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ABSTRACT

This paper presents a content-adaptive modeling and coding
scheme for static multiview background scenes of soccer games. We
discuss a content-adaptive modeling approach for static multiview
background imagery that is based on piecewise geometric models of
the content. We propose an approach that uses the Scale Invariant
Feature Transform (SIFT) to extract the parameters of the geometric
models. Moreover, a content-adaptive rendering approach is pre-
sented for handling occlusion problems in large baseline scenarios.
The experimental results show that our content-adaptive modeling
and coding scheme outperforms conventional DIBR schemes.

Index Terms— Immersive networked experience, content-
adaptive modeling and rendering, SIFT features.

1. INTRODUCTION

In recent years, content-based coding techniques have been consid-
ered for efficient video coding [1]. In our earlier work [2], we pro-
posed a content-adaptive coding scheme for immersive networked
experience of soccer games. The content-adaptive coding scheme
extracts from an input image sequence several sub-sequences de-
pending on the static (e.g., soccer stadium) and dynamic (e.g.,
player) content of the input. Then, each sub-sequence is en-
coded according to optimally allocated bitrates among static and
dynamic content items. This scheme provides not only improved
rate-distortion performance but also more flexibility by allowing
users to access content items easily.

To enable a free-viewpoint experience, Depth Image Based Ren-
dering (DIBR) is a widely used technique which utilizes one or more
reference texture images and their associated depth images to syn-
thesize virtual camera views [3]. Consider an example of multiview
static content captured by four high-definition cameras as shown
in Fig. 2. A DIBR approach to virtual view synthesis uses dense
depth images, which are usually generated by pixelwise matching
[4]. However, due to the large baseline scenario for soccer video
(usually more than 10 meters horizontal distance between each cam-
era) and occlusion problems, the accuracy of generated depth im-
agery is relatively low and the computational complexity is high.
Additionally, conventional pixelwise depth estimation approaches
usually utilize pairs of reference views instead of considering mul-
tiple views jointly. This leads to poor global consistency among all
reference views.

To overcome the disadvantages of pixelwise approaches, piece-
wise planar models are often used to model man-made urban objects
by approximating them with piecewise planar structures [5]. Such
approaches provide fast and visually superior result by simplifying

the geometric structure of objects. However, applying such methods
to non-planar objects, like the grandstand with spectators in Fig. 2,
will decrease the rendering quality significantly.

In this paper, we discuss a content-adaptive modeling and cod-
ing scheme for static multiview background scenes from a free-
viewpoint rendering perspective. We divide the entire background
scene into multiple content items and model each item with one
piecewise planar or non-planar model. For an efficient selection of
planar and non-planar models, we propose an approach to estimate
the model parameters that uses the Scale Invariant Feature Transform
(SIFT) [6]. With that, a free-viewpoint experience can be realized by
knowing a small number of geometric parameters instead of dense
depth images. This approach will also be advantageous for coding
and transmission. Additionally, as we consider large baseline sce-
narios, our content-adaptive rendering technique prevents potential
occlusion problems and improves overall rendering quality.

2. CONTENT-ADAPTIVE MODELLING AND CODING

The static content captured by an array of static cameras in a soc-
cer stadium, comprising mostly of areas depicting the field and the
background objects, is varying slowly over time and its piecewise
structure can be utilized to efficiently generate geometric models for
virtual view rendering purposes.
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Fig. 1. Content-adaptive coding and rendering scheme.

The content-adaptive coding and rendering scheme, as shown
in Fig. 1, comprises the encoding of multiple views and geomet-
ric parameters of piecewise models, and a rendering unit at the de-
coder that facilitates the reconstruction of the virtual view video. The
content-adaptive rendering approach will offer an additional advan-
tage when using auxiliary information for handling occlusions.

2.1. Piecewise Geometric Models for Background Scenes

In our work, the entire background scene is divided into multiple
content items. We use a 3D piecewise geometric model to char-
acterize the geometry of each item. We choose a heuristic method
to find an approximation by allowing both planar and non-planar
models. This approach offers three advantages: First, by using a



(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 4

Fig. 2. Multiview background scenes in a large baseline scenario.

piecewise model, the smoothness and texture continuity of the back-
ground content guaranties better visual experience. Second, combin-
ing both planar and non-planar models avoids an over-simplification
of the appearance of objects and allows a trade-off between render-
ing quality and simplicity of the model. Third, any required depth
image can be generated easily by projecting the globally consistent
3D piecewise model onto a 2D image plane. Thus, the cost of trans-
mitting view-dependent depth imagery is saved.

2.2. Parameter Estimation via SIFT Features

The multiview imagery of the background will help us to find the 3D
piecewise geometric model. We propose an approach that uses SIFT
features to estimate the parameters of the 3D model. In particular,
the SIFT features will be exploited to establish feature correspon-
dences between multiple observations of each content item.

