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Abstract—This paper presents a player segmentation ap-
proach based on 3D model hypotheses for soccer games. We
use a hyperplane model for player modeling and a collection
of piecewise geometric models for background modeling. To
determine the assignment of each pixel in the image plane,
we test it with two model hypotheses. We construct a cost
function that measures the fitness of model hypotheses for
each pixel. To fully utilize the perspective diversity of the
multiview imagery, we propose a three-step strategy to choose
the best model for each pixel. The experimental results show
that our segmentation approach based on 3D model hypotheses
outperforms conventional temporal median and graph cut
methods for both subjective and objective evaluation.
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I. INTRODUCTION

The development of user-defined soccer video has raised
the interest in content-adaptive coding and rendering tech-
niques [1][2], which allow users to access content items
freely and efficiently [3][4]. Therefore, a fast and reliable
player segmentation method is desirable which distinguishes
the players from the background for feasible coding, render-
ing and tracking purposes [5][6].

Conventional background substraction methods mainly
utilize spectral (color or texture) [7][8], spatial or tem-
poral [9][10] features to separate dynamic contents from
background content. To incorporate one or several features,
several statistical models have been developed, such as
Gaussian mixture models [11][12] and Bayesian frame-
works [13]. However, due to the high complexity of the
statistical models, the computational complexity increases
rapidly.

We assume that future soccer events are captured by an
array of fixed high-definition cameras which provide multi-
view image sequences for a free-viewpoint experience. The
multiview scenario allows us to efficiently exploit the inter-
view correlation for our player segmentation purpose. There-
fore, 3D models are desirable that represents the players.
Existing methods for player modeling can be classified into
two classes. The first class uses 3D grids of voxels to
implement a full 3D representation of the player, referred to
as voxel-based modeling [14]. The rendering quality of this

method is usually good. However, the computational com-
plexity of this method is very high and challenging for real-
time applications. The second class uses a billboard (planar)
model to approximate the player, referred to as planar-based
modeling [5]. This method can be implemented in real-time
and is robust to noise, however, with lower rendering quality.
But as the players are relatively small in each view, the
artifacts caused by the planar model are negligible.

In this paper, we propose a player segmentation approach
based on 3D model hypotheses. In particular, we use a
hyperplane model for player modeling and a collection of
piecewise geometric models for the background modeling.
For an arbitrary pixel in an image plane, we assign it to
different 3D model hypotheses. Moreover, we construct a
cost function to measure the fitness of each hypothesis. By
minimizing the cost function, conditional model hypotheses
are determined, given individual references. Due to our mul-
tiview system, we obtain a consistent result from multiple
references, leading to the final selection of the best 3D model
hypothesis. With the resulting silhouetted hyperplane model,
the player segmentation problem is solved.

II. ALGORITHM

A. Definition of Model Hypotheses

In this subsection, we define 3D model hypotheses for
player segmentation in the multiview scenario. The soccer
video scenes are divided into static and dynamic content
items. Model hypotheses are defined by a 3D model which
characterizes sufficiently the geometry of each content item.
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Figure 1. Target view and reference views as defined by rectangular
regions.

1) Multiview Image Data: With the multiview player
tracking information [15], we are able to extract a rect-



angular region for each player in different views, where
each region defines a dynamic content item from a different
perspective. A four-view example is depicted in Fig. 1.
For our algorithm, we define Vt as the target view to be
segmented and V k

r , k = 1, 2, . . . , N , as the reference
views.

2) Hyperplane Model for Dynamic Content: Since the
dynamic part (i.e. the players) are relatively small in each
view, we assume a rigid body for each player. Therefore, we
model the player as a hyperplane P in 3D space which is
perpendicular to the plane at Z = 0

P ⊂ R3, P⊥{(X,Y, Z)|Z = 0}. (1)

In our earlier work [15], we utilize 3D SIFT features
[16] to track the players in multiview scenarios. Now, to
estimate the geometric parameters of the hyperplane, we
reuse efficiently the accurate 3D features. We define a set
Q for the 3D SIFT features of a player. As we assume that
the model plane is perpendicular to the plane at Z = 0,
the hyperplane model is specified by fitting the [X,Y ]
components of the 3D features with the hyperplane function

min
∑

X(i),Y (i)∈Q

∥Y (i)− (A ·X(i) +B)∥2, (2)

where A,B are parameters of the model. They are deter-
mined by the least square error solution and will specify the
model of the dynamic part. An example of this model is
shown in Fig. 2.
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Figure 2. Hyperplane model of the dynamic part; red circles indicate 3D
SIFT features, which are located on both sides of the hyperplane.

