
5 Frequency-Weighted Balanced Truncation and Controller Reduction

In this section, extensions of balanced truncation are presented that aim at making the approximation
criteria ‖G−1(G−Gr)‖∞ and ‖Wo(G−Gr)Wi‖∞ small. An important application of these extensions
is found in the order reduction of feedback controllers, which is discussed next.

Finally, a selection of available methods for the reduction of nonlinear models is discussed.

5.1 Frequency-Weighted Balanced Truncation

In control and filter design, and in many other applications, it is important to have good model-
match at certain frequencies, not necessarily at s = 0 or at s = ∞. Hence, we would like to have a
method that is more flexible.

A way this can be done is by introducing frequency weights (filters) Wo,Wi ∈ H∞, and to try to
make the criterion

J := ‖Wo(G−Gr)Wi‖∞
small. Hence, by choosing the weights to be large at the frequencies of interest, we can get a good
match for those frequencies, provided we have a method to make J small. One such method is a
simple frequency-weighted extension to balanced truncation. Note that when G is SISO (scalar), the
weights Wo and Wi can be lumped into a single weight W .

The fundamental lower bound (4.3) can be generalized to the frequency-weighted case,

inf
Gr∈H∞, degGr≤r

‖Wo(G−Gr)Wi‖∞ ≥ σr+1([MoGMi]+), (5.1)

where σr+1([MoGMi]+) is computed as follows: Compute the (unstable) spectral factors Mo and Mi,

M∼
o Mo = W∼

o Wo, MiM
∼
i = WiW

∼
i ,

such that Mo,M
−1
o ,Mi,M

−1
i have their poles in the the open right half plane C+. Here M(s)∼ :=

M(−s)T , and P+ denotes the sum of the stable terms of the partial fraction expansion of P (s). The
system [MoGMi]+ is then stable and of order n, and it has n Hankel singular values. The (r + 1)-th
largest singular value appears in (5.1).

A frequency-weighted extension to balanced truncation

A realization (Ã, B̃, C̃) of the weighted system WoGWi is given by

Ã =





A 0 BCi

BoC Ao 0
0 0 Ai



 , B̃ =





BDi

0
Bi



 , C̃ =
[

DoC Co 0
]

.

We have assumed that G(∞) = D = 0 without loss of generality, since D can be copied into the Gr

that is obtained by the following procedure.
Let us compute the reachability and observability Gramians P̃ , Q̃ for the weighted system with

the above realization,

ÃP̃ + P̃ ÃT + B̃B̃T = 0

ÃT Q̃+ Q̃Ã+ C̃T C̃ = 0.

The weighted Gramians for the system G are now defined by

P :=
[

In 0
]

P̃

[

In
0

]

, Q :=
[

In 0
]

Q̃

[

In
0

]

. (5.2)
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These are the blocks of P̃ and Q̃ that correspond to the states in G. The other states belong to Wo and
Wi.

The weighted Gramians have an interpretation of how controllable and observable the states of
G are as seen through the weights Wi and Wo. For example, if the initial states of the filters are zero
and the initial state of G is x0, the energy of the output signal of G filtered through Wo is given by
√

xT0 Qx0 (if u = 0). Conversely, if the initial state of all the systems are zero at t = −∞, and we want

to control the state of G in WoGWi at time t = 0 to x0, the least amount of energy in u that is needed

is given by
√

xT0 P
−1x0. Here the states of Wo and Wi have been chosen so as to minimize the energy

in u (they are free parameters).
Now the weighted Gramians (5.2) can be balanced just as the regular Gramians were in Section 3.4

and singular values can be computed. The corresponding realization can also be truncated to obtain
the reduced model Gr . (If G(∞) = D 6= 0, then one should use the approximation Gr +D.) This Gr

generally gives a small error ‖Wo(G−Gr)Wi‖∞, if the the order r is reasonably chosen. However, this
method is truly a heuristic and it can fail. There are examples where Gr even becomes unstable when
G is stable. The reason for this is that the weighted Gramians do not generally satisfy Lyapunov
equations that ensure stability.

