
2 SVD and PCA

2.1 Singular Value Decomposition

The singular value decomposition (SVD) of a matrix A ∈ C
n×m is arguably the most useful of all the

available matrix factorizations. The SVD reveals the complexity of A, and can be used both when A
is used as a data storage and as a linear mapping. Almost all modern model reduction techniques
use the SVD in one way or another. In this section, the basic properties of the SVD are reviewed.

First, we introduce some notation. We use the induced 2-norm of a matrix and the Frobenius
norm,

‖u‖ := ‖u‖2 =
√
u∗u, u ∈ C

m

‖A‖ := sup
x

‖Au‖
‖u‖ =

√

λmax(A∗A), A ∈ C
n×m

‖A‖F :=





n
∑

i=1

m
∑

j=1

|Aij |2




1/2

=
√

Trace(A∗A),

where ∗ is the complex conjugate transpose. The induced norm has the property ‖AB‖ ≤ ‖A‖‖B‖, for
all matrices B such that the product AB is defined. For unitary matrices U , V , we have ‖UAV ‖ = ‖A‖
and ‖UAV ‖F = ‖A‖F .

The SVD of A is defined as follows. For all matrices A ∈ C
n×m there exist unitary matrices

U =
[

u1 . . . un
]

∈ C
n×n,

V =
[

v1 . . . vm
]

∈ C
m×m,

(U∗U = UU∗ = I and V ∗V = V V ∗ = I) such that

A = UΣV ∗, (2.1)

where

Σ1 =







σ1 0
. . .

0 σp






, Σ =

[

Σ1 0
0 0

]

∈ R
n×m,

p = min{n,m}, with the singular values

σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0.

The proof of this statement is given in most modern books on linear algebra.

The following properties are useful:

• ‖A‖ = σ1 =: σ;

• ‖A‖F =
(
∑p

i=1 σ
2
i

)1/2
;

• if σ1 ≥ . . . ≥ σk > σk+1 = . . . = σp = 0, then Rank(A) = k;

• N(A) = Span{vk+1, . . . , vm} (orthonormal basis of the nullspace of A);

• R(A) = Span{u1, . . . , uk} (orthonormal basis of the range space of A);

• AA∗ = UΣ2U∗, and A∗A = V Σ2V ∗.
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An alternative way to write (2.1) is the dyadic expansion

A =

k
∑

i=1

σiuiv
∗
i . (2.2)

One can view (2.2) as a series expansion of A, with the terms in decreasing order of importance. This
follows from the Schmidt-Mirsky approximation theorem which is stated next. Assume we want to
approximate the matrix A with a matrix B ∈ C

n×m that has a rank smaller or equal to r. Then it
holds that

min
Rank(B)≤r

‖A−B‖ = ‖A−Ar‖ = σr+1,

min
Rank(B)≤r

‖A−B‖F = ‖A−Ar‖F =

(

p
∑

i=r+1

σ2
i

)1/2

,

where Ar is a truncated dyadic expansion of A, Ar :=
∑r

i=1 σiuiv
∗
i , retaining the r dominant terms.

In the induced norm ‖ · ‖, Ar is not the unique minimizer (a fact that is used in optimal Hankel norm
approximation). In the Frobenius norm ‖ · ‖F , Ar is the unique minimizer if the singular values are
distinct.

2.2 Principal Component Analysis (Proper Orthogonal Decomposition [POD])

Principal Component Analysis (PCA) can be viewed as an SVD of a function. PCA is extensively
used for model reduction since it is a flexible tool for choosing good coordinate transformations T ,
either for truncation or for singular perturbation, see Section 1.3.

Consider a signal x ∈ Ln
2 [0, T ], where

Ln
2 [0, T ] = {x : x(t) ∈ C

n, ‖x‖ < ∞},

(x, y) =

∫ T

0
x(t)∗y(t)dt, ‖x‖ =

√

(x, x) =

(∫ T

0
x(t)∗x(t)dt

)1/2

.

We define the Gramian of x by

W =

∫ T

0
x(t)x(t)∗dt ∈ C

n×n.

The Gramian is a Hermitian positive semidefinite matrix (W = W ∗). We define the n singular values
of x by

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0, σi =
√

λi(W ),

with λi(W ) being the eigenvalues of W . We can now expand x as

x(t) =

n
∑

i=1

σiuivi(t)
∗, (2.3)

where

• vi ∈ L1
2[0, T ], (vi, vj) = 0 if i 6= j, and ‖vi‖ = 1;

• ui ∈ C
n, u∗iuj = 0, if i 6= j, and ‖ui‖ = 1;

• vi(t)
∗ = u∗ix(t)/σi, and σ2

i ui = Wui.

