
Bytewalla IV
Routing and Application Layer Optimizations for

Delay-Tolerant Networks

Implement the PRoPHET’s queuing mechanism and design a solution for applications
over DTN

MICHEL HOGNERUD

Master’s Thesis at TSLab
Supervisor: Hervé Ntareme

Examiner: Peter Sjödin

iii

Résumé

Recently, a new technology known as Delay-Tolerant Networking (DTN)
has emerged. DTN seeks to address technical issues in networks that may lack
continuous network connectivity. For instance, remote villages which do not
have a permanent connectivity due to the lack of infrastructure. Several prac-
tical projects have been developed based on DTN. One of them, named Byte-
walla, is a project developed at KTH since 2009. It is a DTN implementation
running on the Android-platform and its goal is to bring Internet connectivity
to remote villages. However, the DTN applications are still very few compa-
red to the ones available for Internet. They are also difficult to integrate as
compared to regular Internet applications. This can be explained by the fact
that nowadays protocols were not designed for partly connected and disruptive
environments. This thesis aims to improve the DTN implementation in Byte-
walla for better performances and to design and implement an architecture to
offer a better support to network applications. As part of this thesis, a SMTP
application (mail client) will be integrated over DTN as a proof-of-concept for
the Android and the Ubuntu operating systems.

This report is prepared as a partial fulfillment of my Master’s thesis on
"Routing and Application Layer Optimizations for Delay-Tolerant Networks".

Keywords : DTN, PRoPHET, Android, Bytewalla, SMTP

iv

Acknowledgments
...

v

Abbreviations and Acronyms

RFC Request for Comments
IPND DTN IP Neighbor Discovery
IP Internet Protocol
TCP Transmission Control Protocol
DTN Delay-Tolerant Networking
DTNRG Delay-Tolerant Networking Research Group
SMTP Simple Mail Transfer Protocol
PRoPHET Probabilistic Routing Protocol for Intermittently Con-

nected Networks
KTH Kungliga Tekniska högskolan
IPN Interplanetary Internet
SDNV Self-Delimiting Numeric Values
OSI Open Systems Interconnection
JPL Jet Propulsion Laboratory
SQL Structured Query Language
EID Endpoint Identifiers
RIB Routing Information Base
TLV Type-Length-Value

Contents

Contents vi

1 Introduction 1
1.1 Overview . 1
1.2 Problem Statement . 1
1.3 Criteria . 4
1.4 Thesis Organization . 5

2 Background and Related Work 7
2.1 Motivation . 7
2.2 DTN Concept . 7

2.2.1 Early research . 8
2.2.2 NASA and IPN . 8
2.2.3 DTNRG . 8

2.3 DTN Applications . 9
2.3.1 DakNet . 9
2.3.2 N4C . 9
2.3.3 Sámi Network Connectivity (SNC) 10
2.3.4 Bytewalla . 10

2.4 Routing in Delay-Tolerant Network 10
2.5 Summary . 10

3 Bytewalla 13
3.1 Bytewalla I . 13
3.2 Bytewalla II . 13
3.3 Bytewalla III . 14
3.4 Summary . 14

4 Specifications 15
4.1 The Bundle Protocol . 15

4.1.1 DTN Architecture . 15
4.1.2 Application Data Units, Bundles, Blocks 16
4.1.3 Bundle Status Reports . 17

4.2 Routing . 18

vi

CONTENTS vii

4.2.1 Epidemic routing . 19
4.2.2 PRoPHET . 19

4.3 Neighbor Discovery . 20
4.4 Summary . 20

5 Design 21
5.1 Queuing mechanism . 21

5.1.1 Queuing Policies . 21
5.2 Application Layer Optimization . 22

5.2.1 Big Picture . 22
5.2.2 Application Identification . 23
5.2.3 The Client Components . 23
5.2.4 The Server Components . 24
5.2.5 Application/DTN Interfaces 24
5.2.6 Centralizing the traffic for better performances 25

5.3 SMTP over DTN . 27
5.3.1 SMTP over DTN Architecture 27
5.3.2 SMTP Protocol Spoofing . 28

5.4 More Considerations . 29

6 Implementation 31
6.1 Software Development Approach . 31
6.2 Queuing Mechanism . 31

6.2.1 Design in Bytewalla . 31
6.2.2 Queuing Policies . 32

6.3 Application Layer Optimization . 34
6.3.1 Python Implementation . 34
6.3.2 Common files . 34
6.3.3 The Client . 34
6.3.4 The Server/Gateway . 36
6.3.5 The Gateway administration interface 36

6.4 Android Implementation . 37
6.4.1 Overview . 37
6.4.2 Modifications to the Bytewalla application 38
6.4.3 The SMTP/DTN interface application 39

7 Testing & Analysis 41
7.1 Queuing Mechanism . 41
7.2 Application Layer Optimization . 43

7.2.1 Testing . 43
7.2.2 Measurements . 44

8 Conclusion 47
8.1 Summary . 47

viii CONTENTS

8.2 Future Work . 47

Bibliography 49

Chapter 1

Introduction

1.1 Overview
Internet allows people to communicate from far distances. It is a great oppor-

tunity for many people and the economy. Nevertheless, not everyone has access to
these technical facilities. Some areas, especially developing countries and rural areas
do not have this chance, hence increasing the gap between developed and developing
countries. In other situations, such as recently in the Arab world, access to Internet
is disabled and prevents people from communicating with the rest of the world.

In order to provide connectivity to remote areas, Bytewalla was started at KTH
in Fall 2009. Bytewalla provides an application which helps to carry data in mobiles
from the source to the destination, similar to a postman collecting letters to offices.

Several applications have already been developed with Bytewalla. For example
mail integration and a healthcare application. However DTN has been optimized for
developing applications easily on it. A solution has been studied and implemented in
order to reply to this issue. Also, optimization techniques have been considered and
partially implemented to improve applications communications over DTN. These
improvements should help DTN to penetrate in real-world situations and make it
easier to implement applications in DTN environments.

1.2 Problem Statement
Since the birth of computer-mediated communication was first implemented in

the US in the early 1960s, Internet has known a high adoption rate in the indus-
trialized countries. It has now become part of many people’s lives as a convenient
real-time communication solution, and plays a major role in the economy.

However, “great disparities in opportunity to access the Internet and the in-
formation and educational/business opportunities tied to this access . . . between
developed and developing countries”. This has been described as the term “global
digital divide”. Global digital divide points out the geographical division for Inter-

1

2 CHAPTER 1. INTRODUCTION

net access. The emergence of the information revolution in states like Sweden and
United Stated has reinforced their lead in the economy, while developing countries
did not get profit from it, increasing the gap between these countries. [34]

Recent surveys show great differences in Internet usage between world regions
[43]. Hence, 77.3% of the population of the United States has access to Internet.
Scandinavia has even greater penetration, with 86.1%, 92.5%, 94.8% for Denmark,
Sweden and Norway respectively. On the opposite, states such as Burkina Faso,
Congo and Bangladesh have respectively 1.1%, 0.5% and 0.4% of their population
which have access to Internet. On a more global scale, we see that Europe, North
America and Oceania have the highest rates on contrary to world regions such as
Africa and Asia.

In order to provide connectivity to rural areas and challenged networks, a new
approach known as Delay-tolerant networking (DTN) was developed. DTN is meant
to provide connectivity in heterogeneous networks that may lack continuous con-
nectivity due to disruptions or considerable delay.

However, in these challenge environments, popular ad hoc routing protocols
such as AODV (Ad hoc On-Demand Distance Vector Routing) fail to establish
routes. A routing protocol named PRoPHET for “Probabilistic Routing Protocol
for Intermittently Connected Networks” was developed since 2003 by Lindgren, et
al [2]. In realistic situations, data mules encounters are rarely random. They move in
a society and tend to have greater probabilities to meet certain mules than others.
Hence, PRoPHET makes use of their history of encounters to maintain a set of
probabilities for successful deliveries to known destinations and to route the data
through the mules which have the best chances of delivering the data to its final
destination.

The Bytewalla project was started at KTH in Fall 2009. Bytewalla is the DTN
implementation on the Android-platform. The purpose is to connect African rural
villages using Android phones with delay-tolerant networking [13]. The idea behind
it is that people traveling between villages and cities while carrying their phones
will carry data along their movements. The scenario is explained it the Figure 1.2. A
"mule" (an Android phone) will connect a WiFi access point located in a village with
no connectivity to Internet, and download the data. Once it reaches the city, the
data’s destination, the phone connects to the local WiFi access point and uploads
the data. This works also on the other way, city to village.

Bus and cars doing regular trips between villages and cities could be used as
mules by carrying an Android-phone running Bytewalla.

Bytewalla also includes the PRoPHET routing protocol. However the queuing
mechanism which is necessary to know which bundles to drop when the storage
gets full is missing from the implementation. Mobile phones storage space may be
overloaded in case the mule receives a lot of data and it should have mechanisms to
determine what data to drop first according to characteristics such as their priority

1.2. PROBLEM STATEMENT 3

Figure 1.1. The Bytewalla System

or their delivery probabilities.
Along with the implementation of DTN on the Android-platform, a few applica-

tions such as emails, management tool and healthcare have been developed making
use of DTN. However, integrating applications over DTN is still not a convenient
process as most applications are optimized for TCP/IP communications.

In his paper [40], Jörg Ott talks about the difficulties met with integrating an
application protocol with a mobile Internet. As he says, "the semantics of many of
today’s non-real-time-applications are perfectly compatible with disruptive mobile
environments, it is just the protocol designs that are not". He points out some issues
such as working with intermediaries and protocol operations. For example, sending
a mail on Internet requires to go through intermediaries known as mail servers. In
order to avoid single points of failures, applications should be designed for direct end-
to-end operation, while the intermediaries would only focus on message forwarding.
Also, entities need to be more proactive and communicate all their intentions at
once rather than iteratively interacting with a peer, as each iteration would brings
much more delay to the operation.

With Bytewalla, using emails with DTN requires to setup and configure many
tools such as DNS, Postfix and Python [21] on the machine from which the mail is
being sent. This is a complicated and a very resource hungry system, especially for
devices which do not have regular energy supply.

4 CHAPTER 1. INTRODUCTION

1.3 Criteria

This thesis was carried at KTH in Spring 2011. A set of requirements have been
established as defined below. But first, a literature study is carried out considering
DTNs specifications.

