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Abstract

Time-delay dynamical systems are used to model many real-world engineering
systems, where the future evolution of a system depends not only on current states
but also on the history of states. For this reason, the study of stability and control
of time-delay systems is of theoretical and practical importance. In this thesis, we
develop several stability analysis frameworks for dynamical systems in the presence
of communication and computation time-delays, and apply our results to different
challenging engineering problems.

The thesis first considers delay-independent stability of positive monotone sys-
tems. We show that the asymptotic stability of positive monotone systems whose
vector fields are homogeneous is independent of the magnitude and variation of
time-varying delays. We present explicit expressions that allow us to give explicit
estimates of the decay rate for various classes of time-varying delays. For positive
linear systems, we demonstrate that the best decay rate that our results guarantee
can be found via convex optimization. We also derive a set of necessary and sufficient
conditions for asymptotic stability of general positive monotone (not necessarily
homogeneous) systems with time-delays. As an application of our theoretical results,
we discuss delay-independent stability of continuous-time power control algorithms
in wireless networks.

The thesis continues by studying the convergence of asynchronous fixed-point
iterations involving maximum norm pseudo-contractions. We present a powerful
approach for characterizing the rate of convergence of totally asynchronous iterations,
where both the update intervals and communication delays may grow unbounded.
When specialized to partially asynchronous iterations (where the update intervals
and communication delays have a fixed upper bound), or to particular classes of
unbounded delays and update intervals, our approach allows to quantify how the
degree of asynchronism affects the convergence rate. In addition, we use our results
to analyze the impact of asynchrony on the convergence rate of discrete-time power
control algorithms in wireless networks.

The thesis finally proposes an asynchronous parallel algorithm that exploits
multiple processors to solve regularized stochastic optimization problems with
smooth loss functions. The algorithm allows the processors to work at different
rates, perform computations independently of each other, and update global decision
variables using out-of-date gradients. We characterize the iteration complexity and
the convergence rate of the proposed algorithm, and show that these compare
favourably with the state of the art. Furthermore, we demonstrate that the impact
of asynchrony on the convergence rate of the algorithm is asymptotically negligible,
and a near-linear speedup in the number of processors can be expected.





Populär sammanfattning

Tidsfördröjningar uppst̊ar ofta i tekniska system: det tar tid för tv̊a ämnen att
blandas, det tar tid för en vätska att rinna fr̊an ett kärl till ett annat, och det
tar tid att överföra information mellan delsystem. Dessa tidsfördröjningar leder
ofta till försämrad systemprestanda och ibland även till instabilitet. Det är därför
viktigt att utveckla teori och ingenjörsmetodik som gör det möjligt att bedöma hur
tidsfördröjningar p̊averkar dynamiska system.

I den här avhandlingen presenteras flera bidrag till detta forskningsomr̊ade. Fokus
ligger p̊a att karaktärisera hur tidsfördröjningar p̊averkar konvergenshastigheten
hos olinjära dynamiska system. I kapitel 3 och 4 behandlar vi olinjära system vars
tillst̊and alltid är positiva. Vi visar att stabiliteten av dessa positiva system är
oberoende av tidsfördröjningar och karaktäriserar hur konvergenshastigheten hos
olinjära positiva system beror p̊a tidsfördröjningarnas storlek. I kapitel 5 betraktar
vi iterationer som är kontraktionsavbildningar, och analyserar hur deras konvergens
p̊averkas av begränsade och obegränsade tidsfördröjningar. I avhandlingens sista
kapitel föresl̊ar vi en asynkron algoritm för stokastisk optimering vars asympto-
tiska konvergenshastighet är oberoende av tidsfördröjningar i beräkningar och i
kommunikation mellan beräkningselement.
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Notations

∶= Definition
N Set of all natural numbers
N0 Set of all natural numbers including zero
R Set of all real numbers
R+ Set of all nonnegative real numbers
Rn Set of all real vectors with n components
xi The ith element of the vector x ∈ Rn

x ≥ y xi ≥ yi for all i
x > y xi > yi for all i
Rn+ The set of all vectors in Rn with nonnegative entries

Rn+ ∶= {x ∈ Rn ∶ xi ≥ 0, 1 ≤ i ≤ n}
⟨x, y⟩ Inner product of two vectors x and y
Rn×n Set of all real matrices of dimension n × n
A⊺ Transpose of the matrix A
1 Column vector with all elements equal to one
0 Column vector with all elements equal to zero
In Identity matrix in Rn×n

∥ ⋅ ∥p The vector p-norm
∥ ⋅ ∥∗ Dual norm to the norm ∥ ⋅ ∥, ∥y∥∗ ∶= sup

∥x∥≤1
⟨x, y⟩

∇f(x) Gradient of f evaluated at x
E[x] Expected value of the random variable x
C([a, b],Rn) Space of all continuous functions on [a, b] taking values in Rn

D+h(t)∣
t=t0

Upper-right Dini-derivative of a continuous function h at t = t0

Vectors are written in lower case letters and matrices in capital letters.
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Chapter 1

Introduction

Large-scale complex dynamical systems arise in a broad spectrum of applications
such as biological and ecological systems, chemical processes, electrical power

systems, communication networks, transportation systems, and urban water supply
networks. These systems are highly interconnected and composed of large number of
interacting subsystems that exchange material, energy, or information. In practice,
propagation of physical quantities between subsystems may take place over large
distances and is not instantaneous. Hence, communication delays are inevitably
omnipresent in distributed systems. Even if communication delays are negligible,
computational delays are strongly involved in complex systems. This is mainly due
to that the subsystems can be heterogeneous (have non-identical dynamics) and
require different computational times for the state evaluation. Therefore, in order
to accurately describe and predict the behaviour of real-world large-scale systems,
mathematical models of such systems must include time-delays.

Mathematical models of dynamical systems with time-delays, also called time-
delay systems, take into account the dependence of the evolution of a system on the
history of state variables. The dynamics of time-delay systems are much richer than
their non-delayed counterparts. If a system without time-delays can be described
by ordinary differential equations, the system with delays belong to the class of
functional differential equations which are infinite-dimensional. The stability analysis
of time-delay systems has been an active area of research in control engineering for
more than 60 years. Existing results regarding this topic can be classified into two
major categories: (i) delay-independent stability and (ii) delay-dependent stability.
The delay-independent criteria guarantee stability regardless of the size of delays,
whereas the delay-dependent criteria include information on the delay margin and
provide a maximal allowable delay that can be tolerated by the system. Delay-
dependent conditions are often less conservative, particulary, when the delay is small.
On the other hand, delay-independent conditions are simpler and more appropriate
to apply in the case that the delay is unknown, arbitrarily large, or unbounded.

Delay-dependent and delay-independent stability analysis of large-scale systems
are very challenging especially when the subsystems have nonlinear dynamics and
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2 Introduction

delays are time-varying. An effective approach to overcome these difficulties is to
exploit specific structures for complex systems. There is a major on-going research
effort in this direction, and this thesis is a part of that effort. In particular, the main
objective of this thesis is to investigate delay-independent stability of a significant
class of nonlinear systems, called positive systems, and study delay-dependent
stability of asynchronous algorithms for stochastic optimization.

1.1 Time-delay Positive Systems

Positive systems are dynamical systems whose state variables are constrained to
be nonnegative for all time whenever the initial conditions are nonnegative. Since
the state variables of many real-world processes represent quantities that may
not have meaning unless they are nonnegative, positive systems arise frequently
in mathematical modelling of engineering problems [1]. Examples of nonnegative
quantities are population levels of species in ecological systems [2], transmit power
of mobile users in wireless networks [3], and concentration of substances in chemical
processes [4]. Due to their importance and wide applicability, a large body of
literature has been concerned with the analysis and control of positive systems (see,
e.g., [5–13] and references therein).

In the following, two examples are used to illustrate the presence of time-delays
in positive systems.

Example 1.1. Consider a wireless network where n mobile users communicate
over the same frequency band. Since concurrent transmissions interfere with each
other, users must transmit with sufficient power to overcome the interference caused
by the others. Power control algorithms allow us to find transmit powers such that
each user has a successful connection. In order to study this practical problem
in wireless communication, power control algorithms are described by dynamical
systems whose states are transmit power of users. For instance, continuous-time
power control algorithms are described by

ṗi(t) = ki(−pi(t) + Ii(p(t))), i = 1, . . . , n. (1.1)

Here, pi(t) is the transmit power of user i at time t, Ii ∶ Rn+ ↦ R+ is the interference
function modeling the interference and noise experienced by the intended receiver of
user i, and ki is a positive constant [14]. Since the transmit power is a nonnegative
quantity, the power control algorithm (1.1) defines a positive system.

In practice, there will always be a signaling delay associated with transmitting
the perceived interference at the transmitter to the receiver, so that it can adjust
the power according to the power control law. Consequently, a realistic analysis of
continuous-time power control algorithms must consider heterogeneous time-varying
delays. More precisely, the continuous-time power control algorithm (1.1), when the
time-delays are introduced becomes

ṗi(t) = ki(−pi(t) + Ii(p1(t − τ
i
1(t)), . . . , pn(t − τ

i
n(t)))),
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where τ ij(t) is the communication delay from user j to the intended receiver of user
i at time t. The physical constraint that the transmit power should be nonnegative
(pi(t) ≥ 0 for all t ≥ 0) implies that asynchronous power control algorithms are also
positive systems. ∎

Example 1.2. A key challenge for health workers engaged in designing effective
treatment strategies is to understand the underlying mechanisms of biological
processes and epidemics. Considering epidemics and diseases as dynamical processes
can reveal such mechanisms [15].

Time-delay positive systems are often used in mathematical modeling of hema-
tology dynamics. For example, let x represent the circulating cell population of a
certain type of blood cell, and let λ be the cell-loss rate in the circulation. The
dynamics of the number of circulating cells in one compartment can be described by

ẋ(t) = −λx(t) +G(x(t − τ)),

where the function G denotes the flux of cells from the previous compartment,
and the delay τ represents the average length of time required to go through the
compartment. This time-delay system is positive since the circulating cell population
is a nonnegative quantity. ∎

For general dynamical systems, time-delays may render an otherwise stable
system unstable. However, recent results have shown that if a positive linear system
without delay is asymptotically stable, the corresponding system with either constant
or bounded time-varying delays is also asymptotically stable. This means that the
stability condition for a positive linear system with time-delays is the same as the
stability condition for the delay-free system.

While many important positive systems such as power control algorithms and
population dynamics are nonlinear, the theory for time-delay positive nonlinear
systems is considerably less well-developed. In this thesis, we therefore investigate
the following questions:

• Does the delay-independent property of positive linear systems hold also for
positive nonlinear systems?

• Can we derive necessary and sufficient conditions for delay-independent stabil-
ity of positive nonlinear systems which include previous results on positive
linear systems as special cases?

• How do the maximum delay bound and the rate at which delays grow large
affect the decay rate of positive systems?

• For what classes of unbounded time-varying delays is stability of positive
linear systems insensitive to time-delays?
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1.2 Asynchronous Algorithms for Stochastic Optimization

Asynchronous computation has a long history in optimization. Many early results
were unified and significantly extended in the influential book by Bertsekas and
Tsitsklis [16]. Renewed interest in the theoretical understanding and practical
implementation of asynchronous optimization algorithms has been generated by
recent advances in distributed and parallel computing technologies. In this thesis,
we particularly focus on asynchronous algorithms for stochastic optimization.

The problem of stochastic optimization is the minimization of the expectation
of a stochastic loss function:

minimize
x∈Rn

f(x) ∶= Eξ[F (x, ξ)] = ∫
Ξ
F (x, ξ)dP(ξ). (1.2)

Here, x is the decision vector, and ξ is a random variable whose probability dis-
tribution P is supported on a set Ξ ⊆ Rm. A difficulty when solving stochastic
optimization problems is that the distribution P is often unknown, so the expec-
tation (1.2) cannot be computed. This situation occurs frequently in data-driven
applications such as machine learning. One such application is logistic regression for
classification tasks: we are given a set of observations

{ξj = (ξ
(1)
j , ξ

(2)
j ) ∣ ξ

(1)
j ∈ Rn, ξ(2)j ∈ {−1,+1}, j = 1, . . . , J} ,

drawn from an unknown distribution P, and we want to learn a linear classifier to
describe the relation between ξ(1)j and ξ(2)j . To this end, we can solve the minimization
problem (1.2) with

F (x, ξ) = log (1 + exp(−ξ(2)⟨ξ(1), x⟩)) .

Stochastic gradient methods have become extremely popular for solving stochastic
optimization problems [17–22]. Their popularity comes mainly from the fact that
they are easy to implement and have low computational cost per iteration. With
stochastic gradient methods, we do not assume knowledge of f (or of P), but access
to a stochastic oracle. Each time the oracle is queried with an x ∈ Rn, it randomly
selects ξ and returns ∇xF (x, ξ), which is an unbiased estimate of ∇f(x). Classical
stochastic gradient methods iteratively update the current vector x(k) by computing
g(k) = ∇xF (x(k), ξ) and performing the update

x(k + 1) = x(k) − γ(k)g(k), k ∈ N0,

where γ(k) is a positive step-size.
Stochastic gradient methods are inherently serial in the sense that gradient

computations take place on a single processor which has access to the whole dataset
and updates iterations sequentially, i.e., one after another. In many emerging appli-
cations, such as large-scale machine learning and statistics, the size of dataset is
so huge (in the Terabytes to Petabytes range) that it cannot fit on one computer.
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For instance, a social network with 100 million users and 1KB data per user has
100GB [23]. The immense growth of available data has caused a strong interest
in developing parallel optimization algorithms which are able to conveniently and
efficiently split the data and distribute the computation across multiple proces-
sors or multiple computer clusters (see, e.g., [24–31] and references therein). The
performance of Google’s DistBelief model [32] and Microsoft’s Project Adam [33]
have proven that parallel stochastic gradient methods are remarkably effective in
real-world machine learning problems such as training deep learning systems. For
example, while training a neural network for the ImageNet task with 16 million
images may take about two weeks on a modern GPU, Google’s DistBelief model can
successfully utilize 16,000 cores in parallel and train the network for three days [32].

A common parallel implementation of stochastic gradient methods is the master-
worker architecture in which several worker processors compute stochastic gradients
in parallel based on their portions of the dataset while a master processor stores
the decision vector and updates the current iterate. The workers communicate
only with the master to retrieve the updated decision vector. The master-worker
implementation can be executed in two ways: synchronous and asynchronous. In
the synchronous case, the master will perform an update and broadcast the new
decision vector to the workers when it collects stochastic gradients from all the
workers (cf. Figure 1.1).

Figure 1.1: Synchronous implementation of a master-worker architecture with one master
and P workers. At each iteration, the workers have to be synchronized with each other such
that all the stochastic gradients g(k) = ∇F (x(k), ξ) are computed at the same vector x(k).
Furthermore, in order to update the decision vector, the master needs to wait until all the
workers send their gradient computations.

Due to different computational capabilities, imperfect workload partition or
interference by other running jobs, some workers may evaluate stochastic gradients
slower than others. Since the master should wait for all the workers to finish
their computations, synchronous parallel methods often suffer from the straggler
problem [34], in which the algorithm can move forward only at the pace of the
slowest worker. The need for global synchronization also make such methods fragile
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to many types of failures that are common in distributed computing environments.
For example, if one processor fails throughout the execution of the algorithm or is
disconnected from the network connecting the processors, the algorithm will come
to an immediate halt. This becomes another bottleneck for synchronous parallel
methods.

In contrast to synchronous parallel algorithms, asynchrony allows the workers to
compute gradients at different rates without synchronization, and lets the master
perform updates using out-of-date gradients. In other words, there is no need for
workers to wait for each other to finish the gradient computations and the master
can update the decision vector once it receives stochastic gradients even from one
worker (cf. Figure 1.2). Some advantages that we can gain from asynchronous
implementations of optimization algorithms:

1. Reduced idle time of processors;

2. More iterates executed by fast processors;

3. Alleviated congestion in inter-process communication;

4. Robustness to individual processor failures.

However, on the negative side, asynchrony runs the risk of rendering an otherwise
convergent algorithm divergent. Asynchronous optimization algorithms often con-
verge under more restrictive conditions than their synchronous counterparts. Thus,
tuning an algorithm to withstand large amounts of asynchrony will typically result
in unnecessarily slow convergence if the actual implementation is synchronous.

Figure 1.2: Asynchronous implementation of a master-worker architecture with one master
and P workers. The workers evaluate stochastic gradient vectors independently of each other
without the need for coordination or synchronization. When a small subset of the workers
return their (possibly) out-of-date computations, the master can perform an update and pass
the updated decision vector back to the workers.

In this thesis, we study asynchronous stochastic gradient methods for solving reg-
ularized stochastic optimization (also referred to as stochastic composite optimization)
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problems, which can be written in the form

minimize
x∈Rn

Eξ[F (x, ξ)] +Ψ(x).

The role of the regularization term Ψ(x), which may be non-differentiable, is to
impose solutions with certain preferred structures. For example, Ψ(x) = λ∥x∥1 with
λ > 0 is often used to promote sparsity in solutions. Regularized stochastic optimiza-
tion problems arise in many applications in machine learning, signal processing, and
statistical estimation. Examples include Tikhonov and elastic net regularization,
Lasso, sparse logistic regression, and support vector machines [35–37].

We focus on the following questions related to the asynchronous stochastic
optimization:

• What is the update rule of an asynchronous parallel algorithm for regularized
stochastic optimization? How should we tune the algorithm parameters so
that the convergence is guaranteed in the face of asynchronism?

• What is the impact of asynchrony on the convergence rate of an asynchronous
parallel algorithm for regularized stochastic optimization?

• Is it possible for an asynchronous parallel optimization algorithm to enjoy
linear speedup in the number of processors?

1.3 Outline and Contributions

This section presents the outline and contributions of the thesis in detail. A more
thorough description and the corresponding related work are provided in each
chapter.

Chapter 2
In this chapter, we present mathematical background on which the rest of the thesis
is built. In particular, we describe positive systems and introduce several classes of
positive nonlinear systems. Then, we discuss some results concerning fixed point
iterations and contraction mappings. We also review basic convexity notions and
some first-order methods for solving smooth and nonsmooth convex optimization
problems.

Chapter 3
In this chapter, we establish asymptotic stability and estimate the decay rate of a
particular class of positive nonlinear systems which includes positive linear systems
as a special case. More specifically, we present a set of necessary and sufficient
conditions for delay-independent stability of continuous-time positive systems whose
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vector fields are cooperative and homogeneous. We show that global asymptotic
stability of such positive monotone systems is independent of the magnitude and
variation of time-delays. For various classes of bounded and unbounded time-varying
delays, we derive explicit expressions that allow us to quantify the impact of delays
on the decay rate. We demonstrate that the best decay rate of positive linear systems
that our results provide can be found via convex optimization. Furthermore, we
provide the corresponding counterparts for discrete-time positive nonlinear systems
whose vector fields are order-preserving and homogeneous.

The chapter is based on the following publications:

• H. R. Feyzmahdavian, T. Charalambous, and M. Johansson. Asymptotic
stability and decay rates of homogeneous positive systems with bounded and
unbounded delays. SIAM Journal on Control and Optimization, 52(4):2623–
2650, 2014.

• H. R. Feyzmahdavian, T. Charalambous, and M. Johansson. Exponential
stability of homogeneous positive systems of degree one with time-varying
delays. IEEE Transactions on Automatic Control, 59:1594–1599, 2014.

• H. R. Feyzmahdavian, T. Charalambous, and M. Johansson. Asymptotic
stability and decay rates of positive linear systems with unbounded delays. In
Proceeding of IEEE Conference on Decision and Control Conference (CDC),
pages 6337–6342, 2013.

• H. R. Feyzmahdavian, T. Charalambous, and M. Johansson. On the rate of
convergence of continuous-time linear positive systems with heterogeneous
time-varying delays. In Proceeding of European Control Conference (ECC),
pages 3372–3377, 2013.

Chapter 4

The aim of this chapter is to study delay-independent stability of general positive
monotone (not necessarily homogenous) systems with heterogeneous time-varying
delays. We derive a set of necessary and sufficient conditions for asymptotic stability
of positive monotone systems with bounded delays. Under the additional assumption
of sub-homogeneity of vector fields, which includes homogeneous vector fields as
a special case, we prove that a sub-homogeneous positive monotone system with
time-varying delays is globally asymptotically stable if and only if the corresponding
delay-free system is globally asymptotically stable. We also show how our results
can be used to analyze the delay-independent stability of continuous-time power
control algorithms in wireless networks.

The following publications provide the cornerstones for this chapter.
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• H. R. Feyzmahdavian, T. Charalambous, and M. Johansson. Sub-homogeneous
positive monotone systems are insensitive to heterogeneous time-varying delays.
In Proceeding of 21st International Symposium on Mathematical Theory of
Networks and Systems (MTNS), pages 317–324, 2014.

• H. R. Feyzmahdavian, T. Charalambous, and M. Johansson. Stability and
performance of continuous-time power control in wireless networks. IEEE
Transactions on Automatic Control, 59(8):2012–2023, 2014.

• H. R. Feyzmahdavian, T. Charalambous, and M. Johansson. Asymptotic
and exponential stability of general classes of continuous-time power control
laws in wireless networks. In Proceeding of IEEE Conference on Decision and
Control (CDC), pages 49–54, 2013.

Chapter 5
This chapter presents a unifying convergence result for asynchronous fixed point
iterations involving pseudo-contractions in the block-maximum norm. Contrary to
previous results in the literature which only established asymptotic convergence
or investigated decay rates of simplified models of asynchronism, our results allow
to characterize the convergence rates for various classes of update intervals and
information delays. Furthermore, we use our main results to analyze the impact of
asynchrony on the convergence rate of discrete-time power control algorithms in
wireless networks.

The chapter is founded on the publications below.

• H. R. Feyzmahdavian and M. Johansson. On the convergence rates of asyn-
chronous iterations. In Proceeding of IEEE Conference on Decision and
Control (CDC), pages 153–159, 2014.

• H. R. Feyzmahdavian, M. Johansson, and T. Charalambous. Contractive
interference functions and rates of convergence of distributed power control
laws. IEEE Transactions on Wireless Communications, 11(12):4494–4502,
2012.

• H. R. Feyzmahdavian, M. Johansson, and T. Charalambous. Contractive
interference functions and rates of convergence of power control laws. In
Proceeding of IEEE International Conference on Communications (ICC),
pages 5906–5910, 2012.

Chapter 6
In this chapter, we propose an asynchronous parallel algorithm for regularized
stochastic optimization problems with smooth loss functions. We characterize the
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iteration complexity and the convergence rate of the proposed algorithm for convex
and strongly convex regularization functions. We show that the asymptotic penalty
in convergence rate of the algorithm due to asynchrony is asymptotically negligible
and a near-linear speedup in the number of processors can be expected.

The following publications contribute to this chapter.

• H. R. Feyzmahdavian, A. Aytekin, and M. Johansson. An asynchronous
mini-batch algorithm for regularized stochastic optimization. Submitted to
IEEE Transactions on Automatic Control, 2015.

• H. R. Feyzmahdavian, A. Aytekin, and M. Johansson. An asynchronous
mini-batch algorithm for regularized stochastic optimization. To appear in
IEEE Conference on Decision and Control (CDC), 2015.

Chapter 7

In this chapter, we summarize the thesis and discuss the results. We further outline
possible directions to be taken in order to extend the work started with this thesis.

Other Contributions

For consistency of the thesis structure, the following publications by the author are
not covered in the thesis.

• H. R. Feyzmahdavian, T. Charalambous, and M. Johansson. Delay-independent
stability of cone-invariant monotone systems. To appear in IEEE Conference
on Decision and Control (CDC), 2015.

• B. Demirel, H. R. Feyzmahdavian, E. Ghadimi, and M. Johansson. Stability
analysis of discrete-time linear systems with unbounded stochastic delays.
To appear in 5th IFAC Workshop on Distributed Estimation and Control of
Networked Systems (NECSYS), 2015.

• E. Ghadimi, H. R. Feyzmahdavian, and M. Johansson. Global convergence of
the heavy-ball method for convex optimization. In Proceeding of European
Control Conference (ECC), pages 310–315, 2015.

• J. Lu, H. R. Feyzmahdavian, and M. Johansson. A dual coordinate descent
algorithm for multi-agent optimization. In Proceeding of European Control
Conference (ECC), pages 715–720, 2015.
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• H. R. Feyzmahdavian, A. Aytekin, and M. Johansson. A delayed proximal
gradient method with linear convergence rate. In Proceeding of IEEE Interna-
tional Workshop on Machine Learning for Signal Processing (MLSP), pages
1–6, 2014.

• A. Aytekin, H. R. Feyzmahdavian, and M. Johansson. Asynchronous incre-
mental block-coordinate descent. In Proceeding of Annual Allerton Conference
on Communication, Control, and Computing, pages 19–24, 2014.

• H. R. Feyzmahdavian, A. Gattami, and M. Johansson. Distributed output-
feedback LQG control with delayed information sharing. In Proceeding of 3rd
IFAC Workshop on Distributed Estimation and Control of Networked Systems
(NECSYS), pages 192–197, 2012.

• H. R. Feyzmahdavian, A. Alam, and A. Gattami. Optimal distributed controller
design with communication delays: Application to vehicle formations. In
Proceeding of IEEE Conference on Decision and Control (CDC), pages 2232–
2237, 2012.





Chapter 2

Background

In this chapter, we briefly review the mathematical background of the thesis. The
outline of the chapter is as follows. In Section 2.1, we describe positive systems

and introduce useful definitions and results. We then discuss classes of cooperative,
homogeneous, and sub-homogeneous systems in the context of positive systems. In
Section 2.2, we present some theory regarding contraction mappings. Section 2.3
introduces important notions for convex optimization and reviews first-order methods
relevant for the thesis.

2.1 Positive Systems

Consider the nonlinear autonomous system
⎧⎪⎪
⎨
⎪⎪⎩

ẋ(t) = f(x(t)), t ≥ 0,
x(0) = x0,

(2.1)

where x(t) ∈ Rn is the system state, f ∶ S → Rn is continuously differentiable on
S ⊆ Rn, and x0 ∈ S is the initial condition. We denote the solution of (2.1) starting
from x0 by x(t, x0).

Definition 2.1. The dynamical system (2.1) is called positive if starting from any
initial condition in the positive orthant, the trajectory of the system will remain in
the positive orthant. That is,

x0 ∈ Rn+ Ô⇒ x(t, x0) ∈ Rn+ , ∀t ≥ 0.

This definition states that the positive orthant in Rn is an invariant set for positive
systems. Positivity of nonlinear systems is readily verified using the following result.

Theorem 2.1 ([58, Proposition 2.1]). Assume that Rn+ ⊆ S. The dynamical
system (2.1) is positive if and only if

∀x ∈ Rn+ ∶ xi = 0Ô⇒ fi(x) ≥ 0. (2.2)

13
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Intuitively, the positivity condition (2.2) means that at the boundary of the
positive orthant Rn+ , the vector field f is either zero or points toward the interior of
Rn+ , thus preventing the trajectories to leave Rn+ .

Example 2.1. Consider the Lotka-Volterra equations

ẋ1(t) = αx1(t) − βx1(t)x2(t),

ẋ2(t) = δx1(t)x2(t) − γx2(t),

which describe the population model for two species that interact in a predator-prey
relationship [59]. Here, x1 denotes the number of prey, x2 denotes the number of
predators, and α, β, γ, and δ are positive constants. In terms of (2.1),

f(x1, x2) =
⎡
⎢
⎢
⎢
⎣

αx1 − βx1x2

δx1x2 − γx2

⎤
⎥
⎥
⎥
⎦
.

For any (x1, x2) ∈ R2
+, we have

x1 = 0Ô⇒ f1(x1, x2) = 0 ≥ 0,
x2 = 0Ô⇒ f2(x1, x2) = 0 ≥ 0.

Therefore, according to Theorem 2.1, this system is positive. ∎

The positive orthant plays an important role in the stability analysis of positive
systems. While the vector field describing the evolution of a positive system may have
equilibrium points outside the positive orthant, from the viewpoint of applications, it
is only the stability of the nonnegative equilibria that are of interest. Therefore, it is
natural to define the global asymptotic stability of a positive system by requiring that
its equilibrium in Rn+ is asymptotically stable for any nonnegative initial condition
x0 ∈ Rn+ , instead of for any x0 ∈ Rn. This means that an equilibrium which is not
stable with respect to the whole Rn can be globally asymptotically stable with
respect to the positive orthant. The following example illustrates this issue.

Example 2.2. Consider a scalar system described by (2.1) with

f(x) = −(x − 1)(x + 1)(x + 3), x ∈ R. (2.3)

Since f(0) = 3 ≥ 0, it follows from Theorem 2.1 that (2.3) is positive. This system has
three equilibrium points: x⋆(1) = 1, x⋆(2) = −1, and x⋆(3) = −3. It is easy to verify that
x⋆(1), which is the only equilibrium point in the positive orthant, is asymptotically
stable for any initial condition x0 ∈ (−1,+∞). As the trajectories of (2.3) starting
from x0 ∈ (−∞,−1) converges to x⋆(3), x⋆(1) is not globally asymptotically stable
with respect to R. However, for any nonnegative initial condition x0 ∈ R+, x(t, x0)
converges asymptotically to x⋆(1). We conclude that x⋆(1) is globally asymptotically
stable with respect to R+. ∎



2.1. Positive Systems 15

2.1.1 Positive Linear Systems
In this subsection, we review some basic definitions and results concerning positive
linear systems. Consider the linear time-invariant system

⎧⎪⎪
⎨
⎪⎪⎩

ẋ(t) = Ax(t), t ≥ 0,
x(0) = x0,

(2.4)

where A ∈ Rn×n, and x0 ∈ Rn. According to Theorem 2.1, positivity of the linear
system (2.4) depends on the structure of A. The following definition introduces
Metzler matrices.

Definition 2.2 (Metzler Matrix). A matrix A ∈ Rn×n is called Metzler if its
off-diagonal entries are nonnegative, i.e., aij ≥ 0 for all i ≠ j, i, j = 1, . . . , n.

