
Bytewalla IV
Routing and Application Layer Optimizations for

Delay-Tolerant Networks

Implement the PRoPHET’s queuing mechanism and design a solution for applications
over DTN

MICHEL HOGNERUD

Master’s Thesis at TSLab
Supervisor: Hervé Ntareme

Examiner: Peter Sjödin

iii

Résumé

Recently, a new technology known as Delay-Tolerant Networking (DTN)
has emerged. DTN seeks to address technical issues in networks that may lack
continuous network connectivity. For instance, remote villages which do not
have a permanent connectivity due to the lack of infrastructure. Several prac-
tical projects have been developed based on DTN. One of them, named Byte-
walla, is a project developed at KTH since 2009. It is a DTN implementation
running on the Android-platform and its goal is to bring Internet connectivity
to remote villages. However, the DTN applications are still very few compared
to the ones available for Internet. They are also difficult to integrate as com-
pared to regular Internet applications. This can be explained by the fact that
nowadays protocols were not designed for partly connected and disruptive en-
vironments. This thesis aims to improve the DTN implementation in Bytewalla
for better performances and to design and implement an architecture to offer
better support for regular network applications. As part of this thesis, a SMTP
application (mail client) will be integrated over DTN as a proof-of-concept for
the Android and the Ubuntu operating systems.

This report is prepared as a partial fulfillment of my Master’s thesis on
"Routing and Application Layer Optimizations for Delay-Tolerant Networks".

Keywords : DTN, PRoPHET, Android, Bytewalla, SMTP

iv

Acknowledgments
I am grateful to my supervisor Hervé Ntareme for assisting me during this thesis.
Also, I would like to offer my regards and blessings to all of those who supported

me in any respect during the completion of the project.
Stockholm, June 29, 2011

Michel Hognerud

v

Abbreviations and Acronyms

RFC Request for Comments
IPND DTN IP Neighbor Discovery
IP Internet Protocol
TCP Transmission Control Protocol
DTN Delay-Tolerant Networking
DTNRG Delay-Tolerant Networking Research Group
SMTP Simple Mail Transfer Protocol
PRoPHET Probabilistic Routing Protocol for Intermittently Con-

nected Networks
KTH Kungliga Tekniska högskolan
IPN Interplanetary Internet
IPNRG IPN Research Group
SDNV Self-Delimiting Numeric Values
OSI Open Systems Interconnection
JPL Jet Propulsion Laboratory
SQL Structured Query Language
EID Endpoint Identifiers
RIB Routing Information Base
TLV Type-Length-Value
ADU Application Data Unit
API Application Programming Interface
CCSDS Consultative Committee for Space DataSystems
DNS Domain Name System
FIFO First-In First-Out
HTML Hyper-Text Markup Language
HTTP Hyper-Text Transfer Protocol
JPL Jet Propulsion Laboratory
MX Mail Exchange Record
MOFO Most Forwarded First Out
MIME Multipurpose Internet Mail Extensions
POP Post Office Protocol
RIB Routing Information Base
SNC Sámi Network Connectivity
UML Unified Modeling Language
URI Uniform Resource Identifier
UDP User Datagram Protocol
SNMP Simple Network Management Protocol

Contents

Contents vi

1 Introduction 1
1.1 Overview . 1
1.2 Problem Statement . 1
1.3 Criteria . 3
1.4 Thesis Organization . 5

2 Background and Related Work 7
2.1 Motivation . 7
2.2 DTN Concept . 7

2.2.1 Early research . 8
2.2.2 NASA and IPN . 8
2.2.3 DTNRG . 8

2.3 DTN Applications . 9
2.3.1 DakNet . 9
2.3.2 N4C . 9
2.3.3 Sámi Network Connectivity (SNC) 10

2.4 Bytewalla . 10
2.4.1 Bytewalla I . 10
2.4.2 Bytewalla II . 10
2.4.3 Bytewalla III . 11

2.5 Routing in Delay-Tolerant Network 11
2.6 Summary . 12

3 Specifications 13
3.1 The Bundle Protocol . 13

3.1.1 DTN Architecture . 13
3.1.2 Application Data Units, Bundles, Blocks 14
3.1.3 Bundle Status Reports . 15

3.2 Routing . 16
3.2.1 Epidemic routing . 17
3.2.2 PRoPHET . 17

vi

CONTENTS vii

3.3 Neighbor Discovery . 18
3.4 Summary . 18

4 Contribution 19
4.1 Queuing mechanism . 19

4.1.1 Queuing Policies . 19
4.2 Applications over DTN . 20

4.2.1 Requirements . 21
4.2.2 Application to DTN Interface 21
4.2.3 Identifying the bundles . 23
4.2.4 Synchronous Data Access . 24

4.3 Case: SMTP over DTN . 26
4.3.1 SMTP over DTN Architecture 26
4.3.2 SMTP Protocol Spoofing . 26

4.4 DTN Management . 27

5 Implementation 31
5.1 Software Development Approach . 31
5.2 Queuing Mechanism . 31

5.2.1 Design in Bytewalla . 31
5.2.2 Queuing Policies . 32

5.3 Applications over DTN . 33
5.3.1 Ubuntu . 33
5.3.2 Android . 37

5.4 DTN Management . 39

6 Testing & Analysis 41
6.0.1 Test environment . 41
6.0.2 Methodology . 42
6.0.3 Measurements . 42
6.0.4 Observations and Summary 42

7 Conclusion 45
7.1 Summary . 45
7.2 Future Work . 45

A Testing FIFO and MOFO 47

Bibliography 51

Chapter 1

Introduction

1.1 Overview
Internet allows people to communicate from far distances. It is a great oppor-

tunity for many people and the economy. Nevertheless, not everyone has access to
these technical facilities. Some areas, especially developing countries and rural areas
do not have this chance, hence increasing the gap between developed and developing
countries. In other situations, such as recently in the Arab world, access to Internet
is disabled and prevents people from communicating with the rest of the world.

In order to provide connectivity to remote areas, Bytewalla was started at KTH
in Fall 2009. Bytewalla provides an application which helps to carry data in mobiles
from the source to the destination, similar to a postman collecting letters to offices.

Several applications have already been developed with Bytewalla. For example
mail integration and a healthcare application. In this thesis however, DTN has been
optimized for developing applications easily on it. A solution has been studied and
implemented in order to reply to this issue. Also, optimization techniques have been
considered and partially implemented to improve applications communications over
DTN. These improvements should help DTN to penetrate in real-world situations
and make it easier to implement applications in DTN environments.

1.2 Problem Statement
Since the birth of computer-mediated communication was first implemented in

the US in the early 1960s, Internet has known a high adoption rate in the indus-
trialized countries. It has now become part of many people’s lives as a convenient
real-time communication solution, and plays a major role in the economy.

However, there are great disparities in opportunity to access the Internet be-
tween developed and developing countries. This has been described as the term
“global digital divide”. Global digital divide points out the geographical division for
Internet access. The emergence of the information revolution in countries like Swe-

1

2 CHAPTER 1. INTRODUCTION

den and United Stated has reinforced their lead in the economy, while developing
countries did not get profit from it, increasing the gap between these countries. [32]

Recent surveys show great differences in Internet usage between world regions
[41]. Hence, 77.3% of the population of the United States has access to Internet.
Scandinavia has even greater penetration, with 86.1%, 92.5%, 94.8% for Denmark,
Sweden and Norway respectively. On the opposite, countries such as Burkina Faso,
Congo and Bangladesh have respectively 1.1%, 0.5% and 0.4% of their population
which have access to Internet. On a more global scale, we see that Europe, North
America and Oceania have the highest rates on contrary to world regions such as
Africa and Asia.

In order to provide connectivity to rural areas and challenged networks, a new
approach known as Delay-tolerant networking (DTN) was developed. DTN is meant
to provide connectivity in heterogeneous networks that may lack continuous con-
nectivity due to disruptions or considerable delay.

However, in these challenge environments, popular ad hoc routing protocols
such as AODV (Ad hoc On-Demand Distance Vector Routing) fail to establish
routes. A routing protocol named PRoPHET for “Probabilistic Routing Protocol
for Intermittently Connected Networks” was developed since 2003 by Lindgren, et
al [2]. In realistic situations, data mules encounters are rarely random. They move in
a society and tend to have greater probabilities to meet certain mules than others.
Hence, PRoPHET makes use of their history of encounters to maintain a set of
probabilities for successful deliveries to known destinations and to route the data
through the mules which have the best chances of delivering the data to its final
destination.

The Bytewalla project was started at KTH in Fall 2009. Bytewalla is the DTN
implementation on the Android-platform. The purpose is to connect African rural
villages using Android phones with delay-tolerant networking [13]. The idea behind
it is that people traveling between villages and cities while carrying their phones
will carry data along their movements. The scenario is explained it the Figure 1.1. A
"mule" (an Android phone) will connect a WiFi access point located in a village with
no connectivity to Internet, and download the data. Once it reaches the city, the
data’s destination, the phone connects to the local WiFi access point and uploads
the data. This works also on the other way, city to village.

Bus and cars doing regular trips between villages and cities could be used as
mules by carrying an Android-phone running Bytewalla.

Bytewalla also includes the PRoPHET routing protocol. However the queuing
mechanism which is necessary to know which bundles to drop when the storage
gets full is missing from the implementation. Mobile phones storage space may be
overloaded in case the mule receives a lot of data and it should have mechanisms to
determine what data to drop first according to characteristics such as their priority
or their delivery probabilities.

1.3. CRITERIA 3

Figure 1.1. The Bytewalla System

Along with the implementation of DTN on the Android-platform, a few applica-
tions such as emails, management tool and healthcare have been developed making
use of DTN. However, integrating applications over DTN is still not a convenient
process as most applications are optimized for TCP/IP communications.

In his paper [38], Jörg Ott talks about the difficulties met with integrating an
application protocol with a mobile Internet. As he says, "the semantics of many of
today’s non-real-time-applications are perfectly compatible with disruptive mobile
environments, it is just the protocol designs that are not". He points out some issues
such as working with intermediaries and protocol operations. For example, sending
a mail on Internet requires to go through intermediaries known as mail servers. In
order to avoid single points of failures, applications should be designed for direct end-
to-end operation, while the intermediaries would only focus on message forwarding.
Also, entities need to be more proactive and communicate all their intentions at
once rather than iteratively interacting with a peer, as each iteration would bring
much more delay to the operation.

With Bytewalla, using emails with DTN requires to setup and configure many
tools such as DNS, Postfix and Python [22] on the machine from which the mail is
being sent. This is a complicated and a very resource hungry system, especially for
devices which do not have regular energy supply.

1.3 Criteria

A set of requirements have been established as defined below. But first, a liter-
ature study is carried out considering DTNs specifications.