The main objective is to provide an architecture which improves applications
integration on DTN, their management as well as their reliability and delays. At
the end, the system is tested to check that its functionalities are working accord-
ingly with our goals. The other objective is the improvement of the PRoPHET
implementation with queuing mechanisms. Hence, the main requirements are:

1. Implementation of PRoPHET’s queuing mechanisms.
The implementation will strictly follow the PRoPHET specification from “Lind-
gren, et al” and it will be a part of the existing Android application Bytewalla.
The implementation must be flexible enough to be able to use different queuing
policies according to the application’s configuration. We will also implement
two queuing policies depending of their efficiency which will be discussed in
Chapter 5.

2. Design and implementation of the Application Layer Optimization.
The application layer stands over the Bundle Protocol layer. The thesis goal
is to ease the development of applications on top of DTN.
– As for now, it is difficult to use DTN with multiple applications. The Bundle

Protocol does not provide any information about the applications to which
the bundles is intended to be delivered, as ports do in the TCP/IP model.
Hence, we will provide a mechanism for using multiple applications in the
same DTN network.

– Developing an application for DTN is not an easy process as the email
integration in Bytewalla 1 shows. Hence, we will propose an interface to
run applications on a DTN network (e.g. Bytewalla) and to help building
applications on top of DTN without having to worry about the underlying
DTN layers.

– The Application Layer Optimization will also give the ability to include
optimization techniques to improve delay, reliability such as protocol spoof-
ing. Protocol spoofing will let the applications communicate "all-at-once"
instead of iteratively.

– A management interface will be developed to provide administrators with
statistics and information about the application communications over DTN.

– Based on this system, it will also be possible to implement more tools.
For example a subscription service: a village in a remote area could receive
courses on a regular basis with DTN.

In order to achieve this we will present its design and implement a proof-of-
concept tool for the DTN nodes. This tool will include optimization techniques
and interfaces to the applications willing to communicate through DTN. Be-

1.4. THESIS ORGANIZATION 5

sides, we will deliver a management interface allowing the administrator to
view and configure the network. This is more thoroughly described in Chapter
5.

3. Performance analysis.
The existing tools (Bytewalla, Application Layer, DTN daemon) will be tested
in order to ensure it works efficiently.

1.4 Thesis Organization
The thesis is organized in 8 chapters. The Chapter 2 presents the background

of the DTN concept and the related work. The related work is a set of DTN related
projects which have been conducted in the past or are still continued. One of this
related project is named Bytewalla or is the project on which this thesis is based.
Bytewalla has been through three iterations already and the work performed as part
of this project is presented in Chapter 3. Then in Chapter 4, we present the technical
background and the specifications required as part of this thesis. This includes the
Bundle Protocol and its some of its companion concepts such as the DTN routing
protocols and the Neighbor Discovery mechanism. Following this chapter, we present
in Chapter 5 the design of our implementation. There we discuss about the available
solutions and we explain our choices. Logically, we then explain the implementation
part in Chapter 6. Finally we test the implementation and measure its performance
in Chapter 7.

Chapter 2

Background and Related Work

This chapter first explains the need for the DTN technology. Then we identify
the different research groups involved in the field, and we present their contributions
which led to the current standards of DTN. Later on, we give an overview of some
the practical applications which have been developed with the idea of delay and
disruption-tolerant networks. Finally, we focus on some of the research which was
performed for routing protocols in Delay-Tolerant Networking.

2.1 Motivation
The current Internet protocols do not perform well in some environments be-

cause of some of their fundamental assumptions which are built-on their architec-
tures:

1. An end-to-end path exists between a data source and its peer
2. The maximum round-trip time between any node pairs in the network is not

excessive
3. The end-to-end packet drop probability is small
Unfortunately, challenged networks may not be able to meet these assumptions.

Such examples are Inter-planetary networks and Terrestrial Mobile Networks (un-
expected partition due to nodes mobility).

In an effort to adapt Internet to unusual environments, research in this area
was conducted since a few decades ago as described in the next section. First for
Inter-planetary networks, but only recently it has evolved into terrestrial networks
and the concept of Delay Tolerant Networks.

2.2 DTN Concept
The DTN history goes back to many years ago. It started with a project led

by several space agencies and later evolved into a terrestrial network based on the
previous work. Today, a whole research field has emerged around the DTN concept.

7

8 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.1 Early research

The Consultative Committee for Space DataSystems (CCSDS)[20] composed of
world’s space agencies was created in January 1982 at an International Workshop
on Space Data Systems held in Washington, DC, USA by . The CCSDS’s goal was
to develop advanced standardized solutions for exchanging space mission data. As
part of this, the members created the final CCSDS Recommendations which served
to guide the internal development of standards by each of the members.

2.2.2 NASA and IPN

In 1998, Vint Cerf and scientists from NASA’s Jet Propulsion Laboratory (JPL)
started working on Interplanetary Internet (IPN). In the IPN scenario, transmission
is subject to significant delays and intermittent connectivity due to planets and
spacecrafts movements.

In August 2002 the IPN research group (IPNRG) published the draft "Delay-
Tolerant Network Architecture: The Evolving Interplanetary Internet" [15] which
describes the architecture designed for IPN. This work led to the concept of bundles
as a way to address the Store-and-Forward problem. Bundles are an area of new
protocol which sits above the Transport layer in the OSI model.

2.2.3 DTNRG

The DTNRG (DTN Research Group) was formed in 2002 to generalize the IP-
NRG’s work to networks other than those operating in deep space. It proposes an
alternative to the Internet TCP/IP end-to-end interactive delivery model and em-
ploys hop-by-hop storage and retransmission as a transport-layer overlay [28].The
main difference between interplanetary-networks and terrestrial networks is that
IPN works in a scheduled manner while terrestrial networks are in general op-
portunistic. However they have in common that they both deal with delays and
disruptions.

The DTNRG released a description of the architecture of DTN [18] in 2003.
Since then, the DTNRG published more documents. Some of the more important
ones are:

1. RFC 4838 “Delay-Tolerant Networking Architecture” [14]

2. RFC 5050 “Bundle Protocol Specification” [10]

3. Delay Tolerant Networking TCP Convergence Layer Protocol (Internet Draft)
[39]

4. UDP Convergence Layers for the DTN Bundle and LTP Protocols(Internet-
Draft [38]

2.3. DTN APPLICATIONS 9

Figure 2.1. The DakNet concept

2.3 DTN Applications
Here we present some of the practical applications for delay and disruption-

tolerant networks. All these applications have different goals such as animal tracking
or providing Internet connectivity but they are all more or less working with delay-
tolerant networks.

2.3.1 DakNet
DakNet [4], developed by MIT Media Lab researchers, was one of the first practi-

cal application with DTN. Its goal is to provide very low-cost digital communication
to remote villages. It has been deployed in remote parts of both India and Cam-
bodia. In Figure 2.3.1, a bus carrying a mobile access point travels between village
kiosks and a hub with Internet access. Data automatically uploads and downloads
when the bus is in range of a kiosk or the hub.

It has been used to send voice messages and emails.

2.3.2 N4C
The Networking for Communications Challenged Communities (N4C) project is

funded by the European Union to provide connectivity to remote European regions.
Indeed, many regions do not have links to the world networks because they are
sparsely populated or have a relatively poor economic base.

Hence, with the help of DTN, N4C aims to create an ‘opportunistic networking
architecture. Two testbeds are set up in Swedish Lapland and Slovenian’s mountain.

Three application tests were carried out on animal tracking, pod cast application
and meteorological data. [37]

10 CHAPTER 2. BACKGROUND AND RELATED WORK

2.3.3 Sámi Network Connectivity (SNC)
SNC is a project which seeks to establish Internet communication for the Saami

population who live in remote areas in Northern Scandinavia. This community is
nomadic and has poor infrastructure to access information.

SNC is conducted at the Luleå University of Technology (Sweden).

2.3.4 Bytewalla
Bytewalla is the project which serves as a basis for this thesis. Bytewalla was

started in Spring 2009 at KTH. Its objective is to connect rural and remote areas
to Internet. In order achieve this, the DTNRG implementation was ported on the
Android platform along with the development of some DTN applications. Bytewalla
is described more precisely in the Chapter 3

2.4 Routing in Delay-Tolerant Network
Traditional TCP/IP routing protocols cannot be used with DTN. These proto-

cols try to establish and complete end-to-end route, and then forward the data. In
the DTN case, this is not possible as end-to-end paths are difficult or impossible to
establish. Hence, a “store and forward” approach is adopted.

Several routing protocols have been designed based on this approach. Epidemic
routing was the first routing protocol designed for DTN [45]. It is flooding-based in
nature: nodes continuously replicate the data to other nodes as they meet, so that
the data eventually reaches its destination. Epidemic routing is resource hungry as
it makes duplication of the data without attempting to eliminate the duplications
which do not improve the delivery probability. With mobile devices having limited
storage and energy capacities, resources should be used wisely.

Hence, PRoPHET is a variant on the epidemic routing protocol and aims to
reduce resource usage and still attempt to achieve the best case routing capabili-
ties for epidemic routing. The key idea is that in real-world situations, encounters
between data mules are not random as the mules move in a society. So if a mule
has already met another mule, it is likely that they will meet again. So PRoPHET
keeps track on the encounters a mule makes and computes the delivery probabilities
for each known node. This way, data is passed from a node to another one only if
it increases the chances of delivery.

2.5 Summary
In this chapter we introduced the concept of Delay Tolerant Networking. First

we explained the motivation for developing Delay Tolerant Networking, then we an
overview of its historical background, and finally, we showed some of its practical
applications along with the development of the routing protocols in DTN.

2.5. SUMMARY 11

The next chapter will focus on Bytewalla, on which this thesis bases itself.

Chapter 3

Bytewalla

In this chapter we present the three steps that compose the Bytewalla project.
Bytewalla consists of two semester group projects and one thesis which precisely fo-
cused on the security considerations. The two other iterations led to the implemen-
tation of DTN on the Android platform along with a couple of DTN applications.

3.1 Bytewalla I

Bytewalla I was the first iteration of the Bytewalla Project. It was held in Fall
2009 in KTH. The main objectives were:

1. Porting the standard DTN implementation on the Android platform.
The standard DTN implementation was developed by DTNRG [29].