Let f(x) = Ax, where A ∈ Rn×n is Metzler. For each i = 1, . . . , n,

fi(x1, . . . , xi = 0, . . . , xn) =
n

∑
j=1
j≠i

aijxj .

Since aij ≥ 0 for all i ≠ j, fi(x1, . . . , xi = 0, . . . , xn) ≥ 0 for all x ∈ Rn+ . This shows
that if A is Metzler, then the positivity condition (2.2) is satisfied and, hence, the
linear system (2.4) is positive. It is easy to verify that the requirement of being
Metzler is also a necessary condition for positivity of linear systems.

Theorem 2.2 ([1, Theorem 2]). The linear system (2.4) is positive if and only
if A is Mezler.

The linear system (2.4) has an equilibrium point at the origin. Stability properties
of the origin can be characterized by the locations of the eigenvalues of the matrix
A. It is well known that x = 0 is globally asymptotically stable if and only if all
eigenvalues of A have negative real parts [60, Theorem 4.5]. The Lyapunov stability
theorem provides an alternative condition to determine whether or not (2.4) is
asymptotically stable. More precisely, (2.4) is globally asymptotically stable if and
only if there exists a positive-definite matrix P ∈ Rn×n such that

A⊺P + PA is negative definite. (2.5)

Such a matrix P corresponds to the quadratic Lyapunov function V (x) = x⊺Px,
which is decreasing along trajectories of (2.4) [60, Theorem 4.6]. We can find numer-
ically a positive-definite matrix P satisfying (2.5) by solving a convex optimization
problem with n(n + 1)/2 decision variables [61]. As for general linear systems, the
existence of a quadratic Lyapunov function is necessary and sufficient for stability of
positive linear systems. However, the next result shows that this type of Lyapunov
functions has a simpler structure in the case of positive systems.
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Theorem 2.3 ([62, Proposition 1]). Assume that A ∈ Rn×n is Metzler. Then, for
the positive linear system (2.4), the following statements are equivalent:

1. The origin is globally asymptotically stable.

2. There exists a positive definite diagonal matrix P such that (2.5) holds.

3. There exists w ∈ Rn such that
⎧⎪⎪
⎨
⎪⎪⎩

w⊺A < 0,
w > 0.

(2.6)

4. There exists v ∈ Rn such that
⎧⎪⎪
⎨
⎪⎪⎩

Av < 0,
v > 0.

(2.7)

This theorem suggests that to find a quadratic Lyapunov function for positive
linear systems, it suffices to search for a diagonal matrix P satisfying (2.5). In this
case, the asymptotic stability can be verified by a convex optimization problem
involving only n decision variables. Theorem 2.3 also demonstrates that positive
linear systems admit other classes of Lyapunov functions leading to necessary and
sufficient conditions. Specifically, consider the linear Lyapunov function candidate
V (x) = w⊺x, where w satisfies (2.6). It is clear that V (0) = 0 and V (x) > 0 for all
x ∈ Rn+ − {0}. The derivative of V along the trajectories of (2.4) is given by

V̇ (x) = w⊺ẋ = w⊺Ax < 0, ∀x ∈ Rn+ − {0},

which implies that the origin is asymptotically stable. Similarly, if we can demonstrate
the existence of a vector v satisfying (2.7), then

V (x) = max
1≤i≤n

xi
vi
,

is a Lyapunov function for the the positive linear system (2.4). Note that the
necessary and sufficient stability conditions (2.6) and (2.7) are linear programming
problems in w and v, respectively. In fact, the stability of (2.4) can be checked by
finding a feasible solution to 2n linear inequalities over n variables.

Remark 2.1. The powerful properties of Metzler matrices presented in Theo-
rem 2.3 can simplify stability analysis and control design problems for positive linear
systems [63–67]. For example, the design of structured static state-feedback con-
trollers is known to be NP-Hard in general [68]. For positive linear systems, however,
it was shown in [63] that finding structured H∞ static state-feedback controllers
can be reformulated as a semi-definite programming problem by employing diagonal
Lyapunov functions. In [64], the synthesis of distributed output-feedback controllers
for positive linear systems was solved in terms of linear programming. [65–67] pro-
vided necessary and sufficient tractable conditions for robust stability of uncertain
positive linear systems in the l1, l2 and l∞ gain setting, respectively.
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2.1.2 Cooperative Positive Systems
Cooperative positive systems are a particular class of positive nonlinear systems
which include positive linear systems as a special case. We first define cooperative
vector fields.

Definition 2.3 (Cooperativity). A vector field f ∶ S → Rn which is continuously
differentiable on the convex set S ⊆ Rn is said to be cooperative if the Jacobian matrix
∂f
∂x

(a) is Metzler for all a ∈ S. The dynamical system (2.1) is called cooperative if f
is cooperative.

Loosely speaking, cooperativity means that an increase in the value of one
component of the state variable causes an increase of the growth rates of all the other
components. Cooperative systems occur in many biological models. The biological
interpretation is that an increase of species i tends to increase the population growth
rate of every other species j.

Example 2.3. Consider the system (2.1) with

f(x1, x2) =
⎡
⎢
⎢
⎢
⎣

−x2
1 + x1x

2
2

5x1 − x
3
2

⎤
⎥
⎥
⎥
⎦
.

The Jacobian matrix ∂f/∂x at a point (x1, x2) is given by

∂f

∂x
(x1, x2) =

⎡
⎢
⎢
⎢
⎣

−2x1 + x
2
2 2x1x2

5 −3x2
2

⎤
⎥
⎥
⎥
⎦
.

Since the off-diagonal entries are nonnegative for all (x1, x2) ∈ R2
+, ∂f/∂x is Metzler

over R2
+. Therefore, f is cooperative on R2

+. ∎

One important property of cooperative systems is that they are monotone [69, §3].
Monotone systems are those for which trajectories preserve a partial ordering on
initial states. The formal definition of monotone systems is as follows.

Definition 2.4. The dynamical system (2.1) is called monotone in S if for any
initial conditions x0, y0 ∈ S, we have

x0 ≤ y0 Ô⇒ x(t, x0) ≤ x(t, y0), ∀t ≥ 0.

The next result demonstrates that for continuously differentiable vector fields,
monotone systems are necessarily cooperative.

Theorem 2.4 ([70, Lemma 2.1]). For the dynamical system (2.1), assume that f
is continuously differentiable. Then, (2.1) is monotone if and only if f is cooperative.

According to Theorem 2.4, the linear system (2.4) is monotone if and only if A
Metzler. Hence, (2.4) is monotone if and only if it is positive.
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Remark 2.2. The theory of monotone systems has been developed by Hirsch [71–
73] and Smith [69]. In [74], the notion of monotone systems was extended to systems
with inputs and outputs. Motivated by potential applications to a wide variety of
areas such as molecular biology and chemical reaction networks, monotone systems
have attracted considerable attention from the control community (see, e.g., [75–78]).

2.1.3 Homogeneous Positive Systems
In Chapter 3, we will deal with cooperative positive systems whose vector fields are
homogeneous in the sense of the following definition.

Definition 2.5 (Homogeneity). Given an n-tuple r = (r1, . . . , rn) of positive real
numbers and λ > 0, the dilation map δrλ(x) ∶ Rn → Rn is given by

δrλ(x) = (λr1x1, . . . , λ
rnxn).

When r = (1, . . . ,1), the dilation map is called the standard dilation map. A vector
field f ∶ Rn → Rn is said to be homogeneous of degree p with respect to the dilation
map δrλ(x) if for all x ∈ Rn and all λ > 0,

f(δrλ(x)) = λ
pδrλ(f(x)).

Note that the linear system (2.4) is homogeneous of degree zero with respect to
the standard dilation map since f(λx) = A(λx) = λAx for all λ > 0.

Example 2.4. Let f ∶ R2 → R2 be defined as

f(x1, x2) =
⎡
⎢
⎢
⎢
⎣

x2
1 − 6x1x

3
2

3x1x2 − x
4
2

⎤
⎥
⎥
⎥
⎦
.

We show that f is homogeneous of degree p = 3 with respect to the dilation map
δrλ(x) with r = (3,1). We have

f(δrλ(x)) = f(λ
3x1, λx2) = λ

3
⎡
⎢
⎢
⎢
⎣

λ3(x2
1 − 6x1x

3
2)

λ(3x1x2 − x
4
2)

⎤
⎥
⎥
⎥
⎦
= λ3δrλ(f(x)).

Therefore, f(δrλ(x)) = λ3δrλ(f(x)) for all x ∈ R2 and all λ > 0. ∎

Returning to Theorem 2.3, we see that the positive linear system (2.4) is globally
asymptotically stable if and only if there is some v > 0 satisfying Av < 0. The next
result extends this stability property to positive nonlinear systems whose vector
fields are cooperative, homogeneous and irreducible.

Theorem 2.5 ([79]). Suppose that f is cooperative on Rn+ and homogeneous of
degree p ∈ R+ with respect to the dilation map δrλ(x). Suppose also that the Jacobian
matrix ∂f/∂x(a) is irreducible for all a ∈ Rn+ − {0}. Then, the positive system (2.1)
is globally asymptotically stable if and only if there exists v > 0 such that f(v) < 0.

If f is homogeneous of degree zero with respect to the standard dilation map,
the result of Theorem 2.5 still holds without requiring irreducibility assumption [80].
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2.1.4 Sub-homogeneous Positive Systems
Another class of positive nonlinear systems that we will focus on in Chapter 4 is
sub-homogeneous cooperative systems. The next definition introduces the concept
of a sub-homogeneous vector field.

Definition 2.6 (Sub-homogeneity). A vector field f ∶ Rn → Rn is called sub-
homogeneous of degree p ∈ R+ with respect to the dilation map δrλ(x) if for all x ∈ Rn
and all λ ≥ 1,

f(δrλ(x)) ≤ λ
pδrλ(f(x)).

Example 2.5. Consider the following system

ẋ(t) = f(x(t)) + b, t ≥ 0,

where f ∶ Rn → Rn is homogeneous of degree p ∈ R+ with respect to the dilation
map δrλ(x), and b ∈ Rn+ is a constant control which allows to shift the equilibrium
point from the origin to a point in the positive orthant [81]. Let f̂(x) = f(x) + b. It
follows from homogeneity of f that

f̂(δrλ(x)) = f(δ
r
λ(x)) + b = λ

pδrλ(f(x)) + b = λ
pδrλ(f̂(x)) + b − λ

pδrλ(b).

Since bi ≥ 0 for each i = 1, . . . , n, we have

b − λpδrλ(b) = ((1 − λp+r1)b1, . . . , (1 − λp+rn)bn) ≤ 0,

for all λ ≥ 1. Therefore, f̂(δrλ(x)) ≤ λpδrλ(f̂(x)), which means that f̂ is sub-
homogeneous of degree p with respect to the dilation map δrλ(x). ∎

It is clear that every homogeneous vector field is also sub-homogeneous. However,
the following simple example shows that the converse is, in general, not true.

Example 2.6. Consider f(x) = x + 1, x ∈ R. Clearly, f is not homogeneous.
However, for any λ ≥ 1,

f(λx) = λx + 1 = λ(x + 1) + (1 − λ) ≤ λ(x + 1) = λf(x).

which implies that f is sub-homogeneous of degree zero. ∎

2.1.5 Discrete-time Positive Systems
In the remainder of this section, we review some properties of discrete-time positive
systems of the form

⎧⎪⎪
⎨
⎪⎪⎩

x(k + 1) = f(x(k)), k ∈ N0,

x(0) = x0.
(2.8)

Here, x(k) ∈ Rn is the state variable, f ∶ Rn → Rn is continuous on Rn, and x0 ∈ Rn
represents the initial condition.
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Definition 2.7. The discrete-time system (2.8) is said to be positive if for every
nonnegative initial condition x0 ∈ Rn+ , the corresponding solution is nonnegative,
i.e., x(k, x0) ∈ Rn+ for all k ∈ N.

The following theorem provides a necessary and sufficient condition for positivity
of discrete-time systems.

Theorem 2.6 ([58, Proposition 2.11]). The dynamical system (2.8) is positive
if and only if f(x) ∈ Rn+ for all x ∈ Rn+.

Consider now the discrete-time linear system

x(k + 1) = Ax(k), k ∈ N0, (2.9)

where A ∈ Rn×n.

Definition 2.8 (Nonnegative Matrix). A matrix A ∈ Rn×n is called nonnegative
if all of its elements are nonnegative, i.e., aij ≥ 0 for all i, j = 1, . . . , n.

According to Theorem 2.6, the linear system (2.8) is positive if and only if
Ax ∈ Rn+ for all x ∈ Rn+ . This condition holds if and only if A is nonnegative. To see
this, suppose one of the elements of A, aij , were negative. Then, for the nonnegative
vector x = (0, . . . , 0, 1, 0, . . . , 0) with the one in the ith component, the jth component
of Ax would be aij , which is negative. It is also easy to verify the converse. Therefore,
the linear system (2.8) is positive if and only if A is nonnegative.

Nonnegative matrices, which play a significant role in mathematical economics
and Markov processes, have a remarkably rich theory. This theory has roots in the
Perron-Frobenius theorem, which states that the spectral radius of a nonnegative
matrix whose elements are strictly positive is an eigenvalue corresponding to the
eigenvector with strictly positive components [82]. We summarize some well-known
properties of nonnegative matrices. These conditions are useful when analyzing the
stability and control of discrete-time positive linear systems.

Theorem 2.7 ([62, Proposition 2]). Assume that A ∈ Rn×n is nonnegative. Then,
for the positive linear system (2.9), the following statements are equivalent:

1. The origin is globally asymptotically stable.

2. There exists a positive definite diagonal matrix P such that A⊺PA − P is
negative definite.

3. There exists w ∈ Rn such that
⎧⎪⎪
⎨
⎪⎪⎩

w⊺A < w,

w > 0.
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4. There exists v ∈ Rn such that
⎧⎪⎪
⎨
⎪⎪⎩

Av < v,

v > 0.

This theorem shows that stable discrete-time positive linear systems admit three
types of Lyapunov functions: the diagonal quadratic function V (x) = x⊺Px, the
linear function V (x) = w⊺x, and the weighted infinity norm V (x) = max1≤i≤n xi/vi.

Among different classes of discrete-time positive nonlinear systems, we will
mainly deal with order-preserving systems.

Definition 2.9 (Order-preserving System). A vector field f ∶ Rn → Rn is
called order-preserving on Rn+ if f(x) ≤ f(y) for any x, y ∈ Rn+ such that x ≤ y. The
dynamical system (2.8) is said to be order-preserving if f is order-preserving.

Order-preserving systems are monotone in the sense that solutions starting at
ordered initial conditions preserve the same ordering during the time evolution.
More precisely, if x0 ≤ y0, then x(k, x0) ≤ x(k, y0) for all k ∈ N0.

2.2 Contraction Mappings

Several iterative algorithms generate sequences {x(k)} according to

x(k + 1) = T (x(k)), k ∈ N0, (2.10)

where T is a mapping from S ⊆ Rn into Rn. If {x(k)} converges to some x⋆ ∈ S and
T is continuous at x⋆, then

x⋆ = T (x⋆). (2.11)

Any vector x⋆ ∈ S satisfying (2.11) is called a fixed point of T . Thus, a convergent
iteration of the form (2.10) can be viewed as an algorithm for solving the fixed point
problem x = T (x). A classical optimization example is the iteration

x(k + 1) = x(k) − γ∇f(x(k)),

where γ is a positive step-size, and f ∶ Rn → Rn is continuously differentiable. This
iteration aims to solve the equation x = x − γ∇f(x), or, equivalently, ∇f(x) = 0,
which is the optimality condition for the unconstrained minimization problem

min
x∈Rn

f(x).

We are typically interested in conditions that guarantee the convergence of the
iteration (2.10) to some desirable fixed points. We are also interested in estimating
the convergence rate of the sequence {x(k)}. A common approach for establishing
the convergence of (2.10) is to verify that T is a contraction mapping.
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Definition 2.10 (Contraction Mapping). A mapping T is called a contraction
mapping with contraction modulus c if there is c ∈ (0,1) such that

∥T (x′) − T (x)∥ ≤ c ∥x′ − x∥, ∀x,x′ ∈ S,

where ∥ ⋅ ∥ is some norm on S.

Contraction mappings are automatically continuous. Furthermore, an attractive
feature of such mappings is that they always have a unique fixed point and the
corresponding iteration (2.10) converges to it at a linear rate.

Theorem 2.8 ([16, Proposition 3.1.1]). Suppose that T ∶ S → S is a contraction
mapping with contraction modulus c and that S is a closed subset of Rn. Then,

• T has a unique fixed point x⋆ ∈ S.

• For every initial condition x(0) ∈ S, the sequence {x(k)} generated by (2.10)
converges linearly to x⋆. In particular,

∥x(k) − x⋆∥ ≤ ck∥x(0) − x⋆∥, k ∈ N0.

Note that if T is contractive but S is not closed, then T may not have a fixed
point, see [16, Execersice 3.1.1]. In addition, the contractivity property is norm
dependent, so that a mapping T might be a contraction for one norm but not for a
different choice of norm. The following example illustrates this point.

Example 2.7. Let T ∶ R2 → R2 be a linear mapping defined as T (x) = Ax with

A =
⎡
⎢
⎢
⎢
⎣

0.5 0.7
0 −0.5

⎤
⎥
⎥
⎥
⎦
.

Clearly, T is a contraction if ∥A∥ < 1 for some norm on R2. It is easy to verify that
∥A∥1 = ∥A∥∞ = 1.2 and ∥A∥2 = 0.96. Therefore, T is contractive with respect to the
norm ∥ ⋅ ∥2 while fails to be a contraction under ∥ ⋅ ∥1 and ∥ ⋅ ∥∞ norms. ∎

2.3 First-order Methods in Convex Optimization

Given an objective function f ∶ Rn → R and a feasible set S ⊆ Rn, the goal of
optimization is to find a point in S where f attains its minimum. Mathematically,
an optimization problem can be formulated as

minimize f(x)

suject to x ∈ S.
(2.12)
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When f is a convex function and S is a convex set, (2.12) is called a convex
optimization problem. An important implication of convexity of the problem (2.12)
is that any local minimum for (2.12) is also a global minimum [83, Proposition 2.1.2].
While the convexity assumption is restrictive, a vast number of design problems
in engineering can be posed as, or at least approximated by, convex optimization
problems [84]. This section provides an overview of useful definitions and describes
some first-order methods relating to convex optimization. We refer the interested
readers to [83–85] for a more thorough exposition.

2.3.1 Basic Definitions
We start with the definition of convex sets.

Definition 2.11 (Convex Set). A set S ⊆ Rn is convex if

θx + (1 − θ)x′ ∈ S,

for any x,x′ ∈ S and for any θ ∈ [0,1].

The definition implies that the segment between any two points in a convex set
must lie within the set (cf. Figure 2.1).

Figure 2.1: Illustration of the definition of a convex set. The set on the left is convex,
but the set on the right is not.

Next, we define convex functions.

Definition 2.12 (Convex Function). A function f ∶ S → R is convex if the
domain S is convex and

f(θx + (1 − θ)x′) ≤ θf(x) + (1 − θ)f(x′),

for all x,x′ ∈ S and for all θ ∈ [0,1].

Geometrically, convexity of f means that the graph of f between any two points
in the domain lies below the line segment joining the points (cf. Figure 2.2).

Given a convex function f , if f(x) < +∞ for at least one x ∈ S and f(x) > −∞ for
all x ∈ S, then f is called proper. For example, the indicator function of a non-empty
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Figure 2.2: Example of a convex function.

closed convex set C ⊆ Rn, given by

IC(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0, if x ∈ C,
+∞, otherwise,

is proper on Rn. The following definition introduces subgradients of proper convex
functions.

Definition 2.13 (Subgradient). For a proper convex function f ∶ Rn → R∪{+∞},
a vector g ∈ Rn is a subgradient of f at x ∈ Rn if

f(x′) ≥ f(x) + ⟨g, x′ − x⟩, ∀x′ ∈ Rn. (2.13)

The set of all subgradients of f at x is called the subdifferential of f at x, and is
denoted by ∂f(x):

∂f(x) ∶= {g ∈ Rn ∣ f(x′) ≥ f(x) + ⟨g, x′ − x⟩ for all x′ ∈ Rn}.

The inequality (2.13) states that the subgradient gives an affine global under-
estimator of f . Note that if f is differentiable at x, then ∂f(x) contains only one
element [83, Proposition 4.2.2], namely ∂f(x) = {∇f(x)}.

A particular class of convex functions satisfies extra property, called strong
convexity, that can significantly speedup the convergence of first-order methods.

Definition 2.14 (Strongly Convex Function). A function f ∶ S → R over the
convex set S is called µ-strongly convex with respect to the norm ∥ ⋅ ∥ if there exists
a constant µ > 0 such that

f(θx + (1 − θ)x′) ≤ θf(x) + (1 − θ)f(x′) − µ
2
θ(1 − θ)∥x′ − x∥2,

for all x,x′ ∈ S and for all θ ∈ [0,1].
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The constant µ is called the convexity parameter. Clearly, every convex function
is 0-strongly convex. Strong convexity gives us a quadratic lower bound to f at any
point in the domain. More precisely, for all x,x′ ∈ S, we have

f(x′) ≥ f(x) + ⟨g, x′ − x⟩ +
µ

2
∥x′ − x∥2, ∀g ∈ ∂f(x).

2.3.2 First-order Methods
Numerical methods for solving optimization problems are commonly classified as
zero-, first-, and second-order methods according to the derivative information which
they require to compute. The zero-order methods (also referred to as derivative-free
methods) use only the objective function values to direct the search for the optimum
while the first-order methods require additional gradients (sub-gradients) of the
objective function. Typical examples of zero- and first-order methods are the simplex
method [86] and the gradient descent method [85], respectively. In second-order
methods, the second derivative of the objective function, called the Hessian, is also
used to construct search directions. Newton’s method is a classical second-order
method [85]. In this section, we are interested in first-order methods that solve the
convex optimization problem (2.12).

One of the simplest first-order methods is the subgradient projection method
which is among the earliest algorithms developed to solve (2.12). This method starts
with some initial feasible vector x(0) ∈ S, and updates the current iterate by taking a
step along the negative subgradient direction and then, by projecting on the feasible
set S. Formally, the subgradient projection method proceeds according to

x(k + 1) = ΠS(x(k) − γg(k)), k ∈ N0, (2.14)

where x(k) is the current iterate, g(k) is any subgradient of f at x(k), γ is a positive
step-size, and ΠS(⋅) is the Euclidean projection operator onto the set S, i.e.,

ΠS(x) = argmin
x′∈S

∥x′ − x∥
2
2.

Using the definition of ΠS(⋅), one can verify that (2.14) can be rewritten as

x(k + 1) = argmin
x∈S

{f(x(k)) + ⟨g(k), x − x(k)⟩ +
1

2γ
∥x − x(k)∥

2
2}. (2.15)

If S is closed and convex, the minimization problem (2.15) admits a unique so-
lution [85, Theoorem 2.2.6]. We can interpret (2.15) as follows: next iterate is a
unique minimizer of the linear approximation of f at the current iterate x(k) plus a
quadratic regularization term which penalizes deviations from x(k). For differen-
tiable objective functions, we can use the gradient projection method to solve (2.12),
which has the form

x(k + 1) = ΠS(x(k) − γ∇f(x(k))), k ∈ N0.
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This method can be viewed as the specialization of the subgradient method applied
to differentiable objective functions.

The subgradient and gradient projection methods can be easily extended to a
non-Euclidean setting, by replacing the Euclidean squared distance in (2.15) with a
general Bregman distance function. This was the idea behind the mirror descent
method originated in [87] and developed further in [18, 88, 89]. We first define a
Bregman distance function, also referred to as a prox-function.

Definition 2.15 (Bregman Distance Function). A function ω ∶ S → R is called
a distance generating function with modulus µω > 0 if ω is continuously differentiable
and µω-strongly convex with respect to ∥ ⋅ ∥ over the set S ⊆ Rn. Every distance
generating function introduces a corresponding Bregman distance function given by

Dω(x,x
′) ∶= ω(x′) − ω(x) − ⟨∇ω(x), x′ − x⟩.

For example, choosing ω(x) = 1
2∥x∥

2
2, which is 1-strongly convex with respect to

the l2-norm over any convex set S, would result in Dω(x,x
′) = 1

2∥x
′ − x∥2

2. Another
common example of distance generating functions is the entropy function

ω(x) =
n

∑
i=1
xi logxi,

which is 1-strongly convex with respect to the l1-norm over the standard simplex

∆ ∶= {x ∈ Rn ∣
n

∑
i=1
xi = 1, x ≥ 0} ,

and its associated Bregman distance function is

Dω(x,x
′) =

n

∑
i=1
x′i log x

′
i

xi
.

Remark 2.3. The strong convexity of the distance generating function ω always
ensures that

Dω(x,x
′) ≥

µω
2

∥x′ − x∥2, ∀x,x′ ∈ S,

and Dω(x,x
′) = 0 if and only if x = x′.

Remark 2.4. Throughout the thesis, there is no loss of generality to assume that
µω = 1. Indeed, if µω ≠ 1, we can choose the scaled function ω(x) = 1

µω
ω(x), which

has modulus µω = 1, to generate the Bregman distance function.

The update equation of the mirror descent method is

x(k + 1) = argmin
x∈S

{f(x(k)) + ⟨g(k), x − x(k)⟩ +
1
γ
Dω(x(k), x)}, k ∈ N0. (2.16)
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The subgradient method (2.14) is a special case of (2.16), when ω(x) = 1
2∥x∥

2
2 and,

hence, Dω(x,x
′) = 1

2∥x
′ − x∥2

2. The main motivation to use a generalized distance
generating function, instead of the usual Euclidean distance function, is to design
optimization algorithms that can take advantage of the geometry of the feasible set
(see, e.g., [89–91]). For example, when S is the standard simplex of large dimension
n and f is convex and Lipschitz continuous on S, the mirror descent method (2.16)
with the entropy distance function can outperform the subgradient method (2.14)
by a factor of O(

√
n/ lnn) [18].

2.3.3 Iteration Complexity of Mirror Descent Method
We now discuss the convergence properties of the mirror descent method under two
different assumptions.

Objective functions with bounded subgradients:
Suppose that there exists a constant G ∈ (0,∞) such that

∥g∥∗ ≤ G, ∀g ∈ ∂f(x), ∀x ∈ S, (2.17)

where ∥ ⋅ ∥∗ is the dual norm of ∥ ⋅ ∥. This constraint on the norm of subgradients
implies that f is Lipschitz continuous over S with constant G [92, Lemma 14.7].
That is,

∣f(x′) − f(x)∣ ≤ G∥x′ − x∥, ∀x,x′ ∈ S.

Note that f may be non-differentiable. Assumption (2.17) is mainly used in the
context of nonsmooth optimization [18,89,90].

Let x⋆ be an optimal point of the convex optimization problem (2.12) and use
f⋆ to denote the corresponding optimal value. Given some ε > 0, assume that we
want to estimate the number of iterations required by (2.16) to obtain ε-optimal
solution, i.e., a solution x ∈ S such that f(x) − f⋆ ≤ ε. Using the step-size choice
γ = ε/G2, the mirror descent update (2.16) needs

T =
2G2Dω(x(0), x⋆)

ε2 − 1

iterations to achieve ε-optimal solution [18]. This shows that under assumption (2.17),
the iteration complexity of the the mirror descent method isO(1/ε2). This complexity
is optimal in the sense that it matches the lower complexity bound for convex
optimization problems with Lipschitz continuous objective functions [87].

Objective functions with Lipschitz continuous gradients:
Next, we explore potential improvements in the convergence rate of the mirror descent
method under certain smoothness assumptions. Suppose that f is continuously
differentiable and, additionally, there is a constant L ∈ (0,∞) such that

∥∇f(x′) −∇f(x)∥∗ ≤ L∥x
′ − x∥, x, x′ ∈ S. (2.18)
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An important consequence of (2.18) is that we can upper bound f everywhere by a
quadratic function of fixed curvature:

f(x′) ≤ f(x) + ⟨∇f(x), x′ − x⟩ +
L

2
∥x′ − x∥2, ∀x,x′ ∈ S.

Under assumption (2.18), the sequence {x(k)} generated by (2.16) with the
constant step-size γ = 1/L satisfies

f(x(k)) − f⋆ ≤
LDω(x(0), x⋆)

k + 1
,

for all k ∈ N0 [91]. In view of this convergence rate, the time necessary to achieve
ε-optimal solution is O(1/ε). This shows that using the assumption of Lipschitz
continuity of the gradient, we are able to improve the iteration complexity of the
mirror descent method (2.16) from O(1/ε2) (in the nonsmooth case) to O(1/ε).

It is well known that for the class of convex optimization problems with Lipschitz
continuous gradient, the optimal iteration complexity bound for finding ε-optimal
solution is of the order O(1/

√
ε) [85]. Therefore, the mirror descent method (2.16)

is far from being optimal for smooth problems. In the seminal work [93], Nesterov
presented a novel accelerated first-order method for unconstrained convex optimiza-
tion that achieves the optimal iteration complexity O(1/

√
ε). Some extensions of

Nesterov’s method were discussed in [94–97]. In particular, [96] proposed a fast
gradient method for constrained convex problems using Bregman distance functions.
That method generates iterates in the following manner

y(k) = (1 − θ(k))z(k) + θ(k)x(k),

x(k + 1) = argmin
x∈S

{f(y(k)) + ⟨∇f(y(k)), x − x(k)⟩ + θ(k)LDω(x(k), x)}, (2.19)

z(k + 1) = (1 − θ(k))z(k) + θ(k)x(k + 1),

with x(0), z(0) ∈ S, θ(0) = 1, and θ(k), k ∈ N, given by

θ(k + 1) =
√
θ4(k) + 4θ2(k) − θ2(k)

2
.

The sequence {z(k)} produced by (2.19) satisfies

f(z(k)) − f⋆ ≤
4LDω(x(0), x⋆)

(k + 1)2 , k ∈ N0,

and hence O(1/
√
ε) iterations suffice to obtain ε-optimal solution. Note that if

θ(k) = 1 for all k ∈ N, then (2.19) reduces to the the mirror descent method (2.16).
We can see that (2.19) is a variant of the mirror descent which is accelerated by two
interpolation steps.