4 CHAPTER 1. INTRODUCTION

The main objective is to provide an architecture which improves applications
integration on DTN, their management as well as their reliability and delays. At
the end, the system is tested to check that its functionalities are working accord-
ingly with our goals. The other objective is the improvement of the PRoPHET
implementation with queuing mechanisms. Hence, the main requirements are:

1. Implementation of PRoPHET’s queuing mechanisms.
The implementation will strictly follow the PRoPHET specification from “Lind-
gren, et al” and it will be a part of the existing Android application Bytewalla.
The implementation must be flexible enough to be able to use different queuing
policies according to the application’s configuration. We will also implement
two queuing policies depending of their efficiency which will be discussed in
Chapter 4.

2. Design and implementation of the Application Layer Optimization.
The application layer stands over the Bundle Protocol layer. The thesis goal
is to ease the development of applications on top of DTN.
– As for now, it is difficult to use DTN with multiple applications. The Bundle

Protocol does not provide any information about the applications to which
the bundles is intended to be delivered, as ports do in the TCP/IP model.
Hence, we will provide a mechanism for using multiple applications in the
same DTN network.

– Developing an application for DTN is not an easy process as the email
integration in Bytewalla 1 shows. Hence, we will propose an interface to
run applications on a DTN network (e.g. Bytewalla) and to help building
applications on top of DTN without having to worry about the underlying
DTN layers.

– The Application Layer Optimization will also give the ability to include
optimization techniques to improve delay, reliability such as protocol spoof-
ing. Protocol spoofing will let the applications communicate "all-at-once"
instead of iteratively.

– A management interface will be developed to provide administrators with
statistics and information about the application communications over DTN.

– Based on this system, it will also be possible to implement more tools.
For example a subscription service: a village in a remote area could receive
courses on a regular basis with DTN.

In order to achieve this we will present its design and implement a proof-of-
concept tool for the DTN nodes. This tool will include optimization techniques
and interfaces to the applications willing to communicate through DTN. Be-
sides, we will deliver a management interface allowing the administrator to
view and configure the network. This is more thoroughly described in Chapter
4.

3. Performance analysis.
The existing tools (Bytewalla, Application Layer, DTN daemon) will be tested
in order to ensure it works efficiently.

1.4. THESIS ORGANIZATION 5

1.4 Thesis Organization
The thesis is organized in 8 chapters. The Chapter 2 presents the background

of the DTN concept and the related work. The related work is a set of DTN related
projects which have been conducted in the past or are still continued. One of this
related project is named Bytewalla or is the project on which this thesis is based.
Bytewalla has been through three iterations already and the work performed as
part of this project is presented in Section 2.4. Then in Chapter 3, we present the
technical background and the specifications required as part of this thesis. This in-
cludes the Bundle Protocol and its some of its companion concepts such as the DTN
routing protocols and the Neighbor Discovery mechanism. Following this chapter,
we present in Chapter 4 the design of our implementation. There we discuss about
the available solutions and we explain our choices. Logically, we then explain the
implementation part in Chapter 5. Finally we test the implementation and measure
its performance in Chapter 6.

Chapter 2

Background and Related Work

This chapter first explains the need for the DTN technology in 2.1. Then we
identify the different research groups involved in the field, and we present their
contributions which led to the current standards of DTN. Later on, we give an
overview of some the practical applications which have been developed with the
idea of delay and disruption-tolerant networks. Finally, we focus on some of the
research which was performed for routing protocols in Delay-Tolerant Networking.

2.1 Motivation
The current Internet protocols do not perform well in some environments be-

cause of some of their fundamental assumptions which are built-on their architec-
tures:

1. An end-to-end path exists between a data source and its peer
2. The maximum round-trip time between any node pairs in the network is not

excessive
3. The end-to-end packet drop probability is small
Unfortunately, challenged networks may not be able to meet these assumptions.

Such examples are Inter-planetary networks and Terrestrial Mobile Networks (un-
expected partition due to nodes mobility).

In an effort to adapt Internet to unusual environments, research in this area
was conducted since a few decades ago as described in the next section. It has first
been focusing on Inter-planetary networks, but some research groups have recently
decided to work on terrestrial networks.

2.2 DTN Concept
The DTN history goes back to many years ago. It started with a project led

by several space agencies and later evolved into a terrestrial network based on the
previous work. Today, a whole research field has emerged around the DTN concept.

7

8 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.1 Early research

The Consultative Committee for Space DataSystems (CCSDS)[21] composed of
world’s space agencies was created in January 1982 at an International Workshop
on Space Data Systems held in Washington DC, USA. The CCSDS’s goal was to
develop advanced standardized solutions for exchanging space mission data. As part
of this, the members created the final CCSDS Recommendations which served to
guide the internal development of standards by each of the members.

2.2.2 NASA and IPN

In 1998, Vint Cerf and scientists from NASA’s Jet Propulsion Laboratory (JPL)
started working on Interplanetary Internet (IPN). In the IPN scenario, transmission
is subject to significant delays and intermittent connectivity due to planets and
spacecrafts movements.

In August 2002 the IPN research group (IPNRG) published the draft "Delay-
Tolerant Network Architecture: The Evolving Interplanetary Internet" [16] which
describes the architecture designed for IPN. This work led to the concept of bundles
as a way to address the Store-and-Forward problem. Bundles are an area of new
protocol which sits above the Transport layer in the OSI model.

2.2.3 DTNRG

The DTNRG (DTN Research Group) was formed in 2002 to generalize the IP-
NRG’s work to networks other than those operating in deep space. It proposes an
alternative to the Internet TCP/IP end-to-end interactive delivery model and em-
ploys hop-by-hop storage and retransmission as a transport-layer overlay [28].The
main difference between interplanetary-networks and terrestrial networks is that
IPN works in a scheduled manner while terrestrial networks are in general op-
portunistic. However they have in common that they both deal with delays and
disruptions.

The DTNRG released a description of the architecture of DTN [19] in 2003.
Since then, the DTNRG published more documents. Some of the more important
ones are:

1. RFC 4838 “Delay-Tolerant Networking Architecture” [14]

2. RFC 5050 “Bundle Protocol Specification” [10]

3. Delay Tolerant Networking TCP Convergence Layer Protocol (Internet Draft)
[37]

4. UDP Convergence Layers for the DTN Bundle and LTP Protocols(Internet-
Draft [36]

2.3. DTN APPLICATIONS 9

Figure 2.1. The DakNet concept

2.3 DTN Applications
Here we present some of the practical applications for delay and disruption-

tolerant networks. All these applications have different goals such as animal tracking
or providing Internet connectivity but they are all more or less working with delay-
tolerant networks.

2.3.1 DakNet
DakNet [4], developed by MIT Media Lab researchers, was one of the first practi-

cal application with DTN. Its goal is to provide very low-cost digital communication
to remote villages. It has been deployed in remote parts of both India and Cam-
bodia. In Figure 2.1, a bus carrying a mobile access point travels between village
kiosks and a hub with Internet access. Data automatically uploads and downloads
when the bus is in range of a kiosk or the hub.

It has been used to send voice messages and emails.

2.3.2 N4C
The Networking for Communications Challenged Communities (N4C) project is

funded by the European Union to provide connectivity to remote European regions.
Indeed, many regions do not have links to the world networks because they are
sparsely populated or have a relatively poor economic base.

Hence, with the help of DTN, N4C aims to create an ‘opportunistic networking
architecture. Two testbeds are set up in Swedish Lapland and Slovenian’s mountain.

Three application tests were carried out on animal tracking, pod cast application
and meteorological data. [35]

10 CHAPTER 2. BACKGROUND AND RELATED WORK

2.3.3 Sámi Network Connectivity (SNC)

SNC is a project which seeks to establish Internet communication for the Saami
population who live in remote areas in Northern Scandinavia. This community is
nomadic and has poor infrastructure to access information.

SNC is conducted at the Luleå University of Technology (Sweden).

2.4 Bytewalla
Bytewalla is the project which serves as a basis for this thesis. Its objective is

to connect rural and remote areas to Internet. In order achieve this, the DTNRG
implementation was ported on the Android platform along with the development of
some DTN applications.

In this section we present the three steps that compose the Bytewalla project.
Bytewalla consists of two semester group projects and one thesis which precisely fo-
cused on the security considerations. The two other iterations led to the implemen-
tation of DTN on the Android platform along with a couple of DTN applications.
Each iteration includes the features from the previous iteration.

2.4.1 Bytewalla I

Bytewalla I was the first iteration of the Bytewalla Project. It was held in Fall
2009 in KTH. The main objectives were:

1. Porting the standard DTN implementation on the Android platform.
The standard DTN implementation was developed by DTNRG [29].

2. Email integration.
Bytewalla chose to develop an email application which serves as a proof-of-
concept for their DTN implementation. The application can support MIME
types ([25], [26], [33], [34], [23]) as payload. Hence, the users can attach any
digital files such as images, videos, voices to the email as well.
The integration relies on the mail system POSTFIX and a DNS server which
need to be installed to send and receive emails. Some Python scripts are also
required in order to convert the mails into bundles and vice versa. The setup
must be configured following two documents: Postfix DTN2 Integration [7]
and Postfix and DNS [6]. It is a long process (17 pages of instruction in total)
and requires many tools (Postfix, DNS, Python).

2.4.2 Bytewalla II

Bytewalla II was a thesis conducted in Spring 2010 [18].
The thesis main objective was to deploy a standardized security solution for

DTN networks in Android, which could be implemented in Bytewalla. The work

2.5. ROUTING IN DELAY-TOLERANT NETWORK 11

was based on several documents such as DTN Security Overview [20] and Bundle
Security Protocol Specification [42].

2.4.3 Bytewalla III

Bytewalla III was a group project conducted in Summer 2010 and was focusing
on several objectives:

1. Implementation of PRoPHET
PRoPHET was integrated into Bytewalla, following the PRoPHET Internet-
Draft version 8 [3].

2. Neighbor Discovery
Before then, the addressing was static. Thus, nodes were not able to discovery
each other. With Neighbor Discovery, nodes can discover their neighbors and
start exchanging information. This work was an implementation of the DTN
IP Neighbor Discovery (IPND) InternetDraft [9].

3. Network Management Tool [11]
One of the two applications that were developed in Bytewalla 3 is the Network
Management Tool. This tool informs the administrators about the statistics of
the DTN network, such as the number of bundles delivered, transmitted, and
so on. Besides that, it also let the administrator generate a new configuration
file for the DTN daemon. However the administrator would need to replace the
actual configuration file manually. Also, this tool only gives global statistics
and does not provide information specific to a bundle such as whether it was
delivered.

