
4 Balanced Truncation and Balanced Singular Perturbation

In the previous lecture, we introduced the balanced realizations. It turns out that truncating or per-
forming singular perturbation on the balanced realizations yield good reduced models Gr that make
‖G−Gr‖∞ small, as we see in this lecture. However, before moving to the properties of such reduced-
order models, we will discuss some properties of the reachability and observability Gramians and
their relation to Lyapunov equations.

4.1 Gramians, Reachability and Observability

As seen in the previous lecture, the reachability Gramian P (T ) has a nice interpretation as it charac-
terizes the least amount of (input) energy needed to reach (from the origin) a certain state xT , leading
to the definition of the reachability ellipsoid R. From this interpretation, it can be concluded that a
system G is reachable if and only if all singular values of P (T ) are strictly positive for some T . Stated
differently, G is reachable if and only if P (T ) is positive definite (denoted as P (T ) > 0) for some T .

When G is not reachable, the reachable subspace Xreach characterizes the set of states that can be
reached from the input (Xreach = R

n when G is reachable). The reachable subspace can again be
obtained from the reachability Gramian and the equality

Xreach = R(P (T )) = R
([

B AB · · · An−1B
])

,

holds, where R(A) denotes the range of a matrix A. Moreover, [ B AB · · · An−1B ] is called the
reachability matrix of G.

Dual statements can be made for the observability Gramian Q(T ), which is positive definite
(Q(T ) > 0) for some T if and only if the system G is observable. Next, the unobservable subspace
Xunobs is given by the null space of the observability Gramian as

Xunobs = N(Q(T )) = N
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The matrix at the right-hand side is known as the observability matrix, and its null space corresponds
to that of the observability Gramian.

In the previous lectures, it was seen that the Gramians can be found as the solutions of two
Lyapunov differential equations. However, for asymptotically stable G (i.e., A Hurwitz) and infinite
horizon (T → ∞), they satisfy the following algebraic Lyapunov equations

AP + PAT +BBT = 0,

ATQ+QA+ CTC = 0.

As a result, Gramians are easier to compute for an infinite horizon. Moreover, the connection to these
Lyapunov equations provides the key to proving many properties of reduced-order systems obtained
by balanced truncation and balanced singular perturbation, as will be shown later.

4.2 Interlude: Lyapunov Equations

As Lyapunov equations play an important role in systems and control theory in general (and in
model reduction in particular), some of their properties are discussed here.

The Lyapunov equation

ATX +XA+H = 0 (4.1)
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has a unique solution X when λi(A) + λ̄j(A) 6= 0 for all i, j, where λ̄j denotes the complex conjugate
of the eigenvalue λj . Using this condition, it immediately follows that (4.1) has a unique solution
when A is Hurwitz. Namely, then Re(λi(A)) < 0 for all i.

When A is Hurwitz, the following properties hold:

i) X =
∫∞

0 eA
T tHeAtdt;

ii) X > 0 if H > 0; X ≥ 0 if H ≥ 0;

iii) If H ≥ 0, then (A,H) is observable if and only if X > 0.

The first property directly relates Lyapunov equations to the Gramians as discussed before, whereas
the last property for H = CTC retrieves our earlier result on the relation between observability and
positive definiteness of the observability Gramian.

The Lyapunov equation (4.1) is directly related to Lyapunov stability of linear dynamical systems.
To see this, the linear system ẋ = Ax is introduced as well as the Lyapunov function candidate
V (x) = xTXx. Then, differentiation of V along the trajectories of the linear system yields

V̇ (x) = ẋTXx+ xTXx = (Ax)TXx+ xTX(Ax) = xT (ATX +XA)x = −xTHx, (4.2)

where the latter equality follows from the Lyapunov equation. Using this perspective of the Lya-
punov equation, the following properties can be shown:

iv) Re(λi(A)) ≤ 0 if X > 0 and H ≥ 0;

v) A is Hurwitz if X > 0 and H > 0;

vi) A is Hurwitz if X > 0, H ≥ 0 and (A,H) is detectable.

4.3 Balanced Truncation and Singular Perturbation

When the realization of G is balanced, the semi axes of the reachability and observability ellipsoids,
R and O, are lined up in order of importance. To truncate such a realization makes a lot of sense, from
an intuitive point of view: The truncated states are not involved much in the energy transfer from
input to output. Nevertheless, truncating such a realization is a heuristic, and to this day nobody
knows if it is an optimal method in any sense. Even though balanced truncation is a heuristic, it has
many good properties.

Before we state the error bounds for balanced truncation and singular perturbation, it is good to
keep the following fundamental lower bound on the error in mind. It holds for all approximations
Gr that

inf
Gr∈H∞,degGr≤r

‖G−Gr‖∞ ≥ σr+1, (4.3)

where σr+1 is the (r + 1)-th largest Hankel singular value of G. This can be proved using Hankel
norm approximation, which is the topic of a later lecture in the course. Hence, no method can ever
perform better than (4.3).