Chapter 3

Delay-independent Stability of
Homogeneous Positive Systems

In distributed systems where exchange of information is involved, delays are in-
evitable. For this reason, a considerable effort has been devoted to characterizing

the stability and performance of systems with delays (see, e.g., [98–102] and ref-
erences therein). For general systems, the existence of time-delays may impair
performance, induce oscillations and even instability [103]. In contrast, stability of
positive linear systems is insensitive to certain classes of time-delays in the sense that
if a positive linear system without delays is asymptotically stable, then it will remain
asymptotically stable for any constant and bounded time-varying delays [104–109].

While the asymptotic stability of positive linear systems in the presence of
time-delays has been thoroughly investigated, the theory for positive nonlinear
systems is considerably less well-developed (see, e.g., [58, 80, 110] for exceptions). In
particular, [80] showed that the asymptotic stability of a class of positive nonlinear
systems whose vector fields are cooperative and homogenous of degree zero does not
depend on the magnitude of constant delays. A similar result for cooperative systems
that are homogeneous of any degree was given in [110], also under the assumption
of constant delays. It is clear that considering constant delays is an idealized
assumption as time-delays are often time-varying in practice. Stability analysis of
positive nonlinear systems with time-varying delays is, however, challenging, since
popular techniques for analyzing positive nonlinear systems with constant delays rely
on a fundamental monotonicity property of trajectories of autonomous monotone
systems, which does not hold when delays are time-varying [69].

At this point, it is worth noting that the results for positive linear systems
cited above consider bounded delays. However, in some cases, it is not possible to
guarantee a priori that the delays will be bounded. Instead, the state evolution might
be affected by the entire history of states. It is then natural to ask if the insensitivity
properties of positive linear systems with respect to time-delays will hold also for
unbounded delays. In [111], it was shown that, for a particular class of unbounded
delays, this is indeed the case. The question remains open for more general classes

29
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of time-delays. Moreover, [111] only considered the asymptotic stability and did
not quantify how various bounds on the delay evolution impact the decay rate of
positive linear systems.

Contributions of the Chapter. In this chapter, we consider time-varying,
possibly unbounded, delays and establish the delay-independent stability of a class
of positive nonlinear systems which includes positive linear systems as a special
case. The proof technique uses neither the Lyapunov-Krasovskii functional method
widely used to analyse positive linear systems with constant delays [104] nor the
approach developed in [80, 110], and allows us to impose minimal restrictions on
time-delays. Specifically, we make the following contributions:

• We derive a set of necessary and sufficient conditions for global delay inde-
pendent stability of (i) continuous-time positive systems whose vector fields
are cooperative and homogeneous of arbitrary degree, and (ii) discrete-time
positive systems whose vector fields are order-preserving and homogeneous
of degree zero. We demonstrate that the asymptotic stability of such systems
is insensitive to a general class of time-delays which includes bounded and
several types of unbounded time-varying delays as special cases.

• When the asymptotic behaviour of time-delays is known, we obtain conditions
which ensure global µ-stability in the sense of [112]. These results allow us to
give explicit estimates of the decay rate of homogeneous positive systems for
various classes of (possibly unbounded) time-varying delays.

• For bounded delays and a particular class of unbounded delays, we present
explicit expressions that quantify how the decay rate of homogeneous positive
systems is affected by the upper bound of bounded time-varying delays, and
the rate at which the unbounded delays grow large.

• For positive linear systems, we demonstrate that the best decay rate that our
bounds can guarantee can be found via convex optimization.

• We also show that discrete-time positive systems whose vector fields are
order-preserving and homogeneous of degree greater than zero are locally
asymptotically stable under the global stability condition that we have derived
for homogeneous positive systems of degree zero.

Outline of the Chapter. In Section 3.1, we define the class of continuous-time
positive nonlinear systems for which we will study delay-independent stability. Then,
we present our main results on global asymptotic stability and global µ-stability
of such time-delay systems in Sections 3.2 and 3.3, respectively. In Section 3.4, we
derive explicit expressions that allow us to quantify the impact of delays on the decay
rate of positive linear systems. The corresponding counterparts for discrete-time
positive nonlinear systems is given in Section 3.5. Illustrative examples are included
throughout the development of the results. Finally, Section 3.6 summarizes the
chapter. The appendix provides detailed proofs of the main results.
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3.1 Problem Formulation

We consider the continuous-time dynamical system

G ∶

⎧⎪⎪
⎨
⎪⎪⎩

ẋ(t) = f(x(t)) + g(x(t − τ(t))), t ≥ 0,
x(t) = ϕ(t), t ∈ [−τmax,0],

(3.1)

where x(t) ∈ Rn is the state variable, f, g ∶ Rn → Rn are continuously differentiable
vector fields with f(0) = g(0) = 0, τmax ∈ R+, and ϕ ∈ C([−τmax, 0],Rn) is the vector-
valued function specifying the initial condition of the system. Unlike non-delayed
systems, the solution of the time-delay system G given by (3.1) is not uniquely
determined by a point-wise initial condition x(0), but by the continuous function
ϕ defined over the interval [−τmax,0]. We assume that the time-varying delay τ(t)
satisfies the following assumption:

Assumption 3.1 ([16, §6.1]). The delay τ ∶ R+ → R+ is continuous with respect
to time and satisfies

lim
t→+∞

t − τ(t) = +∞. (3.2)

Note that τ(t) is not necessarily continuously differentiable and no restriction
on its derivative (such as τ̇(t) < 1) is imposed. Roughly speaking, condition (3.2)
implies that as t increases, τ(t) grows slower than time itself. This constraint on
time-delays is typically satisfied in real-world applications. For example, a class
of continuous-time power control algorithms for a wireless network consisting of n
mobile users can be described by

ẋi(t) = −xi(t) +
n

∑
j=1
j≠i

aijxj(t − τ(t)), i = 1, . . . , n. (3.3)

Here, xi(t) is the transmitted power of user i at time t, and aij ∈ R+, i, j = 1, . . . , n,
are nonnegative constants [113]. If the delay τ(t) satisfies condition (3.2), then given
any time t1 ≥ 0, there exists a time t2 ≥ t1 such that

t − τ(t) ≥ t1, ∀t ≥ t2.

This simply means that given any time t1, information about which transmitted
power each user has applied prior to t1 will be received by every other user before
a sufficiently long time t2 and not be used in the state evolution of (3.3) after t2.
In other words, state information eventually propagates to all other users in the
network and old information is eventually purged from the network. Therefore, in the
power control problem, Assumption 3.1 is always satisfied unless the communication
between users is totally lost during a semi-infinite time interval.

Note that all bounded delays, irrespectively of whether they are constant or
time-varying, satisfy Assumption 3.1. Moreover, delays satisfying (3.2) may be
unbounded. Consider the following particular class of unbounded delays which was
studied in [111,114–116].



32 Delay-independent Stability of Homogeneous Positive Systems

Assumption 3.2. There exist T > 0 and a scalar α ∈ [0,1) such that

sup
t≥T

τ(t)

t
= α. (3.4)

One can easily verify that constraint (3.4) on time-delays implies (3.2). How-
ever, the next example shows that the converse does, in general, not hold. Hence,
Assumption 3.2 is a special case of Assumption 3.1.

Example 3.1. Let τ(t) = t − ln(t + 1), t ≥ 0. Since

lim
t→+∞

t − τ(t) = lim
t→+∞

ln(t + 1) = +∞,

lim
t→+∞

τ(t)

t
= lim

t→+∞

t − ln(t + 1)
t

= 1,

it is clear that (3.2) holds while (3.4) does not hold. ∎

Remark 3.1. Assumption 3.1 implies that there exists a sufficiently large T0 > 0
such that t − τ(t) > 0 for all t > T0. Define

τmax = − inf
0≤t≤T0

{t − τ(t)}.

Since τmax ∈ R+ is bounded (τmax < +∞), it follows that for any delay satisfying
Assumption 3.1, even if it is unbounded, the initial condition ϕ is defined on a
bounded set [−τmax,0].

In this chapter, we study delay-independent stability of nonlinear systems of the
form (3.1) which are positive defined as follows.

Definition 3.1. The time-delay system G given by (3.1) is said to be positive if for
every nonnegative initial condition ϕ ∈ C([−τmax,0],Rn+), the corresponding state
trajectory is nonnegative, that is x(t) ∈ Rn+ for all t ≥ 0.

The following result provides a sufficient condition for positivity of dynamical
systems with time-varying delays.

Proposition 3.1 ([69, Theorem 5.2.1]). For the time-delay system G given
by (3.1), suppose that

fi(x) ≥ 0, for all i = 1, . . . , n, and x ∈ Rn+ such that xi = 0,
g(x) ≥ 0, for all x ∈ Rn+ .

(3.5)

Then, G is positive.

Proof. See Appendix 3.7.1. ∎

The following example illustrates the result of Proposition 3.1.
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Example 3.2. Consider the time-delay system G given by (3.1) with

f(x1, x2) =
⎡
⎢
⎢
⎢
⎣

−x2
1 + 4x2 − 3x2

1x
2
2

2x1 − 4x2
2

⎤
⎥
⎥
⎥
⎦
, g(x1, x2) =

⎡
⎢
⎢
⎢
⎣

x1x2

x2
1 + x2

⎤
⎥
⎥
⎥
⎦
.

If x = (x1, x2) ∈ R2
+, we then have

f1(x1 = 0, x2) = 4x2 ≥ 0,
f2(x1, x2 = 0) = 2x1 ≥ 0,

and g(x1, x2) ≥ (0,0). Therefore, according to Proposition 3.1, this system is
positive. ∎

Note that the nonnegativity of initial conditions is essential for ensuring positivity
of the state evolution of G. In other words, when ϕ(t) ≥ 0, t ∈ [−τmax,0], is not
satisfied, x(t) may not stay in the positive orthant even if (3.5) holds.

In [58, Proposition 3.1], it was shown that when delays are constant, the sufficient
condition given in Proposition 3.1 is also necessary for positivity of the time-delay
system G given by (3.1), i.e., G with τ(t) = τmax > 0, t ≥ 0, is positive if and only
if (3.5) holds. However, as the next example shows, this condition is not necessary
when we allow for time-varying delays.

Example 3.3. Consider a continuous-time linear system described by (3.1) with

f(x1, x2) =

⎡
⎢
⎢
⎢
⎢
⎣

1 0
−1 0

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

x1

x2

⎤
⎥
⎥
⎥
⎦
, g(x1, x2) =

⎡
⎢
⎢
⎢
⎢
⎣

0 0
e 0

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

x1

x2

⎤
⎥
⎥
⎥
⎦
, (3.6)

where e is the base of the natural logarithm, and let the time-varying delay be

τ(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0, 0 ≤ t ≤ 1,
t − 1, 1 ≤ t ≤ 2,
1, 2 ≤ t.

(3.7)

The solution to the time-delay system (3.6) is given by

x1(t) = x1(0)et, 0 ≤ t,

x2(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x2(0) + (e − 1)(et − 1)x1(0), 0 ≤ t ≤ 1,
x2(0) + (e2t − et + 1 − e)x1(0), 1 ≤ t ≤ 2,
x2(0) + (e2 − e + 1)x1(0), 2 ≤ t.

It is straightforward to verify that if x(0) = (x1(0), x2(0)) ∈ R2
+, then

x(t) = (x1(t), x2(t)) ∈ R2
+,

for all t ≥ 0. Therefore, the linear system (3.6) with the bounded time-varying
delay (3.7) is positive. However, the sufficient condition given in Proposition 3.1 is
not satisfied in this example since f2(x1, x2) ≥ 0 does not hold for all x ∈ R2

+ with
x2 = 0 (take, for example, f2(1,0) = −1 < 0). ∎
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From this point on, we assume that f and g satisfy Assumption 3.3.

Assumption 3.3. The following properties hold:

1. f is cooperative and g is order-preserving on Rn+.

2. f and g are homogeneous of degree p with respect to the dilation map δrλ(x).

A system G given by (3.1) satisfying Assumption 3.3 is called homogeneous
cooperative. Since f(0) = g(0) = 0, it follows from Proposition 3.1 that Assump-
tion 3.3.1 ensures the positivity of homogeneous cooperative systems. The model
of some physical systems falls within this class of positive systems. For example,
continuous-time linear and several nonlinear power control algorithms for wireless
networks are described by homogeneous cooperative systems [117].

While the presence of time-delays typically affects the stability of general dynam-
ical systems, the global asymptotic stability of homogeneous cooperative systems is
independent of constant delays [110]. More precisely, the homogeneous cooperative
system (3.1) with a constant delay τ(t) = τmax, t ≥ 0, is globally asymptotically
stable for all τmax > 0 if and only if the corresponding delay-free system (τmax = 0)
is globally asymptotically stable. Our main objectives are therefore to (i) determine
whether a similar delay-independent stability result holds for homogeneous coopera-
tive systems with time-varying delays satisfying Assumption 3.1; and to (ii) give
explicit estimates of the decay rate for different classes of time-delays (e.g., bounded
delays, unbounded delays satisfying Assumption 3.2, etc.).

3.2 Asymptotic Stability of Homogeneous Cooperative
Systems

The following theorem establishes a necessary and sufficient condition for global
asymptotic stability of homogeneous cooperative systems with time-varying delays
satisfying Assumption 3.1. Our proof (which is similar to that in [16] for asynchronous
discrete-time systems and conceptually related to the Lyapunov stability theorem)
uses the Lyapunov function

V (x) = max
1≤i≤n

(
xi
vi

)

rmax
ri

, (3.8)

where ri, i = 1, . . . , n, are defined by the dilation map δrλ(x), rmax = max1≤i≤n ri, and
v = (v1, . . . , vn) ∈ Rn is a positive vector (v > 0). We define sets

S(m) ∶= {x ∈ Rn+ ∣ V (x) ≤ γm∥ϕ∥}, m ∈ N0, (3.9)

where γ ∈ [0,1), and
∥ϕ∥ ∶= sup

−τmax≤s≤0
V (ϕ(s)). (3.10)
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Then, we show that for each m, there exists tm ≥ 0 such that x(t) ∈ S(m) for all
t ≥ tm. In other words, the system state starting from nonnegative initial conditions
will enter each set S(m) at some time tm and remain in the set for all future times.
Since the sets are nested, i.e.,

S(0) ⊃ ⋯ ⊃ S(m) ⊃ S(m + 1) ⊃ ⋯,

the state will move sequentially from set S(m) to S(m + 1), cf. Figure 3.1. Thus,

γm‖ϕ‖

m

x2

x1
12r

S(0)

S(1)

S(2)

S(r)

Figure 3.1: Level curves of the Lyapunov function V (x) in the two-dimensional case.
The key idea behind the proof of Theorem 3.1 is that ϕ(t), t ∈ [−τmax,0], is initially
within the set S(0). At some time t1 ≥ 0, the system state x(t) eventually enters
and stays within the set S(1) for all t ≥ t1; moreover, as t increases further, x(t)
sequentially moves into other sets.

the sets play a similar role as level sets of the Lyapunov function V (x). Note that
when f and g are homogeneous with respect to the standard dilation map (ri = 1 for
each i), the Lyapunov function (3.8) reduces to V (x) = ∥x∥v∞, which is often used in
stability analysis of positive linear systems [64].

Theorem 3.1. For the time-delay system G given by (3.1), suppose that Assump-
tions 3.1 and 3.3 hold. Then, the following statements are equivalent.

(i) There exists a vector v > 0 such that

f(v) + g(v) < 0. (3.11)

(ii) The homogeneous cooperative system G is globally asymptotically stable for
every nonnegative initial condition ϕ ∈ C([−τmax,0],Rn+), and for all time-
delays satisfying Assumption 3.1.

(iii) The homogeneous cooperative system G without delay (τ(t) = 0, t ≥ 0) is
globally asymptotically stable for all nonnegative initial conditions.

Proof. See Appendix 3.7.2. ∎
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According to Theorem 3.1, if we can demonstrate the existence of a vector
v > 0 satisfying (3.11), then the homogeneous cooperative system G given by (3.1)
is globally asymptotically stable for all time-delays satisfying Assumption 3.1. In
other words, the global asymptotic stability does not depend on the magnitude and
variation of the delays, but only on the vector fields. This property is very useful in
practical applications since the delays may not be easy to model in detail.

We now present a simple example to illustrate the use of Theorem 3.1.

Example 3.4. Consider the time-delay dynamical system G given by (3.1) with

f(x1, x2) =
⎡
⎢
⎢
⎢
⎣

−5x3
1 + x1x

4
2

x2
1x2 − 5x5

2

⎤
⎥
⎥
⎥
⎦
, g(x1, x2) =

⎡
⎢
⎢
⎢
⎣

2x2
1x

2
2

x1x
3
2

⎤
⎥
⎥
⎥
⎦
. (3.12)

Computing the Jacobian matrix ∂f/∂x at a point (x1, x2), we have

∂f

∂x
(x1, x2) =

⎡
⎢
⎢
⎢
⎣

−15x2
1 + x

4
2 4x1x

3
2

2x1x2 x2
1 − 25x4

2

⎤
⎥
⎥
⎥
⎦

For all (x1, x2) ∈ R2
+, the off-diagonal entries of this matrix are nonnegative, i.e.,

∂f/∂x is Metzler. Therefore, f is cooperative on R2
+. Let δrλ(x) be the dilation map

with r = (2,1). Since

f(δrλ(x)) = f(λ
2x1, λx2) = λ

4
⎡
⎢
⎢
⎢
⎣

λ2(−5x3
1 + x1x

4
2)

λ(x2
1x2 − 5x5

2)

⎤
⎥
⎥
⎥
⎦
= λ4δrλ(f(x)),

f is homogeneous of degree p = 4 with respect to δrλ(x). It is straightforward to verify
that g is order-preserving on R2

+ and homogeneous of degree p = 4 with respect to the
dilation map δrλ(x) with r = (2, 1). Since f(1, 1)+g(1, 1) = (−2,−3) < (0, 0), it follows
from Theorem 3.1 that for any nonnegative initial conditions, the homogeneous
cooperative system (3.12) without time-delays and with time-delays satisfying
Assumption 3.1 is globally asymptotically stable. ∎

Note that Theorem 3.1 can be easily extended to homogeneous cooperative
systems with multiple delays of the form

ẋ(t) = f(x(t)) +
J

∑
j=1

gj(x(t − τj(t))).

Here, f is cooperative and homogeneous, gj for j = 1, . . . , J are homogenous and
order-preserving on Rn+ , and τj(t) satisfy Assumption 3.1. In this case, the stability
condition (3.11) becomes

f(v) +
J

∑
j=1

gj(v) < 0,

for some v > 0.
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3.3 Decay Rates of Homogeneous Cooperative Systems

Theorem 3.1 is concerned with the asymptotic stability of homogeneous cooperative
systems with time-varying delays. However, there are processes and applications for
which it is desirable that the system has a certain decay rate. Loosely speaking, the
system has to converge quickly enough to the equilibrium. It turns out quantitative
stability measures, such as the decay rate, can be highly dependent on the magnitude
of delays. In this section, we therefore characterize how time-delays affect the decay
rate of homogeneous cooperative systems. Before stating the main result, we provide
the definition of µ-stability, introduced in [112], for continuous-time systems.

Definition 3.2. Suppose that µ ∶ R+ → R+ is a non-decreasing function satisfying
µ(t)→ +∞ as t→ +∞. The time-delay system G given by (3.1) is said to be globally
µ-stable if for any initial function ϕ, there exists a constant M > 0 such that the
solution x(t) satisfies

∥x(t)∥ ≤
M

µ(t)
, t > 0,

where ∥ ⋅ ∥ is some norm on Rn.

This definition can be regarded as a unification of several types of stability. For
example, when µ(t) = eηt with η > 0, µ-stability becomes exponential stability; and
when µ(t) = tξ with ξ > 0, then µ-stability becomes power-rate stability.

Global µ-stability of homogenous cooperative systems with bounded and un-
bounded time-varying delays can be verified using the following theorem.

Theorem 3.2. Consider the time-delay system G given by (3.1). Suppose that
Assumptions 3.1 and 3.3 hold, and that there is a vector v > 0 satisfying

f(v) + g(v) < 0. (3.13)

Assume also that there exists a function µ ∶ R+ → R+ such that the following
conditions hold:

(i) µ(t) > 0, for all t > 0.

(ii) µ(t) is non-decreasing.

(iii) limt→+∞ µ(t) = +∞.

(iv) For each i ∈ {1, . . . , n},

(rmax

ri
)
⎛
⎜
⎝
(fi(v)

vi
) + ( lim

t→∞

µ(t)
µ(t − τ(t)))

ri+p
rmax

(gi(v)
vi

)
⎞
⎟
⎠
+ lim
t→∞

µ̇(t)
(µ(t))1− p

rmax
< 0.

Then, every solution of G starting in the positive orthant satisfies

(
xi(t)

vi
)

rmax
ri

= O (µ−1(t)) , t ≥ 0,
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for i = 1, . . . , n.

Proof. See Appendix 3.7.3. ∎

According to Theorem 3.2, any function µ(t) satisfying conditions (i)–(iv) can
be used to estimate the decay rate of homogeneous cooperative systems with time-
varying delays. From condition (iv), it is clear that the asymptotic behaviour of the
delay τ(t) influences the admissible choices for µ(t) and, hence, the decay bounds
that we are able to guarantee. To clarify this statement, we will analyze a few special
cases in detail. First, assume that τ(t) is bounded, i.e.,

0 ≤ τ(t) ≤ τmax, t ≥ 0. (3.14)

The following result shows that under this assumption, the decay rate of homogeneous
cooperative systems of degree p is upper bounded by an exponential function of
time when p = 0 and by a polynomial function of time when p > 0.

Corollary 3.1. For the homogeneous cooperative system G given by (3.1), suppose
that there exists a vector v > 0 satisfying (3.13), and that (3.14) holds.

(i) If f and g are homogeneous of degree zero, then G is globally exponentially
stable. In particular,

(
xi(t)

vi
)

rmax
ri

= O (e−ηt) , t ≥ 0, (3.15)

where η ∈ (0,min1≤i≤n ηi), and ηi is the positive solution of the equation

(
rmax

ri
)
⎛

⎝
(
fi(v)

vi
) + (eηiτmax)

ri
rmax

(
gi(v)

vi
)
⎞

⎠
+ ηi = 0. (3.16)

(ii) If f and g are homogeneous of degree greater than zero, then

(
xi(t)

vi
)

rmax
ri

= O ((θt + 1)
−rmax
p ) , t ≥ 0, (3.17)

where

θ ∈ (0,min{
1

τmax
, min
1≤i≤n

θi}) ,

and θi is the positive solution to

fi(v)

vi
+
gi(v)

vi
+ θi

ri
p
= 0. (3.18)

Proof. See Appendix 3.7.4. ∎
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According to Corollary 3.1, if the delay-independent stability condition (3.13)
holds, homogeneous cooperative systems of degree zero with bounded delays are
globally exponentially stable. In addition, any vector v > 0 satisfying (3.13) can
be used to find a guaranteed decay rate by computing the associated η in (3.16).
Equation (3.16) has three parameters: the maximum delay bound τmax, the positive
vector v, and ηi. For any fixed τmax ∈ R+ and any fixed v > 0 satisfying (3.13), the
left-hand side of (3.16) is smaller than the right-hand side for ηi = 0, and strictly
monotonically increasing in ηi > 0. Therefore, (3.16) has always a unique positive
solution ηi. Note that ηi is monotonically decreasing in τmax and approaches zero
as τmax tends to infinity. Hence, the guaranteed decay rate slows down as the delays
increase in magnitude.

The following example illustrates how Corollary 3.1 can help us to obtain an
estimate of the decay rate of homogeneous cooperative systems with bounded
time-varying delays.

Example 3.5. Consider the time-delay system G given by (3.1) with

f(x1, x2) =

⎡
⎢
⎢
⎢
⎢
⎣

−5x3
1 + 2x1x2

x2
1x2 − 4x2

2

⎤
⎥
⎥
⎥
⎥
⎦

, g(x1, x2) =

⎡
⎢
⎢
⎢
⎢
⎣

x1x2

2x4
1

⎤
⎥
⎥
⎥
⎥
⎦

. (3.19)

Both f and g are homogeneous of degree p = 2 with respect to the dilation map δrλ(x)
with r = (1,2). Moreover, f is cooperative and g is order-preserving on R2

+. Since
f(1, 1) + g(1, 1) = (−2,−1) < (0, 0), according to Corollary 3.1, the decay rate of the
homogeneous cooperative system (3.19) with bounded delays is upper bounded by a
polynomial function of time. Now, consider the specific time-delay τ(t) = 4 + sin(t),
t ≥ 0. Clearly, τ(t) ≤ τmax = 5 for all t ≥ 0. Using v = (1,1) and (r1, r2) = (1,2), the
solutions to (3.18) are θ1 = 4 and θ2 = 1, which implies that

θ ∈ (0,min{
1
5
,min{4,1}} =

1
5
) .

Thus, for nonnegative initial conditions, the system state x(t) satisfies

max{x2
1(t), x2(t)} = O (

1
1
5 t + 1

) , t ≥ 0.

Figure 3.2 gives the simulation results of the actual decay rate of the homogeneous
cooperative system (3.19) and the guaranteed decay rate we calculated, when the
initial condition is ϕ(t) = (1,1), t ∈ [−5,0]. ∎

While the stability of homogeneous cooperative systems with delays satisfying
Assumption 3.1 may, in general, only be asymptotic, Corollary 3.1 demonstrates that
if delays are bounded, we can guarantee certain decay rates. We will now establish
similar decay bounds for unbounded delays satisfying Assumption 3.2.
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Figure 3.2: Comparison of guaranteed upper bound and actual decay rate of the
homogeneous cooperative system (3.19) with bounded time-varying delays.

Corollary 3.2. Consider the homogeneous cooperative system G given by (3.1). If
there exists a vector v > 0 such that (3.13) holds, then the positive system G with
delays satisfying Assumption 3.2 is globally power-rate stable. In particular,

(i) if f and g are homogeneous of degree zero, the solution x(t) of G satisfies

(
xi(t)

vi
)

rmax
ri

= O (t−ξ) , t ≥ 0,

where ξ ∈ (0,min1≤i≤n ξi), and ξi is the unique positive solution to

(
fi(v)

vi
) + (

1
1 − α

)

ri
rmax

ξi

(
gi(v)

vi
) = 0 (3.20)

(ii) if f and g are homogeneous of degree greater than zero, then

(
xi(t)

vi
)

rmax
ri

= O (t
−rmax
p β) , t ≥ 0,

where β ∈ (0,1) is such that

(
fi(v)

vi
) + (

1
1 − α

)

(1+ rip )β

(
gi(v)

vi
) < 0, (3.21)

holds for each i.
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Proof. See Appendix 3.7.5. ∎

Corollary 3.2 shows that the decay rate of homogeneous cooperative systems of
degree zero with unbounded delays satisfying Assumption 3.2 is of order O(t−ξ).
Equation (3.20) quantifies how α, the rate at which the unbounded delays grow
large, affects ξ. Specifically, ξi is monotonically decreasing with α and approaches
zero as α tends to one. From (3.21), we see that β, on which the guaranteed decay
rate of homogeneous cooperative systems of degree greater than zero depends,
also approaches zero as α tends to one (see Figure 3.3). Hence, the guaranteed
convergence rates of homogeneous cooperative systems with unbounded delays
satisfying Assumption 3.2 deteriorate with increasing α.

β

α1

1

Figure 3.3: Plot of β in (3.21) for different values of α ∈ [0,1). Clearly, β is mono-
tonically decreasing with α and approaches zero as α tends to one.

3.4 A Special Case: Positive Linear Systems

We now discuss the delay-independent stability of a special case of (3.1), namely
the continuous-time linear system GL of the form

GL ∶

⎧⎪⎪
⎨
⎪⎪⎩

ẋ(t) = Ax(t) +Bx(t − τ(t)), t ≥ 0,

x(t) = ϕ(t), t ∈ [−τmax,0].
(3.22)

In terms of (3.1), f(x) = Ax and g(x) = Bx. If A ∈ Rn×n is Metzler and B ∈ Rn×n is
nonnegative, then Assumption 3.3 is satisfied, which means the time-delay linear
system GL is homogeneous cooperative (of degree zero) and, hence, positive.

We have the following special case of Theorem 3.1.

Corollary 3.3. Consider the time-delay linear system GL given by (3.22). Assume
that A is Metzler and B is nonnegative. Then, the positive linear system GL is
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globally asymptotically stable for all time-delays satisfying Assumption 3.1 if and
only if there exists a vector v such that

⎧⎪⎪
⎨
⎪⎪⎩

(A +B)v < 0,
v > 0.

(3.23)

The stability condition (3.23) is a linear programming problem in v, and thus
can be verified numerically in polynomial time [118]. Since A is Metzler and B is
nonnegative, A+B is Metzler. It follows from Theorem 2.3 that (3.23) has a feasible
solution v if and only if A + B is Hurwitz, i.e., all its eigenvalues have negative
real parts. Therefore, according to Corollary 3.3, if the positive linear system (3.22)
without delay is stable (A +B is Hurwitz), it remains asymptotically stable under
all bounded and unbounded time-varying delays satisfying Assumption 3.1.

While the asymptotic stability of positive linear systems with delays satisfying
Assumption 3.1 has been investigated in [119], the impact of time-delays on the
decay rate has not been analyzed. Theorem 3.2 can help us to find guaranteed decay
rates of GL for different classes of time delays. Specifically, Corollaries 3.1 and 3.2
show that GL is exponentially stable if the time-delays are bounded, and power-rate
stable if the unbounded delays satisfy Assumption 3.2. Therefore, not only do we
extend the result of [119] to general homogeneous cooperative (not necessarily linear)
systems, but we also provide explicit bounds on the decay rate of positive linear
systems.