Despite this drawback, weighted balanced truncation is simple to apply and use, and it should be
the first method of choice for weighted reduction. The method can also be modified in various ways,
as we see next and in the provided references, so that stability is maintained and error bounds like
the ones in Section 4.3 are obtained.

Balanced stochastic truncation

Many times it is important to make the relative error criterion

‖G−1(G−Gr)‖∞ (5.3)

small. For example, if one is interested in matching the Bode plots of G and Gr . The criterion (5.3)
is then suitable since the scales in Bode diagrams are logarithmic. In the SISO case, if we define
∆(jω) = (G(jω) −Gr(jω))/G(jω), it holds for small ∆(jω) that

20 log10 |Gr(jω)/G(jω)| ≤ 8.69|∆(jω)|dB, |phase G(jω) − phase Gr(jω)| ≤ |∆(jω)| rad.

We can apply frequency-weighted balanced truncation to the problem (5.3) under the additional
assumption G,G−1 ∈ H∞. This means G should be minimum phase, and G(∞) = D should be in-
vertible. These are hard restrictions but the method can be extended to cope with them as mentioned
below.

A realization of the system G−1(G−D) is given by

Ã =

[

A 0
−BD−1C A−BD−1C

]

, B̃ =

[

B
0

]

, C̃ =
[

D−1C D−1C
]

. (5.4)

The weighted Gramians can then be computed for this realization and be used for truncation. For
this particular choice of weights, one can show the following theorem.

Theorem 8. Suppose G,G−1 ∈ H∞, and let Gr be a truncated realization of G that has been balanced with
the weighted Gramians of (5.4). Then Gr is stable and minimum phase, Gr, G

−1
r ∈ H∞, and satisfies

‖G−1(G−Gr)‖∞ ≤
m
∏

i=l+1

(

1 + 2σi(
√

1 + σ2
i + σi)

)

− 1

‖G−1
r (G−Gr)‖∞ ≤

m
∏

i=l+1

(

1 + 2σi(
√

1 + σ2
i + σi)

)

− 1,

where the singular values σi are partitioned as in (4.4).
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This method can be extended to the case when G has zeros in the right half plane, i.e., when G−1

is not stable. This more general method often goes under the name balanced stochastic truncation.

5.2 Controller Reduction

In this section, the frequency weighted model reduction techniques of the previous section are ap-
plied to reduce the order of feedback controllers.
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y

Figure 5.1: A feedback-control system. The plant G is controlled by the reduced controller Kr =
K +∆.

Consider the closed-loop system in Figure 5.1. A plant G is controlled by a feedback controller Kr

(or K if ∆ = 0). If K is designed using optimal control methods (H2/H∞), the order of the controller
typically is at least as large as the plant G. In order to simplify implementation of K , we would like to
obtain a low-order controller Kr. To reduce the order of K , it is generally not a good idea to solve the
approximation problem using the criterion ‖∆‖∞ = ‖K −Kr‖∞, however. The closed-loop behavior
should be taken into account.

Robustness consideration

∆

G̃

Figure 5.2: A feedback interconnection of G̃ and ∆.

One of the many reasons to approximate models in the H∞-norm is that robust stability can be
proven by using the following sufficient condition.

Theorem 9 (Small-gain theorem). Suppose that G̃,∆ ∈ H∞. The feedback interconnection of G̃ and ∆ in
Figure 5.2 is stable if ‖G̃∆‖∞ ≤ ‖G̃‖∞‖∆‖∞ < 1.

If we look at the transfer function from l to e in Figure 5.1, it is given by e = −(I+GK)−1Gl =: G̃l.
Hence, applying Theorem 9, the closed-loop system is stable if

‖(I +GK)−1G∆‖∞ < 1 or ‖∆G(I +KG)−1‖∞ < 1. (5.5)

Note that G(I +KG)−1 = (I +GK)−1G.
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Hence, to obtain a reduced-order controller Kr that maintains stability, we can use the frequency-
weighted reduction method from the previous lecture. For example, using the weights Wi = I and
Wo = (I +GK)−1G, or Wi = G(I +KG)−1 and Wo = I .