4. Sentinel Surveillance Application [12]
The other one is the Sentinel Surveillance Application. This is a healthcare ap-
plication whose goal is to provide communication to doctors in remote areas.
Doctors can register records about their patients and everything is synchro-
nized with a remote server. Every time a record is added to the database,
the SQL query is bundled and sent to the remote host through the Bundle
Protocol. The receiver then unpacks the bundle and execute the SQL query
on its own database.

2.5 Routing in Delay-Tolerant Network
Traditional TCP/IP routing protocols cannot be used with DTN. These proto-

cols try to establish and complete end-to-end route, and then forward the data. In
the DTN case, this is not possible as end-to-end paths are difficult or impossible to
establish. Hence, a “store and forward” approach is adopted.

Several routing protocols have been designed based on this approach. Epidemic
routing was the first routing protocol designed for DTN [43]. It is flooding-based in
nature: nodes continuously replicate the data to other nodes as they meet, so that

12 CHAPTER 2. BACKGROUND AND RELATED WORK

the data eventually reaches its destination. Epidemic routing is resource hungry as
it makes duplication of the data without attempting to eliminate the duplications
which do not improve the delivery probability. With mobile devices having limited
storage and energy capacities, resources should be used wisely.

Hence, PRoPHET is a variant on the epidemic routing protocol and aims to
reduce resource usage and still attempt to achieve the best case routing capabili-
ties for epidemic routing. The key idea is that in real-world situations, encounters
between data mules are not random as the mules move in a society. So if a mule
has already met another mule, it is likely that they will meet again. So PRoPHET
keeps track on the encounters a mule makes and computes the delivery probabilities
for each known node. This way, data is passed from a node to another one only if
it increases the chances of delivery.

2.6 Summary
In this chapter we introduced the concept of Delay Tolerant Networking. First

we explained the motivation for developing Delay Tolerant Networking, then we an
overview of its historical background, and finally, we showed some of its practical
applications along with the development of the routing protocols in DTN.

The next chapter will focus on Bytewalla, on which this thesis bases itself.

Chapter 3

Specifications

This chapter presents the specification necessary to understand this thesis. This
includes the DTN architecture and the Bundle Protocol, as well as the DTN routing
protocols and the Neighbor Discovery mechanism. All these concepts will be involved
in the design and the implementation part of this thesis.

3.1 The Bundle Protocol

3.1.1 DTN Architecture

The RFC 4838 describes the architecture for Delay-Tolerant Networks. As stated
before, the Internet architecture relies on assumptions like end-to-end connectivity
and low round-trip delays. To circumvent these requirements, the DTN architecture
has adopted a store-and-forward approach. Data are packed into bundles which are
saved with persistent storage. Hence the nodes can keep the data even over long
network disruptions.

According to the DTN architecture, the bundle layer is above the transport
layer. Not all transport protocols provide the exact same functionality, so some
adaptation is required between the transport protocols and the bundle protocol.
This is accomplished by a set of convergence layers placed between the bundle
layer and underlying protocols. The convergence layer takes care of the specificities
of the transport protocol and presents a consistent interface to the bundle layer.
The complexities of the convergence layers depend on the transport protocol. For
example the TCP convergence layer [37] would not have to worry about reliability
as it is already implemented in TCP, while the UDP convergence layer [36] may
handle it itself.

Nodes are identified with Endpoint Identifiers (EID). Each node is required to
have a unique EID. An EID is a name using the syntax of URI [8].

For reliability, the bundler layer provides two options: end-to-end acknowledg-
ments (Bundle Status Reports) and custody transfer. DTN applications may also

13

14 CHAPTER 3. SPECIFICATIONS

 +----------------+----------------+----------------+----------------+

 | Version | Proc. Flags (*) |

 +----------------+----------------+----------------+----------------+

 | Block length (*) |

 +----------------+----------------+---------------------------------+

 | Destination scheme offset (*) | Destination SSP offset (*) |

 +----------------+----------------+----------------+----------------+

 | Source scheme offset (*) | Source SSP offset (*) |

 +----------------+----------------+----------------+----------------+

 | Report-to scheme offset (*) | Report-to SSP offset (*) |

 +----------------+----------------+----------------+----------------+

 | Custodian scheme offset (*) | Custodian SSP offset (*) |

 +----------------+----------------+----------------+----------------+

 | Creation Timestamp time (*) |

 +---------------------------------+---------------------------------+

 | Creation Timestamp sequence number (*) |

 +---------------------------------+---------------------------------+

 | Lifetime (*) |

 +----------------+----------------+----------------+----------------+

 | Dictionary length (*) |

 +----------------+----------------+----------------+----------------+

 | Dictionary byte array (variable) |

 +----------------+----------------+---------------------------------+

 | [Fragment offset (*)] |

 +----------------+----------------+---------------------------------+

 | [Total application data unit length (*)] |

 +----------------+----------------+---------------------------------+

Figure 3.1. The Bundle Primary Block

implement their own reliability mechanism.

3.1.2 Application Data Units, Bundles, Blocks
Applications communicate with the bundle layer to send and receive data. When

an application sends an application data unit to the bundle layer, the bundle layer
will pack the data into one or more bundles (Bundle Protocol Data Units).

Each bundle is composed of at least two blocks:
1. Primary Bundle Block (see Figure 3.1)

This is the first block. It contains information such as the source, the desti-
nation, lifetime, creation timestamp.

2. Bundle Payload Block (see Figure 3.2)
This block contains the payload received from the application layer.

3. Extension blocks (see Figure 3.3)
These blocks are optional. They are used for specific cases.

Extension blocks and the Bundle Payload Block all follow a common format (block
type, flags, length, content). The Bundle Payload Block’s type code is 1.

3.1. THE BUNDLE PROTOCOL 15

 +----------------+----------------+----------------+----------------+

 | Block type | Proc. Flags (*)| Block length(*) |

 +----------------+----------------+----------------+----------------+

 / Bundle Payload (variable) /

 +---+

Figure 3.2. The Bundle Payload Block

 +-----------+-----------+-----------+-----------+

 |Block type | Block processing ctrl flags (SDNV)|

 +-----------+-----------+-----------+-----------+

 | Block length (SDNV) |

 +-----------+-----------+-----------+-----------+

 / Block body data (variable) /

 +-----------+-----------+-----------+-----------+

Figure 3.3. The Bundle Extension Block

3.1.3 Bundle Status Reports

As we saw in the Subsection 3.1.1, the end-to-end reliability mechanism is en-
sured by Bundle Status Reports. Bundle Status Reports are standard bundles whose
payload is a status report. The reports can inform the node indicated in the Report-
To field about different types of events:

1. The reception of a bundle

2. The forwarding of a bundle

3. The delivery of a bundle

4. The deletion of a bundle

It includes the time of the event and provides the identifiers of the bundles concerned
by the status reports.

The Figure 3.4 shows the representation of a bundle status report.
The status flag informs about what the status report is reporting (e.g. received

bundle, forwarded bundle, etc.).
The reason code informs about the reason for the event that is being reported

(e.g. lifetime expired, transmission canceled, depleted storage, etc.).
The fragment fields are only used for fragmented bundles.

16 CHAPTER 3. SPECIFICATIONS

 +----------------+----------------+----------------+----------------+

 | Status Flags | Reason code | Fragment offset (*) (if

 +----------------+----------------+----------------+----------------+

 present) | Fragment length (*) (if present) |

 +----------------+----------------+----------------+----------------+

 | Time of receipt of bundle X (a DTN time, if present) |

 +----------------+----------------+----------------+----------------+

 | Time of custody acceptance of bundle X (a DTN time, if present) |

 +----------------+----------------+----------------+----------------+

 | Time of forwarding of bundle X (a DTN time, if present) |

 +----------------+----------------+----------------+----------------+

 | Time of delivery of bundle X (a DTN time, if present) |

 +----------------+----------------+----------------+----------------+

 | Time of deletion of bundle X (a DTN time, if present) |

 +----------------+----------------+----------------+----------------+

 | Copy of bundle X’s Creation Timestamp time (*) |

 +----------------+----------------+----------------+----------------+

 | Copy of bundle X’s Creation Timestamp sequence number (*) |

 +----------------+----------------+----------------+----------------+

 | Length of X’s source endpoint ID (*) | Source

 +----------------+---------------------------------+ +

 endpoint ID of bundle X (variable) |

 +----------------+----------------+----------------+----------------+�

Figure 3.4. Bundle Status Report

The "Time of" fields report the time of the event The status flag informs about
what the status report is reporting (e.g. received bundle, forwarded bundle, etc.).

The "Copy of bundle X’s Creation Timestamp time" field is a copy of the creation
timestamp time of the bundle that the status report concerns. It helps to identify
the bundle whose the status report is originating from.

The "Copy of bundle X’s Creation Timestamp sequence number" field is a copy
of the creation timestamp sequence number of the bundle that the status report
concerns. It helps to identify the bundle whose the status report is originating from.

The last fields (i.e. "Length of X’s source endpoint ID" and "Source endpoint ID
of bundle X" gives the source of the bundle for which the status report was sent.

3.2 Routing

Routing is a really important part of DTN. It impacts on the delay and the
bundles delivery success rate. The simplest one is known as Epidemic routing but
some other solutions have been developed. One of them, briefly presented in the
previous chapter, is known as PRoPHET. Hence we will focus especially on the
PRoPHET specification.

3.2. ROUTING 17

3.2.1 Epidemic routing
Epidemic routing is a flooding-based type of routing protocol. Nodes will con-

tinuously replicate and transmit bundles to the other nodes their meet. No effort is
made to limit the resource usage; however it offers high delivery probabilities.

3.2.2 PRoPHET
On contrary to epidemic routing, PRoPHET aims to a more efficient routing

protocol which reaches as good delivery predictabilities as epidemic routing while
using less resource.

When two nodes discover each other, they start the Information Exchange Phase.
First, the node will send a Routing Information Base Dictionary (RIB Dictionary)
TLV (type-length-value) to the node it is peering with. This is a dictionary of the
Endpoint Identifiers (EIDs) of the nodes which will be referenced in the Routing In-
formation Base. The next step is to send the Routing Information Base (RIB) TLV.
This contains the list of EIDs that the node has knowledge of with corresponding
delivery predictability. Upon reception of the RIB, the node updates its delivery
predictabilities and determines which of its stored bundles it wished to offer. After
the decision is made, it sends a Bundle Offer TLV containing the bundle identifiers
and their destination that the node wishes to offer.

PRoPHET contains an algorithm to calculate the delivery predictabilities ac-
cording to the node’s history. The mule A stores delivery predictabilities P(A, B)
for each known destination B. If the mule A has no delivery predictability stored
for mule B, the value is assumed to be zero. The delivery predictabilities are re-
calculated according to three rules:

1. When the mule A encounters the mule B, the predictability for B is increased:

P (A,B) = P (A,B)old + (1 − δ − P (A,B)old) ∗ Pencounter

, where 0 <= Pencounter <= 1 is a scaling constant setting the rate at which
the predictability increases on encounters after the first and delta is a small
positive number that effectively sets an upper bound for P (A,B).