For the sake of convenience, assume that the realization (A,B,C,D) of G is balanced as described
in Section 3.4. The reachability and observability Gramians over the infinite time horizon then satisfy

AΣ+ ΣAT +BBT = 0

ATΣ+ ΣA+ CTC = 0

where Σ is diagonal and contains the Hankel singular values. It can be partitioned into

Σ =

[

Σ1 0
0 Σ2

]

,
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where

Σ1 =







σ1Ir1 0 0

0
. . . 0

0 0 σlIrl






, Σ2 =







σl+1Irl+1
0 0

0
. . . 0

0 0 σmIrm






(4.4)

and n = r1 + . . . + rm, r = r1 + . . . + rl, and σi 6= σj, i 6= j. This notation is introduced to exploit
when singular values happen to have a multiplicity greater than one, ri > 1. Conformably to Σ1,Σ2,
the realization is partitioned into

A =

[

A11 A12

A21 A22

]

, B =

[

B1

B2

]

, C =
[

C1 C2

]

, (4.5)

so that a truncated balanced realization is given by (A11, B1, C1,D).

Properties of truncated balanced realizations

Truncated balanced realizations satisfy the following theorem.

Theorem 6. Suppose (A,B,C,D) is a balanced realization and that (A11, B1, C1,D) is a balanced trunca-
tion. Then A11 is Hurwitz, and (A11, B1, C1,D) is a minimal and balanced realization of Gr with Gramian
Σ1. Furthermore,

‖G −Gr‖∞ ≤ 2

m
∑

i=l+1

σi.

When l = m− 1 equality holds, and ‖G(0) −Gr(0)‖ = 2σm if rm is odd.

Note that for A11 to be guaranteed Hurwitz it is important that σl 6= σl+1.

For truncation, we have an exact model match of the frequency response at infinite frequency,
G(∞) = Gr(∞). Note that under certain cases it holds that the maximum error is achieved at fre-
quency zero, one can generally expect that the error is largest for small frequencies.

Properties of singularly perturbed balanced realizations

Singularly perturbed balanced realizations satisfy the following theorem.

Theorem 7. Suppose (A,B,C,D) is a balanced realization and that

(Ar, Br, Cr,D) := (A11 −A12A
−1
22 A21, B1 −A12A

−1
22 B2, C1 − C2A

−1
22 A21,D − C2A

−1
22 B2)

is a singularly perturbed realization. Then Ar is Hurwitz, and (Ar, Br, Cr,Dr) is a minimal and balanced
realization of Gr with Gramian Σ1. Furthermore,

‖G −Gr‖∞ ≤ 2

m
∑

i=l+1

σi,

with equality if l = m− 1.

For singular perturbation we always have Gr(0) = G(0).

Hence, the error bound on ‖G − Gr‖∞ holds in both cases, the question is whether one wants a
good model match at low or high frequencies.
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4.4 Suggested Reading

The relation between Gramians and reachability and observability properties can be found, for ex-
ample, in Approximation of Large-Scale Dynamical Systems by Antoulas, whereas the discussion on
Lyapunov equations is taken from Section 3.8 of Robust and Optimal Control by Zhou, Doyle, and
Glover.

The stability properties and error bounds for regular balanced truncation are derived in Sec-
tions 9.2 and 9.4–9.5 of Linear Robust Control. The fundamental lower bounds will be derived later in
the course.

4.5 Exercises

EXERCISE 4.1

Consider the model of a building that can be found in the file building.mat. It represents a model of
vibrations in an eight-floor building, where the input u represents a force acting on the building and
the output y gives the resulting velocity at the same floor.

a) Load the matrices (A,B,C,D) from the file building.mat. Is this model (asymptotically) stable,
reachable, and observable?

b) Compute and plot the Hankel singular values. Based on these Hankel singular values, what
would be suitable reduction orders?

c) Find a balanced realization and perform truncation and singular perturbation to obtain two
reduced-order models of the same order r = 4. Compare their frequency-response functions to
that of the high-order model. How are the approximations different?

d) Compute the step response (i.e., the response to an input u that satisfies u(t) = 1 for all t ≥ 0
and u(t) = 0 for all t < 0 and zero initial conditions) for the high-order system and the two
reduced-order approximations. Compare the results.

e) Verify that the reduced-order models are asymptotically stable, reachable and observable. Fi-
nally, compute the error bound and verify that it is satisfied.

EXERCISE 4.2

Let the Gramians of G = (A,B,C,D) be P and Q (any coordinates), and let Gr be a truncated bal-
anced realization of G. Let vi and wi satisfy

PQvi = σ2
i vi, wT

i PQ = σ2wT
i ,

and V =
[

v1 . . . vr
]

and W =
[

w1 . . . wr

]

. Furthermore, normalize vi, wi such that W TV =
I . Show that the system Gp that is realized by (W TAV,W TB,CV,D) has the same input-output
behavior as Gr, i.e., ‖Gr −Gp‖∞ = 0.
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