Performance consideration

A different approximation criterion is obtained if we try to match the complementary sensitivity
functions of the system with the original and with the reduced order controller, GK(I +GK)−1 and
GKr(I +GKr)

−1. Using a Taylor expansion, we obtain

GKr(I +GKr)
−1 −GK(I +GK)−1 = (I +GK)−1G(Kr −K)(I +GK)−1 +O(‖Kr −K‖2∞). (5.6)

Hence, the weighted reduction methods can be used with Wi = (I+GK)−1 and Wo = (I+GK)−1G.
Of course, other closed-loop transfer functions can be matched in a similar way.

Plant reduction in the closed loop

+++
−

∆

K Gr

G

r y

Figure 5.3: A feedback-controlled system. The perturbed reduced plant G = (I +∆)Gr is controlled
by the controller K .

In some cases, one needs to reduce the model of the plant G, before the controller K can be
designed. Then the following argument can be used.

Assume that we have a high-order plant model G. We first reduce it to obtain Gr, and design
a controller K for Gr. Then we want to ensure that K also works for the original plant model G.
Let us model the original model G by a multiplicative perturbation to Gr, G = (I + ∆)Gr where
∆ = (G − Gr)G

−1
r , see Figure 5.3. This is a good way to parameterize uncertainty in the high-

frequency dynamics.
Now, using the small-gain theorem, the closed-loop system in Figure 5.3 is stable if

‖∆GrK(I +GrK)−1‖∞ < 1.

We cannot use this relation to obtain Gr since K is not yet designed. However, assuming that the
controller we will design is well working, it holds that GrK(I + GrK)−1 ≈ I for frequencies up to
the bandwidth. Hence, it makes a lot of sense to make the approximation criterion

‖(G −Gr)G
−1
r ‖∞ = ‖G−T

r (GT −GT
r )‖∞ (5.7)

small. This can be done by employing balanced stochastic truncation, see Section 5.1, since using that
method to make ‖G−T (GT −GT

r )‖∞ small, also yields the bound

‖(G−Gr)G
−1
r ‖∞ ≤

m
∏

i=l+1

(

1 + 2σi(
√

1 + σ2
i + σi)

)

− 1.

Compare with Theorem 8.
Hence, if reduction of the plant model needs to be performed before the control design, a relative

approximation criterion is better than the regular one. Mainly this is because a uniform bound on the
phase error comes with the relative criterion.
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5.3 Nonlinear Model Order Reduction

Nonlinear model reduction is a difficult area, and there are not many rigorous results available. The
ones we present here are some that can be numerically implemented. However, there are no perfor-
mance guarantees available.

Principal Orthogonal Decomposition

An often used method to reduce the order of a nonlinear autonomous system

ẋ = f(x), x(t) ∈ R
n (5.8)

is Principal Orthogonal Decomposition (POD). This is nothing but PCA (approximated with SVD)
applied to some relevant trajectories of (5.8). For example, one can solve (5.8) once (or many times
for different initial conditions) and construct the snapshot matrix X,

X =
[

x(t1) x(t2) . . . x(tN )
]

∈ R
n×N ,

out of samples of the representative states. Then one makes an SVD of X to find a subspace in R
n

that captures as much as possible of x(t) (in the ‖ · ‖F -norm),

X = UΣV T =
[

u1 u2 . . . un
]

ΣV T ≈ UrΣrV
T
r =

[

u1 u2 . . . ur
]

ΣrV
T
r , r < n.

One can then apply a linear coordinate transformation x = Ux̄ followed by a truncation (Galerkin
projection) to obtain a reduced model

ż = fr(z) = UT
r f(Urz), z(t) ∈ R

r. (5.9)

In general, nothing can be guaranteed about the closeness of the dynamics of (5.8) and (5.9).