2. If the mule A does no encounter another mule B during some interval, the
predictability is “aged”:

P (A,B) = P (A,B)old ∗ γK

, where γ is the “aging constant” and K is the number if time units that has
elapsed since the last aging.

3. Predictabilities are exchanged between A and B and the transitive property
of predictability are used to update the predictability of destinations C for
which B has a stored P (B,C):

P (A,C) = MAX(P (A,C)old, P (A,B) ∗ P (B,C)old ∗ β

18 CHAPTER 3. SPECIFICATIONS

Figure 3.5. The beacon format

, where β is a scaling constant

3.3 Neighbor Discovery
DTN IP Neighbor Discovery (IPND) is documented in the Internet-Draft [9].

Shortly, it is a method for nodes to learn of the existence, availability and addresses
of other nodes. IPND periodically sends (broadcast) and receives beacons to/from
other nodes. These beacons are small UDP messages and contain information such
as the address of the node. Upon reception of a beacon, a node will establish contact
with the discovered node. IPND has been implemented in the DTNRG implemen-
tation.

In the DTNRG implementation, the beacon format is presented in the Figure
3.5.

CL Type: The convergence layer type informs the type of convergence layer
option advised.

Interval: The interval for periodically sending beacons.
Port: Usually set to 4556 (the standard DTN port)
Length of EID/EID: The EID of the node sending the beacon

3.4 Summary
In this chapter we have presented the specification and the technical aspects of

the Bundle Protocol, the routing in DTN and the Neighbor Discovery mechanism.
Next chapter show the design of our solutions for the Queuing mechanism and the
Application Layer

Chapter 4

Contribution

This chapter focuses on the solutions and the designs investigated by the author
of this thesis. This chapter first explains the queuing mechanism architecture and
the queuing policies that are included as part of the implementation. Then we focus
on the Application Layer. First we go through the possible solutions and then we
move on to a specific case with SMTP over DTN. Finally we discuss the DTN
management improvements.

4.1 Queuing mechanism
Every time a bundle is added to the storage, the application should check for

maintaining the quota. This is where the queuing mechanism intervenes. This should
be developed in a modular way, so that the user can easily switch from one queuing
policy to another one, or even add its own queuing policy. Each policy will be
responsible for returning the "first" bundle in the queue, i.e. the bundle to be deleted
first. The quota maintenance and the bundle deletion procedure is common to all
queuing policies.

Hence, as the Figure 4.1 shows, the queuing policies will be implemented in their
own classes and they will all inherit from a common ProphetQueuing class.

4.1.1 Queuing Policies

We chose which policies to implement according to their efficiency in terms of
delay and deliverability. Lindgren, A. and Phanse, K.S. have proposed and evaluated
some policies [31]. The queuing management policies which are evaluated in this
paper are:

1. FIFO – First in first out.
2. MOFO – Evict most forwarded first.
3. MOPR – Evict most favorably forwarded first. The node keeps a value FP

for each message. Each time a message is forwarded, its value FP is updated:

19

20 CHAPTER 4. CONTRIBUTION

+delete()
+getLastBundle()
+removeNextBundle()
+maintainQuota()

ProphetQueuing

+getLastBundle()

Fifo

+getLastBundle()

Mofo

Figure 4.1. Queuing Classes UML

FP = FPold +P , where P is the deliverability predictability for the receiving
has for the message. The message with the lowest FP value will be dropped
first.

4. SHLI – Evict shortest life time first.

5. LEPR – Evict least probable first. Drop the message which has the destination
with the lowest predictability.

According to the paper, each queuing policy has been tested with 5 forwarding
strategies and different queue sizes. However MOPR and LEPR are not applicable
to two forwarding strategies. Hence we focus only on the three other remaining
queuing policies.

About the deliverability, it appears that MOFO is the most efficient one no
matter the queue size with three of the 5 forwarding strategies. Of the three policies
applicable to all forwarding strategies, SHLI is in most cases the least efficient one.

Regarding the average delay, MOFO and FIFO reach similar results while SHLI
is in any case less efficient that the two others.

Therefore, we decided to implement the MOFO and the FIFO queuing policies.

4.2 Applications over DTN

In this section we go through the possible solutions for supporting regular ap-
plications over DTN. We decide on the best solutions available and we give a clear
picture of its design.

4.2. APPLICATIONS OVER DTN 21

DTN Client Node

Client Application

DTN Server Node

Server Application

Bundle
Protocol

Application Protocol

Figure 4.2. Basic DTN Setup

DTN Client Node

Client Application
Application-to-DTN

Interface
DTN Daemon

Bundle Protocol Application Protocol

Figure 4.3. The DTN Client Node

4.2.1 Requirements
Regular applications should be able to communicate over DTN. This means

sending and receiving messages to and from other DTN nodes, wherever they are.
Moreover it must be easy to integrate applications with DTN. This would help
having more applications available for delay-tolerant networks. As for now there is
no way to identify the bundles and classify them according to the type of data they
contain. Hence it is difficult to run multiple applications on the same DTN network.
In fact, we need a solution to identify the bundles and process them accordingly.
Finally, the solutions should be able to run on Linux and Android. Bytewalla is
meant to be used both with Linux and Android.

4.2.2 Application to DTN Interface
Figure 4.2 gives a basic overview of a DTN setup with two applications (client-

server) trying to communicate to each other. The client sends the request to the
server, which process it upon reception. But as we have seen in the Introduction
chapter, many applications are not designed for DTN networks, although their se-
mantics are compatible with DTN. Their designs often require no delay and no
disruption which DTN can’t offer.

One solution is to rebuild the applications for DTN. This includes rebuilding the
application protocol for a better integration with DTN. The new protocol would

22 CHAPTER 4. CONTRIBUTION

DTN Server Node

Server Application
DTN-to-Application

Interface
DTN Daemon

Bundle Protocol Application Protocol

Figure 4.4. The DTN Server Node

take disruptions and delays into account and be suitable with the Bundle Protocol.
In fact, this is isn’t always possible. This requires a lot of effort for a seldom usage on
DTN, compared to Internet. It also duplicates the application for the same purpose
but for two different type of networks. However, this would certainly makes the
application more suitable for DTN. Anyway, it requires to redesign the application
protocol and setup an interface with the Bundle Protocol.

Another solution is to use protocol spoofing, as shown in Figure ??. The ap-
plication remains the same and keeps using the same protocol as before, but the
messages are reformatted before going through the delay-tolerant network. For ex-
amples, several messages or requests may be rewritten and packed together to fit in
a single bundle, ready to traverse the delay-tolerant network. This leads to better
performances as we can reduce the number of messages, so the overall delay and
the risk of bundle loss, and this is completely transparent to the application. Only
the Application protocol/Bundle protocol interface needs to be developed. Protocol
stacks for popular applications are often available, making this task even easier.

In some cases, where the application is complex, the first solution would probably
be the best. But it requires more effort as the whole application needs to be rewritten
on contrary to the second solution, where only the messages are reformatted. In
order to encourage the support of applications for DTN, we will focus on the solution
which makes this task the easiest possible, the second one. For simple and popular
applications such as mailing and web, it is sufficient. However for more complex
situations, the first solution may be the only one available. But it any case, the
design we will build, will be helpful to the first solution as well.

Figure 4.2 clearly shows that we need an interface between the applications and
the Bundle Protocol. In fact, this interface must convert bundles into messages for
the server application, and messages into bundles for the Bundle Protocol. Hence,
for a single application protocol, we need two interfaces. One for sending messages
over DTN and one for receiving them.

Figure 4.3 shows the representation of the client component. It consists of the
client application (e.g. a mail user agent), the interface and a DTN daemon such

4.2. APPLICATIONS OVER DTN 23

as Bytewalla (Android) or DTND (Linux). The client application connects to the
interface as it would directly connect to the remote server on Internet, and the
interface connects to the daemon for sending bundles. Each application has its own
interface to the Bundle Protocol, so if they are multiple applications running on the
machine, there must be an interface for each of this application.

About the server side now, Figure 4.4 gives an overview of how is it designed. It
is pretty much similar to the client node, but on the other way. The DTN daemon
receives the bundle, which is forwarded to the interface and then unpacked for
transmission to the server application. At this stage, the message has traveled all
through the delay-tolerant network to reach its destination as on Internet.

The Application-to-DTN interface must be able to handle requests from the
client application. Hence it must have the same capabilities as the server application,
however, all it does is to listen for new messages and output them into bundles. The
interface is encouraged to reformat the messages in order to reduce the storage
consumption and to fit it into as few bundles as possible to limit the loss and the
delay.

The DTN-to-Application interface, on contrary, is called upon reception of an
incoming bundle. The interface which acts here as the client, recovers the messages
from the bundle and recreate the communication between the client application and
the server application.

On both the client and the server side, this is totally transparent to the applica-
tions. Only the client application must be configured to connect to the Application-
to-DTN interface.

When building these interfaces, the developer should pay attention not to lose
information or to alter the semantics of the messages.

4.2.3 Identifying the bundles

As explained in the first chapter, there is no identifier wish helps to identify
the applications. Hence for example, when a bundle is received, nothing informs us
about whether it is intended for the email or the healthcare application.

For this, there are two known solutions. The type of application could either be
indicated in the payload by adding an extra header containing such information or
in an extension block as described in 3.1.2.

Adding the application information in the payload is certainly not a good solu-
tion in that not all bundles may respect this format. On the contrary, adding an
extension block will help to efficiently identify the bundles. If the extension block
is missing, then we simply ignore the bundle or process it separately. This new
extension block will be called application block from here.

This new type of bundles (the ones containing the application block), identified
as application bundles in this document, will now be composed of three blocks. The

24 CHAPTER 4. CONTRIBUTION

Primary Block, the Payload Block and the Application Block which tells about the
type of service the bundle is intended to be used for. [10] states that the block type
codes 192 through 255 are available for private and/or experimental use. For this
experiment, we will use the block type 200.

At this moment the application block payload consists of only one field called
the "application type". This field contains an integer corresponding to a particular
application (e.g. 10 for HTTP).

4.2.4 Synchronous Data Access

It is good to notice that in some cases, the applications may have to be redesigned
for DTN due to the long-delays and the low-reliability compared to interconnected
networks such as Internet. For example, the application must not wait for an in-
stantaneous response (e.g. a web browser requesting a page). The request and the
response are not synchronized. A response may be received and handled at any
time. So the application must be always be ready to handle a message containing
the response to one of its previous requests.

This also implies that the user-interface may need to be redesigned as well. The
user may not be able to have instantaneous feedbacks from the application, as the
response will in most cases be delayed.

