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Overview of Today’s Lecture

 What is model (order) reduction? Why is it
Important?

« What is included in the course? What is not
Included?

* Preliminary program
« What is expected from you? How to pass?

« Sign up for course



Model (Order) Reduction

« ~59 000 000 hits in Google...

« Many different research communities use different forms of
model reduction:

Fluid dynamics
Mechanics
Computational biology
Circuit design

Control theory

« Many heuristics available. More or less well-motivated.

* |n early 1980’s some optimal approaches were developed
(using AAK-lemma) in control theory.

« Few rigorous methods known for nonlinear systems.



The Big Picture

Physical/Artificial System + Data

Modeling Modeling

G : ODES « Discretization PDEs

Model redum

(Gr :Reduced number of ODEs

N

ODE = Ordinary Differential Equation Simulation Control AnaIYSiS
PDE = Partial Differential Equation




An Incomplete Problem Formulation

Given an ODE of order n

G: #(t) = f(z(t)), =z(t)cR"

Find another ODE of order r
Gr: Z2(t) = fr(2(t), z(t)eR",r<n

with “essentially” the same “properties”.

Not enough information for problem to make complete sense,

although this captures the essence of the model-order-
reduction problem.



Problem 1: “The standard problem”

Given:

- {:w) = f(z(t),u(t)), z(t)eR™, uecl

such that ly — v
misfit(G, G,) = sup J

is small.



Problem 1 (cont’d)

« Choice of input u(t) determines what states are excited.
Could also reflect initial conditions x(0).

« Choice of output y(t) determines what property of the
states we want to preserve.

G
y(t) —yr(t) u(t) el

Gr

ly — yr|| < misit(G, G,) - ||ul|, Vuel



Problem 1 (cont’d): Trade-off
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Reduced orderr
« The trade-off curve determines suitable G,
» Acceptable misfit - Suitable reduced orders
« EXpensive to compute exact curve. Bounds often enough:

bound(r) < misfit(G, G,.) = sup

< bound(r)
7 T (



Problem 1 (cont’d)

Often the linear problem will be treated:
. {""”"(0 = Az(t) + Bu(t), =(t) €R", u € L[0, 00)
Ly@) = Ca(t) + Du(?t)

| { 2(t) = Arz(t) + Bru(t), 2z(t) € R", u € L3[0, o)
"y (®) = Crz(t) + Dru(t)




Problem 1 (cont’d)

A good model-reduction method gives us:

1. bound(r) — To help us choose a suitable approximation
order r before the reduced-order model has to be
computed; and

2. areduced-order model (f,,g,) alt. (A, ,B,,C,,D,).

Such methods exist for some classes of models (typically
linear). Many heuristics fail to provide bound(r).

Note: After a reduced-order G, model is found, usually
misfit(G,G,) can be computed (although it may be expensive)



Why Decrease the Order?

« Simulation: Each evaluation of f(x(t),u(t)) is O(n?)
operations in linear case.

« Simulation: Data compression, roughly O(n%) numbers to
store a linear model.

« Control: Computation time of LQG controller is O(n3)
operations (solve the Riccati equation).
« Control: Optimal controller is at least of order n = can be

hard to implement.

* Analysis: Curse of dimensionality. Problem complexity
often exponential in number of equations (=order).




Why Define Misfit This Way?

G

y(t) — ur(t) u(t) el _
misfit(G, G,) = sup ly = .|

ueld ||uH

A

GT N

 Misfit Is a measure of the worst-case error of the
approximation. Can be pessimistic...

« Other measures are possible, statistical for example.

« Worst-case error often good for control theory (robust
control theory).

« Simple expressions of bound(r) are available for worst-
case errors, but not for statistical error measures.




» O(n3) operations
*n~ 1000

* Provable stability,
bound(r) exist

Classification of Methods

|Basic approximation methods: Overview

Focus of
course Welghted SVD
SVD methods I Krylov methods
e Realization
» Interpolation

e Lanczos
s Arnoldi

/N

MNonlinear systems Linear systems
o POD methods e Balanced truncation
e Empirical gramians | ¢ Hankel approximation

7

| SVD-Krylov methods |

e O(r?n)
operations

en~ 106

* No provable
stability,
bound(r) does
not exist

[Figure from Approximation of Large-Scale Dynamical Systems]




7 — rank 8 r — rank 10 r —rank 20 r — rank 30

misfit(G, G,.) = .41 (0; = singular values of G)



Example 2: Chemical Reactions

Model reduction of a diesel exhaust catalyst from [Sandberg,
2006].

A Exhausts from engine Catalyst
mput. injected diesel output: measured NO,

» Reduction of NO,.
» Model by Westerberg et al. ('02)
» 24 nonlinear ODEs. Linearize around pulsating trajectory

— {4(1), B(¢1),C(2)}




Example 2 (cont’d)

Reduced-order vs. misfit trade-off
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Example 2 (cont’d)

Verification using r=1 and r=2

Step responses Approximation error
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Explanation

Kalman decomposition:

Fig. 6.2. Blockschema som
illustrerar Kalmans upp-
delning av ett godtyckligt
system i delsystemen $o,

Soiy 8u, 8.