Empirical Gramians

For nonlinear input-output models,

ẋ = f(x, u), x(t) ∈ R
n, u(t) ∈ R

m

y = h(x, u), y(t) ∈ R
p (5.10)

an extension to the balanced truncation method has been proposed. First, one needs to compute
Gramians that quantify how controllable and observable the states are. One way to do this is to
compute empirical Gramians. Let us assume that (5.10) is stable, and that x0 and u0 is an equilibrium
point, i.e., f(x0, u0) = 0.

The empirical reachability Gramian over the time interval [0, T ] is defined by

P (T ) =

m
∑

i=1

r
∑

j=1

s
∑

k=1

1

rsc2k

∫ T

0
Φijk(t)dt,

where Φijk(t) ∈ R
n×n is given by Φijk(t) = (xijk(t)−xijk,ss)(xijk(t)−xijk,ss)

T . Here xijk(t) is the state
of the system (5.10) corresponding to the input u(t) = ckTjeiv(t) + u0. Variables with the subscript
ss denote constant steady-state values that should be subtracted. The constants ck correspond to
excitation sizes, the orthogonal matrices Tj ∈ R

m×m denote excitation directions, and ei are the unit
vectors in R

m. Hence, the empirical Gramian is found by means of using a set of training inputs u(t)
that are quantified by choosing ck,Tj , ei, and v(t). We have the following theorem for linear systems.

33



Theorem 10. Assume (5.10) is a linear system and that v(t) = δ(t) and xijk,ss = 0. Then the empirical
reachability Gramian is equal to the regular reachability Gramian.

We can define the empirical observability Gramian over the time interval [0, T ] in a similar way. We
have that

Q(T ) =

r
∑

j=1

s
∑

k=1

1

rsc2k

∫ T

0
TjΨjk(t)T

T
j dt,

hereΨjk(t) ∈ R
n×n, and the entriesΨil

jk, i, l = 1, . . . , n, are given by Ψil
jk(t) = (yijk(t)−yijk,ss)

T (yljk(t)−
yljk,ss)

T . Here yijk(t) is the output of the system (5.10) when the initial state is x(0) = ckTjei+x0 and
u(t) = u0, where the constants ck correspond to excitation sizes, the orthogonal matrices Tj ∈ R

n×n

denote excitation directions, and ei are the unit vectors in R
n.

Theorem 11. Assume (5.10) is a linear system and yljk,ss = 0. Then the empirical observability Gramian is
equal to the regular observability Gramian.

Just as for regular Gramians, we can find a linear coordinate transformation x = T x̄ that balances
the empirical Gramians,

P̄ (T ) = Q̄(T ) = Σ =







σ1 0
. . .

0 σn






,

and the sizes of σi can be used to find initial guesses of approximation order r. The truncation of the
nonlinear system is then done as follows. Let

T =
(

t1 t2 . . . tn
)

∈ R
n×n, V =

(

t1 t2 . . . tr
)

∈ R
n×r

T−1 =
(

s1 s2 . . . sn
)T ∈ R

n×n, W =
(

s1 s2 . . . sr
)

∈ R
n×r.

The reduced order system (using a Petrov-Galerkin projection) is given by

ż = fr(z, u) = W T f(V z, u), z(t) ∈ R
r, u(t) ∈ R

m

yr = hr(z, u) = h(V z, u), y(t) ∈ R
p.

(5.11)

In general, nothing can be guaranteed about the closeness of the dynamics of (5.10) and (5.11).

Nonlinear Gramians

A theory of nonlinear Gramians and balancing is available. It has been developed by Scherpen et
al. The theory is elegant, but it may be hard to compute the nonlinear Gramians and the balancing
transformations for large systems. See, for example:

J.M.A. Scherpen. Balancing for nonlinear systems. Systems & Control Letters, 21 (1993) 143-153.