In the case of SMTP, we are simply sending a mail, so the application does not
wait a particular response. However, it would be different with the POP protocol
[24] for example. POP aims to retrieve emails. In the case of DTN, POP is not
applicable because it asks for emails and hopes to get an immediate response which
is not guaranteed in DTN. This should then be replaced by a mechanism where
we first send a request for emails through the Bundle Protocol, and then wait for
handling the response bundle containing the emails whenever we receive it. This is
represented in the Figure 4.5. The request may also be replaced by a subscription
service, sending emails periodically instead of having to explicitly request for them.
However, once the emails have been received, it would be possible to access them
through a regular POP application (e.g. Thunderbird [17]) connecting to a local
POP server delivering the emails received through the Bundle Protocol.

Some solutions include rebuilding the application for better compatibility with
DTN as seen previously, or developing a light local server. In the case of the POP
application, we could have a light local application acting as a POP server to which
the POP client would connect. The POP server would be responsible for requesting
new mails (automatically on a regular basis or upon demand) and storing them
until they are request by the POP client. To take another example with HTTP, the
POP server would be replaced by asimple HTTP server with caching enabled.

Requesting data upon demand involves a lot of delay because it requires a full
round trip to get the data. This may be improved with some techniques such as
common caching or subscription services. The caching technique is described in the

4.2. APPLICATIONS OVER DTN 25

Emails RequesterPOP Application

Emails Receiver
/ POP Server

DTN POP Client

POP Bundle Handler

Internet

Bundle Protocol

Figure 4.5. How to retrieve emails over DTN

DTN Management section (see 4.4). The subscription service consists of a node
connected to Internet which would keep the non-connected DTN nodes updated
with their last information such as news, medical records, mails, etc.

It should also be noted that more efforts should be put on reliability, as the
DTN mail client can not know instantaneously whether its request could be sent.
For example in the case of SMTP, we forward all SMTP requests into bundles.
However, if the identifiers are wrong, we will be aware of it only when the DTN
server will be able to forward the SMTP message. If it fails, the client should be
informed by an application feedback mechanism, that the mail message failed to be
sent. This was specifically investigated as part of this thesis but this can be a future
work.

26 CHAPTER 4. CONTRIBUTION

DTN/SMTP InterfaceSMTP Mail Application

a) SMTP to Bundle

DTN Daemon

Bundled data

220 SMTP Ready

EHLO client

250

MAIL FROM: <a@example.com>

250 Sender ok

RCPT TO: <b@example.com>

250 Recipient ok

DATA

354 Enter mail

...

250 Ok

QUIT

221 Closing connection

DTN/SMTP InterfaceInternet Mail Relay

b) Bundle to SMTP

DTN Proxy/
DTN Daemon

220 SMTP Ready

EHLO client

250

MAIL FROM: <a@example.com>

250 Sender ok

RCPT TO: <b@example.com>

250 Recipient ok

DATA

354 Enter mail

...

250 Ok

QUIT

221 Closing connection

Bundled data

Figure 4.6. SMTP Protocol Spoofing

4.3 Case: SMTP over DTN
In this section we present how to run SMTP over our designed DTN architecture.

We first show how the communication between a mail client and a SMTP server
connected to Internet is performed, and then we focus on the data model used for
carrying the SMTP data within the Bundle Protocol.

4.3.1 SMTP over DTN Architecture

The purpose of implementing SMTP over DTN is to be able to communicate by
emails with a peer connected to Internet. As Internet connectivity is not guaranteed,
we send the SMTP data through the Bundle Protocol to a remote DTN server node
which will be responsible forwarding the mail to a mail relay server on Internet.
This node must of course be connected to Internet, but not the DTN client node.
To identify SMTP bundles, we will use the value 1 as the "application type" in the
application block (see 4.2.3).

Postfix [1] was chosen as for the local mail relay server.

4.3.2 SMTP Protocol Spoofing

Upon the exchange with the mail application, the DTN/SMTP interface pre-
pares the data for the bundle, see Figure 4.6. The Figure A shows the conversion
from SMTP to bundle while Figure B shows the conversion from bundle to SMTP.

4.4. DTN MANAGEMENT 27

from@example.com to1@example.com, to2@example.com mailData

from@example.com[null]2[null]to1@example.com[null]to2@example.com[null]mailData

[null] = null character (0x00)

Figure 4.7. The SMTP Bundle Payload

The SMTP messages need to be packed up by the local SMTP server application
into bundles before being transmitted with the Bundle Protocol. The SMTP/DTN
interface takes three parameters from the mail client: the "from address", the "re-
cipients" and the data containing the mail (header, subject, body, ...). In order to
keep the proof-of-concept simple and the bundles as short as possible due to the
limited storage capacity of the mobile devices, we concatenate the three parameters,
separated by a null character (see Figure 4.7). As there might be several recipients,
the list of recipients is also concatenated with a null character as a separator. The
number of recipients is added to the front of the resulting string, again with a null
character to separate both.

Note that the MX records (mail exchanger records) should be updated by the
SMTP/DTN interface [39].

4.4 DTN Management

The objective here is to improve the DTN management system for better control
and reliability. We want to be able to manage the bundles of a local DTN network.
Along with management features, we also aim at improving DTN performances.
For example, if there are not enough resources to carry the bundles onward another
location, the bundles could be queued up until some resources become available.
Priorities could also be given to bundles according to the type of application they
serve.

The first question is should the management system be centralized or decentral-
ized? Centralized means that all the bundles would go through a single node (the
gateway) responsible for the management features. Decentralized means that each
node will be responsible for managing its own bundles.

A centralized system is difficult to setup because of the mobile nodes. The nodes
may spread apart and increase their distance to the gateway, thus increasing the
delay for the bundles. However, for a close and small community such as a small
village or a small group of nomad nodes stay together, this solution remains possible.
Besides, it gives better control and flexibility for the management of the DTN
network because of the global perspective. The system can make decisions based on

28 CHAPTER 4. CONTRIBUTION

application type application source application destination

Figure 4.8. The Application Block

the whole DTN network, such as setting priorities according to the overall traffic.
Finally, it’s easier to concentrate the resources like storage capacity on a single
gateway than having them distributed over all the nodes.

A decentralized system is easier to setup in a DTN environment. For a manage-
ment system, the nodes could be managed with a protocol similar to SNMP [15] but
designed for DTN. However, the nodes would have a limited perspective compared
to a gateway.

Because Bytewalla was first developed for small villages in rural areas in Africa,
and because the first solution brings advantages that the second solution can hardly
offer, the author of this thesis decided to go for the centralized management system.

Figure [x] gives an overview of the management system. All the bundles travel
through the gateway before leaving or entering the village. The gateway process
each bundle before it is transmitted to the next node.

In order to transmit all application bundles through the gateway, the bundle’s
destination is set as the gateway EID. However the gateway then needs to know
where to send the bundle after it has been processed. Hence, two fields are added
to the Application Block to keep track of the application bundle’s source and the
application bundle’s destination. The two fields are the application data unit (ADU)
source and the ADU’s destination. The first one identifies where the application
ADU is sent from while the second one identifies to whom it is sent. On the DTN
level, the bundle will first be sent to the gateway which will then retransmit it to the
ADU’s destination after it has been processed. The bundle may go through other
intermediary nodes but its final destination is always the ADU’s destination. The
final Application Block payload is shown in Figure 4.8. All fields are separated by
a null character (0x00).

The gateway is not mandatory (the bundles may be send directly to their final
destination) but it brings new features and can to improve the performances.

When the DTN Management gateway is used as an intermediary for all the
bundles, it offers a couple of functionalities. For example, all the bundles may be
stored on the gateway for future retransmission. Whenever a bundle transits through
the gateway, the gateway keeps a copy and requests for a delivery status report. If
the delivery status report isn’t received within a timeout frame or if it receives a
deletion status report, the bundle is resent if its lifetime hasn’t expired.

Moreover the gateway can furnish the administrators with all the statistics.
With the help of status reports, an administrator is aware of which bundles could

4.4. DTN MANAGEMENT 29

Node 1

Node 2

Gateway
Internet-connected

node

Bundle Protocol

Sending news

every week

The nodes fetch news
from the gateway

Figure 4.9. Subscription Service

be delivered successfully or failed to do so.
When there is only a little capacity for transmitting bundles to their destination,

the gateway may decide on which bundles to deliver first based on their priority.
The priority may be based on the type of applications the bundle serves, on its size,
etc. As we can now learn about the type of data the bundles contain, this becomes
an easy task.

Finally, it can also offer features like caching and subscription service. As in
Figure 4.9, the gateway could for example request and store a single copy of a record,
and make it available for all the nodes, instead of having each node requesting its
own copy. A useful application would be for sending news or educational content.

Chapter 5

Implementation

The Implementation chapter is divided into three sections. First we introduce
the reader to the development approach. The second section concerns the implemen-
tation of the queuing mechanism. We discuss about the possible queuing policies,
the design of the queuing mechanism in Bytewalla and its implementation process.
Finally, the third section focuses on the Application Layer. There we thoroughly
present the technical challenges and how they are solved.

5.1 Software Development Approach

For the implementation, the author chose to follow the Evolutionary Prototyping
Model [40]. This model is an incremental approach. The system is developed in
increments so it can easily be modified according to its results and to follow the
objectives of this thesis.

The implementation was done with Python 2.6 [22] and it only aims to be a
proof-of-concept, not a robust, optimized and definitive implementation. Especially
because of the limited time allocated to the implementation.

MySQL[5] is used as the database management system.

5.2 Queuing Mechanism

5.2.1 Design in Bytewalla

The purpose of implementing queuing mechanism in Bytewalla is to keep the
total size below the specified quota. Hence, every time a bundle would be stored
on the disc, we would maintain the quota by deleting bundles if necessary and
according to priority order depending on the queuing policy.

Overview
The core resides in the ProphetQueuing class. It is an abstract class and it

31

32 CHAPTER 5. IMPLEMENTATION

provides common functions such as getInstance, maintainQuota, delete and re-
moveNextBundle. The queuing policies are implemented in their own file, inherit
from ProphetQueuing and have only one function “getLastBundle”. This function
which is unique to each policy returns the last bundle id according to their priority
in the queuing policy. For example the FIFO policy will returns the id of the bundle
which was added at first.

Small modifications were made to the DTNConfigurationParser and Bundle-
Store classes. Respectively to add a policy setting in the configuration file and to
give the handle to the queuing policy when it comes to maintain the quota after a
new bundle was stored on the disc.

Configuration
The user can specify the queuing policy that he wants to use in the configuration

file. This is achieved in the DTNConfigurationParser by simply adding a new setting
“Queuing_policy”.