Only S, contribute to the mapping u(t) — y(t).
Also, states in S, do not contribute equally.

G, = S, Is one obvious reduced model candidate, but we can
often reduce more with very small misfit!




Problem 2: Model Reduction with
Structure Constraints

u(t) y1(t) u(t) yr,1(t)
N e | G

79 G2 ]

—— b

Yo (t)

yr.2(t)

« States in the model G are physically constrained to certain
blocks, for example.

« Example: G, is a plant. G, is a controller.



Example 3: Networked Control

Example from [Sandberg and Murray, 2007].
l

— (5 |-
Yref + Y

+1 — ‘\
6—'— n
—G,

ilq

Y

K is a decentralized controller of P.
G models P’s interaction with the (large) surrounding environment.

G, is a local environment model, to be added to controller K. How
to choose G,?




Example 3 (cont’d)

Bode Diagram

Magnitude (dB)

107" 10° 10
Frequency (rad/sec)

« Environment G (solid blue) is a highly resonant system.

* Inopen loop, G is hard to reduce. In closed loop, only
certain frequencies are important.

* Reduced models: G, (dashed red), G, (dashed green).
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« Upper plot: Load step response with/without G,=G.
* Lower plot: Load step response with G, and Gq.

« Alow-order environment model can compensate for a very
complex environment!




Explanation

« Find proper “inputs” and “outputs” to each subsystem, which
reflect the subsystem’s interaction with the global system.

* Then apply methods that solve Problem 1.

« Motivation:
1. Low-order feedback/feedforward controllers
2. Large interconnected systems in computer science and

_ Ya
3 lt\)/:oz)%y del reducti o el o
. Modular model reduction Vs v G2~ 4




Example 4: Power Systems,

KTH-Nordic32 system Model info:
o=~ « 52 buses
Yo ,, \% « 52lines
' o—TTE=TTE\ 28 transformers
i L;‘\ I+ |+ 20 generators
R SR (12 hydro gen.)
IEe w7y
I
o
T
Study area: ,' External area:
Southern >« Simplify as much
Sweden. ﬁ;} as possible
Keep this = =y
model =

Example from [Sturk, Vanfretti, Chompoobutrgool,

Sandberg, 2012, 2014].



Results

1.001t +Full system

--Structured reduction

Time [s]

Figure 4.15: Transient of w5 after a 10 ms fault at bus 18.

10

V,qlpu]

External area has 246 dynamic states.
Reduced external area has 17 dynamic states
Evaluation on faulty interconnected system:

0.94;
0.92}
0.9

0.88¢

+Full system
+Structured reduction

'D.BEb

4

6 8 10

Time [s]

“igure 4.16: Transient of Viy after a 10 ms fault at bus 18.




What You WIll Learn in the Course

* Norms of signhals and systems, some Hilbert space theory.

* Principal Component Analysis (PCA)/Proper Orthogonal
Decomposition (POD)/Singular Value Decomposition
(SVD).

« Realization theory: Observability and controllability from
optimal control/estimation perspective.

« Balanced truncation for linear systems (with extension to
nonlinear systems).

« Hankel norm approximation.

« Uncertainty and robustness analysis of models (small-gain
theorem), controller reduction.

« Optimization/LMI approaches.
« Behavioral theory (Madhu Belur).



Course Basics

Graduate level

» Pass/falil

« 7TECTS

* Course code: FEL3500
« Prerequisites:

1. Linear algebra

2. Basic systems theory (state-space models,
controllability, observability etc.)

3. Familiarity with MATLAB



Course Material

Two books entirely devoted to model reduction are available:

1. Obinata and Anderson: Model Reduction for Control Systems
Design (online version)

2. Antoulas: Approximation of Large-Scale Dynamical Systems

These books are not required for the course (although they are very
good). Complete references on webpage.

Parts of these control/optimization books are used
1. Luenberger: Optimization by Vector Space Methods
2. Green and Limebeer: Linear Robust Control (online version)

3. Doyle, Francis, and Tannenbaum: Feedback Control Theory
(online version)




Course Material (cont’d)

« Relevant research articles will be distributed.
« Generally no slides. White/black board will be used.

« Minimalistic lecture notes (PDFs) provided every lecture,
containing:

1. Summary of most important results (generally without
proofs)

2. Exercises
3. Reading advice



To Get Credits, You Need to Complete...

1. Exercises
 EXxercises handed out with each lecture

« At the end of the course, at least 75% of the exercises
should have been solved and turned in on time

« Exercises for Lectures 1-4 due April 17
« Exercises for Lectures 5-8 due May 12

2. Exam
« A 24h take-home exam

* You decide when to take it, but it should be completed at
the latest 3 months after course ends

* No cooperation allowed
* Problems similar to exercises




Next Lecture

 Wednesday April 2 at 13:15-15 in L41.
« We start with the simplest methods:
— Modal truncation
— Singular perturbation/residualization
— Model projection
« First set of exercises handed out.

« Model-reduction method complexity increases with time in
the course.

« First exercise session on Friday April 4 is devoted to
repetition of basic linear systems concepts, Hilbert spaces,
norms, operators,...

« Hopeto see you on Wednesday!