3) Geometric Model for Background Content: The back-
ground content captured by an array of static cameras in a
soccer stadium, comprising mostly of areas depicting the
field and the background objects, is varying slowly over
time. Therefore, piecewise geometric models are often used
to model such man-made urban objects by approximating
them with piecewise structures.

In our earlier work [17], we model the background
contents as a collection of piecewise geometric models.
More precisely, the goal is characterized by an assembly
of 3D planar models; the grandstand is modeled by a non-
planar model and the soccer field is modeled by a cylindrical

surface. By projecting the 3D geometric model onto the
camera plane, the depth image of the background content
is obtained, as depicted in Fig. 3.

Figure 3. Depth image of background content from geometric model.

4) Model Hypotheses: To address the segmentation prob-
lem in the target view Vt, we let the set of pixels in the
dynamic part be denoted by D, the set of pixels of the
background part by B, with D ∪ B = Vt and D ∩ B = ∅.

For each pixel pt(x, y) with the image coordinate (x, y)
in the view Vt, we denote its corresponding 3D point by
Pt(X,Y, Z). Therefore, the segmentation of the player in
the image plane Vt translates essentially to the calculation
of the set of the 3D points Pt(X,Y, Z) in R3 space. In
particular, for ∀pt(x, y) ∈ D, the corresponding 3D points
Pt(X,Y, Z) will result from the hyperplane model of the
dynamic content. On the other hand, for ∀pt(x, y) ∈ B, the
corresponding 3D points Pt(X,Y, Z) will result from the
geometric model of the background content.

Therefore, for each pt(x, y) in Vt, we define two hypothe-
ses which are denoted by H0 and H1:

H0 : pt(x, y) ∈ D, (3)
H1 : pt(x, y) ∈ B. (4)

Note, this two-hypothesis scenario can be efficiently ex-
tended to a multi-hypothesis scenario.

B. Measurement of Model Hypotheses

In this subsection, we construct a cost function that
measures the fitness of model hypotheses for each pixel.
In addition, the potential occlusion problem related to 3D
projection is addressed. Moreover, we propose a method to
refine the results of projection localization by considering
possible artifacts caused by the geometric models.

1) Cost function: With each model hypothesis and the
corresponding geometric information, the pixel pt(x, y) is
mapped to its 3D position Pt(X,Y, Z) in world coordinates.
This 3D point is then projected onto the reference image
plane with the image coordinate (x̃, ỹ). Generally speaking,
by assigning a correct model hypothesis, the difference of
intensities between Vt(x, y) and Vr(x̃, ỹ) is relatively small
when compared to assigning a wrong model hypothesis.

Considering the noise and illumination conditions in target
and reference views, we use a m-by-m Gaussian window
Wm for Vt(x, y) and Vr(x̃, ỹ) when calculating the dif-
ference. Therefore, we construct a cost function J which



measures the difference between target and hypothesis-
dependent reference as a Gaussian weighted sum of squared
differences

Jk (h, c) =
∑

(i,j)∈Wm

G(i, j) · ∥Vt(i+ x, j + y, c)

− Vr(i+ x̃k
h, j + ỹkh, c)∥2, h ∈ {H0,H1}, (5)

where G is the Gaussian coefficient window, k is the index
of the reference, h indicates the assigned hypothesis, and c
indicates the color space. We define both target and reference
images with four color components C = {R,G,B, Y },
where the Y component is the illumination.

There are two main advantages of choosing C =
{R,G,B, Y } spaces. First, the measurements produced by
different components are more robust to noise. Second, since
the Y component affects the objective quality (Y-PSNR) and
the RGB components affect the subjective quality (color
experience), the joint measurement will allow a balance
between objective and subjective results.