2. Email integration.
Bytewalla chose to develop an email application which serves as a proof-of-
concept for their DTN implementation. The application can support MIME
types ([24], [25], [35], [36], [22]) as payload. Hence, the users can attach any
digital files such as images, videos, voices to the email as well.
The integration relies on the mail system POSTFIX and a DNS server which
need to be installed to send and receive emails. Some Python scripts are also
required in order to convert the mails into bundles and vice versa. The setup
must be configured following two documents: Postfix DTN2 Integration [7]
and Postfix and DNS [6]. It is a long process (17 pages of instruction in total)
and requires many tools (Postfix, DNS, Python).

3.2 Bytewalla II

Bytewalla II was a thesis conducted in Spring 2010 [17].
The thesis main objective was to deploy a standardized security solution for

DTN networks in Android, which could be implemented in Bytewalla. The work

13

14 CHAPTER 3. BYTEWALLA

was based on several documents such as DTN Security Overview [19] and Bundle
Security Protocol Specification [44].

3.3 Bytewalla III
Bytewalla III was a group project conducted in Summer 2010 and was focusing

on several objectives:
1. Implementation of PRoPHET

PRoPHET was integrated into Bytewalla, following the PRoPHET Internet-
Draft version 8 [3].

2. Neighbor Discovery
Before then, the addressing was static. Thus, nodes were not able to discovery
each other. With Neighbor Discovery, nodes can discover their neighbors and
start exchanging information. This work was an implementation of the DTN
IP Neighbor Discovery (IPND) InternetDraft [9].

3. Network Management Tool [11]
One of the two applications that were developed in Bytewalla 3 is the Network
Management Tool. This tool informs the administrators about the statistics of
the DTN network, such as the number of bundles delivered, transmitted, and
so on. Besides that, it also let the administrator generate a new configuration
file for the DTN daemon. However the administrator would need to replace the
actual configuration file manually. Also, this tool only gives global statistics
and does not provide information specific to a bundle such as whether it was
delivered.

4. Sentinel Surveillance Application [12]
The other one is the Sentinel Surveillance Application. This is a healthcare ap-
plication whose goal is to provide communication to doctors in remote areas.
Doctors can register records about their patients and everything is synchro-
nized with a remote server. Every time a record is added to the database,
the SQL query is bundled and sent to the remote host through the Bundle
Protocol. The receiver then unpacks the bundle and execute the SQL query
on its own database.

3.4 Summary
In this chapter we discussed about the improvements brought by each iteration.

Bytewalla I brought the mail application as well as the DTN implementation on
Android. Bytewalla focused on its security, and Bytewalla III developed a few more
applications and implemented the PRoPHET specification.

Chapter 4

Specifications

This chapter presents the specification necessary to understand this thesis. This
includes the DTN architecture and the Bundle Protocol, as well as the DTN routing
protocols and the Neighbor Discovery mechanism. All these concepts will be involved
in the design and the implementation part of this thesis.

4.1 The Bundle Protocol

4.1.1 DTN Architecture

The RFC 4838 describes the architecture for Delay-Tolerant Networks. As stated
before, the Internet architecture relies on assumptions like end-to-end connectivity
and low round-trip delays. To circumvent these requirements, the DTN architecture
has adopted a store-and-forward approach. Data are packed into bundles which are
saved with persistent storage. Hence the nodes can keep the data even over long
network disruptions.

According to the DTN architecture, the bundle layer is above the transport
layer. Not all transport protocols provide the exact same functionality, so some
adaptation is required between the transport protocols and the bundle protocol.
This is accomplished by a set of convergence layers placed between the bundle
layer and underlying protocols. The convergence layer takes care of the specificities
of the transport protocol and presents a consistent interface to the bundle layer.
The complexities of the convergence layers depend on the transport protocol. For
example the TCP convergence layer [39] would not have to worry about reliability
as it is already implemented in TCP, while the UDP convergence layer [38] may
handle it itself.

Nodes are identified with Endpoint Identifiers (EID). Each node is required to
have a unique EID. An EID is a name using the syntax of URI [8].

For reliability, the bundler layer provides two options: end-to-end acknowledg-
ments (Bundle Status Reports) and custody transfer. DTN applications may also

15

16 CHAPTER 4. SPECIFICATIONS

 +----------------+----------------+----------------+----------------+

 | Version | Proc. Flags (*) |

 +----------------+----------------+----------------+----------------+

 | Block length (*) |

 +----------------+----------------+---------------------------------+

 | Destination scheme offset (*) | Destination SSP offset (*) |

 +----------------+----------------+----------------+----------------+

 | Source scheme offset (*) | Source SSP offset (*) |

 +----------------+----------------+----------------+----------------+

 | Report-to scheme offset (*) | Report-to SSP offset (*) |

 +----------------+----------------+----------------+----------------+

 | Custodian scheme offset (*) | Custodian SSP offset (*) |

 +----------------+----------------+----------------+----------------+

 | Creation Timestamp time (*) |

 +---------------------------------+---------------------------------+

 | Creation Timestamp sequence number (*) |

 +---------------------------------+---------------------------------+

 | Lifetime (*) |

 +----------------+----------------+----------------+----------------+

 | Dictionary length (*) |

 +----------------+----------------+----------------+----------------+

 | Dictionary byte array (variable) |

 +----------------+----------------+---------------------------------+

 | [Fragment offset (*)] |

 +----------------+----------------+---------------------------------+

 | [Total application data unit length (*)] |

 +----------------+----------------+---------------------------------+

Figure 4.1. The Bundle Primary Block

implement their own reliability mechanism.

4.1.2 Application Data Units, Bundles, Blocks
Applications communicate with the bundle layer to send and receive data. When

an application sends an application data unit to the bundle layer, the bundle layer
will pack the data into one or more bundles (Bundle Protocol Data Units).

Each bundle is composed of at least two blocks:
1. Primary Bundle Block (see Figure 4.1)

This is the first block. It contains information such as the source, the desti-
nation, lifetime, creation timestamp.

2. Bundle Payload Block (see Figure 4.2)
This block contains the payload received from the application layer.

3. Extension blocks (see Figure 4.3)
These blocks are optional. They are used for specific cases.

Extension blocks and the Bundle Payload Block all follow a common format (block
type, flags, length, content). The Bundle Payload Block’s type code is 1.

4.1. THE BUNDLE PROTOCOL 17

 +----------------+----------------+----------------+----------------+

 | Block type | Proc. Flags (*)| Block length(*) |

 +----------------+----------------+----------------+----------------+

 / Bundle Payload (variable) /

 +---+

Figure 4.2. The Bundle Payload Block

 +-----------+-----------+-----------+-----------+

 |Block type | Block processing ctrl flags (SDNV)|

 +-----------+-----------+-----------+-----------+

 | Block length (SDNV) |

 +-----------+-----------+-----------+-----------+

 / Block body data (variable) /

 +-----------+-----------+-----------+-----------+

Figure 4.3. The Bundle Extension Block

4.1.3 Bundle Status Reports

As we saw in the Subsection 4.1.1, the end-to-end reliability mechanism is en-
sured by Bundle Status Reports. Bundle Status Reports are standard bundles whose
payload is a status report. The reports can inform the node indicated in the Report-
To field about different types of events:

1. The reception of a bundle

2. The forwarding of a bundle

3. The delivery of a bundle

4. The deletion of a bundle

It includes the time of the event and provides the identifiers of the bundles concerned
by the status reports.

The Figure 4.4 shows the representation of a bundle status report.
The status flag informs about what the status report is reporting (e.g. received

bundle, forwarded bundle, etc.).
The reason code informs about the reason for the event that is being reported

(e.g. lifetime expired, transmission canceled, depleted storage, etc.).
The fragment fields are only used for fragmented bundles.

18 CHAPTER 4. SPECIFICATIONS

 +----------------+----------------+----------------+----------------+

 | Status Flags | Reason code | Fragment offset (*) (if

 +----------------+----------------+----------------+----------------+

 present) | Fragment length (*) (if present) |

 +----------------+----------------+----------------+----------------+

 | Time of receipt of bundle X (a DTN time, if present) |

 +----------------+----------------+----------------+----------------+

 | Time of custody acceptance of bundle X (a DTN time, if present) |

 +----------------+----------------+----------------+----------------+

 | Time of forwarding of bundle X (a DTN time, if present) |

 +----------------+----------------+----------------+----------------+

 | Time of delivery of bundle X (a DTN time, if present) |

 +----------------+----------------+----------------+----------------+

 | Time of deletion of bundle X (a DTN time, if present) |

 +----------------+----------------+----------------+----------------+

 | Copy of bundle X’s Creation Timestamp time (*) |

 +----------------+----------------+----------------+----------------+

 | Copy of bundle X’s Creation Timestamp sequence number (*) |

 +----------------+----------------+----------------+----------------+

 | Length of X’s source endpoint ID (*) | Source

 +----------------+---------------------------------+ +

 endpoint ID of bundle X (variable) |

 +----------------+----------------+----------------+----------------+�

Figure 4.4. Bundle Status Report

The "Time of" fields report the time of the event The status flag informs about
what the status report is reporting (e.g. received bundle, forwarded bundle, etc.).

The "Copy of bundle X’s Creation Timestamp time" field is a copy of the creation
timestamp time of the bundle that the status report concerns. It helps to identify
the bundle whose the status report is originating from.

The "Copy of bundle X’s Creation Timestamp sequence number" field is a copy
of the creation timestamp sequence number of the bundle that the status report
concerns. It helps to identify the bundle whose the status report is originating from.

The last fields (i.e. "Length of X’s source endpoint ID" and "Source endpoint ID
of bundle X" gives the source of the bundle for which the status report was sent.

4.2 Routing

Routing is a really important part of DTN. It impacts on the delay and the
bundles delivery success rate. The simplest one is known as Epidemic routing but
some other solutions have been developed. One of them, briefly presented in the
previous chapter, is known as PRoPHET. Hence we will focus especially on the
PRoPHET specification.

4.2. ROUTING 19

4.2.1 Epidemic routing
Epidemic routing is a flooding-based type of routing protocol. Nodes will con-

tinuously replicate and transmit bundles to the other nodes their meet. No effort is
made to limit the resource usage; however it offers high delivery probabilities.

4.2.2 PRoPHET
On contrary to epidemic routing, PRoPHET aims to a more efficient routing

protocol which reaches as good delivery predictabilities as epidemic routing while
using less resource.