Storage and maintaining the quota
Inside the BundleStore’s add function, after the bundle has been stored and if

the type of router being used is PRoPHET, we give the handle to the PRoPHET’s
queuing mechanism. This checks if the quota has not been exceeded, and if this is
the case, delete as many bundles as needed to free enough space.

5.2.2 Queuing Policies

Two queuing policies have been implemented. “First In First Out” (FIFO) and
“Evict most forwarded first” (MOFO).

First In First Out
This policy has been implemented in the Fifo class. The getLastBundle() func-

tion simply takes the smallest id (the oldest one) from the database and returns
it.

Evict Most Forwarded First
This policy has been implemented in the Mofo class. The getLastBundle() func-

tion simply returns the id of the bundle which has the greatest forwarded_times
which contains the number of times the bundle has been forwarded.

This is very similar to the Fifo’s getLasBundle() function, however, we also need
to keep track of the number of times the bundle has been forwarded.

This is handled inside the BundleDaemon class. There we simply increment the
forwarded_times field for each bundle being transmitted.

5.3. APPLICATIONS OVER DTN 33

5.3 Applications over DTN

The DTN-to-Application interface has only been implemented in Python on
Ubuntu. The Application-to-DTN interface has been implemented both on Ubuntu
in Python and on Android in Java. The reason for developing the DTN-to-Application
on Ubuntu is that the server will usually be running on a immobile node connected
to Internet (for example to contact SMTP mail relays). Also it is quite resource
consuming as many services may be running on the machine (MySQL, multiple
types of application, etc.). The reason for developing the DTN application client
both on Ubuntu and Android is that it was easier to test and create prototypes on a
scripting language such as Python, and along with the development of the server on
the same system. However, the final objective is to be able to use such applications
on any type of devices, especially mobile ones. Hence it was decided to implement
it on the Android phones as well with the Bytewalla application.

The whole implementation is divided into modules (python files) and they are
described below, in two sections. One for the Python implementation and one for
the Android implementation.

As a proof-of-concept it was chosen to implement SMTP over DTN, replac-
ing the first solution implemented in Bytewalla 1. The components specific to the
implementation of SMTP over DTN are also described along the general system
implementation.

5.3.1 Ubuntu

5.3.1.1 Overall

The implementation on Linux is able to send application bundles and to receive
and dispatch them. Hence there are both an Application-to-DTN interface and a
DTN-to-Application interface. The following modules are used for the Application
bundles transmission and for the DTN Management component (see 5.4).

34 CHAPTER 5. IMPLEMENTATION

Config.py This is the configuration file. It includes settings such
as the proxy TCP/UDP ports, the DTN daemon
TCP/UDP ports and the EIDs.

Bundle.py This module contains the Bundle class and functions
to convert between raw data and bundles.

serviceBlock.py This module contains the serviceBlock class which de-
fines the Application Block (type of application, the
application source and the application destination).

Sdnv.py Handles the conversion between integers and Self-
Delimiting Numeric Values (SDNV). SDNVs are used
in the Bundle Protocol and PRoPHET.

DTNinterface.py This module manages the transmission with the local
DTN daemon. It receives the packed data, creates the
application bundle and delivers it to the DTN daemon
to be transmitted through the DTN network.

DTNproxy.py This is the core file. It eavesdrops the communications
between the local DTN node and the other nodes. This
way it can captures the application bundles and let the
other modules process them.

bundleHandler.py This is where is the application bundle goes through
when being processed. If you want to add or remove a
processing function, this is where to do so.

Reports.py The reports.py module takes care of the status reports.
It parses them and update the records for the stored
bundles.

statusreports.py statusreports.py is used to parse status reports and
instantiate them with the StatusReport class.

storage.py This module handles the access to MySQL for storing
and updating the bundles records.

Reliability.py This tool may be used to resend, for example with a
cron, the bundles which could not reach their destina-
tion.

service.py This module contains information about the applica-
tions running on the machine, and dispatch the bun-
dles to corresponding DTN-to-Application interface.

5.3. APPLICATIONS OVER DTN 35

Other Application

Application Server

Application Protocol

Other Application

SMTPServer

SMTP Protocol

DTNInterface

Packed Data

DTN Daemon

Bundle Protocol

Packed Data

Figure 5.1. Data flow in the client

The Figure 5.1 shows the data flow in the client. The messages are received from
the applications, packed in the applications servers and sent as bundles with the
DTN Interface.

For capturing the application bundles upon reception, there are two principal
solutions:

1. Modifying DTN2
2. Setting up a proxy application

DTN2 is available to everyone as an open-source application. It is written in C and
could be modified to include new features. Setting up a proxy application consists of
developing an additional application which would be responsible for capturing and
processing the bundles before their reach the standard DTN daemon. The proxy
can be developed in any language.

As the author is more familiar with scripting language such as Python, it was
chosen to set up a proxy application in Python, rather than modifying the existing
DTN2 project.

As in Figure 5.2, the proxy replaces the DTN2 daemon. It uses its ports (4556
and 9556) while the DTN2 daemon now runs with different ports (e.g. 4557 and
9447). Hence, the proxy receives and establishes connections with the other DTN
nodes. Meanwhiles, it establishes connections with the local DTN2. All the messages

36 CHAPTER 5. IMPLEMENTATION

Node receiving bundles

ProxyDTN2

Node 1

Node 2

Bundle Protocol

Figure 5.2. The DTN Proxy

Proxy
DTN2

Port 4556

Port x

Port y

Port z

Port 4557

Internal communicationBundle Protocol

Node 1

Node 2

Node 3

Figure 5.3. Closer view at the Proxy

sent from the other nodes are transmitted to the local DTN2 daemon and vice-versa.
Hence, the proxy is transparent to the other nodes and to DTN2. In order to do so,
the proxy associates each remote node IP address to a local port which is used to
connect to the local DTN2 daemon. This way, the DTN2 establishes links with as
many local ports as there are links to remote nodes. Figure 5.3 gives a closer view
at the proxy.

The Figure 5.4 shows the data flow in the server (receiving application bundles).
All application bundles are captured with the DTN proxy, processed by the bundle
handler, and then dispatched to the right application [27].

5.3.1.2 Case: SMTP over DTN

To support SMTP over DTN, only two files are required on addition to the the
general purpose modules. These two files are the Application-to-DTN interface and
the DTN-to-Application interface.

5.3. APPLICATIONS OVER DTN 37

DTNProxy Module

BundleHandler Module
process the bundles: parse,

store, invoke the reports, etc.

Service Module
Dispatch the bundle

If it is an application bundle

SMTPClient Module Other Application Client
Process it locally or

establish communication
with a remote host

Mail Relay Internet Server

Data from/to a
remote DTN node

Data from/to the
local DTN node

Figure 5.4. Data flow in the server

SMTPServer.py It is the Application-to-DTN interface for SMTP.This
module runs a SMTP server which handles the com-
munications with the local SMTP client. After the ex-
change has been processed, it packs the data and sends
it to the dtninterface.py module.

smtpclient.py It is the DTN-to-Application interface for SMTP. This
module handles the SMTP application bundles. It
recreates the messages out of the bundles it receives.

5.3.2 Android

5.3.2.1 Overview

For the Android implementation we are using the Bytewalla application which is
responsible for bundling the data and send it through the DTN network. However,
the Bytewalla 3 application does not support the application block as presented

38 CHAPTER 5. IMPLEMENTATION

Mail Application
SMTP/DTN Interface

Application
Bytewalla

Application

Android Phone

Bundle Protocol

Figure 5.5. Overview of the implementation on Android

in the Chapter 4 and does not provide an interface to the other applications for
sending bundles.

Hence the implementation is divided in two parts. How to provide an interface
in Bytewalla for sending bundles from other applications, and the development of
the application handling SMTP messages.

So finally, there will be three components:
1. The SMTP client - The default Android mail application

It is a regular mail application. It must be configured to use the SMTP/Bundle
interface as the SMTP server.

2. The SMTP/Bundle interface application
It receives the message from the mail application, handles the messages, packs
the data, and forward them to the Bytewalla application for the Bundle Pro-
tocol.

3. The Bytewalla application
It handles the Bundle Protocol.

When running, the system can be represented as in Figure 5.5.
The SMTP/DTN interface application communicates with the Bytewalla by

the help of Android broadcasts. The interface application sends a message to the
Android system along with some parameters such as the packed data (payload)
and the type of service (1 for SMTP). Then the Bytewalla application catches the
message and process it.

5.3.2.2 Modifications to the Bytewalla application

All the files added to the Bytewalla as part of this thesis are stored together in
the package "se.kth.ssvl.tslab.bytewalla.androiddtn.applications"

Receiving data from other applications
In order to perform this task, we must add a declaration to the Bytewalla appli-

cation’s manifest file. This declaration (see 5.1) informs the Android system about
what messages the Bytewalla application is ready to handle.

Listing 5.1. Bytewalla Manifest Declaration

<r e c e i v e r android : name=". a pp l i c a t i o n s . PayloadReceiver ">

5.4. DTN MANAGEMENT 39

<intent− f i l t e r >
<act i on android : name="se . kth . s s v l . t s l a b . bytewal la . androiddtn .

ac t i on .SEND_BUNDLE" />
</intent− f i l t e r >

</r e c e i v e r >

The declaration also indicates which class is responsible to handling the message.
In our case, the PayloadReceiver does it. Once received, a new service (see [27])
defined in the ProcessPayload class is started to process the message and send
it through the Bundle Protocol. The ProcessPayload service defines the bundle
specification and ask the Bytewalla application to send the bundle.

Application Block
The Bytewalla 3 application only supports the primary and the payload block.

Hence the application block has been integrated with the ApplicationBlockProcessor
class.

5.3.2.3 The SMTP/DTN interface application

For this application I have used the SubEtha SMTP library [30]. This library
allows the application to receive SMTP mail with a simple, easy-to-understand API.

The application listens to a specific port for new mails. For each processed mail,
the application packs up the data as shown in Subsection 4.3.2 and send it to the
Bytewalla application along with the type of service.

5.4 DTN Management
The DTN management tools have only been implemented on Ubuntu. It shares

the same modules as in 5.3.1.1. Most of the processing such as storing bundles and
processing status reports is done in the bundleHandler.py module.

Along with this modules comes a web-based administration interface.
The administration interface is developed in PHP and runs on a HTTP Server

such as Apache. The application consists of modules. Each module has its own
specific task.

4 modules have been implemented.
1. bundles.php: This module shows the application bundles which passed through

the gateway. It provides information like the bundle creation date, its source,
its payload and whether it was delivered or not.

2. config.php: The config.php module helps to generate a new configuration file
for the local DTN daemon.

40 CHAPTER 5. IMPLEMENTATION

3. default.php: This is the default module, which only refers to the other mod-
ules.

4. stats.php: The statistics module gives an overall information about the gate-
way. For example the number of stored bundles, the number and percentage
of bundles delivered and undelivered, the average delay, and so on.