2) Projection Localization: To warp the pixel pt(x, y)
from the target view Vt to the reference view V k

r , we
project the 3D model (dynamic or background) onto the
image plane of Vt and obtain the depth image It. Knowing
the camera calibration parameters, we are able to project
pt(x, y) into 3D world coordinates according to its depth
value as specified by the associated depth image It, resulting
in a 3D point Pt(X,Y, Z). Then, this 3D point is projected
onto the image plane of the reference view. In particular, let
the warped pixel in V k

r be denoted by pr(x
k
0 , y

k
0 ) for H0

and pr(x
k
1 , y

k
1 ) for H1.

3) Background Occlusion Detection: Before calculating
the cost function for each hypothesis, we should detect
potential occlusion problems due to the interference between
background and dynamic model. In other words, since
the dynamic part always overrides the background part, it
is possible that the background hypothesis pr(x

k
1 , y

k
1 ) is

occluded by the dynamic part.
One example is shown in Fig. 4. Here, we warp the pixel

pt(x, y) to pr(x
k
1 , y

k
1 ) by assuming background hypothesis

H1. Obviously, H1 is the correct hypothesis for pt(x, y)
since it is a point in the background. However, the back-
ground pixel pr(x

k
1 , y

k
1 ) in V k

r is covered by the dynamic
part due to occlusion. Note, this scenario might occur for
both dynamic and background pixels.

To solve this problem, we propose a recursive approach to
determine if the pixel pr(xk

1 , y
k
1 ) has been occluded. Initially,

we assign the background hypothesis H1 and obtain the pixel
pr(x

k
1 , y

k
1 ). Contrary to the initial assignment, we assume

that the pixel pr(xk
1 , y

k
1 ) belongs to the dynamic part. To find

the corresponding depth value, we project the hyperplane
model P onto the image plane of V k

r and obtain the depth
image Ikr . With the associated depth value Ikr (x

k
1 , y

k
1 ), we

are able to warp the pixel pr(x
k
1 , y

k
1 ) to the image plane

Reference view VrTarget view Vt

Figure 4. Background hypothesis occluded by dynamic part. The red point
indicates the target pixel pt(x, y). The blue point indicates the warped
point pr(xk

1 , y
k
1 ) in the reference view when assigning the background

hypothesis H1.

of the target view Vt, as denoted by pt(x
′k
1 , y

′k
1 ). There are

three possible outcomes:
• The pixel pt(x

′k
1 , y

′k
1 ) in the target view has been

determined to be a pixel of the dynamic part D.
Therefore, the assumption that pr(xk

1 , y
k
1 ) is a pixel of

the dynamic part is correct. This implies the occlusion
of the background hypothesis H1, as shown in Fig. 4.

• The pixel pt(x
′k
1 , y

′k
1 ) in the target view has been

determined to be a pixel of the background part B.
Therefore, the assumption is wrong. In practice, if
the projection result shows that (x

′k
1 , y

′k
1 ) ̸∈ Vt, the

assumed depth value is wrong. In other words, the
pixel pr(xk

1 , y
k
1 ) is not occluded in this reference view

and, hence, the assigned background hypothesis H1 is
possible.

• The pixel pt(x
′k
1 , y

′k
1 ) in the target view has not

been determined yet. We will skip pixel pt(x, y) until
pt(x

′k
1 , y

′k
1 ) has been determined in a future iteration.

Hence, our algorithm needs several iterations until all pixels
have been determined. The reference views, in which the
projection pr(x

k
1 , y

k
1 ) is occluded, will simply be discarded

(as the case in Fig. 4).
4) Accurate Projection Localization: As the planar and

non-planar models are used to characterize the geometry of
dynamic and background content items, we will allow some
local adjustments to the depth image in order to make the
projection localization more accurate.

To implement a local adjustment, we allow a small depth
adjustment ∆d for each dt(x, y), leading to slightly different
projection results (x̃k, ỹk) for k-th reference. We find the
optimal adjustment of ∆d that satisfies

min
∆d

N∑
k=1

∑
c⊂C

∥Vt(x, y, c)− Vr(x̃k(∆d), ỹk(∆d), c)∥2. (6)

This results in the final projection localization (x̃k, ỹk)
which is more accurate and, hence, is used in (5) to compute



the cost function.