15



The expansion (2.3) should be compared to the dyadic expansion (2.2). As seen, it can be computed
from the eigenvalues and the eigenvectors of the Gramian W (or the SVD). The i-th principal compo-
nent of x is defined by σiuivi(t)

∗, the i-th component vector by ui, and the i-th component function by
vi(t). The component vectors describe in decreasing order of importance where the energy of the
signal x is found in C

n, as seen next. The total energy of the signal x is given by the singular values,

‖x‖ =

(

n
∑

i=1

σ2
i

)1/2

.

Define the subspace in C
n that is spanned by the component vectors ui that correspond to the k ≤ n

strictly positive singular values of x (σ1 ≥ . . . ≥ σk > σk+1 = . . . = σn = 0) as

Sx = Span{u1, . . . , uk}.

If x evolves over the entire space C
n, then dimSx = n. Often, however, x falls approximately on a

subspace of lower dimension. We want to find a subspace of dimension r < k ≤ n that captures as
much as possible of the energy of x. This can be done by truncating the expansion (2.3). We have

min
dimSy≤r

‖x− y‖ = ‖x− xr‖ =

(

n
∑

i=r+1

σ2
i

)1/2

, (2.4)

where xr(t) :=
∑r

i=1 σiuivi(t)
∗. If there is a significant drop in the magnitude of the singular values

after σr, then typically only r dimensions, spanned by u1, . . . , ur , are needed to model x accurately.

2.3 Controllability Analysis

Let us apply PCA to analyze how the state-space of a model G is excited by an input u. The input-to-
state mapping is given by

x(t) =

∫ t

0
eA(t−τ)Bu(τ)dτ.

To get a unique signal x ∈ Ln
2 [0, T ] to analyze, let us apply an impulse u(t) = δ(t). We then have the

impulse response signal
x(t) = eAtB,

which lies in Ln
2 [0,∞), if A is Hurwitz. The corresponding Gramian is called the reachability Gramian,

and is given by

P (T ) =

∫ T

0
eAtBBT eA

T tdt ∈ R
n×n. (2.5)

By analyzing the principal components of x through P (T ), we can find new coordinate systems
T x̄ = x that capture the subspace of Rn that is most excited by the input u.

In practice, it is often convenient to compute the reachability Gramian through the Lyapunov
differential equation

Ṗ = AP + PAT +BBT , P (0) = 0. (2.6)

When T → ∞ and A is Hurwitz, P can be computed from the algebraic Lyapunov equation

AP + PAT +BBT = 0. (2.7)

As we shall see in the coming lectures, P (T ) contains a lot of information. For example, the sys-
tem is controllable if, and only if, P (T ) is nonsingular, and the controllable subspace is spanned by
u1, . . . , ur, when Rank(P (T )) = r.
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2.4 Recommended Reading

The SVD is treated in most modern text books on linear algebra. In Section 2.2 of Linear Robust Control,
many basic properties of the SVD are listed.

The paper Principal Component Analysis in Linear Systems by Bruce Moore pioneered the use of
PCA for model reduction. Sections I–IV in the paper is recommended reading. Balanced coordinates,
which were introduced for model reduction by Moore, will be treated in the next lecture.

2.5 Exercises

EXERCISE 2.1

a) Assume that A = UΣV T is invertible. What is the SVD of A−1?

b) Compute the SVD of A =

(

1 2
4 1

)

. Use the SVD to illustrate the mapping y = Au. What

direction in R
2 is amplified most by A?

EXERCISE 2.2

a) Compute the principal components of the impulse response x(t) = eAtB, 0 ≤ t ≤ ∞, where

A =

(

−a 0
0 −a− ǫ

)

, a > 0, a > |ǫ| ≥ 0, B =

(

b
b

)

.

Sketch the phase portrait (x1(t), x2(t)) and the component vectors as a function of ǫ. (You may
assume ǫ is small and use suitable approximations.)

b) Compute the principal components of the impulse response x(t) = eAtB, 0 ≤ t ≤ 10, where

A =

(

−0.5 2
−2 −0.5

)

, B =

(

0
1

)

.

Sketch the phase portrait (x1(t), x2(t)) and the component vectors.

c) Suggest coordinate transformations x = T x̄ for a)–b) above, and peform model truncations, see
Section 1.3. You can use

C =

(

1 0
0 1

)

.

EXERCISE 2.3

a) Prove that the reachability Gramian P (t) as defined in (2.5) satisfies (2.6).

b) How is P transformed when the coordinates are changed using a linear coordinate transforma-
tion T , T x̄ = x?

c) Show that P (t2) ≥ P (t1), t2 ≥ t1. (P (t2) ≥ P (t1) means that P (t2)− P (t1) is positive semidefi-
nite.)
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