The associated convergence rate result for positive linear systems with time-
varying delays reads as follows:

Corollary 3.4. For the time-delay linear system GL given by (3.22), assume that
A is Metzler and B is nonnegative. In addition, assume that there is a vector v
satisfying (3.23). Then, the following statements hold:

(i) For any bounded delays satisfying (3.14), GL is globally exponentially stable. In
particular, the solution x(t) of GL for nonnegative initial conditions satisfies

∥x(t)∥v∞ = O (e−ηt) , t ≥ 0,

where η ∈ (0,min1≤i≤n ηi), and ηi is the positive solution of the equation

(
n

∑
j=1

1
vi
aijvj) + (

n

∑
j=1

1
vi
bijvj)e

ηiτmax + ηi = 0. (3.24)

(ii) For any unbounded delays satisfying Assumption 3.2, we have

∥x(t)∥v∞ = O (t−ξ) , t ≥ 0,

where ξ ∈ (0,min1≤i≤n ξi), and ξi is the unique positive solution to

(
n

∑
j=1

1
vi
aijvj) + (

n

∑
j=1

1
vi
bijvj)(

1
1 − α

)

ξi

= 0. (3.25)
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As shown in Corollary 3.4, when time-delays are bounded, any feasible solu-
tion v to the linear programming problem (3.23) can be used to find a guaranteed
exponential bound on the decay rate of positive linear systems by computing the
associated η. From (3.24), it is easily seen that η depends on the choice of vector v,
and that an arbitrary feasible v not necessarily gives a tight guaranteed bound on
the actual decay rate. Next, we will show that the best decay rate that our results
can ensure, along with the associated vector v can be found via convex optimization.
To this end, we use the logarithmic change of variables zi = ln(vi), i = 1, . . . , n. This
change of variables is valid since vi is required to be positive for each i. The search
for the best guaranteed decay rate can be formulated as

maximize η

subject to η < ηi, (3.26a)
aii + bii +∑

j≠i

(aij + bij)e
zj−zi < 0, (3.26b)

aii +∑
j≠i

aije
zj−zi +

n

∑
j=1

bije
zj−zi+ηiτmax + ηi ≤ 0, (3.26c)

where the last two constraints are (3.23) and (3.24) in the new variables, respectively.
The optimization variables are the decay rate η and the vector z = (z1, . . . , zn). Since
aij ≥ 0 for all i ≠ j and bij ≥ 0 for all i, j = 1, . . . , n, the last two constraints
in (3.26) are convex in η and z. This implies that (3.26) is a convex optimization
problem; hence, it can be efficiently solved [84]. Note that if the delays satisfy
Assumption (3.2), we can solve again the convex optimization problem (3.26) to
find the best guaranteed decay rate. The only change is that we replace η with ξ,
and the last constraint with

aii +∑
j≠i

aije
zj−zi +

n

∑
j=1

bije
zj−zi+(ln 1

1−α )ξi ≤ 0.

We now provide an example.

Example 3.6. Consider the time-delay linear system (3.22) with

A =
⎡
⎢
⎢
⎢
⎣

−6 2
1 −3

⎤
⎥
⎥
⎥
⎦
, B =

⎡
⎢
⎢
⎢
⎣

3 0
0 0.5

⎤
⎥
⎥
⎥
⎦
. (3.27)

Let the time-varying delay be given by τ(t) = 3 + cos(t), t ≥ 0. Obviously, one
may choose τmax = 4 as an upper bound on this delay. The matrix A is Metzler
and B is nonnegative. Thus, the time-delay linear system (3.27) is positive. The
eigenvalues of A +B are −4.18 and −1.31. Since A +B is Hurwitz, it follows from
Corollary 3.4 that the positive system (3.27) with bounded time-varying delays is
globally exponentially stable. We will now calculate guaranteed exponential upper
bounds on the decay rate.
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Since A+B is Hurwitz, the following linear programming problem admits a solution

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎣

−3 2
1 −2.5

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

v1

v2

⎤
⎥
⎥
⎥
⎦
<
⎡
⎢
⎢
⎢
⎣

0
0

⎤
⎥
⎥
⎥
⎦
,

⎡
⎢
⎢
⎢
⎣

v1

v2

⎤
⎥
⎥
⎥
⎦
>
⎡
⎢
⎢
⎢
⎣

0
0

⎤
⎥
⎥
⎥
⎦
.

(3.28)

As discussed before, any feasible solution v to (3.28) yields a guaranteed decay rate
by computing the associated η in (3.24). For example, if we take v1 = (1,1), the
solutions to the nonlinear equation (3.24) can be obtained as

η1 = 0.0677, η2 = 0.3052,

implying that η = min{0.0677,0.3052} = 0.0677. Thus, for nonnegative initial condi-
tions, we have

∥x(t)∥v
1

∞ = O (e−0.0677t) , t ≥ 0.

The left-hand side of Figure 3.4 compares ∥x(t)∥v
1

∞ obtained by simulating (3.27)
from the initial condition ϕ(t) = v1, t ∈ [−4,0], and the theoretical upper bound
e−0677t. Of course, v1 is only one of the possible solutions of (3.28). Next, by solving
the convex optimization problem (3.26), we get

v⋆ = (0.9020, 0.4317), η⋆ = 0.0838,

which implies that the solution x(t) satisfies

∥x(t)∥v
⋆
∞ = O (e−0.0838t) , t ≥ 0.

The right-hand side of Figure 3.4 gives the simulation results of ∥x(t)∥v
⋆
∞ , and the

theoretical upper bound e−0.0838t when the initial condition is ϕ(t) = v⋆, t ∈ [−4,0].
We can see that the linear inequalities (3.28) do not help us in guiding our search
for a vector v which guarantees a fast decay rate. In contrast, solving the convex
optimization problem (3.26) finds the best η⋆ that our bound can guarantee along
with the associated v⋆. The bound matches simulations very well and is a significant
improvement over simply using the non-optimized v1. ∎

Remark 3.2. In [120, Example 4.5], it was shown that a positive linear system
with unbounded delays satisfying Assumption 3.2 may converge slower than any
exponential function. However, an upper bound for the decay rate was not derived
in [120]. Corollary 3.4 reveals that under Assumption 3.2 on delays, the decay rate
of positive linear systems is upper bounded by a polynomial function of time.
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Figure 3.4: Comparison of upper bounds and actual decay rates of the positive
linear system described by (3.27) without (left) and with (right) solving the convex
optimization problem (3.26).

3.5 Discrete-time Homogeneous Order-preserving Systems

In this section, we study delay-independent stability of discrete-time positive systems
whose vector fields are homogeneous and order-preserving.

3.5.1 Problem Statement
Consider the discrete-time analog of (3.1):

Σ ∶

⎧⎪⎪
⎨
⎪⎪⎩

x(k + 1) = f(x(k)) + g(x(k − d(k))), k ∈ N0,

x(k) = ϕ(k), k ∈ {−dmax, . . . ,0}.
(3.29)

Here, x(k) ∈ Rn is the system state, f, g ∶ Rn → Rn are continuous vector fields
with f(0) = g(0) = 0, dmax ∈ N0, ϕ ∶ {−dmax, . . . ,0} → Rn is the vector sequence
specifying the initial state of the system, and d(k) represents the time-varying delay
which satisfies the following assumption.

Assumption 3.4. The delay d ∶ N0 → N0 satisfies

lim
k→+∞

k − d(k) = +∞. (3.30)

Intuitively, if Assumption 3.4 does not hold, computation of x(k), even for large
values of k, may involve the initial condition ϕ and those states near it, and hence
x(k) may not converge to zero as k →∞. To avoid this situation, Assumption (3.4)
guarantees that old state information is eventually not used in evaluating (3.29).
Note that Assumption (3.4) is the discrete-time counterpart of Assumption 3.1.
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Remark 3.3. Assumption 3.4 implies that there exists a sufficiently large T0 ∈ N0
such that k − d(k) > 0 for all k > T0. Let

dmax = − inf
0≤k≤T0

{k − d(k)}.

Clearly, dmax ∈ N0 is bounded. It follows that, even for unbounded delays satisfying
Assumption 3.4, the initial condition ϕ is defined on a finite set {−dmax, . . . ,0}.

Definition 3.3. The time-delay system Σ given by (3.29) is said to be positive if for
every nonnegative initial condition ϕ(k) ≥ 0, k ∈ {−dmax, . . . ,0}, the corresponding
solution is nonnegative, i.e., x(k) ≥ 0 for all k ∈ N.

Positivity of discrete-time systems with time-varying delays is readily verified
using the following result.

Proposition 3.2. Consider the time-delay system Σ given by (3.29). If f(x) ≥ 0
and g(x) ≥ 0 for all x ∈ Rn+, then Σ is positive.

Proof. See Appendix 3.7.6. ∎

For nonzero constant delays (d(k) = dmax > 0, k ∈ N0), the sufficient condition
in Proposition 3.2 is also necessary [58, Proposition 3.4]. However, the following
example shows that this result may not true when delays are time-varying.

Example 3.7. Consider a discrete-time scalar system described by (3.29) with

f(x) = 2x, g(x) = −x, d(k) = 1
2
(1 − (−1)k) , k ∈ N0.

Since g(x) < 0 for x > 0, the sufficient condition given in Proposition 3.2 is not
satisfied. However, the solution of this system starting from the initial condition
x(0) is x(k) = x(0), k ∈ N0, which implies that x(k) ≥ 0 for all x(0) ≥ 0. Therefore,
this system with the time-varying delay d(k) is positive. ∎

In the remainder of the section, f and g satisfy Assumption 3.5.

Assumption 3.5. The following properties hold:

1. f and g are order-preserving on Rn+.

2. f and g are homogeneous of degree p with respect to the dilation map δrλ(x).

A system Σ given by (3.29) satisfying Assumption 3.5 is called homogeneous
order-preserving. Since f(0) = g(0) = 0, Assumption 3.5.1 implies that f and
g satisfy the positivity condition given in Proposition 3.2. Hence, homogeneous
order-preserving systems are positive.

The main goal of this section is to study delay-independent stability of homoge-
neous order-preserving systems with time-varying delays satisfying Assumption 3.4.
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3.5.2 Asymptotic Stability of Homogeneous Order-preserving
Systems

The next theorem shows that under Assumption 3.4, the global asymptotic stability
of order-preserving systems that are homogeneous of degree zero is insensitive to
bounded and unbounded time-varying delays.

Theorem 3.3. For the time-delay system Σ given by (3.29), suppose that Assump-
tions 3.4 and 3.5 hold. Suppose also that f and g are homogeneous of degree zero.
Then, the following statements are equivalent.

(i) There exists a vector v > 0 such that

f(v) + g(v) < v. (3.31)

(ii) Σ is globally asymptotically stable for any nonnegative initial conditions and
for all bounded and unbounded time-varying delays satisfying Assumption 3.4.

(iii) Σ without delay (d(k) = 0, k ∈ N0) is globally asymptotically stable for any
nonnegative initial conditions.

Proof. See Appendix 3.7.7. ∎

Theorem 3.3 provides a test for delay-independent stability of homogeneous
order-preserving systems of degree zero; if we can demonstrate the existence of a
vector v > 0 satisfying (3.31), then the origin is globally asymptotically stable for
all delays satisfying Assumption 3.4. However, the following example illustrates
that (3.31) is, in general, not a sufficient condition for global asymptotic stability of
homogeneous order-preserving systems of degree greater than zero.

Example 3.8. Consider a discrete-time scalar system described by (3.29) with
f(x) = x2 and g(x) = 0. Clearly, f is order-preserving on R+ and homogeneous of
degree one with respect to the standard dilation map. The solution of this system
starting from the initial condition x(0) is given by x(k) = x(0)2k , k ∈ N0. Thus,
for initial conditions satisfying x(0) ≥ 1, the system state x(k) does not converge
to the origin, i.e., the origin is not globally asymptotically stable. However, since
f(0.5) = 0.25 < 0.5, the stability condition (3.31) holds. ∎

We now show that under the stability condition (3.31), homogeneous order-
preserving systems of degree greater than zero have a locally asymptotically stable
equilibrium point at the origin, i.e., x(k) converges to the origin as k → ∞ for
sufficiently small initial conditions.

Corollary 3.5. Consider the time-delay system Σ given by (3.29). Suppose that
Assumptions 3.4 and 3.5 hold and that f and g are homogeneous of degree greater
than zero. If (3.31) admits a solution v > 0, then the origin is asymptotically stable
with respect to initial conditions satisfying 0 ≤ ϕ(k) ≤ v, k ∈ {−dmax, . . . ,0}.

Proof. See Appendix 3.7.8. ∎
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3.5.3 Decay Rates of Homogeneous Order-preserving Systems
The next definition introduces µ-stability for discrete-time systems.

Definition 3.4. Suppose that µ ∶ N → R+ is a non-decreasing function satisfying
µ(k)→ +∞ as k → +∞. The time-delay system Σ given by (3.29) is said to be globally
µ-stable, if there exists a constant M > 0 such that for any initial condition ϕ, the
solution x(k) satisfies

∥x(k)∥ ≤
M

µ(k)
, k ∈ N,

where ∥ ⋅ ∥ is some norm on Rn.

Paralleling our continuous-time results, global µ-stability of homogeneous order-
preserving systems of degree zero can be established using the following theorem.

Theorem 3.4. Consider the time-delay system Σ given by (3.29). Suppose that
Assumptions 3.4 and 3.5 hold and that f and g are homogeneous of degree zero.
In addition, assume that there is a function µ ∶ N → R+ such that the following
conditions hold:

(i) µ(k) > 0, for all k ∈ N.

(ii) µ(k + 1) ≥ µ(k), for all k ∈ N.

(iii) limk→+∞ µ(k) = +∞.

(iv) For each i ∈ {1, . . . , n},

( lim
k→∞

µ(k + 1)
µ(k)

)

ri
rmax

(
fi(v)

vi
) + ( lim

k→∞

µ(k + 1)
µ(k − d(k))

)

ri
rmax

(
gi(v)

vi
) < 1,

where the vector v > 0 satisfies

f(v) + g(v) < v. (3.32)

Then, every solution of Σ starting in the positive orthant satisfies

(
xi(k)

vi
)

rmax
ri

= O (µ−1(k)) , k ∈ N,

for i = 1, . . . , n.

Proof. See Appendix 3.7.9. ∎

Theorem 3.4 allows us to establish convergence rates of homogeneous order-
preserving systems of degree zero under various classes of time-varying delays.
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3.5.4 A Special Case: Discrete-time Positive Linear Systems
Let f(x) = Ax and g(x) = Bx such that A,B ∈ Rn×n are nonnegative matrices.
Then, the homogeneous order-preserving system (3.29) reduces to the positive linear
system ΣL of the form

ΣL ∶
⎧⎪⎪
⎨
⎪⎪⎩

x(k + 1) = Ax(k) +Bx(k − d(k)), k ∈ N0,

x(k) = ϕ(k), k ∈ {−dmax, . . . ,0}.
(3.33)

Since ΣL is homogeneous of degree zero, Theorem 3.3 can help us to derive a
necessary and sufficient condition for delay-independent stability of positive linear
systems. Specifically, we note the following.

Corollary 3.6. Consider the time-delay linear system ΣL given by (3.33). Assume
that A and B are nonnegative. Then, the positive linear system ΣL is globally
asymptotically stable for all time-delays satisfying Assumption 3.4 if and only if
there exists a vector v such that

⎧⎪⎪
⎨
⎪⎪⎩

(A +B)v < v,

v > 0.
(3.34)

Note that for the positive linear system (3.33), A and B are nonnegative, so
A + B is also nonnegative. According to Theorem 2.7, the linear programming
problem (3.34) has a feasible solution v if and only if all eigenvalues of A +B are
strictly inside the unit circle.

3.6 Summary

This chapter has been concerned with delay-independent stability of a significant
class of (continuous- and discrete-time) positive nonlinear systems with time-varying
delays. We derived a set of necessary and sufficient conditions for global asymptotic
stability of continuous-time homogeneous cooperative systems of arbitrary degree
and discrete-time homogeneous order-preserving systems of degree zero with bounded
and unbounded time-varying delays. These results show that the global asymptotic
stability of such systems is independent of the magnitude and variation of time-
delays. However, we also observed that the decay rates of these systems depend on
how fast the delays can grow large. We developed two theorems for global µ-stability
of homogeneous positive systems that quantify the convergence rates for various
classes of time-delays. For positive linear systems, we further showed how the best
convergence rates that our results guarantee can be found using convex optimization.
For discrete-time homogeneous order-preserving systems of degree greater than zero,
we demonstrated that the origin is locally asymptotically stable under the global
asymptotic stability condition that we derived. Numerical examples justified the
validity of our theoretical results.
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3.7 Appendix

3.7.1 Proof of Proposition 3.1
Consider the following delayed differential equation

⎧⎪⎪
⎨
⎪⎪⎩

ẏ(t) = f(y(t)) + g(y(t − τ(t))) + 1
k
1, t ≥ 0,

y(t) = ϕ(t), t ∈ [−τmax,0],
(3.35)

where k ∈ N, and 1 ∈ Rn is the vector with all components equal to 1. Let y(k)(t) be
the solution to (3.35) with the nonnegative initial condition ϕ ∈ C([−τmax,0],Rn+).
Clearly, y(k)(0) = ϕ(0) ≥ 0. We claim that y(k)(t) ≥ 0 for all t ≥ 0. By contradiction,
suppose this is not true. Then, there exist an index j ∈ {1, . . . , n} and a time t1 ≥ 0
such that y(k)(t) ≥ 0 for all t ∈ [0, t1], y(k)j (t1) = 0, and

D+y
(k)
j (t)∣

t=t1

≤ 0. (3.36)

It follows from (3.5) and the above observations that

fj(y
(k)(t1)) ≥ 0. (3.37)

Since t1 − τ(t1) ∈ [−τmax, t1] and ϕ(t) ≥ 0 for all t ∈ [−τmax,0], we have

y(k)(t1 − τ(t1)) ≥ 0,

irrespectively of whether t1−τ(t1) is nonnegative or not. From (3.5), we then obtain

gj(y
(k)(t1 − τ(t1))) ≥ 0. (3.38)

Using (3.37) and (3.38), the upper-right Dini-derivative of y(k)j (t) along the trajec-
tories of (3.35) at t = t1 is given by

D+y
(k)
j (t)∣

t=t1

= fj(y
(k)(t1)) + gj(y

(k)(t1 − τ(t1))) +
1
k

≥
1
k

> 0,

which contradicts (3.36). Therefore,

y(k)(t) ≥ 0, ∀t ≥ 0. (3.39)

As k was an arbitrary natural number, it follows that (3.39) holds for all k ∈ N.
By letting k → ∞, y(k)(t) converges to the solution x(t) of (3.1) uniformly on
[−τmax,∞) [121, Theorem 2.1], which implies that x(t) ≥ 0 for all t ≥ 0. Hence, the
time-delay system (3.1) is positive.
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3.7.2 Proof of Theorem 3.1
(i) ⇒ (ii): Let v > 0 be a vector such that (3.11) holds and let

ζ = − max
1≤i≤n

{
fi(v) + gi(v)

vi
} . (3.40)

Since g is order-preserving on Rn+ and g(0) = 0, gi(v) ≥ 0 for all i. Thus,

fi(v)

vi
≤ −ζ, (3.41)

for each i = 1, . . . , n. Define

γi = (1 + ζ/2
fi(v)/vi

)

rmax
ri+p

,

where rmax = max1≤i≤n ri. From (3.41), one can verify that γi ∈ (0,1). We have

γ
ri+p
rmax
i (

fi(v)

vi
) +

gi(v)

vi
=

fi(v)

vi
+
gi(v)

vi
+
ζ

2

≤ −
ζ

2
,

where we used (3.40) to get the inequality. For each i, it follows that

γ
ri+p
rmax (

fi(v)

vi
) +

gi(v)

vi
≤ −

ζ

2
, (3.42)

where γ = max1≤i≤n γi. Clearly, γ ∈ (0,1). The proof now proceeds in two steps:

1. First, we show that for any initial condition ϕ ∈ C([−τmax,0],Rn+), the corre-
sponding solution x(t) satisfies x(t) ∈ S(0) for all t ≥ 0, where the sets S(m)
are defined in (3.9).

2. By induction, we then prove that for each m ∈ N0, there exists tm ≥ 0 such
that x(t) will enter the set S(m) at tm and remains in this set for all t ≥ tm.

Step 1. Since the homogeneous cooperative system (3.1) is positive, xi(t) ≥ 0
for each i = 1, . . . , n and all t ≥ 0. Let

zi(t) = (
xi(t)

vi
)

rmax
ri

− ∥ϕ∥, (3.43)

where ∥ϕ∥ is defined in (3.10). From the definition of ∥ϕ∥, zi(0) ≤ 0 for each i. We
claim that zi(t) ≤ 0 for all t ≥ 0. By contradiction, suppose this is not true. Then,
there exist an index j ∈ {1, . . . , n} and a time t1 ≥ 0 such that

zi(t) ≤ 0, i = 1, . . . , n, t ∈ [0, t1],
zj(t1) = 0,

(3.44)
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and
D+zj(t)∣

t=t1

≥ 0. (3.45)

From (3.43) and (3.44), we have

xi(t1) ≤ (λϕ)
ri vi, i = 1, . . . , n, i ≠ j,

xj(t1) = (λϕ)
rj vj ,

where λϕ = ∥ϕ∥
1

rmax . Since f is cooperative and homogeneous of degree p with
respect to the dilation map δrλ(x), it follows that

fj(x(t1)) ≤ fj(δ
r
λϕ(v)) = (λϕ)

rj+p
fj(v). (3.46)

If t1 − τ(t1) ∈ [0, t1], then, from (3.44), we have zi(t1 − τ(t1)) ≤ 0, which implies that
xi(t1 − τ(t1)) ≤ (λϕ)

ri
vi for each i, or, equivalently,

x(t1 − τ(t1)) ≤ δ
r
λϕ(v).

Note also that if t1−τ(t1) ∈ [−τmax, 0], then x(t1−τ(t1)) = ϕ(t1−τ(t1)), and hence,
from the definition of ∥ϕ∥, the above inequality still holds. As g is order-preserving
on Rn+ and homogeneous of degree p with respect to the dilation map δrλ(x), this in
turn implies that

gj(x(t1 − τ(t1))) ≤ gj(δ
r
λϕ(v)) = (λϕ)

rj+p
gj(v). (3.47)

The upper-right Dini-derivative of zj(t) along the trajectories of (3.1) at t = t1 is
given by

D+zj(t)∣
t=t1

= (
rmax

rj
)(

xj(t1)

vj
)

(
rmax
rj

−1)
⎛

⎝

fj(x(t1)) + gj(x(t1 − τ(t1)))

vj

⎞

⎠

≤ (
rmax

rj
)(λϕ)

rmax−rj

(λϕ)

rj+p

(
fj(v) + gj(v)

vj
)

= (
rmax

rj
)(λϕ)

rmax+p

(
fj(v) + gj(v)

vj
) ,

where we used (3.46) and (3.47) to obtain the inequality. From (3.11), we conclude
that D+zj(t1) < 0, which contradicts (3.45). Therefore, zi(t) ≤ 0 for all i and all
t ≥ 0, and hence V (x(t)) ≤ ∥ϕ∥ for t ≥ 0. This shows that x(t) ∈ S(0) for all t ≥ 0.

Step 2. According to the previous step, the induction hypothesis is true for
m = 0. Now, assume that it holds for a given m, i.e., V (x(t)) ≤ γm∥ϕ∥ for all t ≥ tm.
We will prove that there exists a finite time tm+1 ≥ 0 such that x(tm+1) ∈ S(m + 1).
By contradiction, suppose this is not true. Then,

γm+1∥ϕ∥ ≤ V (x(t)) ≤ γm∥ϕ∥, ∀t ≥ tm. (3.48)
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Let it ∈ {1, . . . , n} be an index such that V (x(t)) = Vit(xit(t)), where

Vi(xi) = (
xi
vi

)

rmax
ri

.

The cooperativity and homogeneity of f implies that

fit(x(t)) ≤ (V (x(t)))
(
rit

+p
rmax

)
fit(v)

≤ (γm+1∥ϕ∥)
(
rit

+p
rmax

)
fit(v), ∀t ≥ tm, (3.49)

where the second inequality follows from (3.48) and the fact that fit(v) < 0. From
Assumption 3.1, limt→∞ t − τ(t) = +∞. Thus, there exists sufficiently large t̂m ≥ tm
so that t − τ(t) ≥ tm for all t ≥ t̂m. Since x(t) ∈ S(m) for t ≥ tm, it follows that
x(t − τ(t)) ∈ S(m) for all t ≥ t̂m, implying that V (x(t − τ(t))) ≤ γm∥ϕ∥ for t ≥ t̂m,
or, equivalently,

xi(t − τ(t)) ≤ (γm∥ϕ∥)
(

ri
rmax

)
vi, ∀t ≥ t̂m, (3.50)

for all i. As g is order-preserving and homogeneous, we then have

git(x(t − τ(t))) ≤ (γm∥ϕ∥)
(
rit

+p
rmax

)
git(v), ∀t ≥ t̂m. (3.51)

Substituting (3.49) and (3.51) into the upper-right Dini-derivative of Vit(xit) along
the trajectories of (3.1) yields

D+Vit(xit) = (rmax

rit
)(xit(t)

vit
)
(
rmax
rit

−1) ⎛
⎝
fit(x(t)) + git(x(t − τ(t)))

vit

⎞
⎠

≤ (rmax

rit
)(xit(t)

vit
)
(
rmax
rit

−1)

(γm∥ϕ∥)
(

rit
+p

rmax
)

(γ
rit

+p
rmax (fit(v)

vit
) + git(v)

vit
)

≤ −(rmax

rit
)(xit(t)

vit
)
(
rmax
rit

−1)

(γm∥ϕ∥)
(

rit
+p

rmax
)

(ζ
2
),

≤ −(rmax

rit
)(γm+1∥ϕ∥)

(1−
rit
rmax

)

(γm∥ϕ∥)
(

rit
+p

rmax
)

(ζ
2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
κ

, ∀t ≥ t̂m (3.52)

where the last two inequalities follow from (3.42) and (3.48), respectively. Note that
κ > 0. Since Vi(xi) is continuously differentiable on R for each i, V (x) is locally
Lipschitz and

D+V (x(t)) = max
j∈J (t)

D+Vj(xj(t)),

where J (t) = {i ∣ Vi(xi(t)) = V (x(t))} [122]. It follows from (3.52) that

D+V (x(t)) ≤ −κ, ∀t ≥ t̂m.
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This together with (3.48) implies that

V (x(t)) ≤ V (x(t̂m)) − κ(t − t̂m)

≤ γm∥ϕ∥ − κ(t − t̂m), ∀t ≥ t̂m.

It is immediate to see that the the right-hand side of the above inequality becomes
smaller than γm+1∥ϕ∥ when

t ≥ tm+1 = t̂m + γm∥ϕ∥
1 − γ
κ

,

which contradicts (3.48). Thus necessarily, x(t) reaches S(m + 1) in a finite time.
We now prove that x(t) remains in S(m + 1) for all t ≥ tm+1. Let

wi(t) = (
xi(t)

vi
)

rmax
ri

− γm+1∥ϕ∥, t ≥ tm+1. (3.53)

Since x(tm+1) ∈ S(m+1), wi(tm+1) ≤ 0 for all i. We show that wi(t) ≤ 0 for all i and
all t ≥ tm+1. If, by contradiction, this is not true, then there is an index j ∈ {1, . . . , n}
and a time t2 ≥ tm+1 such that wi(t) ≤ 0 for t ∈ [tm+1, t2], wj(t2) = 0, and

D+wj(t)∣
t=t2

≥ 0. (3.54)

From (3.53), we have

xi(t2) ≤ (γm+1∥ϕ∥)
ri

rmax vi, i = 1, . . . , n, i ≠ j,

xj(t2) = (γm+1∥ϕ∥)
rj
rmax vj .

It now follows from cooperativity and homogeneity of f that

fj(x(t2)) ≤ (γm+1∥ϕ∥)
rj+p
rmax fj(v). (3.55)

Moreover, since t2 ≥ tm+1 ≥ t̂m, it follows from (3.50) that

gj(x(t2 − τ(t2))) ≤ (γm∥ϕ∥)
rj+p
rmax gj(v), (3.56)

where we used the fact that g is order-preserving and homogeneous. The upper-right
Dini-derivative of wj(t) along the trajectories of (3.1) at t = t2 is given by

D+wj(t)∣
t=t2

≤ (rmax

rj
)(xj(t2)

vj
)
(
rmax
rj

−1)

(γm∥ϕ∥)
rj+p
rmax

(γ
rj+p
rmax (fj(v)

vj
) + gj(v)

vj
)

< 0,
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where we used (3.55) and (3.56) to get the first inequality and (3.42) to obtain
the second inequality. This contradicts (3.54), and hence wi(t) ≤ 0 for all i and
all t ≥ tm+1. It follows that V (x(t)) ≤ γm+1∥ϕ∥ for t ≥ tm+1, or, equivalently,
x(t) ∈ S(m + 1) for all t ≥ tm+1.

In summary, we conclude that for each m ∈ N0, there exists tm ≥ 0 such that
x(t) ∈ S(m) for all t ≥ tm. Since γ ∈ (0, 1), γm approaches zero as m→∞. Therefore,
the origin is globally asymptotically stable.

(ii) ⇒ (iii): Assume that the time-delay system (3.1) is globally asymptotically
stable for all delays satisfying Assumption 3.1. Particularly, let τ(t) = 0. Then, the
non-delayed system ẋ(t) = f(x(t)) + g(x(t)) is globally asymptotically stable.

(iii) ⇒ (i): As f +g is a cooperative vector field, it follows from [123, Proposition
3.10, Theorem 3.12] that there is a vector v > 0 such that (3.11) holds.

3.7.3 Proof of Theorem 3.2
Let v > 0 be a vector satisfying (3.13). According to Theorem 3.1, the homogeneous
cooperative system (3.1) is globally asymptotically stable for all nonnegative initial
conditions and for all delays satisfying Assumption 3.1. We will prove that (3.1) is
also globally µ-stable. From Remark 3.1, there exists T0 > 0 large enough such that

t − τ(t) > 0, ∀t > T0. (3.57)

By condition (iv), we can find a sufficiently large constant T1 > 0 such that for all
t > T1 and all i ∈ {1, . . . , n},

(
rmax

ri
)
⎛
⎜
⎝
(
fi(v)

vi
) + (

µ(t)

µ(t − τ(t))
)

ri+p
rmax

(
gi(v)

vi
)
⎞
⎟
⎠
+

µ̇(t)

(µ(t))
1− p

rmax
< 0.