C. Hypothesis Selection

In this subsection, we propose a three-step strategy to
choose between hypothesis H0 and H1 for each pixel.
First, for each individual reference, make a decision based
on the cost function for each pixel. Second, compute the
acceptance rate for multiple references. Finally, aggregate
the acceptance rate to obtain the best model.

1) Hypothesis Decision Rule: To make the decision
for each hypothesis, we exploit the cost function (5) in
Section II-B1. We compute the cost value Jk(H0, c) and
Jk(H1, c) for each pixel with c ∈ {R,G,B, Y }. Moreover,
due to the fact that the color of the background is very
similar, it is very likely that once pt(x, y) is a background
pixel, both of its projections pr(x

k
0 , y

k
0 ) and pr(x

k
1 , y

k
1 ) are

localized in the background. In this case, the cost value of
Jk(H0, c) and Jk(H1, c) will be very close. Hence, we also
consider the absolute difference between two hypotheses

Th = |Jk(H0, c)− Jk(H1, c)|. (7)

Based on the above three measures Jk(H0, c), Jk(H1, c)
and Th, we propose the following rule

pt(x, y) ∈

 D, if Th > δd and Jk(H0, c) < Jk(H1, c)
B, if Th > δd and Jk(H0, c) > Jk(H1, c)
B, if Th < δd,

(8)
where δd is a small threshold to measure the significant
difference between two hypotheses. Note that we investigate
all {R,G,B, Y } components and produce four decisions for
each pixel pt(x, y) in the reference k.

2) Computation of Acceptance Rate: Due to the large
baseline of the multiview soccer video, the dynamic content
is usually very noisy, in particular, the contour of the players.
On the other hand, by utilizing the diversity of multiple
references, we are able to compute the acceptance rate for
each hypothesis among multiple references. Therefore, the
decision for each hypothesis is represented by a probability-
like acceptance rate. This is more favorable for noisy envi-
ronments.

Assume that we have k reliable references (after discard-
ing occluded references). The total number of decisions for
pixel pt(x, y) will be 4 times k (considering {R,G,B, Y }
components). Let the set of accepted dynamic hypotheses
be denoted by Sd, and the set of accepted background
hypotheses by Sb. The acceptance rate Pd for dynamic
hypotheses and Pb for background hypotheses are defined
by

Pd =
|Sd|
4k

, (9)

Pb =
|Sb|
4k

, (10)

where |Pd| + |Pb| = 1. A distribution of the hypothesis
acceptance rate is shown in Fig. 5. We can observe that
hypothesis selection is still challenging in certain areas.

Dynamic hypothesis Background hypothesis

Figure 5. Distribution of hypothesis acceptance rate. Bright areas indicate
high acceptance rate.

3) Aggregation of Acceptance Rate: To improve the
robustness of hypothesis selection, we should not only
consider the acceptance rate of the current pixel, but also
that of the neighboring pixels. In particular, for the feet
of the player, it is difficult to choose the hypothesis since
the depth values of dynamic and background hypotheses are
very similar.

Therefore, we aggregate the hypothesis acceptance rate
over a Gaussian window and compute the likelihood of H0

over H1

L(x, y) =

∑
(i,j)∈Wm

G(i, j)Pd(i+ x, j + y)∑
(i,j)∈Wm

G(i, j)Pb(i+ x, j + y)
, (11)

where G is the same Gaussian window as used before in
(5) and (6). We choose the dynamic hypothesis for L > 1.
Otherwise we choose the background hypothesis. Fig. 6
depicts the result of model selection by aggregating the
acceptance rate.

Target view Vt Segmentation

Figure 6. Segmentation of target view.



III. EXPERIMENTAL RESULTS

We evaluate our method using 3D model hypotheses for
the soccer test video set Barca-St. Andreu, which is provided
by the MEDIAPRO group. The videos are captured by four
fixed broadcast cameras. The resolution of the videos is
1920 × 1080 at 25 fps. With the multiview player tracking
information [15], we extract sub-sequence for each player.
The resolution of the sub-sequences is 180× 200.