Taylor expansions of the nonlinear Gramians are considered in:
A. J. Krener. Reduced Order Modeling of Nonlinear Control Systems. In Analysis and Design of

Nonlinear Control Systems Analysis and Design of Nonlinear Control Systems, Springer, 2008.

5.4 Suggested Reading

The survey article Controller Reduction: Concepts and Approaches presents the most common methods
for controller reduction. It also discusses frequency-weighted reduction in Section III. References to
papers that discuss balanced stochastic truncation are given in Linear Robust Control.

The paper A subspace approach to balanced truncation for model reduction of nonlinear control systems
introduced the empirical Gramians, and motivates their construction.

The paper Controllabilty and observability covariance matrices for the analysis and order reduction of
stable nonlinear systems extends the concepts to more general systems.
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5.5 Exercises

EXERCISE 5.1

Let the model G be given by

G(s) =
(s2 + 0.004s + 0.04)(s2 + 0.24s + 144)

(s+ 0.001)(s2 + 0.002s + 0.01)(s2 + 0.2s + 100)
,

and let the frequency-dependent weight be

W (s) =
s2

s2 + 0.2s + 100
.

Perform model reduction to make ‖G − Gr‖∞ and ‖W (G − Gr)‖∞ small for some suitable r < 5.
How are the approximations different?

EXERCISE 5.2 (Safonov and Chiang [1988])

Let the model G be given by

G(s) =
0.05(s7 + 801s6 + 1024s5 + 599s4 + 451s3 + 119s2 + 49s + 5.55)

s7 + 12.6s6 + 53.48s5 + 90.94s4 + 71.83s3 + 27.22s2 + 4.75s + 0.3
.

Perform model reduction to make ‖G − Gr‖∞ and ‖G−1(G − Gr)‖∞ small for some suitable r < 7.
How are the approximations different?

EXERCISE 5.3

a) Show that the weighted reachability Gramian P satisfies

[

A BCi

0 Ai

] [

P P12

P T
12 P22

]

+

[

P P12

P T
12 P22

] [

A BCi

0 Ai

]T

+

[

BDi

Bi

] [

BDi

Bi

]T

= 0.

Also derive a similar relation for the weighted observability Gramian Q. What are the advan-
tages of solving these Lyapunov equations instead of the ones that P̃ and Q̃ satisfy?

b) Show that a realization of G−1(G−D) is given by (5.4), when D is invertible.

c) Show that the observability Gramian Q̃ for G−1(G−D) has the form

Q̃ =

[

Q Q
Q Q

]

,

where Q is the weighted observability Gramian of G. Also show that Q satisfies

Q(A−BD−1C) + (A−BD−1C)TQ+ CTD−TD−1C = 0.

EXERCISE 5.4

Verify the Taylor expansion (5.6).
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EXERCISE 5.5

A mechanical spring-mass system G can be modelled by

ẋ = Ax+B(u+ l) =









0 1 0 0
−174.7 −1.362 174.7 0

0 0 0 1
195.7 0 −195.7 −1.825









x+









0
1.293
0
0









(u+ l)

y = Cx =
(

0 0 280 0
)

x,

where u is the control input (a force), l is a load disturbance, and y the position of one mass. Using
pole placement and an observer, the following controller −K is obtained,

˙̂x = (A−BL−KfC)x̂+Kfy =









0 1 −194.5 0
−294.6 −33.38 478.5 14.54

0 0 −80.01 1
195.7 0 −2650 −1.825









x̂+









0.6945
−0.9197
0.2858
8.765









y

u = −Lx̂ = −
(

92.78 24.77 −35.85 −11.25
)

x̂.

(Run the provided model.m,design1.mand design2.m to load the exact models into your workspace.)
Perform controller reduction on K to obtain a lower order Kr, such that the performance of the

closed-loop system is preserved as well as possible. For example, compare the load disturbance
rejection using both K and Kr .
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