Since µ(t) is non-decreasing on R+, it follows that

ε(
rmax

ri
)
⎛
⎜
⎝
(
fi(v)

vi
) + (

µ(t)

µ(t − τ(t))
)

ri+p
rmax

(
gi(v)

vi
)
⎞
⎟
⎠
+

µ̇(t)

(µ(t))
1− p

rmax
< 0, (3.58)

holds for any ε ≥ 1. Let M = max{1, µ(T )∥ϕ∥}, where T = max{T0, T1} + 1, and ∥ϕ∥
is defined in (3.10). According to the proof of Theorem 3.1, V (x(t)) ≤ ∥ϕ∥ for all
t ≥ 0. Thus,

sup
0≤t≤T

{µ(t)V (x(t))} ≤ sup
0≤t≤T

{µ(t)}∥ϕ∥

= µ(T )∥ϕ∥

≤ M, (3.59)

where we used condition (ii) to get the equality. It follows that

µ(t)V (x(t)) ≤M, ∀t ∈ [0, T ]. (3.60)
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In order to prove global µ-stability, we will show that (3.60) also holds for all t ≥ T .
By contradiction, suppose this is not true. Then, there exist an index j ∈ {1, . . . , n}
and a time t1 ≥ T such that

µ(t)V (x(t)) ≤ M, t ∈ [0, t1], (3.61)

µ(t1)(
xj(t1)

vj
)

rmax
rj

= M, (3.62)

D+µ(t)(
xj(t)

vj
)

rmax
rj

∣
t=t1

≥ 0. (3.63)

From (3.61) and (3.62), we have

xi(t1) ≤ (
M

µ(t1)
)

ri
rmax

vi, i = 1, . . . , n, i ≠ j,

xj(t1) = (
M

µ(t1)
)

rj
rmax

vj .

As f is cooperative and homogeneous, it follows that

fj(x(t1)) ≤ (
M

µ(t1)
)

rj+p
rmax

fj(v). (3.64)

From (3.57), since t1 ≥ T > T0, we have t1 ≥ t1 − τ(t1) > 0. Hence, from (3.61),

µ(t1 − τ(t1))V (x(t1 − τ(t1))) ≤M.

As g is order-preserving and homogeneous, this in turn implies

gj(x(t1 − τ(t1))) ≤ (
M

µ(t1 − τ(t1))
)

rj+p
rmax

gj(v). (3.65)

We then have

D+µ(t)(xj(t)
vj

)
rmax
rj

∣
t=t1

= µ(t1)(
rmax

rj
)(xj(t1)

vj
)
(
rmax
rj

−1)
ẋj(t1)
vj

+ µ̇(t1)(
xj(t1)
vj

)
rmax
rj

= µ(t1)(
rmax

rj
)( M

µ(t1)
)
(1−

rj
rmax

)

(fj(x(t1)) + gj(x(t1 − τ(t1)))
vj

) +M µ̇(t1)
µ(t1)

≤ M

(u(t1))
p

rmax
×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M

p
rmax (rmax

rj
)
⎛
⎜
⎝
(fj(v)

vj
) + ( µ(t1)

µ(t1 − τ(t1))
)
rj+p
rmax

(gj(v)
vj

)
⎞
⎟
⎠
+ µ̇(t1)
µ

1− p
rmax

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,
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where we used (3.62) to get the second equality, and (3.64)–(3.65) to obtain the
inequality. Since M ≥ 1 and t1 ≥ T > T1, it now follows from (3.58) that

D+µ(t)(
xj(t)

vj
)

rmax
rj

∣
t=t1

< 0,

which contradicts (3.63). We conclude that µ(t)V (x(t)) ≤M for all t ≥ T , and hence

V (x(t)) ≤
M

µ(t)
, t ≥ 0.

This completes the proof.

3.7.4 Proof of Corollary 3.1
(i) Assume that p = 0. For each i = 1, . . . , n, equation (3.16) has a unique positive
solution ηi. Pick a constant η satisfying η ∈ (0,min1≤i≤n ηi). Since the left-hand side
of (3.16) is strictly monotonically increasing in ηi > 0, we have

(
rmax

ri
)
⎛

⎝
(
fi(v)

vi
) + (eητmax)

ri
rmax

(
gi(v)

vi
)
⎞

⎠
+ η < 0, i = 1, . . . , n. (3.66)

Now, let µ(t) = eηt. One can verify that µ(t) satisfies conditions (i)–(iii) of Theo-
rem 3.2. Moreover,

lim
t→∞

µ̇(t)

µ(t)
= η,

and
lim
t→∞

µ(t)

µ(t − τ(t))
≤ lim
t→∞

eηt

eη(t−τmax)
= eητmax ,

where the inequality holds since τ(t) ≤ τmax and µ(t) is non-decreasing. It follows
from (3.66) and the above observations that condition (iv) of Theorem 3.2 is also
satisfied. Hence, the solution x(t) of (3.1) satisfies (3.15).

(ii) If p > 0, we can pick µ(t) = (θt + 1)
rmax
p . The rest of the proof is similar to

the one for p = 0 and thus omitted.

3.7.5 Proof of Corollary 3.2
(i) Assume that p = 0. The left-hand side of (3.20) is strictly monotonically increasing
in ξi > 0. Thus,

(
fi(v)

vi
) + (

1
1 − α

)

ri
rmax

ξ

(
gi(v)

vi
) < 0, i = 1, . . . , n,

where ξ ∈ (0,min1≤i≤n ξi). Now, letting µ(t) = tξ, the rest of the proof is similar to
the one of Corollary 3.1 and thus omitted.

(ii) When p > 0, we can choose µ(t) = t
rmax
p β , with β ∈ (0,1) satisfying (3.21).
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3.7.6 Proof of Proposition 3.2
Let ϕ be a nonnegative initial condition, i.e., ϕ(k) ≥ 0 for k ∈ {−dmax, . . . ,0}. We
show by induction that x(k) ≥ 0 for all k ∈ N0. Since x(0) = ϕ(0), the induction
hypothesis is true for k = 0. Assume for induction that x(k) ≥ 0 for k ∈ {0, . . . , k}
with k ∈ N0. Clearly, x(k) ≥ 0. Moreover, since k − d(k) ∈ [−dmax, k] and ϕ(k) ≥ 0,
we have x(k − d(k)) ≥ 0. As f(x) ≥ 0 and g(x) ≥ 0 for all x ∈ Rn+ , it follows that
f(x(k)) ≥ 0 and g(x(k − d(k))) ≥ 0. Therefore,

x(k + 1) = f(x(k)) + g(x(k − d(k))) ≥ 0.

By induction, we conclude that x(k) ≥ 0 for all k ∈ N0. Hence, (3.29) is positive.

3.7.7 Proof of Theorem 3.3
(i) ⇒ (ii): Let v > 0 be a vector such that (3.31) holds and let

γ = max
1≤i≤n

(
fi(v) + gi(v)

vi
)

rmax
ri

. (3.67)

Note that γ ∈ (0,1). Consider the homogeneous order-preserving system (3.29)
without time-delays, given by

x(k + 1) = f(x(k)) + g(x(k)), k ∈ N0. (3.68)

First, we use induction to show that for the initial condition x(0) = v, the solution
x(k) to (3.68) satisfies

(
xi(k)

vi
)

rmax
ri

≤ γk, k ∈ N0,

for each i = 1, . . . , n. The induction hypothesis is true for k = 0, since xi(0) = vi for
each i. Assuming it is true for a given k = k ∈ N0. Then,

xi(k) ≤ γ
rik

rmax vi, i = 1, . . . , n.

As f and g are homogeneous of degree zero and order-preserving, it follows that

xi(k + 1)
vi

=
fi(x(k)) + gi(x(k))

vi

≤ γ
rik

rmax (
fi(v) + gi(v)

vi
)

≤ γ
ri(k+1)
rmax ,
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where we used (3.67) to obtain the second inequality. Therefore,

(
xi(k + 1)

vi
)

rmax
ri

≤ γk+1,

which completes the induction proof. Since γ ∈ (0, 1), γk approaches zero as k → +∞.
Hence, for the initial condition x(0) = v, the solution x(k) to the non-delayed
system (3.68) converges asymptotically to the origin. We now prove that the homo-
geneous order-preserving system (3.29) with time-delays is globally asymptotically
stable. Since

0 ≤ f(0) + g(0) ≤ f(v) + g(v) ≤ v,

it follows from the asynchronous convergence theorem for totally asynchronous
iterations [16, §6.4] that the solution x(k) to the time-delay system (3.29) starting
from initial conditions ϕ(k) ∈ [0, v] converges asymptotically to the origin. Let ϕ
be an arbitrary nonnegative initial condition (ϕ may not satisfy ϕ(k) ∈ [0, v]). As
v > 0, there exists λ ≥ 1 sufficiently large such that

ϕ(k) ≤ δrλ(v) = (λr1v1, . . . , λ
rnvn),

for all k ∈ {−dmax, . . . ,0}. Let v = δrγ(v). Since f and g are homogeneous of degree
zero, we have

fi(v) + gi(v) = λ
ri (fi(v) + gi(v))

< λrivi

= vi,

where we used (3.31) to get the inequality. Thus, f(v) + g(v) < v. We conclude that
for any nonnegative initial condition ϕ, there exist a vector v > 0 such that (3.31)
holds and that ϕ(k) ∈ [0, v], k ∈ {−dmax, . . . ,0}. It follows that the homogeneous
order-preserving system (3.29) is globally asymptotically stable.

(ii) ⇒ (iii): Suppose that (3.29) is globally asymptotically stable for all delays
satisfying Assumption 3.4. Particularly, let d(k) = 0. Then, the non-delayed system
x(k + 1) = f(x(k)) + g(x(k)) is globally asymptotically stable.

(iii) ⇒ (i): Since f + g is continuous, order-preserving on Rn+ and (f + g)(0) = 0,
the conclusion follows from [124, Propositions 5.2 and 5.6].

3.7.8 Proof of Corollary 3.5
The proof is similar to the one of Theorem 3.3 and thus omitted.

3.7.9 Proof of Theorem 3.4
Let v > 0 be a vector satisfying (3.32). According to Theorem 3.3, the homogeneous
order-preserving system (3.29) with time-delays satisfying Assumption 3.4 is globally
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asymptotically stable. We will prove that (3.29) is also globally µ-stable. From
Remark 3.3, there exists T0 ∈ N such that

k − d(k) > 0, ∀k > T0. (3.69)

From condition (iv), one can find a sufficiently large constant T1 ∈ N, such that for
all k > T1, we have

(
µ(k + 1)
µ(k)

)

ri
rmax

(
fi(v)

vi
) + (

µ(k + 1)
µ(k − d(k))

)

ri
rmax

(
gi(v)

vi
) < 1. (3.70)

Let M = µ(T )∥ϕ∥, where T = max{T0, T1}+ 1, and ∥ϕ∥ is defined in (3.10). We now
use induction to prove that

V (x(k)) ≤
M

µ(k)
, ∀k ∈ N. (3.71)

According to the proof of Theorem 3.3, V (x(k)) ≤ ∥ϕ∥ for all k ∈ N. Thus,

max
1≤k≤T

{µ(k)V (x(k))} ≤ max
1≤k≤T

{µ(k)}∥ϕ∥

= µ(T )∥ϕ∥

= M, (3.72)

where we used condition (ii) to get the first equality. It follows from (3.72) that (3.71)
is true for k ∈ {1, . . . , T}. Next, assume for induction that (3.71) holds for all k up
to some k, where k ≥ T . Thus,

0 ≤ (
xi(k)

vi
)

rmax
ri

≤
M

µ(k)
, k = 1, . . . , k,

which implies that

0 ≤ xi(k) ≤ (
M

µ(k)
)

ri
rmax

vi. (3.73)

Since k ≥ T > T0, it follows from (3.69) that k − d(k) ∈ {1, . . . , k}. Hence,

0 ≤ xi(k − d(k)) ≤ (
M

µ(k − d(k))
)

ri
rmax

vi. (3.74)

As f and g are homogeneous of degree zero and order-preserving on Rn+ , it follows
from (3.73) and (3.74) that

fi(x(k)) ≤ (
M

µ(k)
)

ri
rmax

fi(v),

gi(x(k − d(k)) ≤ (
M

µ(k − d(k))
)

ri
rmax

gi(v).

(3.75)
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We now show that x(k + 1) satisfies (3.71). For each i ∈ {1, . . . , n}, we have

xi(k + 1)
vi

=
fi(x(k)) + gi(x(k − d(k)))

vi

≤ (
M

µ(k)
)

ri
rmax

(
fi(v)

vi
) + (

M

µ(k − d(k))
)

ri
rmax

(
gi(v)

vi
)

≤ (
M

µ(k + 1)
)

ri
rmax

,

where we used (3.75) to get the first inequality and (3.70) to obtain the second
inequality. Therefore,

V (x(k + 1)) ≤ M

µ(k + 1)
,

and hence the induction proof is complete.





Chapter 4

Monotone Systems with Heterogonous
Delays

Sub-homogeneous positive monotone systems constitute an important and useful
class of positive nonlinear systems. Established models of many physical phenom-

ena fall within this class. For example, biochemical reaction networks and most power
control algorithms in wireless networks can be analyzed as sub-homogeneous positive
monotone systems [125–127]. This class of positive systems includes homogeneous
positive systems as a special case.

Many processes that are described by positive systems are comprised of intercon-
nected subsystems that exchange material, energy, or information. As components
could operate asynchronously and transfer between subsystems typically takes time,
accurate models of such systems must include time-delays. Recently, it has been
shown that the asymptotic stability of sub-homogeneous positive monotone systems
is independent of constant delays [128]. In practice, however, delays are often time-
varying. Hence, a natural question is if sub-homogeneous positive monotone systems
are insensitive also to time-varying delays. In the previous chapter, we have shown
that the asymptotic stability of homogeneous positive systems is independent of
the magnitude and variation of time-varying delays. Therefore, it is reasonable to
conjecture that sub-homogeneous positive systems are insensitive to time-varying
delays, at least as long as the delays are bounded. Proving or disproving the con-
jecture is nontrivial. The main reason for this is that the homogeneity assumption,
which played a key role in our stability analysis of homogeneous positive systems
with time-varying delays, is not satisfied for sub-homogeneous positive systems.

Contributions of the Chapter. In this chapter, we show that the conjecture is
true. By transforming the stability problem with heterogeneous time-varying delays
into one with constant delays, we demonstrate that a sub-homogeneous positive
monotone system with arbitrary bounded heterogeneous time-varying delays is
globally asymptotically stable if and only if the corresponding system without
delay is globally asymptotically stable. More specifically, we make the following
contributions. First, we derive a sufficient condition for asymptotic stability of

63
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general monotone (not necessarily sub-homogeneous) systems with time-varying
delays. The proof technique is based on an extension of a delay-independent stability
result for monotone systems under constant delays by Smith [69] to systems with
bounded heterogenous time-varying delays. Under the additional assumption of
positivity and sub-homogeneity of vector fields, we establish the aforementioned
delay insensitivity property and derive a novel test for global asymptotic stability.
If a sub-homogeneous positive system has a unique equilibrium point in the positive
orthant, we prove that our stability test is necessary and sufficient. Specialized to
positive linear systems, our results extend and sharpen existing results from the
literature. Since sub-homogeneous positive systems include homogeneous positive
systems as a special case, our work also generalizes the asymptotic stability results
of the previous chapter for the case of bounded time-varying delays.

Outline of the Chapter. Section 4.1 formulates the problem that we address in
this chapter. Section 4.2 presents our main results on the delay-independent stability
of monotone systems and the insensitivity of sub-homogeneous positive monotone
systems to bounded heterogeneous time-varying delays. Illustrative examples are
included throughout the development of the results. Finally, conclusions are given
in Section 4.3. In the appendix, we provide detailed proofs of the main results.

4.1 Problem Statement

We consider the following nonlinear dynamical system with heterogeneous time-
varying delays

G ∶

⎧⎪⎪
⎨
⎪⎪⎩

ẋi(t) = fi(x(t)) + gi(x1(t − τ
i
1(t)), . . . , xn(t − τ

i
n(t))), t ≥ 0,

xi(t) = ϕi(t), t ∈ [−τmax,0].
(4.1)

Here, i = 1, . . . , n, x(t) = (x1(t), . . . , xn(t)) ∈ Rn is the state vector, τmax ∈ R+, f(x) =
(f1(x), . . . , fn(x)) and g(x) = (g1(x), . . . , gn(x)) are continuously differentiable
vector fields on the convex set W ⊆ Rn, and

ϕ(t) = (ϕ1(t), . . . , ϕn(t)) ∈ C([−τmax,0],W),

is the vector-valued function specifying the initial condition of the system. The
time-varying delays τ ij(t) are continuous with respect to time, and satisfy

0 ≤ τ ij(t) ≤ τmax, t ≥ 0,

for all i, j = 1, . . . , n. Note that the maximum delay bound τmax may be unknown,
that τ ij(t) are not necessarily continuously differentiable, and that no restriction on
their derivative is imposed. Since the initial condition ϕ and the delays τ ij(t) are
continuous functions of time, the existence and uniqueness of solutions to (4.1) follow
from [99, Theorem 2.3]. We denote the unique solution of (4.1) corresponding to
the initial condition ϕ(t), t ∈ [−τmax, 0], by x(t, ϕ). The equilibria of the time-delay
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system G given by (4.1) are defined as constant functions ϕ(t) = x⋆, t ∈ [−τmax,0],
where the vector x⋆ ∈W satisfies

f(x⋆) + g(x⋆) = 0. (4.2)

In general, (4.2) may have more than one solution x⋆ and, hence, G may have
multiple equilibrium points.

In this chapter, we study the asymptotic stability of time-delay systems of the
form (4.1) which are monotone:

Definition 4.1. The time-delay system G given by (4.1) is called monotone if for
any initial conditions ϕ,ϕ′ ∈ C([−τmax,0],W) satisfying

ϕ(t) ≤ ϕ′(t), t ∈ [−τmax,0],

we have x(t, ϕ) ≤ x(t, ϕ′) for all t ≥ 0.

Loosely speaking, the trajectories of a monotone system starting at ordered
initial conditions preserve the same ordering during the time evolution. Monotonicity
of time-delay systems is readily verified using the next result.

Proposition 4.1 ([69, Theorem 5.1.1]). Consider the time-delay system G given
by (4.1). Suppose that f is cooperative and g is order-preserving on W. Then, G is
monotone.

We now provide a necessary and sufficient condition for positivity of monotone
systems with heterogeneous time-varying delays. Recall that the time-delay system
G given by (4.1) is said to be positive if for any nonnegative initial condition
ϕ ∈ C([−τmax, 0],Rn+), the corresponding state trajectory will remain in the positive
orthant, i.e., x(t, ϕ) ∈ Rn+ for all t ≥ 0.

Proposition 4.2. For the time-delay system G given by (4.1), assume that f is
cooperative on Rn+ and g is order-preserving on Rn+. Then, the monotone system G
is positive if and only if

f(0) + g(0) ≥ 0. (4.3)

Proof. See Appendix 4.4.2. ∎

Proposition 4.2 shows that if the monotone system G given by (4.1) has an
equilibrium point at the origin, i.e., f(0) + g(0) = 0, then it is positive.

The existence of time-delays may, in general, induce instability. However, positive
monotone systems whose vector fields are sub-homogeneous are insensitive to constant
delays [128]. More precisely, assume that f is cooperative and sub-homogeneous on
Rn+ and g is order-preserving and sub-homogeneous on Rn+ . Under these assumptions
on the vector fields, if the positive system G without time-delays (τ ij(t) = 0 for all
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i and j) is globally asymptotically stable, then G is also globally asymptotically
stable for any constant delays (τ ij(t) = τmax for all i and j).

The main objective of this chapter is to (i) determine whether sub-homogeneous
positive monotone systems are also insensitive to bounded heterogeneous time-varying
delays; and to (ii) derive necessary and sufficient conditions for delay-independent
stability of general monotone systems.

4.2 Main Results

Having established the problem formulation, we will present the main contributions
of this chapter.

4.2.1 Monotone Systems
The following theorem is our first key result, which provides a sufficient condition
for delay-independent stability of monotone systems, not necessarily positive, with
bounded heterogeneous time-varying delays.

Theorem 4.1. For the time-delay system G given by (4.1), suppose that f is
cooperative and g is order-preserving on W. Suppose also that there exist two vectors
w and v in W such that w ≤ v and

f(w) + g(w) ≥ 0,
f(v) + g(v) ≤ 0.

(4.4)

If x⋆ ∈ W is the only equilibrium point of the monotone system G in [w, v], then
for all bounded heterogeneous time-varying delays, x⋆ is asymptotically stable with
respect to initial conditions satisfying

w ≤ ϕ(t) ≤ v, t ∈ [−τmax,0]. (4.5)

Proof. See Appendix 4.4.3. ∎

The following example illustrates the result of Theorem 4.1.

Example 4.1. Consider the time-delay system G given by (4.1) with

f(x1, x2) =
⎡
⎢
⎢
⎢
⎣

−x1 − 1
x1 − x2(x

2
2 − 9) + 2

⎤
⎥
⎥
⎥
⎦
, g(x1, x2) =

⎡
⎢
⎢
⎢
⎣

0
x1

⎤
⎥
⎥
⎥
⎦
. (4.6)

Since f is cooperative on Rn and g is order-preserving on Rn, according to Proposi-
tion 4.1, the time-delay system (4.6) is monotone on Rn. Note that as

f(0,0) + g(0,0) = (−1,2) ≱ (0,0),
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it follows from Proposition 4.2 that the monotone system (4.6) is not positive. This
system has three equilibrium points:

x⋆(1) = (−1,−3), x⋆(2) = (−1,0), x⋆(3) = (−1,3).

Let w(1) = (−3,−5) and v(1) = (1,−1). Clearly, w(1) ≤ v(1). Since

f(w(1)) + g(w(1)) = (2,76) ≥ (0,0),

f(v(1)) + g(v(1)) = (−2,−4) ≤ (0,0),

and x⋆(1) is the only equilibrium point of (4.6) in [w(1), v(1)], it follows from
Theorem 4.1 that for all bounded heterogeneous time-varying delays, x⋆(1) is asymp-
totically stable with respect to initial conditions satisfying w(1) ≤ ϕ(t) ≤ v(1),
t ∈ [−τmax,0]. Similarly, x⋆(3) is asymptotically stable for initial conditions satis-
fying w(3) ≤ ϕ(t) ≤ v(3), t ∈ [−τmax,0], where w(3) = (−3,1) and v(3) = (1,5). For
example, letting τ2

1 (t) = 4 + sin(t), t ≥ 0, the simulation results shown in Figure 4.1
confirm that x⋆(1) and x⋆(3) are indeed locally asymptotically stable. ∎
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Figure 4.1: Illustration of asymptotic stability of the monotone system (4.6) in
Example 4.1. The equilibrium x⋆(1) = (−1,−3) is asymptotically stable for initial
conditions (−3,−5) ≤ ϕ(t) ≤ (1,−1), t ∈ [−5,0], while x⋆(3) = (−1,3) is asymptotically
stable for initial conditions (−3,1) ≤ ϕ(t) ≤ (1,5), t ∈ [−5,0].
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Remark 4.1. The delay-independent stability of monotone systems with con-
stant delays was investigated in [69]. Using this result, [80, 110, 128] showed that
homogeneous and sub-homogeneous positive monotone systems are insensitive to
constant delays. Theorem 4.1 extends the result in [69] to bounded heterogeneous
time-varying delays which include constant delays as a special case.

4.2.2 Sub-homogeneous Positive Monotone Systems
Theorem 4.1 allows us to prove that the global asymptotic stability of positive
monotone systems whose vector fields are sub-homogeneous is insensitive to bounded
heterogeneous time-varying delays.

Theorem 4.2. Consider the time-delay system G given by (4.1). Assume that f
is cooperative and g is order-preserving on Rn+. Furthermore, assume that f and g
are sub-homogeneous of degree p with respect to the dilation map δrλ(x). Then, the
following statements are equivalent.

(i) The sub-homogeneous positive monotone system G without delays (τ ij(t) = 0 for
all i and j) has a globally asymptotically stable equilibrium point at x⋆ ∈ Rn+.

(ii) The sub-homogeneous positive monotone system G with arbitrary bounded het-
erogeneous time-varying delays has a globally asymptotically stable equilibrium
point at x⋆ ∈ Rn+.

Proof. See Appendix 4.4.4. ∎

According to Theorem 4.2, global asymptotic stability of the delay-free sub-
homogeneous positive monotone system

ẋ(t) = f(x(t)) + g(x(t)), t ≥ 0,

implies that of (4.1) with bounded heterogeneous time-varying delays, and vice
versa. This is a significant property of sub-homogeneous positive monotone systems
since the existence of time-delays may, in general, make a stable system unstable
(and, in some special cases, render an unstable system stable).

Example 4.2. Consider the time-delay system G given by (4.1) with

f(x1, x2) =

⎡
⎢
⎢
⎢
⎢
⎣

−2x1 +
x2
x2+2

−2x2 +
x1
x1+2

⎤
⎥
⎥
⎥
⎥
⎦

, g(x1, x2) =
⎡
⎢
⎢
⎢
⎣

x1

x2

⎤
⎥
⎥
⎥
⎦
. (4.7)

One can verify that f is cooperative on Rn+ and g is order-preserving on Rn+ . Since
f(0) + g(0) = 0, it follows from Proposition 4.2 that (4.7) is positive and monotone.
Moreover, both f and g are sub-homogeneous of degree zero with respect to the
standard dilation map. Thus, (4.7) is also sub-homogeneous. This system without
time-delays has a globally asymptotically stable equilibrium at the origin [129,
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Example 4.1]. Therefore, Theorem 4.2 guarantees that (4.7) with any bounded time-
varying delays is still globally asymptotically stable. For example, let τ(t) = 4+sin(t),
t ≥ 0. Two state trajectories of the system starting from the initial conditions
ϕ1(t) = (2,1) (solid line) and ϕ2(t) = (1,2) (dashed line), t ∈ [−5,0], respectively,
are illustrated in Figure 4.2. The origin is asymptotically stable, as expected. ∎
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Figure 4.2: Illustration of asymptotic stability of the sub-homogeneous positive
monotone system (4.7) for different initial conditions. The solid and dashed lines
show trajectories of (4.7) corresponding to the initial conditions ϕ1(t) = (2,1) and
ϕ2(t) = (1,2), t ∈ [−5,0], respectively.

The next lemma, which is instrumental for the proof of Theorem 4.2, estab-
lishes a necessary condition for the global asymptotic stability of general positive
monotone systems (not necessarily sub-homogeneous) with bounded heterogeneous
time-varying delays.

Lemma 4.1. For the time-delay system G given by (4.1), suppose that f is coop-
erative on Rn+ and g is order-preserving on Rn+. If the positive monotone system G
has a globally asymptotically stable equilibrium at x⋆ ∈ Rn+, the following statements
hold:

(i) There does not exist a vector w ≠ x⋆ such that w ≥ x⋆ and

f(w) + g(w) ≥ 0. (4.8)
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(ii) There exists a vector v > 0 such that v > x⋆ and

f(v) + g(v) < 0. (4.9)

Proof. See Appendix 4.4.5. ∎

Lemma 4.1 provides a test for the global asymptotic stability of positive monotone
systems with bounded heterogeneous time-varying delays: if we can demonstrate
the existence of a vector w ≥ x⋆ satisfying (4.8) or prove there is no positive vector
v > x⋆ satisfying (4.9), then the equilibrium at x⋆ cannot be globally asymptotically
stable. The following example illustrates this idea.

Example 4.3. Consider the time-delay system described by (4.1) with

f(x1, x2) =
⎡
⎢
⎢
⎢
⎣

−x2
1 + x2

−x2

⎤
⎥
⎥
⎥
⎦
, g(x1, x2) =

⎡
⎢
⎢
⎢
⎣

x2

x2
1

⎤
⎥
⎥
⎥
⎦
. (4.10)

It is easy to verify that f is cooperative on Rn+ , g is order-preserving on Rn+ , and
f(0,0) + g(0,0) = (0,0). Thus, according to Proposition 4.2, (4.10) is a positive
monotone system with an equilibrium point at the origin. Since (1,1) ≥ (0,0) and

f(1,1) + g(1,1) = (1,0) ≥ (0,0),

it follows from Lemma 4.1 that for any bounded heterogeneous time-varying delays,
the origin is not globally asymptotically stable. For example, we take τ ij(t) = 2+sin(t),
i, j = 1,2, t ≥ 0, and the simulation result is shown in Figure 4.3. We can see that
the trajectory of (4.10) starting from the initial condition ϕ(t) = (1,1), t ∈ [−3,0],
does not converge to the origin. ∎
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Figure 4.3: Illustration of a trajectory of the positive monotone system (4.10) corre-
sponding to the initial condition ϕ(t) = (1,1), t ∈ [−3,0].
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Remark 4.2. Previous works in the literature established necessary conditions for
global asymptotic stability of positive monotone systems without time-delays [123,
129]. Lemma 4.1, therefore, is an extension of these results to positive monotone
systems of the form (4.1) with bounded heterogeneous time-varying delays.

The next example shows that the necessary conditions given in Lemma 4.1 are,
in general, not sufficient for the global asymptotic stability of monotone systems.

Example 4.4. Consider the time-delay system (4.1) with

f(x1, x2) =

⎡
⎢
⎢
⎢
⎢
⎣

− x1
1+x3

1

−x4
2

⎤
⎥
⎥
⎥
⎥
⎦

, g(x1, x2) =
⎡
⎢
⎢
⎢
⎣

x2

0

⎤
⎥
⎥
⎥
⎦
. (4.11)

Let the time-delay be given by τ1
2 (t) = 5− cos(t), t ≥ 0. It is straightforward to verify

that (4.11) is a positive monotone system with an equilibrium at the origin. Since
no non-zero vector w ≥ 0 satisfying (4.8) exists [123, Example 3.11] and

f(1, 1
4
) + g(1, 1

4
) = (−

1
4
,−

1
256

) < (0,0),

the necessary conditions stated in Lemma 4.1 holds. However, Figure 4.4 shows
that the trajectory of (4.11) corresponding to the initial condition ϕ(t) = (2,1),
t ∈ [−6,0], does not converge to the origin (x1(t) grows unboundedly). Therefore,
the positive monotone system (4.11) is not globally asymptotically stable, which
means that the necessary conditions in Lemma 4.1 are not sufficient. ∎
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Figure 4.4: Illustration of a trajectory of the positive monotone system (4.11) corre-
sponding to the initial condition ϕ(t) = (2,1), t ∈ [−6,0].