We compare our algorithm with two conventional methods
which utilize temporal and spectral features to separate
dynamic from background content. For our algorithm, we
use camera 3 as the target view, while camera 1, 2 and 4
are used as reference views. The first reference algorithm
is a temporal median method [18][9] which adaptively
computes the temporal median frame from previous frames
and compares the difference between current frame and
temporal median frame. Once the difference is larger than
a threshold, the current pixel is marked as dynamic. Some
morphological closing options are implemented to eliminate
small regions. The threshold for the first reference algorithm
is appropriately adjusted from empirical trials. The second
reference algorithm is a texture-based method [8] which
minimizes the segmentation energy by using graph cuts.

A. Comparison of Segmentation Results

Fig. 7 shows a comparison of segmentation results for
different algorithms. For the temporal median method, the
segmentation is sensitive to noise as it uses just previous
frames as references. In addition, it also has the risk that
dynamic parts that have stopped moving for some time
will be wrongly classified as background content. For graph
cuts, the white lines on the ground can be easily classified
as dynamic parts, as the method considers only texture
information. Our method offers better visual quality than
the reference algorithms. Using multiview references and
hyperplane models, the consistency and smoothness of the
segmentation is preserved.

B. Comparison of Rendering Quality

Table I
COMPARISON OF RENDERING QUALITY.

Sequence
index

Temporal median
(dB)

Graph cuts
(dB)

3D model hypotheses
(dB)

01 28.7 27.0 32.9
02 30.3 28.7 34.1
03 26.9 25.8 32.0
04 26.6 24.4 30.7
05 30.7 28.4 34.6

The quality of virtual view rendering is also an important
aspect. Therefore, we measure the rendering quality as
luminance PSNR (Y-PSNR) for a given camera viewpoint.
The texture for the given viewpoint is synthesized by
conventional depth image based rendering (DIBR) [19]. In

Target view Vt Temporal median 3D model hypothesis Graph cuts

Figure 7. Comparison of segmentation between reference algorithms and
proposed algorithm. The first column shows the target image; the second
column shows the segmentation results for the temporal median; the third
column shows the segmentation results for graph cuts; the fourth column
shows the segmentation results of our 3D hypothesis algorithm.

particular, we use camera 3 as the given camera viewpoint
while camera views 1, 2 and 4 are used as references.
Note, since our implementation uses the Mean-Square-Error
(MSE) criterion for optimization, the PSNR is more suitable
to measure the objective quality.

The depth images are generated by our 3D models with
segmentation mask. For our 3D model hypothesis method,
as stated in Section II-B4, the depth image has been slightly
adjusted to make the projection localization more accurate.
For the reference algorithms, the depth images are generated
by the same geometric model, but with different segmenta-
tion masks. A total of 5 sequences with 5 different players
are used to evaluate the performance of the algorithms. We
calculate the average PSNR value over 64 frames for each
sequence. We set the size of the Guassian window to 5, the
variance to 1, and the threshold to δd = 2 for (8).

As shown in Table I, our 3D model hypothesis method
outperforms the conventional temporal median and the graph



cuts for all sequences. Since our algorithm optimizes classi-
fication by using the cost function (5), our average PSNR is
much higher than that of the two reference methods. Note,
the camera baseline is 10m for this data set. Hence, the
varying lighting conditions are challenging and affect the
average Y-PSNR.

Fig. 8 shows a subjective comparison of the rendering
quality. Since our algorithm produces more consistent and
smoother segmentation masks, the subjective rendering qual-
ity is improved significantly.

IV. CONCLUSIONS

We discussed a player segmentation and rendering ap-
proach based on 3D model hypotheses for soccer video.
We use a hyperplane model for player modeling and a
collection of piecewise geometric models for background
modeling. To determine the classification of each pixel
in the image plane, we define two model hypotheses. A
cost function is introduced to measure the fitness of model
hypotheses for each pixel. Further, we propose a three-step
strategy to choose the best hypothesis for each pixel, given
multiple reference views. The experimental results show that
our 3D model hypothesis method outperforms conventional
temporal median and graph cut methods for both subjective
and objective evaluation.

V. ACKNOWLEDGMENTS

This work was supported in part by the European Com-
mission in the context of the project ICT-FP7-248020 “FINE
– Free-Viewpoint Immersive Networked Experience”.