When two nodes discover each other, they start the Information Exchange Phase.
First, the node will send a Routing Information Base Dictionary (RIB Dictionary)
TLV (type-length-value) to the node it is peering with. This is a dictionary of the
Endpoint Identifiers (EIDs) of nodes will be referenced in the Routing Information
Base. The next step is to send the Routing Information Base (RIB) TLV. This con-
tains the list of EIDs that the node has knowledge of with corresponding delivery
predictability. Upon reception of the RIB, the node updates its delivery predictabil-
ities and determines which of its stored bundles it wished to offer. After the decision
is made, it sends a Bundle Offer TLV containing the bundle identifiers and their
destination that the node wishes to offer.

PRoPHET contains an algorithm to calculate the delivery predictabilities ac-
cording to the node’s history. The mule A stores delivery predictabilities P(A, B)
for each known destination B. If the mule A has no delivery predictability stored
for mule B, the value is assumed to be zero. The delivery predictabilities are re-
calculated according to three rules:

1. When the mule A encounters the mule B, the predictability for B is increased:

P (A,B) = P (A,B)old + (1 − δ − P (A,B)old) ∗ Pencounter

2. If the mule A does no encounter another mule B during some interval, the
predictability is “aged”:

P (A,B) = P (A,B)old ∗ γK

, where γ is the “aging constant” and K is the number if time units that has
elapsed since the last aging.

3. Predictabilities are exchanged between A and B and the transitive property
of predictability are used to update the predictability of destinations C for
which B has a stored P (B,C):

P (A,C) = MAX(P (A,C)old, P (A,B) ∗ P (B,C)old ∗ β

, where β is a scaling constant

20 CHAPTER 4. SPECIFICATIONS

Figure 4.5. The beacon format

4.3 Neighbor Discovery
DTN IP Neighbor Discovery (IPND) is documented in the Internet-Draft [9].

Shortly, it is a method for nodes to learn of the existence, availability and addresses
of other nodes. IPND periodically sends (broadcast) and receives beacons to/from
other nodes. These beacons are small UDP messages and contain information such
as the address of the node. Upon reception of a beacon, a node will establish contact
with the discovered node. IPND has been implemented in the DTNRG implemen-
tation.

In the DTNRG implementation, the beacon format is presented in the Figure
4.5.

CL Type: The convergence layer type informs the type of convergence layer
option advised.

Interval: The interval for periodically sending beacons.
Port: Usually set to 4556 (the standard DTN port)
Length of EID/EID: The EID of the node sending the beacon

4.4 Summary
In this chapter we have presented the specification and the technical aspects of

the Bundle Protocol, the routing in DTN and the Neighbor Discovery mechanism.
Next chapter show the design of our solutions for the Queuing mechanism and the
Application Layer

Chapter 5

Design

In this chapter we present the overall architecture for the queuing mechanism
and for the application layer optimization. We explain what solutions we have
adopted an the reasons for choosing them. This chapter first explains the queu-
ing mechanism architecture and the queuing policies that are included as part of
the implementation. Then we focus on the Application Layer. First on the big pic-
ture to show the overall architecture of the Application Layer over DTN and then
we discuss in details its functionalities.

5.1 Queuing mechanism

Every time a bundle is added to the storage, the application should check for
maintaining the quota. This is where the queuing mechanism intervenes. This should
be developed in a modular way, so that the user can easily switch from one queuing
policy to another one, or even add its own queuing policy. Each policy will be
responsible for returning the "first" bundle in the queue, i.e. the bundle to be deleted
first. The quota maintenance and the bundle deletion procedure is common to all
queuing policies.

Hence, as the Figure 5.1 shows, the queuing policies will be implemented in their
own classes and they will all inherit from a common ProphetQueuing class.

5.1.1 Queuing Policies

We chose which policies to implement according to their efficiency in terms of
delay and deliverability. Lindgren, A. and Phanse, K.S. have proposed and evaluated
some policies [33]. The queuing management policies which are evaluated in this
paper are:

1. FIFO – First in first out.

2. MOFO – Evict most forwarded first.

21

22 CHAPTER 5. DESIGN

+delete()
+getLastBundle()
+removeNextBundle()
+maintainQuota()

ProphetQueuing

+getLastBundle()

Fifo

+getLastBundle()

Mofo

Figure 5.1. Queuing Classes UML

3. MOPR – Evict most favorably forwarded first. The node keeps a value FP
for each message. Each time a message is forwarded, its value FP is updated:
FP = FPold +P , where P is the deliverability predictability for the receiving
has for the message. The message with the lowest FP value will be dropped
first.

4. SHLI – Evict shortest life time first.
5. LEPR – Evict least probable first. Drop the message which has the destination

with the lowest predictability.
According to the paper, each queuing policy has been tested with 5 forwarding

strategies and different queue sizes. However MOPR and LEPR are not applicable
to two forwarding strategies. Hence we focus only on the three other remaining
queuing policies.

About the deliverability, it appears that MOFO is the most efficient one no
matter the queue size with three of the 5 forwarding strategies. Of the three policies
applicable to all forwarding strategies, SHLI is in most cases the least efficient one.

Regarding the average delay, MOFO and FIFO reach similar results while SHLI
is in any case less efficient that the two others.

Therefore, we decided to implement the MOFO and the FIFO queuing policies.

5.2 Application Layer Optimization

5.2.1 Big Picture
There are two main components besides the data mules. The node running the

client application, which acts as a DTN client and the node running the server
application, which acts as a server. The client sends a message through DTN to

5.2. APPLICATION LAYER OPTIMIZATION 23

Client Node Server NodeBundle Protocol (undefined number of mules)

Figure 5.2. A simple Client to Server DTN communication

the server. Note that a node may be both a client and a server, thus being able
to send and receive messages, but this is not mandatory. The Figure 5.2 shows the
big picture of the simple system. The nodes may be smartphones, mobile devices,
desktop computers or any other type of devices.

Also, as a proof-of-concept we have decided to implement a SMTP[32]/DTN
interface. The reason for this choice is that SMTP is a popular protocol for emails
which is itself a popular application. Also, this new architecture will replace to
solution developed by Bytewalla 1. The last section discusses the issues specific to
the SMTP/DTN interface.

5.2.2 Application Identification

As explained in the first chapter, there is no identifier wish helps to identify
the applications. Hence for example, when a bundle is received, nothing informs
about whether it is intended for the email or the healthcare application. This could
either be indicated in the payload by adding a "payload header" containing such
information, or in an extension block as described in the Subsection 4.1.2.

Adding the application information in the payload is certainly not a good so-
lution in that it would not be possible to differ the bundles from other standard
bundles such as Status Reports. On the contrary, adding an extension block will
help to efficiently identify the bundles.

This new type of bundles, identified as application bundles in this document,
will now be composed of three blocks. The Primary Block, the Payload Block and
the Service Block which tells about the type of service the bundle is intended to
be used for. [10] states that the block type codes 192 through 255 are available for
private and/or experimental use. For this experiment, we will use the block type
200.

At this moment the application block payload consists of only one field called
the "application type". To identify SMTP applications, we will use the value 1 as
its "application type".

5.2.3 The Client Components
The Clients consist of a DTN daemon such as Bytewalla (the one we are using

for this thesis), applications such as a mail client, and an Application/DTN interface
for each supported application, such as the interface between SMTP and DTN.

24 CHAPTER 5. DESIGN

Node 1 Node 2

Proxy

DTN Daemon

Port 4557

Port x (node 1) Port y (node 2)

Port 4556

Figure 5.3. The gateway

The internal communications are explained in Subsection 5.2.5.

5.2.4 The Server Components

The servers are composed of a DTN daemon like any other node, as well as an
internal proxy. The proxy captures the bundles going to and leaving from the server.
The bundles then go through several processing steps (for example storage, reports
invocation, caching, etc.). The Figure 5.3 shows how the bundles are captured. The
proxy listens to the standard DTN TCP port (4556) and forwards the data to the
DTN daemon which is listening on another port (e.g. 4557). Upon new connections,
the proxy establishes a new connection with the DTN daemon. Each remote host is
associated with a port on which the proxy created a connection with the daemon,
and the data is forwarded accordingly.

The internal communications are explained in Subsection 5.2.5.

5.2.5 Application/DTN Interfaces

Application protocols are usually not suited for DTN because they expect no
long delays and permanent connectivity. Hence the application cannot communicate
directly with the other peer host. The messages should be processed all together
locally and bundled to be transmitted through the DTN network. This is called
protocol spoofing.

5.2. APPLICATION LAYER OPTIMIZATION 25

Application
Application/DTN

Interface
Application Protocol DTN Daemon

DTN Application Client

Application
Application/DTN

Interface
Application Protocol DTN Daemon

DTN Application Server

Bundle Protocol

Figure 5.4. Application/DTN Interfaces

The applications must then communicate with another local application which
will process the exchange with the application and sends it as a bundle to the DTN
daemon. Upon reception on the other end, the bundle will be converted back to the
original application messages as Figure 5.4 shows.

The Application/DTN Interface is composed of:
1. A DTN daemon taking care of the Bundle Protocol.
2. And:

– An Application-to-Bundle interface (A2BI) listening on a specific port for
messages from the local application.

And/Or

– A Bundle-to-Application interface (B2AI) responsible for forwarding the
message to the application upon reception of a bundle.

There may be several different applications running concurrently on one host. In
this case, an application server or client is required for each type of application pro-
tocol, but only one DTN daemon is needed. The Figure 5.5 shows the representation
of an application/DTN interface:

A2BI 1 and A2BI 2 listen for application 1 protocol and application 2 protocol
requests respectively, and convert the messages into bundles for the DTN Daemon.
B2AI 1 and B2AI 2 wait for incoming bundles from the DTN Daemon and convert
them into application 1 protocol and application 2 protocol messages.

5.2.6 Centralizing the traffic for better performances

We want to be able to provide optimization techniques such as caching and
services such as subscription. Subscription is a proactive service allowing service

26 CHAPTER 5. DESIGN

A2BI 1 A2BI 2

DTN Daemon

B2AI 1 B2AI 2

Application 2 Initates ExchangeApplication 2 Initates Exchange

Figure 5.5. Applications interface to the Bundle Protocol

to receive data at regular time intervals without requesting for it, thus avoiding a
longer delay. With caching we could deliver the results to the requests which have
already been sent recently. This reducing considerably the delay since the request
will not need to go through the whole DTN network.