When a sub-homogeneous positive monotone system of the form (4.1) has a
unique equilibrium point in Rn+ , the necessary conditions provided by Lemma 4.1
are also sufficient. Specifically, we note the following.
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Corollary 4.1. For the time-delay system G given by (4.1), assume that f is coop-
erative on Rn+, g is order-preserving on Rn+, and both f and g are sub-homogeneous
of degree p with respect to the dilation map δrλ(x). Assume also that x⋆ is the only
equilibrium of the sub-homogeneous positive monotone system G in Rn+. Then, G is
globally asymptotically stable for any arbitrary bounded heterogeneous time-varying
delays if and only if there exists v > 0 such that v > x⋆ and

f(v) + g(v) < 0.

The following example illustrates how the results of Corollary 4.1 can be used to
analyze the delay-independent stability of a class of continuous-time power control
algorithms in wireless networks.

Example 4.5 (Continuous-time Power Control). Consider a wireless network
consisting of n mobile users. Let the transmitted power of user i at time t be given by
pi(t), and define p(t) = (p1(t), . . . , pn(t)). A class of continuous-time power control
algorithms, called standard power control algorithms [130], is described by

ṗi(t) = ki(−pi(t) + Ii(p(t))). (4.12)

Here, ki is a positive constant, Ii ∶ Rn+ ↦ R+ is the interference function modeling
the interference and noise experienced by the intended receiver of user i, and
I(p) = (I1(p), . . . , In(p)) satisfies the following properties:

(A1) I(p) > 0.

(A2) If p ≥ p′, then I(p) ≥ I(p′).

(A3) For all α > 1, αI(p) > I(αp).

Let K = diag(k1, . . . , kn). Then, (4.12) can be written in vector form as

ṗ(t) =K(−p(t) + I(p(t))).

In terms of (4.1), x = p, f(x) = −Kx and g(x) =KI(x). From (A2) and (A3), it is
clear that g is order-preserving on Rn+ and sub-homogeneous of degree zero with
respect to the standard dilation map. Since K is a diagonal matrix, −K is Metzler.
Thus, f is cooperative on Rn+ . It follows from Proposition 4.1 that the standard
power control algorithm (4.12) with any heterogeneous time-varying delays, given
by

ṗi(t) = ki(−pi(t) + Ii(p1(t − τ
i
1(t)), . . . , pn(t − τ

i
n(t)))), (4.13)

defines a sub-homogeneous monotone system. Thanks to (A1),

f(0) + g(0) > 0,
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which implies that (4.13) is a positive system. Therefore, the physical constraint that
the power of each user should be nonnegative (pi(t) ≥ 0 for all t ≥ 0) is automatically
fulfilled. The aim of this example is to study the asymptotic stability of (4.13) with
bounded heterogeneous time-varying delays. Assume that the sub-homogeneous
positive monotone system (4.13) has an equilibrium point in Rn+ , i.e., there exists a
power vector p⋆ ∈ Rn+ satisfying I(p⋆) = p⋆. From (A1), p⋆ > 0. Note also that p⋆ is
the unique equilibrium in Rn+ [126]. Pick a constant α > 1. We have

f(αp⋆) + g(αp⋆) =K(−αp⋆ + I(αp⋆))

<K(−αp⋆ + αI(p⋆))

=K(−αp⋆ + αp⋆)

= 0,

where we used (A3) to get the inequality and I(p⋆) = p⋆ to obtain the second equality.
Since αp⋆ > p⋆ > 0 and f(αp⋆) + g(αp⋆) < 0, it follows from Corollary 4.1 that the
standard power control algorithm (4.13) is globally asymptotically stable for all
bounded heterogeneous time-varying delays (provided that (4.13) has an equilibrium
point in Rn+). The asymptotic stability of continuous-time power control algorithms
with linear interference functions was investigated for constant delays in [131]
using the multivariate Nyquist criterion [132], and for bounded time-varying delays
in [113] within the context of positive linear systems. In this example, since every
linear interference function is also standard [126], we recover the delay independent
stability of power control algorithms involving linear interference functions as a
special case. ∎

4.2.3 Positive Linear Systems
We now discuss the delay-independent stability of positive linear systems of the
form

GL ∶

⎧⎪⎪
⎨
⎪⎪⎩

ẋi(t) = ∑
n
j=1 aijxj(t) +∑

n
j=1 bijxj(t − τ

i
j(t)), t ≥ 0,

xi(t) = ϕi(t), t ∈ [−τ,0],
(4.14)

where A = [aij] ∈ Rn×n is Metzler and B = [bij] ∈ Rn×n is nonnegative. It is easy to
verify that GL is a sub-homogeneous positive monotone system with an equilibrium
at the origin. We then have the following special case of Theorem 4.2.

Corollary 4.2. Consider the positive linear system GL given by (4.14) where A is
Metzler and B is nonnegative. The following statements are equivalent.

(i) GL without time-delays is globally asymptotically stable.

(ii) GL with any arbitrary bounded time-varying delay is globally asymptotically
stable.
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In the previous chapter, we have shown that the positive linear system GL without
time-delays is asymptotically stable if and only if GL is asymptotically stable for all
bounded time-varying delays. This result does not allow to conclude the asymptotic
stability of a non-delayed positive system from the stability of the corresponding
delayed system with some arbitrary delay (not necessarily all bounded delays). In
contrast, Corollary 4.2 shows that the asymptotic stability of GL under any arbitrary
bounded time-varying delay implies the asymptotic stability of the corresponding
delay-free system. Therefore, for bounded time-varying delays, Corollary 4.2 is
stronger than Corollary 3.3.

4.3 Summary

We extended delay-independent stability results for sub-homogeneous positive mono-
tone systems to allow for heterogeneous time-varying delays. Specifically, we proved
that a sub-homogeneous positive monotone system with bounded heterogeneous
time-varying delays is globally asymptotically stable if and only if the corresponding
delay-free system is globally asymptotically stable. Homogeneous positive monotone
systems and positive linear systems constitute special cases. We also derived a set of
necessary and sufficient conditions for delay-independent stability of general mono-
tone (not necessarily sub-homogeneous) systems. Illustrative examples demonstrated
the validity of our theoretical results.
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4.4 Appendix

In this section, we prove the main results of this chapter. We first state a key lemma
which is instrumental in our argument.

4.4.1 A Technical Lemma
Lemma 4.2. Consider the following system with constant delays, closely related to
the time-delay system (4.1) with heterogeneous time-varying delays:

⎧⎪⎪
⎨
⎪⎪⎩

ẏ(t) = f(y(t)) + g(y(t − τmax)), t ≥ 0,
y(t) = ψ(t), t ∈ [−τmax,0].

(4.15)

Here, f is cooperative on W, g is order-preserving on W, and τmax equals the upper
bound of the delays τ ij(t), i, j = 1, . . . , n, in (4.1).

1. Assume that there exists a vector v ∈W satisfying

f(v) + g(v) ≤ 0. (4.16)

Assume also that the initial conditions for (4.1) and (4.15) are ϕv(t) = v
and ψv(t) = v, t ∈ [−τmax,0], respectively. Then, the solution x(t, ϕv) to (4.1)
starting from ϕv(t) satisfies

x(t, ϕv) ≤ y(t, ψv), ∀t ≥ 0,

where y(t, ψv) is the solution to (4.15) with the initial condition ψv(t).

2. Assume that there is a vector w ∈W such that

f(w) + g(w) ≥ 0. (4.17)

If the initial conditions for (4.1) and (4.15) are ϕw(t) = w and ψw(t) = w,
t ∈ [−τmax,0], respectively, then

y(t, ψw) ≤ x(t, ϕw), ∀t ≥ 0,

where x(t, ϕw) and y(t, ψw) are solutions to (4.1) and (4.15), respectively.

Proof. Part (1). Let v ∈ W be a vector satisfying (4.16), and let y(t, ψv) be the
solution to (4.15) with the initial condition ψv(t) = v, t ∈ [−τmax,0]. Consider the
following system with heterogeneous time-varying delays

⎧⎪⎪
⎨
⎪⎪⎩

ẋi(t) = fi(x(t)) + gi(x1(t − τ
i
1(t)), . . . , xn(t − τ

i
n(t))) −

1
k
, t ≥ 0,

xi(t) = ϕi(t), t ∈ [−τmax,0],
(4.18)
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where k ∈ N. Let x(k)(t, ϕv) be the solution to (4.18) with the initial condition
ϕv(t) = v, t ∈ [−τmax,0]. Clearly,

x(k)(0, ϕv) = v ≤ y(0, ψv) = v.

We claim that x(k)(t, ϕv) ≤ y(t, ψv) for all t ≥ 0. If the result were false, we can
assume that there exist an index m ∈ {1, . . . , n} and a time t1 ≥ 0 such that

x(k)(t, ϕv) ≤ y(t, ψv), ∀t ∈ [0, t1],
x(k)m (t1, ϕv) = ym(t1, ψv),

(4.19)

and

D+x(k)m (t1, ϕv) ≥D
+ym(t1, ψv). (4.20)

Since f is cooperative, (4.19) implies that

fm(x(k)(t1, ϕv)) ≤ fm(y(t1, ψv)). (4.21)

As t1 − τmj (t1) ∈ [−τmax, t1] for all j ∈ {1, . . . , n} and x(k)(t, ϕv) = y(t, ψv) = v for all
t ∈ [−τmax,0], it follows from (4.19) that

x
(k)
j (t1 − τ

m
j (t1), ϕv) ≤ yj(t1 − τ

m
j (t1), ψv), (4.22)

irrespectively of whether t1 − τmj (t1) is nonnegative or not. On the other hand,
y(t, ψv) is non-increasing for all t ≥ 0 [69, Corollary 5.2.2]. Thus, for each j, we have

yj(t1 − τ
m
j (t1), ψv) ≤ yj(t1 − τmax, ψv), (4.23)

where we used the fact that τmj (t1) ≤ τmax to get the inequality. Since g is order-
preserving, it follows from (4.22) and (4.23) that

gm(x
(k)
1 (t1 − τ

m
1 (t1), ϕv), . . . , x

(k)
n (t1 − τ

m
n (t1), ϕv))

≤ gm(y1(t1 − τmax, ψv), . . . , yn(t1 − τmax, ψv))

= gm(y(t1 − τmax, ψv)). (4.24)

Using (4.21) and (4.24), the upper-right Dini-derivative of x(k)m (t, ϕv) along the
trajectories of (4.18) at t = t1 satisfies

D+x(k)m (t1, ϕv) = fm(x(k)(t1, ϕv)) + gm(x1(t1 − τm1 (t1), ϕv), . . . , xn(t1 − τmn (t1), ϕv)) −
1
k

≤ fm(y(t1, ψv)) + gm(y(t1 − τmax, ψv)) −
1
k

=D+ym(t1, ψv) −
1
k

<D+ym(t1, ψv),
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which contradicts (4.20). Therefore,

x(k)(t, ϕv) ≤ y(t, ψv), ∀t ≥ 0. (4.25)

Since k was an arbitrary natural number, (4.25) holds for all k ∈ N. By letting k →∞,
x(k)(t, ϕv) converges to the solution x(t, ϕv) of (4.1) uniformly on [−τmax,∞) [99,
Theorem 2.2]. This shows that x(t, ϕv) ≤ y(t, ψv) for all t ≥ 0.

Part (2). Now, let w ∈W be a vector satisfying (4.17), and let y(t, ψw) be the
solution to (4.15) with the initial condition ψw(t) = w, t ∈ [−τmax,0]. According
to [69, Corollary 5.2.2], y(t, ψw) is non-decreasing for all t ≥ 0. The rest of the proof
is similar to the one for Part (1) and thus omitted.

∎

4.4.2 Proof of Proposition 4.2
Assume that f(0) + g(0) ≥ 0. Let ϕ0(t) be the initial condition satisfying ϕ0(t) = 0,
t ∈ [−τmax,0]. Since f is cooperative on Rn+ and g is order-preserving on Rn+ , it
follows from Proposition 4.1 that the time-delay system (4.1) is monotone. For any
nonnegative initial condition ϕ, we then have

x(t, ϕ0) ≤ x(t, ϕ), ∀t ≥ 0, (4.26)

since ϕ0(t) ≤ ϕ(t), t ∈ [−τmax,0]. Let y(t, ψ0) be the solution to the time-delay
system (4.15) starting from the initial condition ψ0(t) = 0, t ∈ [−τmax, 0]. According
to [69, Corollary 5.2.2], y(t, ψ0) is non-decreasing, i.e,

0 = ψ0(0) ≤ y(t, ψ0), ∀t ≥ 0. (4.27)

On the other hand, according to Lemma 4.2, y(t, ψ0) ≤ x(t, ϕ0) for all t ≥ 0. It
follows from (4.26) and (4.27) that 0 ≤ x(t, ϕ) for all t ≥ 0. Therefore, the time-delay
system (4.1) is positive.

Conversely, assume that (4.1) is positive. Suppose, for contradiction, that there
exists an index m ∈ {1, . . . , n} such that fm(0) + gm(0) < 0. Then,

D+xm(0, ϕ0) = fm(0) + gm(0) < 0,

implying that there is some δ > 0 such that

xm(t, ϕ0) < xm(0, ϕ0) = 0, ∀t ∈ (0, δ).

Hence, x(t) ∉ Rn+ for t ∈ (0, δ), which is a contradiction.

4.4.3 Proof of Theorem 4.1
Let w and v be vectors such that w ≤ v and that (4.4) holds. Define ϕw(t) = w and
ϕv(t) = v, t ∈ [−τmax,0]. Since f is cooperative and g is order-preserving, according
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to Proposition 4.1, the time-delay system (4.1) is monotone. Thus, for any initial
condition ϕ satisfying (4.5), we have

x(t, ϕw) ≤ x(t, ϕ) ≤ x(t, ϕv), ∀t ≥ 0.

Define ψw(t) = w and ψv(t) = v, t ∈ [−τmax,0]. Let y(t, ψw) and y(t, ψv) be solu-
tions to the time-delay system (4.15) starting from ψw(t) and ψv(t), respectively.
According to Lemma 4.2, y(t, ψw) ≤ x(t, ϕw) and x(t, ϕv) ≤ y(t, ψv) for all t ≥ 0,
implying that

y(t, ψw) ≤ x(t, ϕ) ≤ y(t, ψv), ∀t ≥ 0. (4.28)

Since y(t, ψw) is non-decreasing and y(t, ψv) is non-increasing for t ≥ 0 [69, Corollary
5.2.2], we have

w ≤ y(t, ψw) ≤ y(t, ψv) ≤ v, ∀t ≥ 0.

Thus, both y(t, ψw) and y(t, ψv) are bounded and monotone. It now follows from [69,
Theorem 1.2.1] that y(t, ψw) and y(t, ψv) converge to an equilibrium of (4.15) in
[w, v], which must be x⋆, i.e.,

lim
t→∞

y(t, ψw) = lim
t→∞

y(t, ψv) = x
⋆. (4.29)

From (4.28) and (4.29), we conclude that limt→∞ x(t, ϕ) = x⋆. This completes the
proof.

4.4.4 Proof of Theorem 4.2
First, we will prove that (i) implies (ii).

(i)⇒ (ii) ∶ Assume that the sub-homogeneous positive monotone system (4.1)
without time-delays, given by

ẋ(t) = f(x(t)) + g(x(t)), (4.30)

has a globally asymptotically stable equilibrium at x⋆ ∈ Rn+ . Clearly, x⋆ is the only
equilibrium in Rn+ . Since (4.30) is positive, according to Proposition 4.2, we have

f(0) + g(0) ≥ 0. (4.31)

Moreover, as f + g is cooperative on Rn+ , it follows from [129, Proposition 4.2]
that there is v > 0 with v > x⋆ such that f(v) + g(v) < 0. This together with
sub-homogeneity of f and g implies that for any real constant γ with γ ≥ 1, we have

f(δrγ(v)) + g(δ
r
γ(v)) ≤ γ

pδrγ(f(v) + g(v)) < 0. (4.32)

For the time-delay system (4.1), it follows from Theorem 4.1 and inequalities (4.31)
and (4.32) that x⋆ is asymptotically stable when the initial condition ϕ satisfies

0 ≤ ϕ(t) ≤ δrγ(v), t ∈ [−τmax,0]. (4.33)
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Let ϕ ∈ C([−τmax,0],Rn+) be an arbitrary nonnegative initial condition. As ϕ(t)
is continuous and, hence, bounded on [−τmax,0], we can find γ ≥ 1 sufficiently
large such that (4.33) holds. Therefore, the time-delay system (4.1) with arbitrary
bounded heterogeneous time-varying delays is globally asymptotically stable for all
nonnegative initial conditions.

We next show that (ii) implies (i).
(ii) ⇒ (i) ∶ Assume that the time-delay system (4.1) with arbitrary bounded

heterogeneous time-varying delays τ ij(t), i, j = 1, . . . , n, has a globally asymptotically
stable equilibrium at x⋆ ∈ Rn+ . Since (4.1) is positive, it follows from Proposition 4.2
that (4.31) holds. Moreover, according to Lemma 4.1, there exists a vector v > 0
such that v > x⋆ and satisfies (4.9). Let x(t, x0) be the solution of the non-delayed
system (4.30) corresponding to the initial condition x(0) = x0. The proof will broken
up into three steps:

1. First, we show that the solutions x(t,0) and x(t, v) of (4.30) starting from
the initial conditions x(0) = 0 and x(0) = v, respectively, converge to x⋆ as
t→∞.

2. Second, we prove that for any nonnegative initial condition x0 ∈ Rn+ , there
exists a vector v > 0 such that v ≥ x0 and that (4.9) holds for v.

3. Finally, we show that for any x0 ∈ Rn+ , the solution x(t, x0) of (4.30) converges
to x⋆ as t→∞.

Step 1. Since f + g is cooperative, it follows from [69, Proposition 3.2.1] that
x(t,0) is non-decreasing and x(t, v) is non-increasing for all t ≥ 0, which implies
that

0 ≤ x(t,0) ≤ x(t, v) ≤ v, t ≥ 0.

Thus, x(t,0) and x(t, v) are bounded and monotone. It now follows from [69,
Theorem 1.2.1] that x(t,0) and x(t, v) converge to an equilibrium of (4.30) in [0, v],
which means that x(t,0), x(t, v)→ x̄⋆, where

f(x̄⋆) + g(x̄⋆) = 0.

We claim that x̄⋆ = x⋆. By contradiction, suppose this is not true. Then, it is easy
to verify that

x(t) = x̄⋆ ≠ x⋆, t ∈ [−τmax,∞),

satisfies (4.1). This shows that for the nonnegative initial condition ϕx̄⋆(t) = x̄
⋆,

t ∈ [−τmax,0], the solution x(t, ϕx̄⋆) of (4.1) does not converge to x⋆, contradicting
the fact that x⋆ is the globally asymptotically stable equilibrium of (4.1). Therefore,
x(t,0) and x(t, v) converge to x⋆ as t→∞.
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Step 2. Let x0 ∈ Rn+ be an arbitrary initial condition and let v > 0 be a vector
satisfying (4.9). Then, we can choose γ ≥ 1 such that x0 ≤ δ

r
γ(v). Define v = δrγ(v).

As f and g are sub-homogeneous, we have

f(v) + g(v) ≤ γpδrγ(f(v) + g(v)) < 0,

where the right-most inequality follows from (4.9).
Step 3. According to the previous step, for any initial condition x0 ∈ Rn+ , we

can find v > 0 such that v ≥ x0 and that (4.9) holds for v. As f + g is cooperative,
the non-delayed system (4.30) is monotone [69, p. 34], implying that

x(t,0) ≤ x(t, x0) ≤ x(t, v), ∀t ≥ 0.

From the first step, we have x(t,0), x(t, v)→ x⋆ as t→∞. Therefore, x(t, x0) also
converges to x⋆. This shows that (4.30) is globally asymptotically stable for all
nonnegative initial conditions.

4.4.5 Proof of Lemma 4.1
We first show that if the time-delay system (4.1) has a globally asymptotically stable
equilibrium at x⋆ ∈ Rn+ , then (i) holds.

(i) Assume that there is w ≠ x⋆ such that w ≥ x⋆ and that (4.8) holds. Define
ϕw(t) = w and ψw(t) = w, t ∈ [−τmax,0]. According to Lemma 4.2, we have

y(t, ψw) ≤ x(t, ϕw), ∀t ≥ 0, (4.34)

where x(t, ϕw) and y(t, ψw) are solutions of (4.1) and (4.15), respectively. Moreover,
y(t, ψw) is non-decreasing for all t ≥ 0 [69, Corollary 5.2.2], implying that

w ≤ y(t, ψw), ∀t ≥ 0. (4.35)

Therefore, from (4.34) and (4.35), we have w ≤ x(t, ϕw) for all t ≥ 0. This means
that x(t, ϕw)↛ x⋆, contradicting the fact that x⋆ is globally asymptotically stable.

(ii) According to part (i), we have

(f + g)(w) ≱ 0, ∀w ≥ x⋆, w ≠ x⋆.

Since f + g is cooperative on Rn+ , it follows from [129, Proposition 4.2] that there
is v > x⋆ satisfying (4.9).



Chapter 5

Asynchronous Contractive Iterations

Asynchrnous iterations appear naturally in parallel and distributed systems
and are heavily exploited in applications ranging from large-scale linear algebra

and optimization to distributed coordination of small embedded devices (see, e.g.,
[133–137] and references therein). Allowing nodes to operate in an asynchronous
manner simplifies the implementation of distributed algorithms and eliminates the
overhead associated with synchronization. However, care has to be taken since
asynchrony runs the risk of rendering an otherwise stable iteration unstable.

The dynamics of asynchronous iterations are much richer than their synchronous
counterparts, and quantifying the impact of asynchrony on the convergence prop-
erties of iterative algorithms remains challenging. Some of the first results on the
convergence of asynchronous iterations were derived by Chazan and Miranker [138],
who studied chaotic relaxations for solving linear systems of equations. Several
authors have proposed extensions of this pioneering work to nonlinear iterations
involving maximum norm pseudo-contractions (e.g., [139–141]) and to monotone
iterations (e.g., [142–144]). Powerful convergence results for broad classes of asyn-
chronous iterations, including maximum norm pseudo-contractions and monotone
mappings, under different assumptions on communication delays and update rates
were presented by Bertsekas [145] and Bertsekas and Tsitsiklis [16]. However, most of
the results in the literature only guarantee asymptotic convergence of asynchronous
iterations. This chapter complements the existing work by developing convergence
theorems that characterize convergence rates of asynchronous iterations and quantify
how these rates depend on the update intervals and information delays.

Contributions of the Chapter. We focus on iterations involving maximum
norm pseudo-contractions under the general asynchronous model introduced in [16,
145], which allows for heterogeneous and time-varying communication delays and
update rates. These iterations arise in a variety of algorithms, such as certain classes
of linear fixed-point iterations and gradient descent methods [16, 146], optimum
multiuser detection algorithms [147], distributed algorithms for averaging [148], and
power control algorithms in wireless networks [14]. Our main theorem provides a
powerful approach for characterizing the rate of convergence of totally asynchronous

81
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iterations, where both the update intervals and communication delays may grow
unbounded. When specialized to partially asynchronous iterations (where the update
intervals and communication delays have a fixed upper bound), or to particular
classes of unbounded delays and update intervals, our approach allows to explicitly
quantify how the degree of asynchronism affects the convergence rate. Several
examples are worked out to demonstrate that our main theorem recovers and
improves on existing results, and that it allows to characterize the solution times
for several classes of asynchronous iterations that have not been addressed before.

Outline of the Chapter. Section 5.1 reviews partially and totally asynchronous
models of computation and recalls some basic results about fixed point iterations
involving pseudo-contractions in the block-maximum norm. Section 5.2 presents
our main results on the convergence rates of asynchronous iterations. Section 5.3
demonstrates how our results can be used to analyze the impact of asynchronism on
the convergence rate of power control algorithms in wireless networks. Numerical
examples are presented in Section 5.4 to illustrate the accuracy of our guaranteed
bounds on the convergence rate of asynchronous power control algorithms. Finally,
concluding remarks are given in Section 5.5.

5.1 Problem Formulation

We consider iterative algorithms on the form

xi(t + 1) = fi(x1(t), . . . , xm(t)), t ∈ N0, (5.1)

where i = 1, . . . ,m, xi ∈ Rni , and fi ∶ Rn → Rni are continuous functions with
n = n1 + . . . + nm. A vector x⋆ = (x⋆1, . . . , x

⋆
m) ∈ Rn is called a fixed point of the

function f(x) = (f1(x), . . . , fm(x)) if

x⋆i = fi(x
⋆
1, . . . , x

⋆
m), i = 1, . . . ,m.

The iteration (5.1) can be viewed as a network of m nodes, each responsible for
updating one of the m subvectors of x so as to find a global fixed point of f . The
reason is that when the sequence {xi(t)} generated by (5.1) converges to x⋆i for
each i, then x⋆ is a fixed point of f .

For spaces Rni , let us fix some norms ∥ ⋅ ∥i, i = 1, . . . ,m. Then, for each vector
x = (x1, . . . , xm) ∈ Rn, the block-maximum norm is defined by

∥x∥wb = max
1≤i≤m

∥xi∥i
wi

,

where wi are positive constants. Note that when ni = 1 for each i, the block-maximum
norm reduces to the maximum norm defined by

∥x∥w∞ = max
1≤i≤m

∣xi∣

wi
.
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Definition 5.1. A mapping f ∶ Rn → Rn is called a pseudo-contraction with respect
to the block-maximum norm if there exists c ∈ [0,1) such that

∥f(x) − x⋆∥wb ≤ c ∥x − x⋆∥wb , ∀x ∈ Rn,

where x⋆ is a fixed point of f . The scalar c is called the contraction modulus of f .

Pseudo-contractions have at most one fixed point, to which the iterates produced
by (5.1) converge at a linear rate [16]. Note that in contrast to contraction mappings,
the existence of a fixed point is part of the definition of pseudo-contractions.

The algorithm described by (5.1) is synchronous in the sense that all nodes
update their states at the same time and have access to the states of all other nodes.
Synchronous execution is possible if there are no communication faults or delays in
the network and all nodes operate in synch with a global clock. In practice, these
requirements are hard to satisfy: local clocks in different nodes tend to drift and the
communication latency between nodes can be significant and unpredictable. The
drawback with insisting on synchronous operation in an inherently asynchronous
environment is that nodes will spend a significant time idle, especially if some nodes
are faster because of, for example, higher processor power or smaller workload per
iteration.

In an asynchronous implementation of the iteration (5.1), each node updates its
state at its own pace, using possibly outdated information from the other nodes.
Such iterations can be written as

xi(t + 1) =
⎧⎪⎪
⎨
⎪⎪⎩

fi(x1(s
i
1(t)), . . . , xm(sim(t))), t ∈ T i,

xi(t), t /∈ T i,
(5.2)

where T i is the set of times when node i executes an update, and sij(t) is the time at
which the most recent version of xj available to node i at time t was computed [16].
Note that 0 ≤ sij(t) ≤ t for all t ∈ N0. We can view

τ ij(t) ∶= t − s
i
j(t),

as the communication delay from node j to node i at time t. It is clear that the
synchronous iteration (5.1) is a special case of (5.2) where τ ij(t) = 0, and T i = N0
for all t ∈ N0 and all i, j = 1, . . . ,m.

Based on the assumptions on communication delays and update rates, asyn-
chronous algorithms are classified into totally asynchronous and partially asyn-
chronous:

Assumption 5.1 (Total Asynchronism [16, §6]). For the asynchronous itera-
tion (5.2), there holds:

1. The sets T i are infinite subsets of N0 for all i = 1, . . . ,m.

2. limt→∞ sij(t) =∞ for all i, j = 1, . . . ,m.
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Loosely speaking, Assumption 5.1.1 guarantees that no node ceases to execute
its update while Assumption 5.1.2 guarantees that old information is eventually
purged from the computation. Under total asynchronism, the delay τ ij(t) can become
unbounded as t increases. This is the main difference with partially asynchronous
iterations, where delays are bounded; in particular, the following assumption holds.

Assumption 5.2 (Partial Asynchronism [16, §7]). For the asynchronous iter-
ation (5.2), there exists a positive integer B such that:

1. For every i and for every t ∈ N0, at least one of the elements of the set
{t, t + 1, . . . , t +B − 1} belongs to T i.

2. There holds 0 ≤ τ ij(t) ≤ B − 1, for all i and j, and all t ∈ N0 belonging to T i.

3. There holds τ ii (t) = 0 for all i and t ∈ T i.

Assumptions 5.2.1 and 5.2.2 ensure that both the communication delays and the
time interval between updates executed by each node are bounded. When B = 1,
this model reduces to the synchronous iteration (5.1). Assumption 5.2.3 states that
node i always uses the latest version of its own component xi.

While convergent synchronous iterations may diverge in the face of asynchronism,
the asynchronous iteration (5.2) involving pseudo-contractions in the block-maximum
norm also converges to the fixed point under total asynchronism [16]. In other
words, if f is a pseudo-contraction with respect to the block-maximum norm, then
the synchronous iteration (5.1) can tolerate arbitrary large communication and
computation delays. However, [16] did not quantify how bounds on the time-delays
and update rates of nodes affect the convergence rate of (5.2). One could expect that
the convergence rate would become slower with increasing communication delays or
with more infrequent updates. Our main objective in this chapter is therefore to give
explicit estimates of the convergence rate of asynchronous iterations involving block-
maximum norm pseudo-contractions under different assumptions on communication
delays and update rates.