2.2.1. SIFT Feature Matching and Refinement

First, we extract SIFT features in the multiview imagery and find
correct correspondences. As they relate to the same 3D point in
the scene, we use them to estimate the parameters of the 3D model.
We extract and match SIFT features from adjacent observations. An
example is depicted in Fig. 3.

(a) Grandstand matching

(b) Goal matching

Fig. 3. Matching SIFT features among multiple observations of
grandstand and goal.
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of feature matches based on a geometric constraint. If it is a correct
correspondence, pli and prj are originally projected from the same
3D world coordinate. Thus, by using projection relations for corre-
sponding points, the following relations hold [3]:
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where [X,Y, Z]T is the 3D world coordinate, and where R, A and C
are the camera calibration parameters which depend on the camera
position. The factors dl and dr in (1) and (2) define the position of
the 3D point on the rays, known as depth. To determine the depth,
let the third row of the 3× 3 matrix R−1

l ·A−1
l be [αl, βl, γl]. Thus,

the factor dl is given by
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Similarly for the factor dr . Therefore, the depth dl and dr are a
function of the world coordinate Z.

With the scaling factors dl and dr , (1) and (2) need to be equal
for corresponding points pli ↔ prj . As we assume to know the
true camera calibration parameters, the resulting expression is over-
determined. For our practical application, we determine the least
square error solution of Z∗ according to
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The two resulting 3D world coordinates [X,Y, Z]li and [X,Y, Z]rj
are obtained by the least square error solution (4) with respect to pli
and prj . However, some small misalignment caused by calibration
parameters should also be considered. Thus, we use an additional
criterion. If ‖[X,Y, Z]li − [X,Y, Z]rj‖2 < δd, where δd is a small
threshold for the Euclidean distance in 3D space, the correctness of
the correspondence pli ↔ prj is sufficiently reliable.

2.2.2. Geometric Parameters from SIFT Features

Now, we use the set of accurate 3D features to estimate the param-
eters of the 3D model. For content with planar structure, such as
goals, poles, and flags, we use a single or an assembly of planar
models. A planar model is easily defined by the 3D positions of the
corner points. Therefore, we defined those as the parameters of a
planar model. An example for an assembly of 3D planar models to
characterize the structure of a goal is shown in Fig. 4.
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Fig. 4. Planar model of a goal as obtained by SIFT features.

On the other hand, for non-planar structured content such as the
grandstand, 3D piecewise non-planar models are used. We define a
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Fig. 5. Non-planar model of the grandstand. Blue circles indicate
3D SIFT features, red lines indicate fitted model.
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Fig. 6. Non-planar model of the field.

set Qs for the 3D SIFT features of the grandstand, as depicted by
blue circles in Fig. 5. We assume that the model plane is perpen-
dicular to the field plane at Z = 0. In this case, the model plane is
specified by fitting the [X,Y ] components of the 3D features with
an exponential curve

min
∑

X(i),Y (i)∈Qs

‖Y (i)− a · eb·X(i) − c · ed·X(i)‖2, (5)

where a, b, c, d are parameters of the model. They are determined
by the least square error solution and will specify the model for the
grandstand. In Fig. 5, the model is depicted by red lines.

Additionally, SIFT features can be used efficiently to choose be-
tween planar and non-planar models due to their accuracy. One ex-
ample is the modeling of the soccer field. Intuitively, we can use a
plane to model the field. However, by investigating the differences
of the Z components of the 3D features, the field appears non-planar.
More precisely, the center of the field is usually about 30 cm above
the borderline of the field. In practice, we choose a cylindrical sur-
face to model the field, where the X axis is parallel to the generatrix
of the cylinder.

min
∑

Y (i),Z(i)∈Qf

‖Y (i)2 + (Z(i)− c+ r)2 − r2‖2, (6)

where Qf is the set of features extracted from the field, r is the
radius and c is the Z-intercept. The parameters are obtained by the
least square error solution. The model of the field is shown in Fig. 6.

2.3. Coding of Parameters

After modeling the static background by a piecewise geometric
model, the model parameters are encoded with high accuracy such
that the model can be reconstructed at the decoder. For our back-
ground content, we use 48 parameters in total. Considering the
need for accuracy and the small number of parameters, we choose
a double-precision representation for each parameter. The resulting
8 bytes per parameter incur a small cost compared to the overall
bitrate. Similar to [7], we use arithmetic coding to encode the entire
parameter set without any loss.

2.4. Content-Adaptive Rendering for Large Camera Baselines

After decoding the multiview sequences, virtual views may be ren-
dered by warping reference images to target viewpoints by using
DIBR. However, distances between adjacent cameras are usually

Fig. 7. Occlusions and lighting differences in a virtual view.