REFERENCES

[1] P. Ndjiki-Nya, T. Hinz, A. Smolic, and T. Wiegand, “A
generic and automatic content-based approach for improved
H.264/MPEG4-AVC video coding,” in Proc. of the IEEE
International Conference on Image Processing, Sept. 2005.

[2] H. Li and M. Flierl, “Rate-distortion-optimized content-
adaptive coding for immersive networked experience of sports
events,” in Proc. of the IEEE International Conference on
Image Processing, Sept. 2011.

[3] A. Ekin, A. Tekalp, and R. Mehrotra, “Automatic soccer
video analysis and summarization,” IEEE Trans. on Image
Processing, vol. 12, no. 7, pp. 796 – 807, July 2003.

[4] V. Tovinkere and R. Qian, “Detecting semantic events in
soccer games: towards a complete solution,” in Proc. of the
IEEE International Conference on Multimedia & Expo, Aug.
2001.

[5] T. Koyama, I. Kitahara, and Y. Ohta, “Live mixed-reality 3D
video in soccer stadium,” in Proc. of the 2nd IEEE/ACM
International Symposium on Mixed and Augmented Reality,
2003.

[6] D. Delannay, N. Danhier, and C. Vleeschouwer, “Detection
and recognition of sports(wo)men from multiple views,” in
Distributed Smart Cameras. Third ACM/IEEE International
Conference on, Sept. 2009.

[7] O. Javed, K. Shafique, and M. Shah, “A hierarchical approach
to robust background subtraction using color and gradient
information,” in Proc. of the Workshop on Motion and Video
Computing, Dec. 2002.

[8] Y. Boykov and V. Kolmogorov, “An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 26, no. 9, pp. 1124 –1137, Sept. 2004.

[9] R. Mech and M. Wollborn, “A noise robust method for
segmentation of moving objects in video sequences,” in Proc.
of the IEEE International Conference on Acoustics, Speech,
and Signal Processing, Apr. 1997, pp. 2657–2660.

[10] P. Spagnolo, T. Orazio, M. Leo, and A. Distante, “Moving
object segmentation by background subtraction and temporal
analysis,” Image and Vision Computing, vol. 24, no. 5, pp.
411 – 423, 2006.

[11] N. Friedman and S. Russell, “Image segmentation in video
sequences: A probabilistic approach,” in Proc. of the Thir-
teenth Conference on Uncertainty in Artificial Intelligence,
1997.

[12] M. Harville, G. Gordon, and J. Woodfill, “Foreground
segmentation using adaptive mixture models in color and
depth,” in Proc. of the IEEE Workshop on Detection and
Recognition of Events in Video, July 2001.

[13] L. Li, W. Huang, I. Gu, and Q. Tian, “Statistical modeling of
complex backgrounds for foreground object detection,” IEEE
Trans. on Image Processing, vol. 13, no. 11, pp. 1459 –1472,
nov. 2004.

[14] S. Seitz and C. Dyer, “Photorealistic scene reconstruction
by voxel coloring,” in Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, June 1997.

[15] H. Li and M. Flierl, “SIFT-based multi-view cooperative
tracking for soccer video,” in Proc. of the IEEE International
Conference on Acoustics, Speech, and Signal Processing,
Mar. 2012.

[16] D. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol.
60(2), pp. 91–110, 2004.

[17] H. Li and M. Flierl, “SIFT-based modeling and coding of
background scenes for multiview soccer video,” in Proc.
of the IEEE International Conference on Image Processing,
Sept. 2012.

[18] T. Aach, A. Kaup, and R. Mester, “Statistical model-based
change detection in moving video,” Signal Processing, vol.
31, no. 2, pp. 165–180, 1993.

[19] Y. Mori, N. Fukushima, T. Fujii, and M. Tanimoto, “View
generation with 3D warping using depth information for
FTV,” 3DTV Conference: The True Vision - Capture, Trans-
mission and Display of 3D Video, pp. 229–232, May 2008.



Actual view Temporal median 3D model hypotheses Graph cuts

Figure 8. Comparison of rendering quality between reference algorithms and proposed algorithm. The first column shows the actual image; the second
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the fourth column shows the rendered image as generated by our 3D hypothesis algorithm.