5.2 Convergence Rate of Asynchronous Iterations

We will now develop a theorem that provides guaranteed convergence rates of the
asynchronous iteration (5.2) under various classes of total asynchronism. Our proof
uses a continuous non-increasing function λ ∶ R+ → R+ satisfying

lim
t→∞

λ(t) = 0,

and shows that for all i = 1, . . . ,m, and for all t ∈ N0,

1
wi

∥xi(t) − x
⋆
i ∥i ≤Mλ(tik), t ∈ (tik, t

i
k+1],
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where M is a positive constant, and tik and tik+1 are two consecutive elements of
the set T i. The function λ(t) quantifies how fast the sequence of vectors generated
by (5.2) converges to the fixed point x⋆. For example, if λ(t) = ρt with ρ ∈ (0,1),
then {xi(t

i
k)} converges at a linear rate to x⋆i ; and if λ(t) = t−ξ with ξ > 0, then

∥xi(t
i
k) − x

⋆
i ∥i is upper bounded by a polynomial function of time. Similar to the

asynchronous iterates themselves, the guaranteed upper bound is left unchanged
when t ∉ T i and decreases after update times; see Figure 5.1.

t
Mλ(t)

tik−1

Mλ(tik−1)

tik

Mλ(tik)

tik+1

Mλ(tik+1)

Figure 5.1: Illustration of the guaranteed upper bound on the iterates generated by
the asynchronous iteration (5.2). Here, tik−1, tik and tik+1 are three consecutive elements
of the set T i.

Theorem 5.1. Consider the asynchronous iteration (5.2). Suppose that the following
conditions hold:

i) f is a pseudo-contraction with respect to the block-maximum norm with con-
traction modulus c.

ii) There exist ∆ ∈ N0 and functions βi ∶ R+ → R+ such that for all t ≥ ∆,

t − tik ≤ β
i(t) ≤ t, t ∈ (tik, t

i
k+1], (5.3)

where tik and tik+1 are two consecutive elements of T i.

iii) There is a non-increasing function λ ∶ R+ → R+ such that

lim
t→∞

λ(t) = 0,

and that for all i and j,

lim
t→∞

λ(sij(t) − β
j(sij(t)))

λ(t)
<

1
c
. (5.4)
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Then, for all i and all t ∈ N, the sequence of vectors generated by (5.2) under total
asynchronism satisfies

1
wi

∥xi(t) − x
⋆
i ∥i ≤Mλ(tik), t ∈ (tik, t

i
k+1],

where M is a positive constant.

Remark 5.1. The value βi(tk+1) is an upper bound on the time interval between
node i’s kth and k + 1st updates. Letting βi(t) = β, β ∈ N, means that node i performs
at least one update during any time interval of length β. In general, βi(t) may be
unbounded (we will consider such a case in Example 1).

We are now ready to prove the theorem.

Proof. (of Theorem 5.1)
For each i = 1, . . . ,m, let ti0 be the first element of the set T i, i.e., tik ≥ ti0 for all

tik ∈ T
i. According to Assumption 5.1.2, there exists a time t̂ ∈ N0 large enough such

that for all i and j,

sij(t) ≥ max{∆, max
1≤i≤m

{ti0} + 1}, ∀t ≥ t̂. (5.5)

From (5.4), we can find a sufficiently large time t̃ ∈ N0 so that

cλ(sij(t) − β
j(sij(t))) ≤ λ(t), ∀t ≥ t̃. (5.6)

Let t = max{ t̂, t̃ }, and define

M =
∥x(0) − x⋆∥wb

λ(t)
.

It follows from Proposition 2.1 in [16, §6.2] that the sequence {x(t)} generated by
the asynchronous iteration (5.2) satisfies

1
wi

∥xi(t) − x
⋆
i ∥i ≤ ∥x(0) − x⋆∥wb , ∀t ∈ N0,

for each i = 1, . . . ,m. Thus,

max
0≤t≤t

{
1
wi

∥xi(t) − x
⋆
i ∥i

λ(t)
} ≤ max

0≤t≤t
{
∥x(0) − x⋆∥wb

λ(t)
}

≤
∥x(0) − x⋆∥wb

λ(t)

=M,
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where for the second inequality, we used the fact that λ(t) is non-increasing on R+.
This implies that

1
wi

∥xi(t) − x
⋆
i ∥i ≤Mλ(t),

for t ∈ {0, . . . , t}. Since λ(t) is non-increasing, we have λ(t) ≤ λ(tik) for t ≥ tik. Thus,

1
wi

∥xi(t) − x
⋆
i ∥i ≤Mλ(tik), t ∈ (tik, t

i
k+1], (5.7)

for all t ∈ {0, . . . , t}. We will show by induction that (5.7) also holds for all t ≥ t.
Assume for induction that (5.7) holds for all t up to some t′ ∈ N0, where t′ ≥ t. Let
tik′ and tik′+1 be two consecutive elements of T i such that t′ ∈ (tik′ , t

i
k′+1]. Using the

induction hypothesis, we have

1
wi

∥xi(t
′) − x⋆i ∥i ≤Mλ(tik′). (5.8)

We now prove that xi(t′ + 1) satisfies (5.7).
Case 1) If t′ ∉ T i, then t′+1 ∈ (tik′ , t

i
k′+1]. Moreover, from (5.2), xi(t′+1) = xi(t′).

It follows from (5.8) that

1
wi

∥xi(t
′ + 1) − x⋆i ∥i =

1
wi

∥xi(t
′) − x⋆i ∥i ≤Mλ(tik′).

Therefore, in this case, (5.7) is true for t′ + 1.
Case 2) If t′ ∈ T i, or, equivalently, t′ = tik′+1, then

1
wi

∥xi(t
′ + 1) − x⋆i ∥i =

1
wi

∥fi(x1(s
i
1(t

′)), . . . , xm(sim(t′))) − x⋆i ∥i

≤ c∥(x1(s
i
1(t

′)), . . . , xm(sim(t′))) − x⋆∥
w

b

= c max
1≤j≤m

{
1
wj

∥xj(s
i
j(t

′)) − x⋆j ∥j} , (5.9)

where the inequality holds since f is a pseudo-contraction with respect to the
block-maximum norm. As t′ ≥ t ≥ t̂, (5.5) implies that sij(t′) > t

j
0 for each j. Let tjks

and tjks+1 be two consecutive elements of T j such that

sij(t
′) ∈ (tjks , t

j
ks+1].

Since sij(t′) ≤ t′, the induction hypothesis yields

1
wj

∥xj(s
i
j(t

′)) − x⋆j ∥i ≤Mλ(tjks), (5.10)
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for all j. Moreover, (5.5) also implies that sij(t′) ≥ ∆. It follows from (5.3) that

tjks ≥ s
i
j(t

′) − βj(sij(t
′)) ≥ 0.

As λ(t) is non-increasing on R+, this in turn implies

λ(tjks) ≤ λ(s
i
j(t

′) − βj(sij(t
′))). (5.11)

Substituting (5.10) into (5.9), then using (5.11), we obtain

1
wi

∥xi(t
′ + 1) − x⋆i ∥i ≤ cM max

1≤j≤m
λ(tjks)

≤ cM max
1≤j≤m

λ(sij(t
′) − βj(sij(t

′)))

≤Mλ(t′)

=Mλ(tik′+1), (5.12)

where the last inequality follows from (5.6). Note that

t′ + 1 = tik′+1 + 1 > tik′+1,

implying that t′ + 1 ∈ (tik′+1, t
i
k′+2]. From (5.12), we conclude that (5.7) holds for

t′ + 1. The induction proof is complete. ∎

Theorem 5.1 shows that any function λ(t) satisfying condition (iii) can be used
to estimate the convergence rate of totally asynchronous iterations. From (5.4), it is
clear that the admissible choices for λ(t) depend on the asymptotic behaviour of
βi(t) and sij(t). This means that the rate at which the nodes execute their updates
as well as the way communication delays tend large affect the convergence rate.
To clarify this statement, we will analyze a few special cases in detail. First, we
consider the partially asynchronous model. The following result gives a bound on
the convergence rate of asynchronous iterations involving block-maximum norm
pseudo-contractions under this model of asynchronicity.

Theorem 5.2. Consider the asynchronous iteration (5.2) under partial asynchro-
nism. Assume that f is a block-maximum norm pseudo-contraction with contraction
modulus c. Then, for all i and all t ∈ N, we have

1
wi

∥xi(t) − x
⋆
i ∥i ≤Mρt

i
k , t ∈ (tik, t

i
k+1], (5.13)

where M is a positive constant, tik and tik+1 are two consecutive elements of T i, and

ρ = c
1

2B−1 . (5.14)
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Proof. According to Assumption 5.2.1, we have

t − tik ≤ B ≤ t, t ∈ (tik, t
i
k+1],

for t ≥ B. Thus, we can choose βi(t) = B, i = 1, . . . ,m. Pick a constant ρ̂ such that

ρ̂ ∈ (ρ,1), (5.15)

where ρ is defined by (5.14). Let λ(t) = ρ̂t, t ≥ 0. Clearly, λ(t) is non-increasing on
R+. Moreover, for all i and j, we obtain

c lim
t→∞

λ(sij(t) − β
j(sij(t)))

λ(t)
= c lim

t→∞

ρ̂s
i
j(t)−B

ρ̂t
= c lim

t→∞

ρ̂t−τ
i
j (t)−B

ρ̂t

≤ c lim
t→∞

ρ̂t+1−2B

ρ̂t

= cρ̂1−2B

< cρ1−2B

= 1.

The first inequality uses the fact that under Assumption 5.2.2, τ ij(t) ≤ B − 1 for
t ∈ N0. The last equality uses (5.14). Therefore, condition (iii) of Theorem 5.1 holds
for all ρ̂ satisfying (5.15). Hence, the sequence {x(t)} generated by the asynchronous
iteration (5.2) satisfies (5.13).

∎

According to Theorem 5.2, asynchronous iterations involving block-maximum
norm pseudo-contractions still converge at a linear rate under partial asynchronism.
Note that c1/(2B−1) is monotonically increasing with B and approaches one as B
tends to infinity. Hence, the guaranteed convergence rate of partially asynchronous
iterations deteriorates with increasing delays.

Contrary to the typical upper bounds on the convergence rate, the guaranteed
bounds provided by Theorem 5.1 do not decrease at every time step, but only at
the update times tik ∈ T i. Therefore, our estimation of convergence rate, in general,
depends on how fast the sequence {tik} grows large. For example, Theorem 5.2
shows that the sequence {∥xi(t) − x

⋆
i ∥i} generated by the partially asynchronous

iteration (5.2) is upper bounded by Mρt
i
k . However, under partial asynchronism,

we have

0 ≤ t −B ≤ tik, t ∈ (tik, t
i
k+1],

for all t ≥ B. Thus,

Mρt
i
k ≤Mρt−B =M ′ρt, t ∈ (tik, t

i
k+1],
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where M ′ =Mρ−B . This shows that

1
wi

∥xi(t) − x
⋆
i ∥i ≤M

′ρt,

for each i and t ≥ B. Therefore, partially asynchronous iterations involving block-
maximum norm pseudo-contractions attains a rate of O(ρt).

Under partial asynchronism, both update rates and communication delays are
bounded. However, Theorem 5.1 can also be used to find guaranteed convergence
rates of asynchronous iterations with unbounded communication delays and update
intervals. To make our point, we establish convergence rates for a particular class of
totally asynchronous iterations described by the following assumption:

Assumption 5.3. For the asynchronous iteration (5.2), there exist B ∈ N, α ∈ [0, 1),
and tα ∈ N0 such that

1. For every i and for every t ∈ N0, at least one of the elements of the set
{t, t + 1, . . . , t +B − 1} belongs to T i.

2. 0 ≤ τ ij(t) ≤ αt, for all i, j = 1, . . . ,m, and all t ≥ tα.

Time-delays satisfying Assumption 5.3.2 may be unbounded (take, for example,
τ ij(t) = ⌊0.2t⌋, t ∈ N0). The associated convergence result now reads as follows.

Theorem 5.3. Consider the asynchronous iteration (5.2) under Assumption 5.3.
Assume that f is a pseudo-contraction with contraction modulus c with respect to
the block-maximum norm. Then, the sequence {x(t)} generated by (5.2) satisfies

1
wi

∥xi(t) − x
⋆
i ∥i ≤M (

tik
B
+ 1)

−ξ

, t ∈ (tik, t
i
k+1], (5.16)

where M is a positive constant, tik and tik+1 are two consecutive elements of T i, and

ξ =
ln c

ln(1 − α)
. (5.17)

Proof. Similar to the proof of Theorem 5.2, we choose βi(t) = B, i = 1, . . . ,m. Let

λ(t) = (
t

B
+ 1)

−ξ̂

, t ≥ 0,

where ξ̂ is a positive constant satisfying

ξ̂ ∈ (0, ξ). (5.18)
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We then have

c lim
t→∞

λ(sij(t) − β
j(sij(t)))

λ(t)
= c lim

t→∞
(

t/B + 1
(sij(t) −B)/B + 1

)

ξ̂

= c lim
t→∞

(
t +B

t − τ ij(t)
)

ξ̂

≤ c lim
t→∞

(
t +B

(1 − α)t
)

ξ̂

=
c

(1 − α)ξ̂

<
c

(1 − α)ξ

= 1,

where for the first inequality, we used the fact that

0 ≤ (1 − α)t ≤ t − τ ij(t), t ≥ tα.

The second inequality follows from (5.18). Therefore, according to Theorem 5.1, the
sequence {x(t)} generated by the asynchronous iteration (5.2) satisfies (5.16).

∎

Theorem 5.3 shows that the convergence rate of the asynchronous algorithm (5.2)
under unbounded delays satisfying Assumption 5.3 is upper bounded by a polynomial
function of time. From (5.17), we can see that the rate at which the unbounded
delays grow large, α, affects ξ. Specifically, ξ is monotonically decreasing with α and
approaches zero as α tends to one. In addition, the upper bound on the convergence
rate is inversely proportional to B. It follows that the guaranteed convergence rates
get increasingly slower as either delays are allowed to grow quicker when t→∞ or
nodes execute less frequently.

Remark 5.2. Under Assumption 5.3.1, we have

0 ≤ t −B ≤ tik, t ∈ (tik, t
i
k+1],

for all t ≥ B, implying that t/B ≤ tik/B + 1. Therefore, according to Theorem 5.3,
the sequence {x(t)} generated by (5.2) satisfies

1
wi

∥xi(t) − x
⋆
i ∥i ≤M (

t

B
)
−ξ

, t ≥ B.

This shows that the convergence rate of the asynchronous iteration (5.2) with
unbounded delays satisfying Assumption 5.3 is O(t−ξ).

The guaranteed bounds provided by Theorems 5.2 and 5.3 are derived under the
assumption that the update intervals of all nodes are bounded by a constant B, i.e.,

tik+1 − t
i
k ≤ B, (5.19)
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for any two consecutive elements of T i. However, Theorem 5.1 allows time-varying
upper bounds on both update rates and communication delays. Rather than de-
veloping theorems for specific combinations of update rates and time-delays, we
illustrate the principle on a simple example.

Example 5.1. Consider the following asynchronous iteration

x(t + 1) =
⎧⎪⎪
⎨
⎪⎪⎩

1
2x(t), t ∈ T,

x(t), t /∈ T,
(5.20)

where x ∈ R, and T = {2k ∣ k ∈ N0}. In terms of (5.2), f(x) = 1
2x. Note that f is

a pseudo-contraction with c = 1
2 and fixed point x⋆ = 0. For any two consecutive

elements of T , we have

tk+1 − tk = 2k, k ∈ N0.

Thus, there is no B satisfying (5.19). However, for all t ∈ N,

t − tk ≤
1
2
t ≤ t, t ∈ (tk, tk+1],

implying that (5.3) holds with β(t) = t/2. Since the non-increasing function λ(t) = 1/t
satisfies condition (iii) of Theorem 5.1, it follows that

∣x(t)∣ ≤
M

tk
, t ∈ (tk, tk+1].

One can also verify that the sequence {x(t)} generated by (5.20) is given by

x(t) =
x(0)/2
tk

, t ∈ (tk, tk+1],

for all t ≥ 2. This shows that, in this example, both the iteration (5.20) and our
guaranteed upper bound have the same convergence rate. ∎

Remark 5.3. As also stressed in [149], very few results on convergence rates
of asynchronous iterations have appeared in the literature (see e.g., [16, 140] for
exceptions). In particular, [16, §6.3.5] showed that if delays are bounded and T i = N0
for each i (tik+1 − t

i
k = 1), then asynchronous iterations involving block-maximum

norm pseudo-contractions converge linearly to the fixed point. Theorems 5.2 and 5.3
as well as Example 5.1 demonstrate that not only can Theorem 5.1 recover the
results in [16], but it also quantifies the convergence rates of asynchronous iterations
with unbounded upper bounds on update intervals and communication delays.
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5.3 Asynchronous Algorithm for Power Control

Next, we will use our main results to analyze the convergence of asynchronous power
control algorithms in wireless networks. To this end, consider a wireless network
where n mobile users communicate over the same frequency band. Since concurrent
transmissions interfere with each other, users must transmit with sufficient power
to overcome the interference caused by the others. However, increasing the transmit
power of an individual user will not only increase its own power consumption
(and hence drain the battery of the device quicker), but it will also generate more
interference to the other users. Thus, a natural design goal is to minimize the total
power consumption while guaranteeing that all users overcome the interference
caused by the others. The optimal power allocation is then the one that solves the
problem:

min
p∈Rn

n

∑
i=1
pi

subject to pi ≥ Ii(p),

i = 1, . . . , n.

(5.21)

Here, p = (p1, . . . , pn), pi ∈ R+ is the transmit power of user i, and Ii(p) is the
interference function modeling the effective interference of other users that user i
must overcome. The definition of Ii(p) depends on the communication technology,
network configuration and user requirements; see e.g. [126] for a wide range of
examples. One of the simplest interference functions is the linear one, given by

Ii(p) = γi
∑j≠i gijpj + hi

gii
, (5.22)

where gij ∈ R+ is the channel gain between user j and the receiver of user i, γi is
the target Signal-to-Interference-and-Noise Ratio (SINR) of user i, and hi is the
background noise at the receiver of user i.

As observed by Yates [126], linear and several important nonlinear interference
functions share common properties that allow them to be analyzed in a common
framework. This observation led to the definition of standard interference functions.

Definition 5.2 (Standard Interference Function). A function I ∶ Rn+ → Rn+ is
called a standard interference function, if for all p ≥ 0, the following properties are
satisfied:

• Positivity: I(p) > 0.

• Monotonicity: If p ≥ p′, then I(p) ≥ I(p′).

• Scalability: For all α > 1, αI(p) > I(αp).



94 Asynchronous Contractive Iterations

When the interference function I(p) is standard and it has a fixed point, then
the optimization problem (5.21) is feasible, and its unique solution is given by the
fixed point of the iteration

pi(t + 1) = Ii(p(t)), t ∈ N0, (5.23)

where i = 1, . . . , n [126]. The computation of the optimal transmit power by this
iteration is simpler than using traditional Lagrangian methods, since no dual
variables need to be stored and manipulated. Each user is only required to update
its transmit power at every time step, using information of the transmit powers
used by all users in the previous iteration.

Standard interference functions do not necessarily have fixed points in the
positive orthant (consider for example I(p) = p+1), and the existence of fixed points
has to be verified separately. Furthermore, contrary to the result for contraction
mappings, no guarantees on the convergence rate of the iterates involving standard
interference functions are given. Already this should raise the suspicion that standard
interference functions do not define contraction mappings. The following simple
example establishes that this suspicion is indeed correct.

Example 5.2. Consider I(p) = 2p + 1, where 1 is the vector with all components
equal to 1. One can verify that I(p) is a standard interference function. However,
∥I(p) − I(p′)∥ = 2∥p − p′∥, so I(p) is not contractive. ∎

This example provides motivations for seeking stronger conditions than standard
interference function to ensure contractivity, hence linear convergence rates of the
iterations. To this end, one could certainly make a separate analysis of contractivity
of the particular interference functions at hand. However, if one can prove contrac-
tivity, particularly in the weighted maximum norm, then the interference function
framework brings little additional value. The beauty of the framework lies in the
easily verifiable conditions that guarantee synchronous and asynchronous conver-
gence. Next, we will show that a slight reformulation of the scalability condition
ensures contractivity.

We propose to study a class of interference functions which we call contractive.

Definition 5.3 (Contractive Interference Function). A function I ∶ Rn+ → Rn+
is said to be a contractive interference function if it, for all p ≥ 0, satisfies the
following conditions:

• Positivity: I(p) > 0.

• Monotonicity: If p ≥ p′, then I(p) ≥ I(p′) .

• Contractivity: There exists a constant c ∈ [0,1) and a vector v > 0 such that
for all ε > 0,

I(p + εv) ≤ I(p) + cεv.
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Note that the two first conditions are the same as for standard interference
functions, but the scalability condition has now been replaced by contractivity.

As shown in the next theorem, contractive interference functions define contrac-
tion mappings, which implies that the associated iterations (5.23) have unique fixed
points and linear convergence rates.

Theorem 5.4. If I ∶ Rn+ → Rn+ is a contractive interference function, then it has a
unique fixed point p⋆ ∈ Rn+. Moreover, for every nonnegative initial vector p(0), the
sequence {p(t)} generated by (5.23) converges linearly to p⋆ as follows

∥p(t) − p⋆∥v∞ ≤ ct∥p(0) − p⋆∥v∞.

Proof. Let p ≠ p′. Since ∣pi − p
′
i∣ ≤ ∥p − p′∥v∞vi for each i = 1, . . . , n, we have

p = p′ + p − p′

≤ p′ + ∥p − p′∥v∞ v .

It follows from monotonicity and contractivity properties that

I(p) ≤ I(p′ + ∥p − p′∥v∞ v)

≤ I(p′) + c∥p − p′∥v∞ v .

By interchanging the roles of p and p′, we have

I(p′) ≤ I(p) + c∥p − p′∥v∞ v.

So for all components of I(p), we obtain ∣Ii(p)− Ii(p
′)∣ ≤ c∥p−p′∥v∞vi, which implies

that

∥I(p′) − I(p)∥v∞ ≤ c∥p − p′∥v∞.

Therefore, I is a contraction mapping with respect to the maximum norm and the
result follows. ∎

To show that the concept of contractive interference functions is useful for
analyzing power control algorithms, we consider the linear interference function
described in (5.22). Equation (5.22) can be rewritten as

Ii(p) =
n

∑
j=1

gijpj + hi, i = 1, . . . , n,

where hi = γi higii , and

gij =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

γi
gij

gii
, j ≠ i,

0, j = i.
(5.24)

Define G as an n×n matrix that has gij as its elements. We then have the following
result.
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Theorem 5.5. If ∥G∥v∞ < 1 for some v > 0, then the linear interference func-
tion (5.22) is a contractive interference function with c = ∥G∥v∞.

Proof. The linear interference function is positive and monotone. Furthermore,

Ii(p + εv) =
n

∑
j=1

gijpj + hi + ε
n

∑
j=1

gijvj

≤ Ii(p) + ε∥G∥v∞vi .

Hence, it is also contractive with c = ∥G∥v∞. ∎

Since G is a square nonnegative matrix, ρ(G) < 1 is a necessary and sufficient
condition for the existence of a positive vector v for which ∥G∥v∞ < 1 [16, Corollary
2.6.1]. When the matrix G is irreducible, which is often a reasonable assumption
(since we are not considering totally isolated groups of links that do not interact
with each other), it is worth noticing that the positive right Perron-Frobenius
eigenvector v is such that ρ(G) = ∥G∥v∞ [16, Proposition 2.6.6]. In either case,
Theorem 5.5 confirms that if ρ(G) < 1, then the power control algorithm involving
linear interference functions has a unique fixed point and a linear convergence rate.

In real-world networks, communication delays are inventible, and clock drift may
cause some users to execute more iterations than others. When communication delays
and asynchronous execution are accounted for, the power control algorithm (5.23)
becomes

pi(t + 1) =
⎧⎪⎪
⎨
⎪⎪⎩

Ii(p1(s
i
1(t)),⋯, pn(s

i
n(t))), t ∈ T i,

pi(t), t /∈ T i.
(5.25)

Since contractive interference functions are contractions with respect to the maximum
norm, Theorem 5.1 allows us to quantify the convergence rate of (5.25) under different
classes of communication delays and update rates. Consider, for example, a situation
where all mobiles update their powers at least once during any interval of length B,
and there exists a positive integer Dmax such that

0 ≤ τ ij(t) ≤Dmax, t ∈ N0. (5.26)

The following result gives a bound on the convergence rate of (5.25) under assump-
tions above.

Theorem 5.6. Assume that I(p) is c-contractive. Then, the asynchronous power
control algorithm (5.25) satisfies

1
vi

∣pi(t) − p
⋆
i ∣ ≤Mρt

i
k , t ∈ (tik, t

i
k+1], (5.27)

where M is a positive constant, tik and tik+1 are two consecutive elements of T i, and

ρ = c
1

B+Dmax . (5.28)
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Proof. The proof is similar to the one of Theorem 5.2 and thus omitted. ∎

In [126], it has been shown that the asynchronous power control algorithm (5.25)
involving standard interference functions converges asymptotically to the optimal
power vector even when it is executed totally asynchronously. However, the impact
of the communication delay and the update interval on the convergence rate of (5.25)
was missing in [126]. In contrast, this chapter develops tools that allow to quantify
the convergence rate of (5.25) under various assumptions on communication delays
and update rates. Specifically, Theorem 5.6 shows that for contractive interference
functions, (5.25) converges linearly if the communication delays and update rates
are bounded. An analogue corollary of Theorem 5.3 would demonstrate that the
convergence rate of (5.25) is upper bounded by a polynomial function of time if
Assumption 3 holds.

5.4 Numerical Examples

In this section, we illustrate the accuracy of our guaranteed bounds on the con-
vergence rate of asynchronous power control algorithms with linear interference
functions. We consider four mobile users that share a channel with link gain matrix
G = [gij] given by

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.4000 0.0082 0.0419 0.0579
0.0160 0.8530 0.0424 0.0043
0.0200 0.0017 0.1405 0.0010
0.1030 0.0036 0.0104 0.4050

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

× 10−3.

The SINR threshold and the background noise for each user is set to γi = 3 and
hi = 0.04 mWatts, respectively. Let G = [gij] be an 4 × 4 matrix defined in (5.24).
The spectral radius of G is 0.7146 < 1. It follows from Theorem 5.5 that the linear
interference function is contractive with c = 0.7146 with respect to the maximum
norm ∥ ⋅ ∥v∞, where

v = (0.59,0.14,0.38,0.67)

is the right Perron-Frobenius eigenvector of G.
In order to demonstrate the flexibility of our framework, assume that each user i

executes the asynchronous iteration (5.25) under the assumptions that:

• T i = {ik ∣k ∈ N0};

• τ ii (t) = 0, for all i and all t ∈ N0;

• For all i and j with j ≠ i,

τ ij(t) =

⎧⎪⎪
⎨
⎪⎪⎩

0, 0 ≤ t ≤ 4,
0.5j(1 + (−1)t) 5 ≤ t.
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It is easy to verify that the time interval between any two consecutive updates
executed by all nodes is upper bounded by B = 4, and (5.26) holds with Dmax = 4.
Therefore, according to Theorem 5.6, the asynchronous algorithm (5.25) converges
linearly to the unique fixed point. In particular, the transmit power of each user
satisfies (5.27) with

ρ = (0.7146)
1
8 = 0.9588.

Figure 5.2 gives the simulation results of the theoretical bound obtained from
Theorem 5.6 and the actual convergence rate of (5.25) for users 3 and 4. Since
the communication delays and update rates are time-varying and smaller than the
maximum bounds, there is a gap between the theoretical and the actual decay rates
that one observes in simulations.
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Figure 5.2: Upper bound and actual convergence rate of the asynchronous power
control algorithm (5.25) for user 3 (left) and user 4 (right) under bounded communica-
tion delays. The horizontal axis represents the number of iterations and the vertical
axis shows 1

vi
∣pi(t) − p⋆i ∣, i = 3,4 (in logarithmic scale).

We now assume that the conditions are such that the communication delays
between user 1 and the others become

τ1
j (t) = τ

j
1 (t) = ⌊0.1t⌋, t ∈ N0,

for j = 2,3,4. Other delays and execution times are assumed to remain unchanged.
While the above delays are unbounded, Assumption 5.3 is satisfied with α = 0.1,
so Theorem 5.3 can be used to bound the convergence rate. Using c = 0.7146 and
α = 0.1, the transmit power of each user satisfies (5.16) with B = 4 and

ξ =
ln 0.7146

ln(1 − 0.1)
= 3.189.

Figure 5.3 shows a comparison of the guaranteed bound obtained from Theorem 5.3
and the actual convergence rate of (5.25) for users 3 and 4.
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Figure 5.3: Upper bound and actual convergence rate of the asynchronous power
control algorithm (5.25) for user 3 (left) and user 4 (right) under unbounded commu-
nication delays. The horizontal axis (in logarithmic scale) represents the number of
iterations and the vertical axis (also in logarithmic scale) shows 1

vi
∣pi(t) − p⋆i ∣, i = 3, 4.

5.5 Summary

In this chapter, we presented convergence results for asynchronous iterations involv-
ing pseudo-contractions in the block-maximum norm. Contrary to most results in
the literature, which only established asymptotic convergence or studied simplified
models of asynchronism, our theorems allow to characterize the rates of convergence
of asynchronous iterations and quantify how these rates depend on the update
intervals and information delays. We demonstrated how our results can be used
to analyze the impact of asynchrony on the convergence rate of power control
algorithms in wireless networks.





Chapter 6

Asynchronous Mini-batch Algorithm for
Regularized Stochastic Optimization

Stochastic approximation methods such as stochastic gradient descent were
among the first and the most commonly used algorithms developed for solving

stochastic optimization problems [17–22]. These methods are inherently serial in
the sense that the gradient computations take place on a single processor which
has access to the whole dataset. However, it happens more and more often that
one single computer is unable to store and handle the amounts of data that we
encounter in practical problems. This has caused a strong interest in developing
parallel optimization algorithms which are able to split the data and distribute the
computation across multiple processors or multiple computer clusters.