(a) (b) (c) (d) 

Fig. 8. Compensation of reference content by inpainting; black areas
in (a) and (c) are occlusions caused by content extraction or potential
occlusion; (b) and (d) show occlusion-compensated images.

very large for our application. Therefore, handling occlusion prob-
lems and adjusting lighting conditions turn out to be two major chal-
lenges.

Large distances between adjacent cameras may cause large oc-
cluded areas in the virtual viewpoint. For our application, we ob-
serve that up to 10% of the pixels in an image may be affected. This
problem can be partially solved by warping multiple references to
the target view. However, the large distances between the cameras is
still limiting as shown in Fig. 7. Note the areas behind the goal and
the borders of the image.

To approach this problem, we consider a content-adaptive ren-
dering method. As discussed in Section 2.1, for each content item
of the static background, we have one corresponding 3D piecewise
model. By projecting the 3D model onto the reference image plane,
a 2D mask for each content item is obtained. The content item in
the reference image is extracted according to this 2D mask and the
occlusions are compensated by auxiliary information based on in-
painting [8]. An example is shown in Fig. 8(b). At the border of
the image, we use exemplar-based inpainting, as shown in Fig. 8(d).
With this method, we reduce the interference between content items.

Content-adaptive warping can be accomplished for each avail-
able reference view. As we have multiple references, we are able to
improve the quality of the target view by merging. In our implemen-
tation, available content from the closest reference is prioritized.

In our large baseline scenario, lighting conditions vary signifi-
cantly. This can be observed in Fig. 7. We adjust the intensity when
merging different references by using fast linear intensity adjustment
methods [9]. With that, we balance computational complexity and
visual quality.

3. EXPERIMENTAL RESULTS

We evaluate our content-adaptive modeling and coding scheme with
the soccer test video set Barca-St. Andreu, which is provided by the
MEDIAPRO group. The videos are captured by four fixed broadcast
cameras, as shown in Fig. 2. The resolution of the videos is 1080×
1920 at 25 fps. The average Y-PSNR between the reconstructed
view and the corresponding original camera view will be used to
evaluate the performance of our scheme. We use 100 successive
frames from the test sequence. H.264/AVC encoding and decoding
is accomplished by the x264 implementation [10].



(a) Content-adaptive rendering

(b) Conventional DIBR 

Fig. 9. Subjective comparison between content-adaptive rendering
and conventional DIBR.
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Fig. 10. Performance comparison between our content-adaptive
modeling and coding and conventional texture plus depth coding
with DIBR.

We compare our scheme to conventional texture plus depth cod-
ing with DIBR. We encode multiple textures from cameras 1, 3 and
4 with H.246/AVC in a simulcast setting at high quality for both
schemes. For our scheme, we encode the parameters of the 3D
piecewise model by arithmetic coding. For the reference scheme,
the depth sequences of cameras 1, 3 and 4 are encoded at various bi-
trates using H.264/AVC simulcast. As discussed in our earlier work
[2], we reduce the frame rate of the static background to 1 fps to opti-
mize the overall rate-distortion performance of the content-adaptive
coding scheme. Thus, we encode both texture and depth of the back-
ground sequences at 1 fps. For a fair comparison, the depth images
are generated by our 3D piecewise model. In our scheme, we use
decoded texture images plus decoded model parameters to synthe-
size the texture images of camera 2. In our reference scheme, the
texture images of camera 2 are synthesized by decoded texture and
depth images.

Fig. 9 shows a subjective comparison of one frame. Using the
piecewise geometric model, the continuity and smoothness of the
content items is preserved. On the other hand, the coded depth im-
ages of our reference scheme cause a visible degradation of the ren-
dered image. As shown in Fig. 10, our content-adaptive modeling
and coding scheme also outperforms conventional DIBR in an ob-
jective comparison. The camera baseline is 10m for this data set.
Hence, the varying lighting conditions are challenging and affect the
average Y-PSNR. Note that we require only 248 bits to code our
model parameters.

4. CONCLUSIONS

We discussed a content-adaptive modeling and coding scheme for
static background scenes to enable a free-viewpoint experience
of soccer video. We use piecewise geometric models to charac-
terize the structure of content items in the static background and
utilize SIFT features to estimate the model parameters. Further,
a content-adaptive rendering approach is introduced to realize a
free-viewpoint experience in a large camera baseline setting. This
approach handles occlusion and lighting problems more efficiently
than conventional DIBR. The experimental results show that our
content-adaptive modeling and coding scheme outperforms conven-
tional texture plus depth coding with DIBR for both subjective and
objective evaluation.
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