Sometimes also, all the members of a community may need to receive common
data. For example, all the students living in a remote area would receive their class
contents from a remote city. This can be implemented with a gateway responsible
for gathering all the data common to many people. The gateway could for example
be registered to a subscription service and receive data such as news on a regular
basis.

For these reasons, the system should be centralized. This means all the appli-
cation bundles will go through a specific node. Moreover, this will help managing
the DTN network bundles more efficiently. However, this should only be used by
the nodes which have good delivery predictability with the gateway, for example
a small village community. Otherwise, the advantages of using a gateway will be
obliterated by long-delays and high drop rates.

Also the gateway will be able to provide reliability improvement. The bundles
going through the server should be stored and retransmitted if a bundle does not
reach its destination because of time out or deletion. Hence the gateway must ask
status reports for all the application bundles which are passing by, and handle these
reports to be aware of their delivery or their deletion.

The gateway will also include the management tools to provide information
about the application bundles (delivered, deleted, etc.) and to configure the node.
The management tools will be available through a Web interface. This is a PHP [30]

5.3. SMTP OVER DTN 27

application type application source application destination

Figure 5.6. The Application Block

Client Node 3

Server Node

Bundle Protocol

Gateway Node

Client Node 1

Client Node 2

Figure 5.7. A DTN network as in Figure 5.2 including a gateway

application, which accesses the MySQL database and outputs the results in HTML.
In order to transmit all application bundles through the gateway, we need to set

the destination as the gateway EID. Hence to keep track of the application bundle’s
source and the application bundle’s destination, we add two fields to the Application
Block. The two fields are the application data unit (ADU) source and the ADU’s
destination. The first one identifies where the application ADU is sent from while
the second one identifies to whom it is sent. On the DTN level, the bundle will first
be sent to the gateway which will then retransmit it to the ADU’s destination after
it has been processed. The bundle may go through other intermediary nodes but
its final destination is always the ADU’s destination. The final application block
payload is shown in Figure 5.6. All fields are separated by a null character (0x00).

The gateway is not mandatory (the bundles may be send directly to their final
destination) but it brings some performance optimization to the DTN network. The
picture of the system with a gateway is shown in the Picture 5.7.

5.3 SMTP over DTN
In this section we present how to run SMTP over our designed DTN architecture.

We first show how the communication between a mail client and a SMTP server
connected to Internet is performed, and then we focus on the data model used for
carrying the SMTP data within the Bundle Protocol.

5.3.1 SMTP over DTN Architecture

The purpose of implementing SMTP over DTN is to be able to communicate by
emails with a peer connected to Internet. As Internet connectivity is not guaranteed,
we send the SMTP data through the Bundle Protocol to a DTN application server

28 CHAPTER 5. DESIGN

DTN/SMTP InterfaceSMTP Mail Application

a) SMTP to Bundle

DTN Daemon

Bundled data

220 SMTP Ready

EHLO client

250

MAIL FROM: <a@example.com>

250 Sender ok

RCPT TO: <b@example.com>

250 Recipient ok

DATA

354 Enter mail

...

250 Ok

QUIT

221 Closing connection

DTN/SMTP InterfaceInternet Mail Relay

b) Bundle to SMTP

DTN Proxy/
DTN Daemon

220 SMTP Ready

EHLO client

250

MAIL FROM: <a@example.com>

250 Sender ok

RCPT TO: <b@example.com>

250 Recipient ok

DATA

354 Enter mail

...

250 Ok

QUIT

221 Closing connection

Bundled data

Figure 5.8. SMTP Protocol Spoofing

which will be responsible for contacting a local mail relay server in order to deliver
the mail. The DTN server node must be connected to Internet, but not the DTN
client node.

Postfix [1] was chosen as for the local mail relay.

5.3.2 SMTP Protocol Spoofing

Upon the exchange with the mail application, the DTN/SMTP interface pre-
pares the data for the bundle, see Figure 5.8. The Figure a shows the conversion
from SMTP to bundle while Figure b shows the conversion from bundle to SMTP.

The SMTP messages need to be packed up by the local SMTP server application
into bundles before being transmitted with the Bundle Protocol. The SMTP/DTN
interface takes three parameters from the mail client: the "from address", the "re-
cipients" and the data containing the mail (header, subject, body, ...). In order to
keep the proof-of-concept simple and the bundles as short as possible due to the
limited storage capacity of the mobile devices, we concatenate the three parameters,
separated by a null character (see Figure 5.9). As there might be several recipients,
the list of recipients is also concatenated with a null character as a separator. The
number of recipients is added to the front of the resulting string, again with a null
character to separate both.

Note that the MX records should be updated by the SMTP/DTN interface [41].

5.4. MORE CONSIDERATIONS 29

from@example.com to1@example.com, to2@example.com mailData

from@example.com[null]2[null]to1@example.com[null]to2@example.com[null]mailData

[null] = null character (0x00)

Figure 5.9. The SMTP Bundle Payload

5.4 More Considerations
It is good to notice that in some cases, the applications may have to be redesigned

for DTN due to the long-delays and the low-reliability compared to interconnected
networks such as Internet. For example, the application must not wait for an in-
stantaneous response (e.g. a web browser requesting a page). The request and the
response are not synchronized. A response may be received and handled at any
time. So the application must be always be ready to handle a message containing
the response to one of its previous requests.

This also implies that the user-interface may need to be redesigned as well. The
user may not be able to have instantaneous feedbacks from the application, as the
response will in most cases be delayed.

In the case of SMTP, we are simply sending a mail, so the application does not
wait a particular response. However, it would be different with the POP protocol
[23] for example. POP aims to retrieve emails. In the case of DTN, POP is not
applicable because it asks for emails and hopes to get an immediate response which
is not guaranteed in DTN. This should then be replaced by a mechanism where
we first send a request for emails through the Bundle Protocol, and then wait for
handling the response bundle containing the emails whenever we receive it. This is
represented in the Figure 5.10. The request may also be replaced by a subscription
service, sending emails periodically instead of having to explicitly request for them.
However, once the emails have been received, it would be possible to access them
through a regular POP application (e.g. Thunderbird [16]) connecting to a local
POP server delivering the emails received through the Bundle Protocol.

It should also be noted that more efforts should be put on reliability, as the
DTN mail client can not know instantaneously whether its request could be sent.
For example in the case of SMTP, we forward all SMTP requests into bundles.
However, if the identifiers are wrong, we will be aware of it only when the DTN
server will be able to forward the SMTP message. If it fails, the client should be
informed by an application feedback mechanism, that the mail message failed to be
sent.

30 CHAPTER 5. DESIGN

Emails RequesterPOP Application

Emails Receiver
/ POP Server

DTN POP Client

POP Bundle Handler

Internet

Bundle Protocol

Figure 5.10. How to retrieve emails over DTN

Chapter 6

Implementation

The Implementation chapter is divided into three sections. First we introduce
the reader to the development approach. The second section concerns the implemen-
tation of the queuing mechanism. We discuss about the possible queuing policies,
the design of the queuing mechanism in Bytewalla and its implementation process.
Finally, the third section focuses on the Application Layer. There we thoroughly
present the technical challenges and how they are solved.

6.1 Software Development Approach

For the implementation, I chose to follow the Evolutionary Prototyping Model
[42]. This model is an incremental approach. The system is developed in increments
so it can easily be modified according to its results and to follow the objectives of
this thesis.

The implementation was done with Python 2.6 [21] and it only aims to be a
proof-of-concept, not a robust, optimized and definitive implementation. Especially
because of the limited time allocated to the implementation.

MySQL[5] is used as the database management system.

6.2 Queuing Mechanism

6.2.1 Design in Bytewalla

The purpose of implementing queuing mechanism in Bytewalla is to keep the
total size below the specified quota. Hence, every time a bundle would be stored
on the disc, we would maintain the quota by deleting bundles if necessary and
according to priority order depending on the queuing policy.

Overview
The core resides in the ProphetQueuing class. It is an abstract class and it

31

32 CHAPTER 6. IMPLEMENTATION

provides common functions such as getInstance, maintainQuota, delete and re-
moveNextBundle. The queuing policies are implemented in their own file, inherit
from ProphetQueuing and have only one function “getLastBundle”. This function
which is unique to each policy returns the last bundle id according to their priority
in the queuing policy. For example the FIFO policy will returns the id of the bundle
which was added at first.

Small modifications were made to the DTNConfigurationParser and Bundle-
Store classes. Respectively to add a policy setting in the configuration file and to
give the handle to the queuing policy when it comes to maintain the quota after a
new bundle was stored on the disc.

Configuration
The user can specify the queuing policy that he wants to use in the configuration

file. This is achieved in the DTNConfigurationParser by simply adding a new setting
“Queuing_policy”.

Storage and maintaining the quota
Inside the BundleStore’s add function, after the bundle has been stored and if

the type of router being used is PRoPHET, we give the handle to the PRoPHET’s
queuing mechanism. This checks if the quota has not been exceeded, and if this is
the case, delete as many bundles as needed to free enough space.

6.2.2 Queuing Policies

Two queuing policies have been implemented. “First In First Out” (FIFO) and
“Evict most forwarded first” (MOFO).

First In First Out
This policy has been implemented in the Fifo class. The getLastBundle() func-

tion simply takes the smallest id (the oldest one) from the database and returns
it.

The function is shown in the Figure 6.1.

Listing 6.1. The FIFO function

pub l i c i n t getLastBundle () {
Cursor cur so r = db . query (" bundles " , nu l l , nu l l , nu l l , nu l l , nu l l ,

" id Asc " , nu l l) ;
i n t f ie ldColumn = cur so r . getColumnIndex (" id ") ;
i f (cu r so r == nu l l) {

Log . d(TAG, "Row not found ! ") ;
r e turn −1;

}

i f (! cu r so r . moveToFirst ()) {

6.2. QUEUING MECHANISM 33

re turn −1;
}

i n t r e s u l t = cur so r . g e t In t (f ie ldColumn) ;
cur so r . c l o s e () ;

r e turn r e s u l t ;
}

Evict Most Forwarded First
This policy has been implemented in the Mofo class. The getLastBundle() func-

tion simply returns the id of the bundle which has the greatest forwarded_times
which contains the number of times the bundle has been forwarded.

The function is shown in the Figure 6.2.