Chapter 6

Testing & Analysis

A series of tests were carried out on the implementation to measure the bundle
transmission delay with and without the Application Layer optimization between
two connected nodes. Based on the results we discuss whether the proxy adds sig-
nificant delays. Although DTN is by definition tolerant to delay, a long transmission
delay on a link between nodes could reduce the amount of data two nodes can ex-
change before the connection is disrupted. Hence it is important to ensure that our
work does not add significant delay.

6.0.1 Test environment

The test environment consists of two servers running DTN2. The two servers
are connected via Ethernet. Their specification is shown in Table 6.1 and the setup
in Figure 6.1.

Table 6.1. Specification of the DTN2 servers

CPU Intel Celeron 1.8 GHz
System Memory 512 MB ECC DDR

Total Hard Disk Size 40 GB
Operating System Linux Ubuntu

DTN Software DTN2 version 2.6

Server 1

DTN2

Server 2

DTN2
Bundle
Protocol

Figure 6.1. test Environment Setup

41

42 CHAPTER 6. TESTING & ANALYSIS

6.0.2 Methodology

The bundles are sent from a machine to the other one. The later one runs the
Application/DTN proxy. It will process the bundle before it is received by DTN2.
The time for this processing will be measured.

For the processing we will only perform the following steps:

1. Capture the bundles,

2. Parse them,

3. And forward them to DTN2.

Whenever an application bundle would be processed by a local application, it
would run asynchronously to the proxy, so this would not add delay to the trans-
mission.

6.0.3 Measurements

In the Table 6.2, we measure the time elapsed from the moment the data is sent
to the proxy, to the moment the proxy forwards the data to the peer node. We made
ten simulations runs from which we took the average.

Table 6.2. Time elapsed in the proxy processing

Measure Number Time Elapsed (ms)
1 1.204
2 1.068
3 1.244
4 1.183
5 1.189
6 1.197
7 1.292
8 1.163
9 1.189
10 1.084

Average 1.181

6.0.4 Observations and Summary

When transmitting only a few bundles as in most situations, the additional
processing delay would not be very significant. However in a situation where many
bundles are transmitted (e.g. >100) and the disruptions regular, this delay could
become significant.

43

Nevertheless, the implementation may easily be much improved. It is recom-
mended to integrate the application bundles within the dtn daemon in order to
reduce the processing involved in internal bundles transmission.

Chapter 7

Conclusion

7.1 Summary

The PRoPHET queuing mechanism has been implemented in the Bytewalla ap-
plication. Two queuing policies, FIFO and MOFO, were chosen according to their
efficiency evaluated by Anders Lindgren and Kaustubh S. Phans [31]. These two
queuing policies are now part of the Bytewalla application and were tested in the
Chapter 6. We saw how they help managing the bundles when the storage consump-
tion becomes too high.

This thesis also replied to some of the issues met when developing applications
over DTN. The implementation includes some tools developed with Python. As it
has been experienced with SMTP, applications can now transparently, except for
delays, communicate over DTN. The application known transmit its requests all-at-
once instead of iteratively as it uses to be in Internet. Also, the whole infrastructure
has been designed to support more services such as caching with the help of the
intermediary servers. The later also support management tools for a better control
of the network. The management tools also help to improve the reliability as the
bundles are retransmitted until an acknowledgment is returned.

In the Chapter 6, we verified that the implementation was working according to
the objectives and that they do not worsen the quality of service. However, it would
certainly be interesting to test it in real-world situations.

7.2 Future Work

The PRoPHET implementation in Bytewalla is not complete yet. For example,
it would be an improvement to implement the Forwarding Strategies mechanism.
While the queuing mechanism aims to order the bundles by order of priority for
deletion when the storage consumption becomes too high, Forwarding Strategies
aim to order the bundles by the order in which they should be transmitted to
another mule. The connection between two mules may be disrupted at any time,

45

46 CHAPTER 7. CONCLUSION

and so, the "most important" bundles should be transmitted first.
This thesis is a starting point for developing more tools and applications over

DTN. Here, we have only integrated an mail application for testing the concept.
Now, it would be interesting to integrate popular and useful applications for specific
situations. For example, twitter and youtube for the people where the access to
Internet has been shutdown. For education purposes in remote areas, or for mails
delivery, it would be useful to have a subscription service implemented on top of this
thesis work. This only requires to develop a client and a server application, running
on a regular basis to send the most updated data. Caching may also be implemented
in a generic fashion as well as by means of application-specific modules to provide
better access to the content which was delivered recently in the area.

Appendix A

Testing FIFO and MOFO

For these tests we are using the final version of Bytewalla IV developed along
this thesis. The application is running on a HTC Wildfire with Android 2.2.1. We
have reduced the storage capacity to only 32Kb so that we reach the maximum
storage capacity and trigger the queuing mechanism more easily.

It is difficult to simulate a large DTN network and the encounters, especially
with the Android platform, as no tools are available for this purpose. However
some simulations have already been conducted to measure the queuing mechanism
performances in the paper from Lindgren, A. and K. Phanse [31]. Hence, here,
we simply verify that the queuing mechanism implementation is working as it is
supposed to.

We test both queuing policies FIFO and MOFO. The FIFO policy deletes the
first bundle that was stored on the node. The MOFO policy deletes the bundle
which has been forwarded the most. If several bundles have been forwarded the same
number of times, it will use a FIFO policy to delete a bundle among the bundles
which have been forwarded the most. For each policy we have 20 iterations. For each
iteration we create a new bundle (whose id corresponds to the iteration where it
was created) and check the occupied disk space after the bundle has been created.
The bundles are created manually through the Bytewalla DTNSend application.
Whenever a bundle is deleted, we check its attributes such as its ID and the number
of times it was forwarded. Hence, we can ensure that the queuing mechanism is
deleting the bundles according to the policy.

The storage consumption is retrieved from the Bytewalla application interface.
The bundle attributes are retrieved from the Android debugger tool.

The Table A.1 shows that the FIFO queuing mechanism starts deleting bundles
when the quota (32KB) gets exceeded by the storage consumption. At this point,
each time a bundle is added, another one is deleted, thus, maintaining the storage
consumption below the specified quota. As the FIFO policy requires to delete the
oldest bundle first, we can notice that the queuing mechanism starts by deleting
the oldest bundle (bundle 1), the the bundle 2, and so on.

47

48 APPENDIX A. TESTING FIFO AND MOFO

Table A.1. Storage consumption with the FIFO queuing policy

Iteration Storage Consumption (MB) Number of bundles Deleted bundle’s id
0 0.0059 0 -
1 0.0097 1 -
2 0.0136 2 -
3 0.0175 3 -
4 0.0213 4 -
5 0.0252 5 -
6 0.0291 6 -
7 0.0329 7 -
8 0.0329 7 1
9 0.0329 7 2
10 0.0329 7 3
11 0.0329 7 4
12 0.0329 7 5
13 0.0329 7 6
14 0.0329 7 7
15 0.0329 7 8
16 0.0329 7 9
17 0.0329 7 10
18 0.0329 7 11
19 0.0329 7 12
20 0.0329 7 13

The bundles listed in the Table A.3 have been created and forwarded accordingly
before the other bundles (from iteration 6) were created according to the Table A.2.

Similar as the FIFO policy, in the Table A.2, the MOFO policy starts deleting
the bundles when the storage consumption reaches the quota limit. However, the
order of deletion is different. The Table A.3 shows how many times each bundle
has been forwarded. The MOFO policy deletes the bundles by descending order of
"forwarded times". Hence, the first bundle to be deleted is the bundle 1, then 3, 2, 5
and 5. From this point, it deletes the bundles exactly like the FIFO policy because
all the bundles have been forwarded 0 times.

49

Table A.2. Storage consumption with the MOFO queuing policy

Iteration Storage Consumption (MB) Number of bundles Deleted bundle’s id
...
5 0.0252 5 -
6 0.0291 6 -
7 0.0329 7 -
8 0.0329 7 1
9 0.0329 7 3
10 0.0329 7 2
11 0.0329 7 5
12 0.0329 7 4
13 0.0329 7 6
14 0.0329 7 7
15 0.0329 7 8
16 0.0329 7 9
17 0.0329 7 10
18 0.0329 7 11
19 0.0329 7 12
20 0.0329 7 13

Table A.3. Number of forwarded times for each bundle

Bundle ID Forwarded Times
1 3
2 2
3 3
4 0
5 1

Bibliography

[1] Postfix. http://www.postfix.org/ accessed June 10th, 2011.
[2] A. Doria A. Lindgren and O. Scheln. Probabilistic routing in intermittently

connected networks. In Proceedings of the Fourth ACM International Sympo-
sium on Mobile Ad Hoc Networking and Computing (MobiHoc 2003), 2003.

[3] E. Davies S. Grasic A. Lindgren, A. Doria. Probabilistic routing protocol for
intermittently connected networks. Internet-Draft, October 2010. http://
tools.ietf.org/html/draft-irtf-dtnrg-prophet-08 accessed June 10th,
2011.

[4] A. Hasson A. Pentland, R. Fletcher. Daknet: Rethinking connectivity in de-
veloping nations, 2004. http://www.firstmilesolutions.com/documents/
DakNet_IEEE_Computer.pdf accessed June 10th, 2011.

[5] MySQL AB. Mysql. http://www.mysql.com/ accessed June 10th, 2011.
[6] Abdullah Azfar. Installation of postfix and configuring village and city dns

servers. Technical report, October 2009. http://www.tslab.ssvl.kth.
se/csd/projects/092106/sites/default/files/Postfix_and_DNS.pdf ac-
cessed June 10th, 2011.

[7] Abdullah Azfar. Integration of postfixwith dtn2. Technical report, Novem-
ber 2009. http://www.tslab.ssvl.kth.se/csd/projects/092106/sites/
default/files/Postfix_DTN2_Integration.pdf accessed June 10th, 2011.

[8] et al. Berners-Lee. Uniform resource identifier (uri): Generic syntax. RFC
3986, January 2005. http://tools.ietf.org/html/rfc3986 accessed June
1st, 2011.

[9] Ellard & Brown. Dtn ip neighbor discovery (ipnd). Internet-Draft, March
2010. http://tools.ietf.org/html/draft-irtf-dtnrg-ipnd-01 accessed
June 1st, 2011.

[10] Scott & Burleigh. Bundle protocol specification. RFC 5050, November 2007.
http://tools.ietf.org/html/rfc5050 accessed June 10th, 2011.

[11] KTH Bytewalla 3. Network management tool. Technical report, October
2010. http://www.tslab.ssvl.kth.se/csd/projects/1031352/content/
network-management-tool accessed June 10th, 2011.

