Theorem 13. This is generally not the unique

solution, however. All the solutions (also in the non-square G case) are parameterized in Linear Robust
Control using a linear fractional transformation.

To verify that E(s)∼E(s) = σ2
r+1I , we use the following lemma.

Lemma 1. Let G = (A,B,C,D). If there is a symmetric matrix P such that

PAT +AP +BBT = 0

PCT +BDT = 0

DTD = γ2I,

then G(s)∼G(s) = γ2I and G ∈ L∞. Conversely, if G = (A,B,C,D) is minimal and G(s)∼G(s) = I , then
there is a symmetric matrix P that satisfies the above conditions.

If we realize E(s) = G(s)−Q∗(s) with

Ae =

[

A 0

0 Â

]

, Be =

[

B

B̂

]

, Ce =
[

C −Ĉ
]

, De = D − D̂,

the assumptions of Lemma 1 are satisfied using

Pe =





P1 0 I
0 σr+1Il 0

I 0 E−1
1 Q1





as P , and γ = σr+1.

6.3 H∞ Error Bounds

In this section, we make the standing assumption that the Hankel singular values of G are distinct.
This simplifies the notation. The results can be strengthened if some singular values are identical,
just as in balanced truncation.

Using the error bound for balanced truncation, the H∞-norm of G can be bounded using the
Hankel singular values. If Theorem 6 is applied and all states are truncated, we obtain

‖G −G(∞)‖∞ ≤ 2

n
∑

i=1

σi.
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Optimal Hankel norm approximation can be used to improve this general bound.

If we construct the optimal Hankel approximation Gn−1, we obtain ‖G − Gn−1‖∞ = σn. The
Gramians of the system Gn−1 are given by P1E1 and E−1

1 Q1, and hence the Hankel singular values

of Gn−1 are
√

λi(P1E1E
−1
1 Q1) =

√

λi(P1Q1) = σi(G), i = 1, . . . , n−1 (the remaining Hankel singular

values). We can repeat this procedure on Gn−1, and remove Hankel singular values one by one. In
the end only a direct term D̃ = G0 remains. Applying the triangle inequality, we have

‖G− D̃‖∞ = ‖(G −Gn−1) + (Gn−1 −Gn−2) + . . .+ (G1 − D̃)‖∞ ≤
n
∑

i=1

σi. (6.6)

Hence, there always exists a constant D̃ that will shift the Nyquist diagram of G so that it is contained
in a circle of radius equal to the sum of the distinct Hankel singular values. If we use G(∞) as the
direct term, then we need to make the radius a factor two larger, in general.

Let us now return to the bound (6.4). We want an a priori bound on ‖F‖∞ since that yields a
bound on ‖G −Gr‖∞. We have that F ∈ H−

∞ is of order n− r − 1 (remember the multiplicity l = 1).
Furthermore, F∼ ∈ H∞ and ‖F‖∞ = ‖F∼‖∞. The following lemma can be derived.

Lemma 2. Assume that σi(G) are distinct, and let the optimal approximation Q ∈ H−
∞(r) of G be Q∗ =

Gr + F , such that Gr, F
∼ ∈ H∞. Then

σi(F
∼) ≤ σi+r+1(G), i = 1, . . . , n− r − 1.

Using (6.6) and Lemma 2 on F∼, there is a D̃ such that ‖F − D̃‖∞ ≤∑n
i=r+2 σi(G). It follows that

this D̃ yields

‖G−Gr− D̃‖∞ = ‖G−Gr−F +F − D̃‖∞ ≤ ‖G−Q∗‖∞+‖F − D̃‖∞ = σr+1+‖F − D̃‖∞ ≤
n
∑

i=r+1

σi.

We sum the results up in the following theorem.

Theorem 14. Suppose G ∈ H∞ is of order n, and has distinct Hankel singular values σi. Then for all
approximations Gr ∈ H∞ of order r, it holds that

σr+1 ≤ ‖G−Gr‖H ≤ ‖G−Gr‖∞.

Furthermore, there exists Gr ∈ H∞ of order r, given by the stable part of the transfer function Q∗ =
(Â, B̂, Ĉ, D̂) ∈ H−

∞(r), and D̃ such that

‖G−Gr‖H = ‖ΓG − ΓGr‖ = σr+1

‖G−Gr − D̃‖∞ ≤
n
∑

i=r+1

σi.

In particular, when r = n− 1, a solution to the optimal H∞-norm approximation problem is obtained.

6.4 Suggested Reading

Chapter 10 in Linear Robust Control gives a thorough and readable presentation of Hankel norm ap-
proximation. All the stated results above are proved there.
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6.5 Exercises

EXERCISE 6.1 (Antoulas [2004])

Let the model G be given by

G(s) =
−s+ 1

s6 + 3s5 + 5s4 + 7s3 + 5s2 + 3s+ 1
.

Compute optimal Hankel norm approximations Gr of G, and the corresponding Q∗ for r = 3 and
r = 5. Also plot the Bode diagrams of the approximation errors G − Q∗ and G − Gr, and compute
the L∞/H∞-norm of the errors.

EXERCISE 6.2

Derive a state-space algorithm that performs a stable/anti-stable decomposition of state-space mod-
els G = (A,B,C,D) ∈ L∞.

EXERCISE 6.3

Prove that there is always a unitary U that satisfies (6.5). (Hint: Show first that B2B
T
2 = CT

2 C2.)

EXERCISE 6.4

Prove that all transfer functions G ∈ H∞ of degree n (with distinct Hankel singular values) can be
expanded as

G(s) = D̃ + σ1E1(s) + σ2E2(s) + . . . + σnEn(s),

where Ei ∈ H∞ are all-pass, i.e., Ei(s)
∼Ei(s) = I , and Gr(s) = D̃ + σ1E1(s) + . . . + σrEr(s) is of

order r.

EXERCISE 6.5 (Extra)

Prove that the following lower bound on the weighted approximation criterion holds,

min
Gr∈H∞, degGr≤r

‖Wo(G−Gr)Wi‖∞ ≥ σr+1([MoGMi]+),

where σr+1([MoGMi]+) is computed as follows: Compute the (unstable) spectral factors Mo and Mi,

Mo(s)
∼Mo(s) = Wo(s)

∼Wo(s), Mi(s)Mi(s)
∼ = Wi(s)Wi(s)

∼,

such that Mo(s),Mo(s)
−1,Mi(s),Mi(s)

−1 have their poles in the the open right half half plane C+.
Here [P ]+ denotes the stable part of P .
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