Listing 6.2. The MOFO function

pub l i c i n t getLastBundle () {
Cursor cur so r = db . query (" bundles " , nu l l , nu l l , nu l l , nu l l , nu l l ,

" forwarded_times Desc , id Desc " , nu l l) ;
i n t forwardColumn = cur so r . getColumnIndex (" forwarded_times ") ;
i n t f ie ldColumn = cur so r . getColumnIndex (" id ") ;
i f (cu r so r == nu l l) {

Log . d(TAG, "Row not found ! ") ;
r e turn −1;

}

i f (! cu r so r . moveToFirst ()) {
re turn −1;

}

Log . i (" Queuing " , " De l e t ing bundle f t : " + cur so r . g e t In t (forwardColumn)) ;
i n t r e s u l t = cur so r . g e t In t (f ie ldColumn) ;
cur so r . c l o s e () ;

r e turn r e s u l t ;
}

This is very similar to the Fifo’s getLasBundle() function, however, we also need
to keep track of the number of times the bundle has been forwarded.

This is done in the handle_bundle_transmitted(..) function inside the Bun-
dleDaemon class. There we simply increment the forwarded_times field for the
bundle which has been transmitted.

34 CHAPTER 6. IMPLEMENTATION

6.3 Application Layer Optimization

As a proof-of-concept it was chosen to implement SMTP over DTN, replacing
the first solution implemented in Bytewalla 1.

The DTN application server has been implemented in Python on Ubuntu. The
DTN application client has been implemented both on Ubuntu in Python, and on
Android in Java. The reason for having the DTN application server on Ubuntu is
that the server is not expected to be mobile as it should have a permanent connection
to Internet (for example to contact SMTP mail relays). Also it is quite resource
consuming as many services may be running on the machine (MySQL, multiple
types of application, etc.). The reason for developing the DTN application client
both on Ubuntu and Android is that it was easier to test and create prototypes on a
scripting language such as Python, and along with the development of the server on
the same system. However, the final objective is to be able to use such applications
on any type of devices, especially mobile ones. Hence it was decided to implement
it on the Android phones as well with the Bytewalla application.

The whole implementation is divided into modules (python files) and they are
described below, in two sections. One for the Python implementation and one for
the Android implementation.

6.3.1 Python Implementation

6.3.2 Common files

These modules must be included both on the clients and for the proxies.
Config.py This is the configuration file. It includes settings such

as the proxy TCP/UDP ports, the DTN daemon
TCP/UDP ports and the EIDs.

Bundle.py This module contains the Bundle class and functions
to convert between raw data and bundles.

serviceBlock.py This module contains the serviceBlock class which
contains the type of application, the application source
and the application destination.

Sdnv.py Handles the conversion between integers and Self-
Delimiting Numeric Values (SDNV). SDNVs are used
in the Bundle Protocol and PRoPHET.

The other files may be included only if needed. This is specific to the function-
alities you want to use.

6.3.3 The Client

For sending messages, such as emails in the case of SMTP, you only need
SMTPServer.py:

6.3. APPLICATION LAYER OPTIMIZATION 35

Other Application

Application Server

Application Protocol

Other Application

SMTPServer

SMTP Protocol

DTNInterface

Packed Data

DTN Daemon

Bundle Protocol

Packed Data

Figure 6.1. Data flow in the client

SMTPServer.py This module runs a SMTP server which handles the
communications with the local SMTP client. After the
exchange has been processed, it packs the data and
sends it to the dtninterface.py module.

For

any application you want to support for DTN, a module specific to the application
protocol must be implemented similarly to SMTPServer.py

DTNinterface.py This module manages the transmission with the local
DTN daemon. It receives the packed data, creates the
application bundle, and deliver it to the DTN daemon
to be transmitted through the DTN network.

As

for the client, you need a specific module for each application you want to support
on the proxy.

The Figure 6.1 shows the data flow in the client. The messages are received from
the applications, packed in the applications servers, and sent as bundles with the
DTNInterface.

36 CHAPTER 6. IMPLEMENTATION

6.3.4 The Server/Gateway

DTNproxy.py This is the core file. It eavesdrops the communications
between the local DTN node and the other nodes. This
way it can captures the application bundles and let the
other modules process them.

bundleHandler.py This is where is the application bundle goes through
when being processed. If you want to add or remove a
processing function, this is where you do it.

Reports.py The reports.py module takes care of the status reports.
It parses them and update the records for the stored
bundles.

statusreports.py statusreports.py is used to parse status reports and
instantiate them with the StatusReport class.

storage.py This module handles the access to MySQL for storing
and updating the bundles records.

Reliability.py This tool may be used to resend, for example with a
cron, the bundles which could not reach their destina-
tion.

service.py This module contains information about the applica-
tions the proxy can handle, and dispatch them to the
right handler.

smtpclient.py This module handles the SMTP application bundles.
It recreates the messages out of the bundles it receives.

The Figure 6.2 shows the data flow in the server. All application bundles are
captures with the DTN proxy, processed by the bundle handler, and then dispatched
to the right application [27].

6.3.5 The Gateway administration interface

The administration interface is developed in PHP and runs on a HTTP Apache
such as Apache. The application consists of modules. Each module is specific to a
ask.

4 modules have been implemented.
1. bundles.php: This module shows the application bundles which passed through

the gateway. It provides information like the bundle creation date, its source,
its payload and whether it was delivered or not.

2. config.php: The config.php module helps to generate a new configuration file
for the local DTN daemon.

3. default.php: This is the default module, which only refers to the other mod-
ules.

6.4. ANDROID IMPLEMENTATION 37

DTNProxy Module

BundleHandler Module
process the bundles: parse,

store, invoke the reports, etc.

Service Module
Dispatch the bundle

If it is an application bundle

SMTPClient Module Other Application Client
Process it locally or

establish communication
with a remote host

Mail Relay Internet Server

Data from/to a
remote DTN node

Data from/to the
local DTN node

Figure 6.2. Data flow in the server

4. stats.php: The statistics module gives an overall information about the gate-
way. For example the number of stored bundles, the number and percentage
of bundles delivered and undelivered, the average delay, and so on.

6.4 Android Implementation

6.4.1 Overview

For the Android implementation we are using the Bytewalla application which is
responsible for bundling the data and send it through the DTN network. However,
the Bytewalla 3 application does not support the application block as presented
in the Chapter 5 and does not provide an interface to the other applications for
sending bundles.

Hence the implementation is divided in two parts. How to provide an interface
in Bytewalla for sending bundles from other applications, and the development of

38 CHAPTER 6. IMPLEMENTATION

Mail Application
SMTP/DTN Interface

Application
Bytewalla

Application

Android Phone

Bundle Protocol

Figure 6.3. Overview of the implementation on Android

the application handling SMTP messages.
So finally, there will be three components:
1. The SMTP client - The default Android mail application

It is a regular mail application. It must be configured to use the SMTP/Bundle
interface as the SMTP server.

2. The SMTP/Bundle interface application
It receives the message from the mail application, handles the messages, packs
the data, and forward them to the Bytewalla application for the Bundle Pro-
tocol.

3. The Bytewalla application
It handles the Bundle Protocol.

When running, the system can be represented as in Figure 6.3.
The SMTP/DTN interface application communicates with the Bytewalla by

the help of Android broadcasts. The interface application sends a message to the
Android system along with some parameters such as the packed data (payload)
and the type of service (1 for SMTP). Then the Bytewalla application catches the
message and process it.

6.4.2 Modifications to the Bytewalla application
All the files added to the Bytewalla as part of this thesis are stored together in

the package "se.kth.ssvl.tslab.bytewalla.androiddtn.applications"
Receiving data from other applications
In order to perform this task, we must add a declaration to the Bytewalla appli-

cation’s manifest file. This declaration (see 6.3) informs the Android system about
what messages the Bytewalla application is ready to handle.

Listing 6.3. Bytewalla Manifest Declaration

<r e c e i v e r android : name=". a pp l i c a t i o n s . PayloadReceiver ">
<intent− f i l t e r >

<act i on android : name="se . kth . s s v l . t s l a b . bytewal la . androiddtn . ac t i on .SEND_BUNDLE" />
</intent− f i l t e r >

</r e c e i v e r >

6.4. ANDROID IMPLEMENTATION 39

The declaration also indicates which class is responsible to handling the message.
In our case, the PayloadReceiver does it. Once received, a new service (see [27])
defined in the ProcessPayload class is started to process the message and send
it through the Bundle Protocol. The ProcessPayload service defines the bundle
specification and ask the Bytewalla application to send the bundle.

Application Block
The Bytewalla 3 application only supports the primary and the payload block.

Hence the application block has been integrated with the ApplicationBlockProcessor
class.

6.4.3 The SMTP/DTN interface application
For this application I have used the SubEtha SMTP library [31]. This library

allows the application to receive SMTP mail with a simple, easy-to-understand API.
The application listens to a specific port for new mails. For each processed mail,

the application packs up the data as shown in Subsection 5.3.2 and send it to the
Bytewalla application along with the type of service.

Chapter 7

Testing & Analysis

A series of tests were carried out on the implementation to ensure it has been
done correctly. We verify that the queuing mechanism deletes the right bundles
and keeps the occupied disk space below the quota. For the application layer opti-
mization, we test several functionalities and check that we get the expected results.
Finally, we measure the bundle transmission delay with and without the Application
Layer optimization between two connected nodes. Based on the results we discuss
whether the proxy adds significant delays.

7.1 Queuing Mechanism
For these tests we are the final version of the Bytewallla application as of the

writing of this thesis. The application is running on a HTC Wilfdire with Android
2.2.1. We have reduced the storage capacity to only 32Kb so that we reach the
maximum storage capacity and trigger the queuing mechanism more easily.

It is difficult to simulate a large DTN network and the encounters, especially
with the Android platform, as no tools are available for this purpose. However
some simulations have already been conducted to measure the queuing mechanism
performances in the paper from Lindgren, A. and K. Phanse [33]. Hence, here,
we simply verify that the queuing mechanism implementation is working as it is
supposed to.

We test both queuing policies FIFO and MOFO. For each policy we have 20
iterations. For each iteration we create a new bundle (whose id corresponds to
the iteration where it was created) and check the occupied disk space after the
bundle has been created. The bundles are created manually through the Bytewalla
DTNSend application. Whenever a bundle is deleted, we check its attributes such
as its ID and the number of times it was forwarded. Hence, we can ensure that the
queuing mechanism is deleting the bundles according to the policy.