51

http://www.postfix.org/
http://tools.ietf.org/html/draft-irtf-dtnrg-prophet-08
http://tools.ietf.org/html/draft-irtf-dtnrg-prophet-08
http://www.firstmilesolutions.com/documents/DakNet_IEEE_Computer.pdf
http://www.firstmilesolutions.com/documents/DakNet_IEEE_Computer.pdf
http://www.mysql.com/
http://www.tslab.ssvl.kth.se/csd/projects/092106/sites/default/files/Postfix_and_DNS.pdf
http://www.tslab.ssvl.kth.se/csd/projects/092106/sites/default/files/Postfix_and_DNS.pdf
http://www.tslab.ssvl.kth.se/csd/projects/092106/sites/default/files/Postfix_DTN2_Integration.pdf
http://www.tslab.ssvl.kth.se/csd/projects/092106/sites/default/files/Postfix_DTN2_Integration.pdf
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/draft-irtf-dtnrg-ipnd-01
http://tools.ietf.org/html/rfc5050
http://www.tslab.ssvl.kth.se/csd/projects/1031352/content/network-management-tool
http://www.tslab.ssvl.kth.se/csd/projects/1031352/content/network-management-tool

52 BIBLIOGRAPHY

[12] KTH Bytewalla 3. Sentinal surveillance application. Technical report, October
2010. http://www.tslab.ssvl.kth.se/csd/projects/1031352/content/
sentinal-surveillance-application accessed June 10th, 2011.

[13] KTH Bytewalla I, TSLab. Bytewalla: Delay tolerant network on android
phones. http://www.tslab.ssvl.kth.se/csd/projects/092106/ accessed
June 1st, 2011.

[14] B. Carpenter. Architectural principles of the internet. RFC 4838, June 1996.
http://tools.ietf.org/html/rfc4838 accessed June 1st, 2011.

[15] J. Case. A simple network management protocol (snmp). RFC 1157, May
1990. http://www.ietf.org/rfc/rfc1157.txt accessed June 10th, 2011.

[16] et al. Cerf. Delay-tolerant network architecture: The evolving interplane-
tary internet. RFC 4838, August 2002. http://www.ipnsig.org/reports/
draft-irtf-ipnrg-arch-01.txt accessed June 1st, 2011.

[17] Mozilla Corporation. Thunderbird. http://www.mozillamessaging.com/fr/
thunderbird/ accessed June 10th, 2011.

[18] Sebastian Domancic. Security in Delay Tolerant Networks for the Android Plat-
form. Master’s thesis, Royal Institute of Technology (KTH) & Aalto University
- School of Science and Technology (TKK), Stockholm, 2010.

[19] K. Fall. A delay-tolerant network architecture for challenged internets. In
Proceedings of the 2003 conference on Applications, technologies, architectures,
and protocols for computer communications, pages pp. 27–34, NY, USA, 2003.
ACM New York.

[20] et al. Farrell. Delay-tolerant networking security overview.
Internet-Draft, March 2009. http://tools.ietf.org/html/
draft-irtf-dtnrg-sec-overview-06 accessed June 1st, 2011.

[21] Consultative Committee for Space Data Systems. About ccsds. http:
//public.ccsds.org/about/default.aspx accessed June 1st, 2011.

[22] Python Software Foundation. Python. http://www.python.org/ accessed
June 10th, 2011.

[23] N. Freed. Multipurpose internet mail extensions (mime) part five: Conformance
criteria and examples. RFC 2049, November 1996. http://www.ietf.org/
rfc/rfc2049.txt accessed June 10th, 2011.

[24] N. Freed. Post office protocol - version 3. RFC 1939, May 1996. http:
//tools.ietf.org/html/rfc1939 accessed June 10th, 2011.

[25] N. Freed and N. Borenstein. Multipurpose internet mail extensions (mime) part
one: Format of internet message bodies. RFC 2045, November 1996. http:
//www.ietf.org/rfc/rfc2045.txt accessed June 10th, 2011.

http://www.tslab.ssvl.kth.se/csd/projects/1031352/content/sentinal-surveillance-application
http://www.tslab.ssvl.kth.se/csd/projects/1031352/content/sentinal-surveillance-application
http://www.tslab.ssvl.kth.se/csd/projects/092106/
http://tools.ietf.org/html/rfc4838
http://www.ietf.org/rfc/rfc1157.txt
http://www.ipnsig.org/reports/draft-irtf-ipnrg-arch-01.txt
http://www.ipnsig.org/reports/draft-irtf-ipnrg-arch-01.txt
http://www.mozillamessaging.com/fr/thunderbird/
http://www.mozillamessaging.com/fr/thunderbird/
http://tools.ietf.org/html/draft-irtf-dtnrg-sec-overview-06
http://tools.ietf.org/html/draft-irtf-dtnrg-sec-overview-06
http://public.ccsds.org/about/default.aspx
http://public.ccsds.org/about/default.aspx
http://www.python.org/
http://www.ietf.org/rfc/rfc2049.txt
http://www.ietf.org/rfc/rfc2049.txt
http://tools.ietf.org/html/rfc1939
http://tools.ietf.org/html/rfc1939
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt

BIBLIOGRAPHY 53

[26] N. Freed and N. Borenstein. Multipurpose internet mail extensions (mime)
part two: Media types. RFC 2046, November 1996. http://www.ietf.org/
rfc/rfc2046.txt accessed June 10th, 2011.

[27] Google. Android service. http://developer.android.com/reference/
android/app/Service.html accessed June 10th, 2011.

[28] Delay Tolerant Networking Research Group. About - delay tolerant networking
research group. http://www.dtnrg.org/wiki/About accessed June 1st, 2011.

[29] Delay Tolerant Networking Research Group. Code. http://www.dtnrg.org/
wiki/Code accessed June 1st, 2011.

[30] J. Schnitzer I. McFarland, J. Stevens. Subetha smtp is an easy-to-use server-
side smtp library for java. http://code.google.com/p/subethasmtp/ ac-
cessed June 10th, 2011.

[31] A. Lindgren and K. Phanse. Evaluation of queueing policies and forwarding
strategies for routing in intermittently connected networks. In Proceedings of
COMSWARE 2006, January 2006.

[32] Ming-te Lu. Digital divide in developing countries. Journal of Global Informa-
tion Technology Management, 4:3:1–4, 2001.

[33] K. Moore. Mime (multipurpose internet mail extensions) part three: Message
header extensions for non-ascii text. RFC 2047, November 1996. http://www.
ietf.org/rfc/rfc2047.txt accessed June 10th, 2011.

[34] J. Klensin N. Freed and J. Postel. Multipurpose internet mail extensions
(mime) part four: Registration procedures. RFC 2048, November 1996. http:
//www.ietf.org/rfc/rfc2048.txt accessed June 10th, 2011.

[35] N4C. N4c homepage. http://www.n4c.eu/Home.php accessed June 1st, 2011.

[36] Kruse & Ostermann. Udp convergence layers for the dtn bundle and ltp pro-
tocols. Internet-Draft, November 2008. http://tools.ietf.org/search/
draft-irtf-dtnrg-udp-clayer-00 accessed June 1st, 2011.

[37] Demmer & Ott. Delay tolerant networking tcp convergence layer protocol.
Internet-Draft, February 2008. http://tools.ietf.org/html/rfc5050 ac-
cessed June 1st, 2011.

[38] Jörg Ott. Application protocol design considerations for a mobile internet. In
1st ACM MobiArch Workshop, San Francisco, December 2006.

[39] R. Bush R. Elz. Clarifications to the dns specification. RFC 2181, July 1997.
http://tools.ietf.org/html/rfc2181 accessed June 10th, 2011.

[40] Construx Software. Evolutionary prototyping, May 2002. http://www.
construx.com/File.ashx?cid=814 accessed June 10th, 2011.

http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2046.txt
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/app/Service.html
http://www.dtnrg.org/wiki/About
http://www.dtnrg.org/wiki/Code
http://www.dtnrg.org/wiki/Code
http://code.google.com/p/subethasmtp/
http://www.ietf.org/rfc/rfc2047.txt
http://www.ietf.org/rfc/rfc2047.txt
http://www.ietf.org/rfc/rfc2048.txt
http://www.ietf.org/rfc/rfc2048.txt
http://www.n4c.eu/Home.php
http://tools.ietf.org/search/draft-irtf-dtnrg-udp-clayer-00
http://tools.ietf.org/search/draft-irtf-dtnrg-udp-clayer-00
http://tools.ietf.org/html/rfc5050
http://tools.ietf.org/html/rfc2181
http://www.construx.com/File.ashx?cid=814
http://www.construx.com/File.ashx?cid=814

54 BIBLIOGRAPHY

[41] Internet World Stat. World internet users and population stats. http://www.
internetworldstats.com/stats.htm accessed June 1st, 2011.

[42] et al. Symington. Bundle security protocol specification.
Internet-Draft, November 2009. http://tools.ietf.org/html/
draft-irtf-dtnrg-bundle-security-10 accessed June 1st, 2011.

[43] Amin Vahdat and David Becker. Epidemic routing for partially connected ad
hoc networks. Technical report cs-2000-06, Department of Computer Science,
Duke University, April 2000. http://tools.ietf.org/html/rfc5050 accessed
June 1st, 2011.

http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
http://tools.ietf.org/html/draft-irtf-dtnrg-bundle-security-10
http://tools.ietf.org/html/draft-irtf-dtnrg-bundle-security-10
http://tools.ietf.org/html/rfc5050

	Contents
	Introduction
	Overview
	Problem Statement
	Criteria
	Thesis Organization

	Background and Related Work
	Motivation
	DTN Concept
	Early research
	NASA and IPN
	DTNRG

	DTN Applications
	DakNet
	N4C
	Sámi Network Connectivity (SNC)

	Bytewalla
	Bytewalla I
	Bytewalla II
	Bytewalla III

	Routing in Delay-Tolerant Network
	Summary

	Specifications
	The Bundle Protocol
	DTN Architecture
	Application Data Units, Bundles, Blocks
	Bundle Status Reports

	Routing
	Epidemic routing
	PRoPHET

	Neighbor Discovery
	Summary

	Contribution
	Queuing mechanism
	Queuing Policies

	Applications over DTN
	Requirements
	Application to DTN Interface
	Identifying the bundles
	Synchronous Data Access

	Case: SMTP over DTN
	SMTP over DTN Architecture
	SMTP Protocol Spoofing

	DTN Management

	Implementation
	Software Development Approach
	Queuing Mechanism
	Design in Bytewalla
	Queuing Policies

	Applications over DTN
	Ubuntu
	Android

	DTN Management

	Testing & Analysis
	Test environment
	Methodology
	Measurements
	Observations and Summary

	Conclusion
	Summary
	Future Work

	Testing FIFO and MOFO
	Bibliography