The storage consumption is retrieved from the Bytewalla application interface.
The bundle attributes are retrieved from the Android debugger tool.

41

42 CHAPTER 7. TESTING & ANALYSIS

The Table 7.1 shows that the FIFO queuing mechanism starts deleting bundles
when the quota (32KB) gets exceeded by the storage consumption. Thus, maintain-
ing the storage consumption below the specified quota. As the FIFO policy requires
to delete the oldest bundle first, we can notice that the queuing mechanism starts
by deleting the oldest bundle (bundle 1), the the bundle 2, and so on.

Table 7.1. Storage consumption with the FIFO queuing policy

Iteration Storage Consumption (MB) Number of bundles Deleted bundle’s id
0 0.0059 0 -
1 0.0097 1 -
2 0.0136 2 -
3 0.0175 3 -
4 0.0213 4 -
5 0.0252 5 -
6 0.0291 6 -
7 0.0329 7 -
8 0.0329 7 1
9 0.0329 7 2
10 0.0329 7 3
11 0.0329 7 4
12 0.0329 7 5
13 0.0329 7 6
14 0.0329 7 7
15 0.0329 7 8
16 0.0329 7 9
17 0.0329 7 10
18 0.0329 7 11
19 0.0329 7 12
20 0.0329 7 13

The bundles listed in the Table 7.3 have been created and forwarded accordingly
before the other bundles (from iteration 6) were created according to the Table 7.2.

Similar as the FIFO policy, in the Table 7.2, the MOFO policy starts deleting
the bundles when the storage consumption reaches the quota limit. However, the
order of deletion is different. The Table 7.3 shows how many times each bundle
has been forwarded. The MOFO policy deletes the bundles by descending order of
"forwarded times". Hence, the first bundle to be deleted is the bundle 1, then 3, 2, 5
and 5. From this point, it deletes the bundles exactly like the FIFO policy because
all the bundles have been forwarded 0 times.

7.2. APPLICATION LAYER OPTIMIZATION 43

Table 7.2. Storage consumption with the MOFO queuing policy

Iteration Storage Consumption (MB) Number of bundles Deleted bundle’s id
...
5 0.0252 5 -
6 0.0291 6 -
7 0.0329 7 -
8 0.0329 7 1
9 0.0329 7 3
10 0.0329 7 2
11 0.0329 7 5
12 0.0329 7 4
13 0.0329 7 6
14 0.0329 7 7
15 0.0329 7 8
16 0.0329 7 9
17 0.0329 7 10
18 0.0329 7 11
19 0.0329 7 12
20 0.0329 7 13

Table 7.3. Number of forwarded times for each bundle

Bundle ID Forwarded Times
1 3
2 2
3 3
4 0
5 1

7.2 Application Layer Optimization

In this section we focus on the Application Layer implementation. We first test
the functionalities to check that they were implemented correctly and then we mea-
sure the bundle transmission delays with and without the the proxy.

7.2.1 Testing

The testbed consists of two nodes running with the DTNRG implementation
(2.7.0) on two Ubuntu machines. It would be interesting to test it with more than
two machines, but only two were available. Anyway, as they communicate with the
Bundle Protocol, it should not make any difference when having intermediary nodes.
The two nodes have dtn://village.bytewalla.com/ and dtn://city.bytewalla.com/ as

44 CHAPTER 7. TESTING & ANALYSIS

their EIDs. The city node is connected to Internet and to the village node. The
village node is only connected to the city node. Of course, they only communicate
with the Bundle Protocol.

The city node is the DTN SMTP server and the village node is the DTN SMTP
client. The village node has Evolution [26] (a mail client) running on it. The Evo-
lution application must be configured to use the local SMTP server. We send a
mail from the Evolution application to an account that we have access to. The mail
reaches the destination mail address after have traveled through the city node.

Thanks to the store-and-forward mechanism, this experiment will also success
when the node is not connected to any other one. The mail would be delayed until
the bundle finds its way to the DTN application server.

7.2.2 Measurements
Some experiments have been conducted to measure the delay with or without

the proxy. Although DTN is by definition tolerant to delay, a long transmission delay
on a link between nodes could reduce the amount of data two nodes can exchange
before the disconnection is disrupted. Hence it is important to ensure that our work
does not add significant delay.

The results will depend on what process we perform. In this case, we will perform
the minimal processing required. This means :

1. Capture the bundles,
2. Parse them,
3. And forward.
In the Table 7.4, we measure the time elapsed from the moment the data is sent

to the proxy, to the moment the proxy forwards the data to the peer node. We made
ten simulations runs from which we took the average. Knowing that two nodes will
usually be linked for at least a couple of seconds, the average (1.181 ms) processing
delay is not significant. Moreover, the implementation can still easily be improved
to reduce the delay.

7.2. APPLICATION LAYER OPTIMIZATION 45

Table 7.4. Time elapsed in the proxy processing

Measure Number Time Elapsed (ms)
1 1.204
2 1.068
3 1.244
4 1.183
5 1.189
6 1.197
7 1.292
8 1.163
9 1.189
10 1.084

Average 1.181

Chapter 8

Conclusion

8.1 Summary

The PRoPHET queuing mechanism has been implemented in the Bytewalla ap-
plication. Two queuing policies, FIFO and MOFO, were chosen according to their
efficiency evaluated by Anders Lindgren and Kaustubh S. Phans [33]. These two
queuing policies are now part of the Bytewalla application and were tested in the
Chapter 7. We saw how they help managing the bundles when the storage consump-
tion becomes too high.

This thesis also replied to some of the issues met when developing applications
over DTN. The implementation includes some tools developed with Python. As it
has been experienced with SMTP, applications can now transparently, except for
delays, communicate over DTN. The application known transmit its requests all-at-
once instead of iteratively as it uses to be in Internet. Also, the whole infrastructure
has been designed to support more services such as caching with the help of the
intermediary servers. The later also support management tools for a better control
of the network. The management tools also help to improve the reliability as the
bundles are retransmitted until an acknowledgment is returned.

In the Chapter 7, we verified that the implementation was working according to
the objectives and that they do not worsen the quality of service. However, it would
certainly be interesting to test it in real-world situations.

8.2 Future Work

The PRoPHET implementation in Bytewalla is not complete yet. For example,
it would be an improvement to implement the Forwarding Strategies mechanism.
While the queuing mechanism aims to order the bundles by order of priority for
deletion when the storage consumption becomes too high, Forwarding Strategies
aim to order the bundles by the order in which they should be transmitted to
another mule. The connection between two mules may be disrupted at any time,

47

48 CHAPTER 8. CONCLUSION

and so, the "most important" bundles should be transmitted first.
This thesis is a starting point for developing more tools and applications over

DTN. Here, we have only integrated an mail application for testing the concept.
Now, it would be interesting to integrate popular and useful applications for specific
situations. For example, twitter and youtube for the people where the access to
Internet has been shutdown. For education purposes in remote areas, or for mails
delivery, it would be useful to have a subscription service implemented on top of this
thesis work. This only requires to develop a client and a server application, running
on a regular basis to send the most updated data. Caching may also be implemented
in a generic fashion as well as by means of application-specific modules to provide
better access to the content which was delivered recently in the area.

Bibliography

[1] Postfix. http://www.postfix.org/ accessed June 10th, 2011.
[2] A. Doria A. Lindgren and O. Scheln. Probabilistic routing in intermittently

connected networks. In Proceedings of the Fourth ACM International Sympo-
sium on Mobile Ad Hoc Networking and Computing (MobiHoc 2003), 2003.

[3] E. Davies S. Grasic A. Lindgren, A. Doria. Probabilistic routing protocol for
intermittently connected networks. Internet-Draft, October 2010. http://
tools.ietf.org/html/draft-irtf-dtnrg-prophet-08 accessed June 10th,
2011.

[4] A. Hasson A. Pentland, R. Fletcher. Daknet: Rethinking connectivity in de-
veloping nations, 2004. http://www.firstmilesolutions.com/documents/
DakNet_IEEE_Computer.pdf accessed June 10th, 2011.

[5] MySQL AB. Mysql. http://www.mysql.com/ accessed June 10th, 2011.
[6] Abdullah Azfar. Installation of postfix and configuring village and city dns

servers. Technical report, October 2009. http://www.tslab.ssvl.kth.
se/csd/projects/092106/sites/default/files/Postfix_and_DNS.pdf ac-
cessed June 10th, 2011.

[7] Abdullah Azfar. Integration of postfixwith dtn2. Technical report, Novem-
ber 2009. http://www.tslab.ssvl.kth.se/csd/projects/092106/sites/
default/files/Postfix_DTN2_Integration.pdf accessed June 10th, 2011.

[8] et al. Berners-Lee. Uniform resource identifier (uri): Generic syntax. RFC
3986, January 2005. http://tools.ietf.org/html/rfc3986 accessed June
1st, 2011.

[9] Ellard & Brown. Dtn ip neighbor discovery (ipnd). Internet-Draft, March
2010. http://tools.ietf.org/html/draft-irtf-dtnrg-ipnd-01 accessed
June 1st, 2011.

[10] Scott & Burleigh. Bundle protocol specification. RFC 5050, November 2007.
http://tools.ietf.org/html/rfc5050 accessed June 10th, 2011.

[11] KTH Bytewalla 3. Network management tool. Technical report, October
2010. http://www.tslab.ssvl.kth.se/csd/projects/1031352/content/
network-management-tool accessed June 10th, 2011.

49

http://www.postfix.org/
http://tools.ietf.org/html/draft-irtf-dtnrg-prophet-08
http://tools.ietf.org/html/draft-irtf-dtnrg-prophet-08
http://www.firstmilesolutions.com/documents/DakNet_IEEE_Computer.pdf
http://www.firstmilesolutions.com/documents/DakNet_IEEE_Computer.pdf
http://www.mysql.com/
http://www.tslab.ssvl.kth.se/csd/projects/092106/sites/default/files/Postfix_and_DNS.pdf
http://www.tslab.ssvl.kth.se/csd/projects/092106/sites/default/files/Postfix_and_DNS.pdf
http://www.tslab.ssvl.kth.se/csd/projects/092106/sites/default/files/Postfix_DTN2_Integration.pdf
http://www.tslab.ssvl.kth.se/csd/projects/092106/sites/default/files/Postfix_DTN2_Integration.pdf
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/draft-irtf-dtnrg-ipnd-01
http://tools.ietf.org/html/rfc5050
http://www.tslab.ssvl.kth.se/csd/projects/1031352/content/network-management-tool
http://www.tslab.ssvl.kth.se/csd/projects/1031352/content/network-management-tool

50 BIBLIOGRAPHY

[12] KTH Bytewalla 3. Sentinal surveillance application. Technical report, October
2010. http://www.tslab.ssvl.kth.se/csd/projects/1031352/content/
sentinal-surveillance-application accessed June 10th, 2011.

[13] KTH Bytewalla I, TSLab. Bytewalla: Delay tolerant network on android
phones. http://www.tslab.ssvl.kth.se/csd/projects/092106/ accessed
June 1st, 2011.

[14] B. Carpenter. Architectural principles of the internet. RFC 4838, June 1996.
http://tools.ietf.org/html/rfc4838 accessed June 1st, 2011.

[15] et al. Cerf. Delay-tolerant network architecture: The evolving interplane-
tary internet. RFC 4838, August 2002. http://www.ipnsig.org/reports/
draft-irtf-ipnrg-arch-01.txt accessed June 1st, 2011.

[16] Mozilla Corporation. Thunderbird. http://www.mozillamessaging.com/fr/
thunderbird/ accessed June 10th, 2011.

[17] Sebastian Domancic. Security in Delay Tolerant Networks for the Android Plat-
form. Master’s thesis, Royal Institute of Technology (KTH) & Aalto University
- School of Science and Technology (TKK), Stockholm, 2010.

[18] K. Fall. A delay-tolerant network architecture for challenged internets. In
Proceedings of the 2003 conference on Applications, technologies, architectures,
and protocols for computer communications, pages pp. 27–34, NY, USA, 2003.
ACM New York.

[19] et al. Farrell. Delay-tolerant networking security overview.
Internet-Draft, March 2009. http://tools.ietf.org/html/
draft-irtf-dtnrg-sec-overview-06 accessed June 1st, 2011.

[20] Consultative Committee for Space Data Systems. About ccsds. http:
//public.ccsds.org/about/default.aspx accessed June 1st, 2011.

[21] Python Software Foundation. Python. http://www.python.org/ accessed
June 10th, 2011.

[22] N. Freed. Multipurpose internet mail extensions (mime) part five: Conformance
criteria and examples. RFC 2049, November 1996. http://www.ietf.org/
rfc/rfc2049.txt accessed June 10th, 2011.

[23] N. Freed. Post office protocol - version 3. RFC 1939, May 1996. http:
//tools.ietf.org/html/rfc1939 accessed June 10th, 2011.

[24] N. Freed and N. Borenstein. Multipurpose internet mail extensions (mime) part
one: Format of internet message bodies. RFC 2045, November 1996. http:
//www.ietf.org/rfc/rfc2045.txt accessed June 10th, 2011.

[25] N. Freed and N. Borenstein. Multipurpose internet mail extensions (mime)
part two: Media types. RFC 2046, November 1996. http://www.ietf.org/
rfc/rfc2046.txt accessed June 10th, 2011.

http://www.tslab.ssvl.kth.se/csd/projects/1031352/content/sentinal-surveillance-application
http://www.tslab.ssvl.kth.se/csd/projects/1031352/content/sentinal-surveillance-application
http://www.tslab.ssvl.kth.se/csd/projects/092106/
http://tools.ietf.org/html/rfc4838
http://www.ipnsig.org/reports/draft-irtf-ipnrg-arch-01.txt
http://www.ipnsig.org/reports/draft-irtf-ipnrg-arch-01.txt
http://www.mozillamessaging.com/fr/thunderbird/
http://www.mozillamessaging.com/fr/thunderbird/
http://tools.ietf.org/html/draft-irtf-dtnrg-sec-overview-06
http://tools.ietf.org/html/draft-irtf-dtnrg-sec-overview-06
http://public.ccsds.org/about/default.aspx
http://public.ccsds.org/about/default.aspx
http://www.python.org/
http://www.ietf.org/rfc/rfc2049.txt
http://www.ietf.org/rfc/rfc2049.txt
http://tools.ietf.org/html/rfc1939
http://tools.ietf.org/html/rfc1939
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2046.txt

BIBLIOGRAPHY 51

[26] Gnome. Evolution. http://projects.gnome.org/evolution/ accessed June
10th, 2011.

[27] Google. Android service. http://developer.android.com/reference/
android/app/Service.html accessed June 10th, 2011.

[28] Delay Tolerant Networking Research Group. About - delay tolerant networking
research group. http://www.dtnrg.org/wiki/About accessed June 1st, 2011.

[29] Delay Tolerant Networking Research Group. Code. http://www.dtnrg.org/
wiki/Code accessed June 1st, 2011.

[30] The PHP Group. Php: Hypertext preprocessor. http://www.php.net/ ac-
cessed June 10th, 2011.

[31] J. Schnitzer I. McFarland, J. Stevens. Subetha smtp is an easy-to-use server-
side smtp library for java. http://code.google.com/p/subethasmtp/ ac-
cessed June 10th, 2011.

[32] J. Klensin. Simple mail transfer protocol. RFC 5321, October 2008. http:
//tools.ietf.org/html/rfc5321 accessed June 10th, 2011.

[33] A. Lindgren and K. Phanse. Evaluation of queueing policies and forwarding
strategies for routing in intermittently connected networks. In Proceedings of
COMSWARE 2006, January 2006.

[34] Ming-te Lu. Digital divide in developing countries. Journal of Global Informa-
tion Technology Management, 4:3:1–4, 2001.

[35] K. Moore. Mime (multipurpose internet mail extensions) part three: Message
header extensions for non-ascii text. RFC 2047, November 1996. http://www.
ietf.org/rfc/rfc2047.txt accessed June 10th, 2011.

[36] J. Klensin N. Freed and J. Postel. Multipurpose internet mail extensions
(mime) part four: Registration procedures. RFC 2048, November 1996. http:
//www.ietf.org/rfc/rfc2048.txt accessed June 10th, 2011.

[37] N4C. N4c homepage. http://www.n4c.eu/Home.php accessed June 1st, 2011.

[38] Kruse & Ostermann. Udp convergence layers for the dtn bundle and ltp pro-
tocols. Internet-Draft, November 2008. http://tools.ietf.org/search/
draft-irtf-dtnrg-udp-clayer-00 accessed June 1st, 2011.

[39] Demmer & Ott. Delay tolerant networking tcp convergence layer protocol.
Internet-Draft, February 2008. http://tools.ietf.org/html/rfc5050 ac-
cessed June 1st, 2011.

[40] Jörg Ott. Application protocol design considerations for a mobile internet. In
1st ACM MobiArch Workshop, San Francisco, December 2006.

[41] R. Bush R. Elz. Clarifications to the dns specification. RFC 2181, July 1997.
http://tools.ietf.org/html/rfc2181 accessed June 10th, 2011.

http://projects.gnome.org/evolution/
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/app/Service.html
http://www.dtnrg.org/wiki/About
http://www.dtnrg.org/wiki/Code
http://www.dtnrg.org/wiki/Code
http://www.php.net/
http://code.google.com/p/subethasmtp/
http://tools.ietf.org/html/rfc5321
http://tools.ietf.org/html/rfc5321
http://www.ietf.org/rfc/rfc2047.txt
http://www.ietf.org/rfc/rfc2047.txt
http://www.ietf.org/rfc/rfc2048.txt
http://www.ietf.org/rfc/rfc2048.txt
http://www.n4c.eu/Home.php
http://tools.ietf.org/search/draft-irtf-dtnrg-udp-clayer-00
http://tools.ietf.org/search/draft-irtf-dtnrg-udp-clayer-00
http://tools.ietf.org/html/rfc5050
http://tools.ietf.org/html/rfc2181

52 BIBLIOGRAPHY

[42] Construx Software. Evolutionary prototyping, May 2002. http://www.
construx.com/File.ashx?cid=814 accessed June 10th, 2011.

[43] Internet World Stat. World internet users and population stats. http://www.
internetworldstats.com/stats.htm accessed June 1st, 2011.

[44] et al. Symington. Bundle security protocol specification.
Internet-Draft, November 2009. http://tools.ietf.org/html/
draft-irtf-dtnrg-bundle-security-10 accessed June 1st, 2011.

[45] Amin Vahdat and David Becker. Epidemic routing for partially connected ad
hoc networks. Technical report cs-2000-06, Department of Computer Science,
Duke University, April 2000. http://tools.ietf.org/html/rfc5050 accessed
June 1st, 2011.

http://www.construx.com/File.ashx?cid=814
http://www.construx.com/File.ashx?cid=814
http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
http://tools.ietf.org/html/draft-irtf-dtnrg-bundle-security-10
http://tools.ietf.org/html/draft-irtf-dtnrg-bundle-security-10
http://tools.ietf.org/html/rfc5050

	Contents
	Introduction
	Overview
	Problem Statement
	Criteria
	Thesis Organization

	Background and Related Work
	Motivation
	DTN Concept
	Early research
	NASA and IPN
	DTNRG

	DTN Applications
	DakNet
	N4C
	Sámi Network Connectivity (SNC)
	Bytewalla

	Routing in Delay-Tolerant Network
	Summary

	Bytewalla
	Bytewalla I
	Bytewalla II
	Bytewalla III
	Summary

	Specifications
	The Bundle Protocol
	DTN Architecture
	Application Data Units, Bundles, Blocks
	Bundle Status Reports

	Routing
	Epidemic routing
	PRoPHET

	Neighbor Discovery
	Summary

	Design
	Queuing mechanism
	Queuing Policies

	Application Layer Optimization
	Big Picture
	Application Identification
	The Client Components
	The Server Components
	Application/DTN Interfaces
	Centralizing the traffic for better performances

	SMTP over DTN
	SMTP over DTN Architecture
	SMTP Protocol Spoofing

	More Considerations

	Implementation
	Software Development Approach
	Queuing Mechanism
	Design in Bytewalla
	Queuing Policies

	Application Layer Optimization
	Python Implementation
	Common files
	The Client
	The Server/Gateway
	The Gateway administration interface

	Android Implementation
	Overview
	Modifications to the Bytewalla application
	The SMTP/DTN interface application

	Testing & Analysis
	Queuing Mechanism
	Application Layer Optimization
	Testing
	Measurements

	Conclusion
	Summary
	Future Work

	Bibliography