One simple and popular stochastic approximation method is mini-batching, where
iterates are updated based on the average gradient with respect to multiple data
points rather than based on gradients evaluated at a single data at a time. Recently,
Dekel et. al. [150] proposed a parallel mini-batch algorithm for regularized stochastic
optimization problems, in which multiple processors compute gradients in parallel
using their own local data, and then aggregate the gradients up a spanning tree to
obtain the averaged gradient. While this algorithm can achieve linear speedup in the
number of processors, it has the drawback that the processors need to synchronize
at each round and, hence, if one of them is slower than the rest, then the entire
algorithm runs at the pace of the slowest processor.

Contributions of the Chapter. In this chapter, we propose an asynchronous
mini-batch algorithm for regularized stochastic optimization problems with smooth
loss functions that eliminates the overhead associated with global synchronization.
Our algorithm allows multiple processors to work at different rates, perform com-
putations independently of each other, and update global decision variables using
out-of-date gradients. A similar model of parallel asynchronous computation was
applied to coordinate descent methods for deterministic optimization in [151–153]
and mirror descent and dual averaging methods for stochastic optimization in [154].
In particular, Agarwal and Duchi [154] analyzed the convergence of asynchronous

101
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mini-batch algorithms for smooth stochastic convex problems, and interestingly
showed that bounded delays do not degrade the asymptotic convergence. However,
they only considered the case where the regularization term is the indicator function
of a compact convex set.

We extend the results of [154] to general regularization functions (like the l1
norm, often used to promote sparsity), and establish a sharper expected-value type
of convergence rate than the one given in [154]. Specifically, we make the following
contributions:

(i) For general convex regularization functions, we show that when the feasible
set is closed and convex (but not necessarily bounded), the running average of the
iterates generated by our algorithm with constant step-sizes converges at rateO(1/T )
to a ball around the optimum. We derive an explicit expression that quantifies how
the convergence rate and the residual error depend on loss function properties and
algorithm parameters such as the step-size and the maximum delay bound τmax.

(ii) For general convex regularization functions and compact feasible sets, we
prove that the running average of the iterates produced by our algorithm with a
time-varying step-size converges to the true optimum (without residual error) at
rate

O (
(τmax + 1)2

T
+

1
√
T
) .

As long as the number of processors is O(T 1/4), our algorithm enjoys near-linear
speedup and converges asymptotically at a rate O(1/

√
T ).

(iii) When the regularization function is strongly convex and the feasible set is
closed and convex, we establish that the iterates converge at rate

O (
(τmax + 1)4

T 2 +
1
T
) .

If the number of processors is of the order of O(T 1/4), this rate is O(1/T ) asymptot-
ically in T , which is the best known rate for strongly convex stochastic optimization
problems in a serial setting [155–157].

Outline of the Chapter. In Section 6.1, we formulate the problem, discuss
our assumptions, and review related work for stochastic optimization problems. The
proposed asynchronous mini-batch algorithm and its main theoretical results are
presented in Section 6.2. Computational experience is reported in Section 6.3 while
Section 6.4 concludes the chapter with a brief statement of the results. Finally,
Section 6.5 contains technical proofs of our main results.

6.1 Problem Setup

We consider stochastic convex optimization problems of the form

minimize
x∈Rn

ϕ(x) ∶= Eξ[F (x, ξ)] +Ψ(x). (6.1)
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Here, x is the decision variable, ξ is a random vector whose probability distribution
P is supported on a set Ξ ⊆ Rm, F (⋅, ξ) is convex and differentiable for each
ξ ∈ Ξ, and Ψ(x) is a proper convex function that may be nonsmooth and extended
real-valued. Let us define

f(x) ∶= Eξ[F (x, ξ)] = ∫
Ξ
F (x, ξ)dP(ξ). (6.2)

The expectation function f is convex, differentiable, and∇f(x) = Eξ[∇xF (x, ξ)] [158].
Thus, ∇xF (x, ξ) can be viewed as an unbiased estimate of ∇f(x). We use X⋆ to de-
note the set of optimal solutions of Problem (6.1) and ϕ⋆ to denote the corresponding
optimal value.

A difficulty when solving optimization problem (6.1) is that the distribution P is
often unknown, so the expectation (6.2) cannot be computed. This situation occurs
frequently in data-driven applications such as machine learning. To support these
applications, we do not assume knowledge of f (or of P), only access to a stochastic
oracle. Each time the oracle is queried with an x ∈ Rn, it generates an independent
and identically distributed (i.i.d.) sample ξ from P and returns ∇xF (x, ξ), which is
a noise-corrupted version of ∇f(x). The erroneous gradient ∇xF (x, ξ) will be used
in the update rule of our optimization algorithm instead of ∇f(x).

We also impose the following assumptions on Problem (6.1).

Assumption 6.1 (Existence of a minimum). The optimal set X⋆ is nonempty.

Assumption 6.2 (Lipschitz continuity of F ). For each ξ ∈ Ξ, the function F (⋅, ξ)
has Lipschitz continuous gradient with constant L. That is, for all y, z ∈ Rn,

∥∇xF (y, ξ) −∇xF (z, ξ)∥∗ ≤ L∥y − z∥. (6.3)

Note that under Assumption 6.2, ∇f(x) is also Lipschitz continuous with the
same constant L [22].

Assumption 6.3 (Bounded gradient variance). There exists a constant σ ≥ 0
such that

Eξ[∥∇xF (x, ξ) −∇f(x)∥2
∗] ≤ σ

2, ∀x ∈ Rn.

Assumption 6.4 (Closed effective domain of Ψ). The function Ψ is simple and
lower semi-continuous, and its effective domain, dom Ψ = {x ∈ Rn ∣ Ψ(x) < +∞}, is
closed.

Possible choices of Ψ include:

• Unconstrained smooth minimization: Ψ(x) = 0.

• Constrained smooth minimization: Ψ is the indicator function of a non-empty
closed convex set C ⊆ Rn, i.e.,

Ψ(x) = IC(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0, if x ∈ C,
+∞, otherwise.
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• l1-regularized minimization: Ψ(x) = λ∥x∥1 with λ > 0.

• Constrained l1-regularized minimization: In this case, Ψ(x) = λ∥x∥1 + IC(x)
with λ > 0.

Several practical problems in machine learning, statistical applications, and
signal processing satisfy Assumptions 6.1–6.4 [37]. One such example is l1-regularized
logistic regression for sparse binary classification. We are then given a large number
of observations

{ξj = (ξ
(1)
j , ξ

(2)
j ) ∣ ξ

(1)
j ∈ Rn, ξ(2)j ∈ {−1,+1}, j = 1, . . . , J} ,

drawn i.i.d. from an unknown distribution P, and want to solve the minimization
problem (6.1) with

F (x, ξ) = log (1 + exp(−ξ(2)j ⟨ξ
(1)
j , x⟩)) ,

and Ψ(x) = λ∥x∥1. The role of l1 regularization is to produce sparse solutions.

6.1.1 Related Work
We now review several existing first-order methods for solving regularized stochastic
optimization problems.

Serial stochastic gradient methods: Stochastic gradient methods have be-
come extremely popular for large-scale optimization problems such as boosting
and training linear Support Vector Machines (SVMs) [92]. Their popularity comes
mainly from the fact that they are easy to implement and have low computational
cost per iteration. In the classical stochastic gradient method, a single proces-
sor iteratively updates the current vector x(k) by sampling ξ from P, computing
g(k) = ∇xF (x(k), ξ), and performing the update

x(k + 1) = ΠC(x(k) − γ(k)g(k)). (6.4)

Here, ΠC is the Euclidean projection operator onto the set C, and γ(k) is a positive
step-size. The update rules of more general classes of stochastic gradient methods
such as the mirror descent and dual-averaging can be described by

x(k + 1) = Ω(g(k), h(k), γ(k)), (6.5)

where Ω takes three arguments: the stochastic gradient g(k), h(k) that summarizes
the information about the past, and the step-size γ(k). The stochastic gradient
projection method (6.4) fits this template by defining h(k) = x(k) and

Ω(g(k), h(k), γ(k)) = argmin
z∈C

∥z − (x(k) − γ(k)g(k))∥
2
2.
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Recently, Lan [19] proposed two stochastic gradient algorithms for regularized
stochastic optimization, which he named the modified mirror descent method and the
accelerated stochastic approximation method. These algorithms achieve convergence
rates of the form

O (
L

T
+

σ
√
T
) and O (

L

T 2 +
σ

√
T
) ,

respectively, which are O(σ/
√
T ) asymptotically in T . Here, T is the number of

iterations. The algorithms presented in [19] use step-sizes based on an a priori
knowledge of the performed number of iterations T and assume that the feasible
set is bounded. A different stochastic gradient method was developed in [20], where
the step-sizes in its update rule are independent of the number of iterations. Under
the assumption of bounded feasible sets, the method was shown to have the same
convergence rate as that of [19].

Strong convexity of the objective function can speedup the convergence rate
significantly. In particular, [21] proposed a stochastic gradient method for minimizing
strongly convex composite objective functions, which asymptotically converges at
a rate of O(σ2/T ). Note that the rate O(σ/

√
T) for convex stochastic problems

and the rate O(σ2/T ) for strongly convex stochastic problems are the best known
asymptotic convergence rates for stochastic gradient methods [155–157].

The update rules of methods in [19–21] use the stochastic gradient of the current
iteration (g(k)). Nesterov [159] proposed a different class of update rules, called
dual-averaging, for nonsmooth stochastic optimization problems. In these methods,
the current iterate x(k) is updated using a weighted average of all past stochastic
gradients. In its simplest form, the dual averaging performs the update

x(k + 1) = ΠC(−γ(k)
k

∑
t=0
g(t)),

which fits the template (6.5) with h(k) = {g(0), . . . , g(k−1)}. Xiao [22] developed an
extension of the dual averaging method to solve regularized optimization problems
of the form (6.1). Under Assumptions 6.1–6.4, the asymptotic convergence rate
obtained in [22] is O(σ/

√
T) for convex objective functions and O(σ2 lnT /T ) for

strongly convex objective functions. In [160], the convergence rate of dual-averaging
methods under strong convexity assumption was improved to O(σ2/T).

Stochastic gradient methods with mini-batching: In many emerging ap-
plications, such as large-scale machine learning and statistics, the size of dataset is
so huge that it cannot fit on one computer. Hence, we need optimization algorithms
that can be conveniently and efficiently executed in parallel on multiple processors.
One key disadvantage of stochastic gradient methods mentioned above is that they
are inherently sequential, i.e, updating each iteration requires having completed
the previous iteration. This makes it difficult to parallelize these methods under
advanced architectures such as GPUs, multi-core CPUs, or distributed clusters [161].
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The second weakness of serial stochastic gradient methods is that they usually have
slow asymptotic convergence due to the inherent variance in the stochastic gradients.

A common practical solution for parallelizing stochastic gradient methods and
reducing the stochastic variance is to employ mini-batches [162]. In mini-batch
algorithms, multiple processors compute the stochastic gradients

∇xF(x(k), ξ1), . . . ,∇xF(x(k), ξb)

on b samples ξ1, . . . , ξb in parallel, communicate with each other to obtain the
averaged stochastic gradient vector

gave(k) =
1
b

b

∑
i=1

∇xF (x(k), ξi),

and then update x(k) via

x(k + 1) = Ω(gave(k), h(k), γ(k)). (6.6)

In comparison with (6.5), the update rule (6.6) shows that a mini-batch algorithm
updates x using the average gradient over multiple calls to the stochastic oracle,
rather than updating after each query of the oracle. For a batch size b, using mini-
batches can reduce the variance of stochastic gradient from σ to σ/

√
b. Dekel et.

al. [150] exploited this fact to develop a parallel mini-batch algorithm for solving (6.1)
that achieves linear speedup in the number of processors. The asymptotic convergence
rate was proven to be O(σ2/(bT )) for strongly convex problems and O(σ/

√
bT) for

convex problems.
Asynchronous stochastic gradient methods: A key property of synchronous

mini-batch methods is that at kth iteration, all the gradients involved in the update
must be computed at the same vector x(k) by the processors. This can cause some
processors to be idle during each iteration since they may perform computations
faster than others. Note also that at each round of synchronous mini-batch methods,
averaging the gradients requires message passing between the processors. In order
to reduce the waste generated by the need for global synchronization and requiring
massive communication overhead, we can allow the processors to operate in an
asynchronous manner.

There have been extensive studies on asynchronous stochastic optimization,
but mostly without the smoothness assumption (6.3), see, e.g., [163–165]. More
precisely, these works studied the convergence of asynchronous algorithms under the
assumption that the objective function F is nonsmooth with bounded subgradients,
i.e., E[∥∂xF (x, ξ)∥2

∗] ≤ G
2 holds for some G > 0 and for all x. The literature on

asynchronous algorithms for smooth stochastic optimization is relatively sparse.
Langford et. al. [166] presented an asynchronous parallel algorithm for smooth
optimization problems of the form (6.1), with Ψ(x) = 0. In the algorithm, the
processors compute gradients with a fixed delay τmax and update x in a round-robin
fashion via

x(k + 1) = Ω(g(k − τmax), h(k), γ(k)).
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It was shown that the constant delay τmax introduces negligible penalty in the
convergence rate. Agarwal and Duchi [154] extended this work to constrained
smooth minimization in which F is a smooth function with bounded gradients
and Ψ is the indicator function of a compact convex set C ⊆ Rn. They studied the
convergence of asynchronous mini-batch methods with the update rule

x(k + 1) = Ω(gave(k − τ(k)), h(k), γ(k)),

where τ(k) is a bounded time-varying delay. The asymptotic convergence rate was
proven to be O(σ/

√
bT) for convex objective functions. This result shows that

even in the face of asynchronism, convergence guarantees similar to synchronous
mini-batch methods are possible. Convergence rates for strongly convex functions
was not discussed in [154].

Our goal is to (i) develop an algorithm for solving regularized stochastic optimiza-
tion problems which combines the strong performance guarantees of serial stochastic
gradient methods, the parallelization benefits of mini-batching algorithms, and the
speed-ups enabled by asynchronous implementations; to (ii) extend the analysis
in [154] to solve the optimization problem (6.1) with general regularization functions
(not necessarily Ψ(x) = IC(x)) without any additional assumption on boundedness
of either the gradients or the feasible sets; and to (iii) determine whether an asyn-
chronous mini-batch algorithm achieves the optimal rate O(σ2/(bT )) under the
strong convexity assumption.

6.2 An Asynchronous Mini-batch Algorithm

In this section, we present an asynchronous mini-batch algorithm that exploits
multiple processors to solve Problem (6.1). We characterize the iteration complexity
and the convergence rate of the proposed algorithm, and show that these compare
favourably with the state of the art. Our approach is distinguished from recent work
on stochastic optimization [19–22,150,154] in that it can deal with asynchrony and
smooth objective functions as well as general regularization functions at the same
time. To the best of our knowledge, our asynchronous algorithm is the first to attain
the optimal convergence rates for convex and strongly convex stochastic composite
optimization in spite of time-varying delays.

6.2.1 Description of Algorithm
We assume p processors have access to a shared memory for the decision variable
x. The processors may have different capabilities (in terms of processing power
and access to data) and are able to update x without the need for coordination
or synchronization. Conceptually, the algorithm lets each processor run its own
stochastic composite mirror descent process, repeating the following steps:

1. Read x from the shared memory and load it into the local storage location x̂;
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2. Sample b i.i.d random variables ξ1, . . . , ξb from the distribution P;

3. Compute the averaged stochastic gradient vector

ĝave =
1
b

b

∑
i=1

∇xF (x̂, ξi);

4. Update current x in the shared memory via

x← argmin
z

{⟨ĝave, z⟩ +Ψ(z) +
1
γ
Dω(x, z)}.

The algorithm can be implemented in many ways as depicted in Figure 6.1.
One way is to consider the p processors as peers that each execute the four-step
algorithm independently of each other and only share the global memory for storing
x. In this case, each processor reads the decision vector twice in each round: once in
the first step (before evaluating the averaged gradient), and once in the last step
(before carrying out the minimization). To ensure correctness, Step 4 must be an
atomic operation, where the executing processor puts a write lock on the global
memory until it has written back the result of the minimization (cf. Figure 6.1, left).
The algorithm can also be executed in a master-worker setting. In this case, each of
the worker nodes retrieves x from the master in Step 1 and returns the averaged
gradient to the master in Step 3; the fourth step (carrying out the minimization) is
executed by the master (cf. Figure 6.1, right).

Independently of how we choose to implement the algorithm, processors may
work at different rates: while one processor updates the decision vector (in the shared
memory setting) or send its averaged gradient to the master (in the master-worker
setting), the others are generally busy computing averaged gradient vectors. The
processors that perform gradient evaluations do not need to be aware of updates
to the decision vector, but can continue to operate on stale information about x.
Therefore, unlike synchronous parallel mini-batch algorithms [150], there is no need
for processors to wait for each other to finish the gradient computations. Moreover,
the value x̂ at which the average of gradients is evaluated by a processor may differ
from the value of x to which the update is applied.

Algorithm 1 describes the p asynchronous processes that run in parallel. To
describe the progress of the overall optimization process, we introduce a counter k
that is incremented each time x is updated. We let d(k) denote the time at which
x̂ used to compute the averaged gradient involved in the update of x(k) was read
from the shared memory. It is clear that 0 ≤ d(k) ≤ k for all k ∈ N0. The value

τ(k) ∶= k − d(k)

can be viewed as the delay between reading and updating for processors and captures
the staleness of the information used to compute the average of gradients for the
kth update. We assume that the time-varying delay τ(k) is bounded; this is stated
in the following assumption.
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Figure 6.1: Illustration of two conceptually different realizations of Algorithm 1: (1) a
shared memory implementation (left); (2) a master-worker implementation (right). In the
shared memory setting shown to the left, processor P2 reads x(2) from the shared memory
and computes the averaged gradient vector gave(2) = 1

b ∑
b
i=1∇xF (x(2), ξi). As the processors

are being run without synchronization, x(3) and x(4) are written to the shared memory by
other processors while P2 is evaluating gave(2). The figure shows a snapshot of the algorithm
at time instance k = 5, at which the shared memory is locked by P2 to read the current x, i.e.
x(4), to update it using the out-of-date gradient gave(2), and write x(5) to the memory. In
the master-worker setting illustrated to the right, workers evaluate averaged gradient vectors
in parallel and send their computations to buffers on the master processor, which is the sole
entity with access to the global memory. The master performs an update using (possibly)
out-of-date gradients and passes the updated decision vector x back to the workers.

Assumption 6.5 (Bounded Delay). There is a nonnegative integer τmax such that

0 ≤ τ(k) ≤ τmax, k ∈ N0.

The value of τmax is an indicator of the asynchronism in the algorithm and in
the execution platform. In practice, τmax will depend on the number of parallel
processors used in the algorithm [151–153]. Note that the cyclic-delay mini-batch
algorithm [154], in which the processors are ordered and each updates the decision
variable under a fixed schedule, is a special case of Algorithm 1 where d(k) = k−p+1,
or, equivalently, τ(k) = p − 1 for all k.

6.2.2 Convergence Rate for General Convex Regularization
The following theorem establishes convergence properties of Algorithm 1 when a
constant step-size is used.
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Algorithm 1 Asynchronous Mini-batch Algorithm (running on each processor)
1: Inputs: positive step-sizes {γ(k)}k∈N0 ; batch size b ∈ N.
2: Initialization: x(0) ∈ dom Ψ; k = 0.
3: repeat
4: receive inputs ξ1, . . . , ξb sampled i.i.d. from distribution P;

gave(d(k))←
1
b

b

∑
i=1

∇xF (x(d(k)), ξi);

x(k + 1)← argmin
z

{⟨gave(d(k)), z⟩ +Ψ(z) +
1

γ(k)
Dω(x(k), z)} (6.7)

k ← k + 1;

5: until termination test satisfied

Theorem 6.1. Let Assumptions 6.1–6.5 hold. Assume also that for all k ∈ N0,

γ(k) = γ ∈ (0, 1
L(τmax + 1)2 ) . (6.8)

Then, for every T ∈ N and any optimizer x⋆ of (6.1), we have

E[ϕ(xave(T ))] − ϕ⋆ ≤
Dω(x(0), x⋆)

γT
+

γcσ2

2b(1 − γL(τmax + 1)2)
,

where xave(T ) is the Cesáro average of the iterates, i.e.,

xave(T ) ∶=
1
T

T

∑
k=1

x(k).

Furthermore, b is the batch size, the expectation is taken with respect to all random
variables {ξi(k) ∣ i = 1, . . . , b, k = 0, . . . , T − 1}, and c ∈ [1, b] is given by

c =

⎧⎪⎪
⎨
⎪⎪⎩

1, if ∥ ⋅ ∥∗ = ∥ ⋅ ∥2,

2 max∥x∥≤1 ω(x), otherwise.

Proof. See Appendix 6.5.1. ∎

Theorem 6.1 demonstrates that for any constant step-size γ satisfying (6.8), the
running average of iterates generated by Algorithm 1 will converge in expectation
to a ball around the optimum at a rate of O(1/T ). The convergence rate and the
residual error depend on the choice of γ: decreasing γ reduces the residual error,
but it also results in a slower convergence. We now describe a possible strategy for
selecting the constant step-size. Let Tε be the total number of iterations necessary
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to achieve ε-optimal solution to Problem (6.1), that is, E[ϕ(xave(T ))]−ϕ⋆ ≤ ε when
T ≥ Tε. If we pick

γ =
ε

Lε(τmax + 1)2 + cσ2/b
, (6.9)

then, using Theorem 6.1, the corresponding xave(T ) satisfies

E[ϕ(xave(T ))] − ϕ⋆ ≤
ε0

T
(L(τmax + 1)2 +

cσ2

bε
) +

ε

2
,

where ε0 = Dω(x(0), x⋆). This inequality tells us that if the first term on the
right-hand side is less than ε/2, i.e., if

T ≥ Tε ∶= 2ε0 (
L(τmax + 1)2

ε
+
cσ2

bε2 ) ,

then E[ϕ(xave(T ))] − ϕ⋆ ≤ ε. Hence, the iteration complexity of Algorithm 1 with
the step-size choice (6.9) is given by

O (
L(τmax + 1)2

ε
+
cσ2

bε2 ) . (6.10)

As long as the maximum delay bound τmax is of the order 1/
√
ε, the first

term in (6.10) is asymptotically negligible. In this case, the iteration complexity of
Algorithm 1 is asymptotically O(cσ2/bε2), which is exactly the iteration complexity
achieved by a serial mini-batch algorithm [150]. As discussed before, τmax is related
to the number of processors. Therefore, if the number of processors is of the order
of O(1/

√
ε), parallelization does not appreciably degrade asymptotic convergence

of Algorithm 1. Furthermore, as p processors are being run asynchronously and
in parallel, updates may occur roughly p times as quickly, which means that the
near-linear speedup in the number of processors can be expected.

Remark 6.1. Another strategy for the selection of the constant step-size in
Algorithm 1 is to use γ that depends on the prior knowledge of the number of
iterations to be performed. More precisely, assume that the number of iterations is
fixed in advance, say equal to TF . By choosing γ as

γ =
1

L(τmax + 1)2 + α
√
TF

,

for some α > 0, it follows from Theorem 6.1 that the running average of the iterates
after TF iterations satisfies

E[ϕ(xave(TF ))] − ϕ⋆ ≤
L(τmax + 1)2Dω(x(0), x⋆)

TF
+

1
√
TF

(αDω(x(0), x⋆) +
cσ2

2αb
) .
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It is easy to verify that the optimal choice of α, which minimizes the second term
on the right-hand-side of the above inequality, is

α⋆ =
σ
√
c

√
2bDω(x(0), x⋆)

.

With this choice of α, we then have

E[ϕ(xave(TF ))] − ϕ⋆ ≤
L(τmax + 1)2Dω(x(0), x⋆)

TF
+
σ
√

2cDω(x(0), x⋆)
√
bTF

.

In the case that τmax = 0, the preceding guaranteed bound reduces to the one
obtained in [19, Theorem 1] for the serial stochastic mirror descent algorithm with
constant step-sizes. Note that in order to implement Algorithm 1 with the optimal
constant step-size policy, we need to estimate an upper bound on Dω(x(0), x⋆),
since Dω(x(0), x⋆) is usually unknown.

The following theorem characterizes the convergence of Algorithm 1 with a
time-varying step-size sequence when dom Ψ is bounded in addition to being closed
and convex.

Theorem 6.2. Suppose that Assumptions 6.1–6.5 hold. In addition, suppose that
dom Ψ is compact and that Dω(⋅, ⋅) is bounded on dom Ψ. Let

R2 = max
x,y∈dom Ψ

Dω(x, y).

If {γ(k)}k∈N0 is set to γ(k)−1 = L(τmax + 1)2 + α(k) with

α(k) =
σ
√
c
√
k + 1

R
√
b

,

then the Cesáro average of the iterates generated by Algorithm 1 satisfies

E[ϕ(xave(T ))] − ϕ⋆ ≤
LR2(τmax + 1)2

T
+

2σR
√
c

√
bT

,

for all T ∈ N.

Proof. See Appendix 6.5.2. ∎

The time-varying step-size γ(k), which ensures the convergence of the algorithm,
consists of two terms: the time-varying term α(k) should control the errors from
stochastic gradient information while the role of the constant term L(τmax + 1)2 is
to decrease the effects of asynchrony (bounded delays) on the convergence of the
algorithm. According to Theorem 6.2, in the case that τmax = O(T 1/4), the delay
becomes increasingly harmless as the algorithm progresses and the expected function
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value evaluated at xave(T ) converges asymptotically at a rate O(1/
√
T ), which is

known to be the best achievable rate of the mirror descent method for nonsmooth
stochastic convex optimization problems [18].

For the special case of the optimization problem (6.1) where Ψ is restricted to be
the indicator function of a compact convex set, Agarwal and Duchi [154, Theorem
2] showed that the convergence rate of the delayed stochastic mirror descent method
with time-varying step-sizes is

O (
LR2 +RGτmax

T
+
σR

√
c

√
Tb

+
LR2G2τ2

maxb logT
cσ2T

) ,

where G is the maximum bound on
√
E[∥∇xF (x, ξ)∥2

∗]. Comparing with this result,
instead of a asymptotic penalty of the form O(τ2

max logT /T ) due to the delays, we
have the penalty O(τ2

max/T ), which is much smaller for large T . Therefore, not only
do we extend the result of [154] to general regularization functions, but we also
obtain a sharper guaranteed convergence rate than the one presented in [154].

6.2.3 Convergence Rate for Strongly Convex Regularization
In this subsection, we restrict our attention to stochastic composite optimization
problems with strongly convex regularization terms. Specifically, we assume that Ψ
is µΨ-strongly convex with respect to ∥ ⋅ ∥, that is, for any x, y ∈ dom Ψ,

Ψ(y) ≥ Ψ(x) + ⟨s, y − x⟩ +
µΨ

2
∥y − x∥2, ∀s ∈ ∂Ψ(x).

The strong convexity of Ψ implies that Problem (6.1) has a unique minimizer
x⋆ [167, Corollary 11.16]. Examples of the strongly convex function Ψ include:

• l2-regularization: Ψ(x) = (λ/2)∥x∥2
2 with λ > 0.

• Elastic net regularization: Ψ(x) = λ1∥x∥1 + (λ2/2)∥x∥2
2 with λ1 > 0 and λ2 > 0.

In order to derive the convergence rate of Algorithm 1 for solving (6.1) with a
strongly convex regularization term, we need to assume that the Bregman distance
function D(x, y) used in the algorithm satisfies the next assumption.

Assumption 6.6 (Quadratic growth condition). For all x, y ∈ dom Ψ, we have

Dω(x, y) ≤
Q

2
∥x − y∥2,

with Q ≥ µω.

For example, if ω(x) = 1
2∥x∥

2
2, then Dω(x, y) =

1
2∥x − y∥

2
2 and Q = 1. Note that

Assumption 6.6 will automatically hold when the distance generating function ω
has Lipschitz continuous gradient with a constant Q [157].

The associated convergence result now reads as follows.
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Theorem 6.3. Suppose that the regularization function Ψ is µΨ-strongly convex and
that Assumptions 6.2–6.6 hold. If {γ(k)}k∈N0 is set to γ(k)−1 = 2L(τmax + 1)2 +β(k)
with

β(k) =
µΨ

3Q
(k + τmax + 1),

then the iterates produced by Algorithm 1 satisfies

E[∥x(T ) − x⋆∥2] ≤
2 ( 6LQ

µΨ
+ 1)

2
(τmax + 1)4

(T + 1)2 Dω(x(0), x⋆) +
18cσ2Q2

bµ2
Ψ(T + 1)

,

for all T ∈ N.

Proof. See Appendix 6.5.3. ∎

An interesting point regarding Theorem 6.3 is that the maximum delay bound
τmax can be as large as O(T 1/4) without affecting the asymptotic convergence rate
of Algorithm 1. In this case, our asynchronous mini-batch algorithm converges
asymptotically at a rate of O(1/T ), which matches the best known rate achievable
in a serial setting.

6.3 Experimental Results

We have developed a complete master-worker implementation of our algorithm in
C++ using the Massage Passing Interface (MPI) libraries OpenMPI [168]. Although
we argued in Section 6.2 that Algorithm 1 can be implemented using atomic
operations on shared-memory computing architectures, we have chosen the MPI
implementation due to its flexibility in scaling the problem to distributed-memory
environments.

We provide empirical results to show how Algorithm 1 performs on stochastic
optimization problems. To this end, we use the text categorization dataset rcv1 [169]
which consists of J ≈ 800000 documents with n ≈ 50000 unique stemmed tokens
spanning 103 topics. Out of these topics, we decide to sort out sports-related
documents. We apply our code for Algorithm 1 to the following l1-regularized
logistic regression problem on the dataset:

minimize
x∈Rn

E
(ξ(1)j ,ξ

(2)
j

)
[log (1 + exp (−ξ

(2)
j ⟨ξ

(1)
j , x⟩))] + λ∥x∥1 + IC(x).

Here, ξ(1)j ∈ Rn, j = 1, . . . , J , represents a feature vector and ξ(2)j ∈ {−1,1} denotes
its associated label, λ is the regularization parameter, and

C = {x ∈ Rn ∶ ∥x∥2 ≤ R} .
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The label ξ(2)j indicates whether a selected sample falls into the desired category, or
not. In particular, ξ(2)j = 1 if the sampled document is about sports, and ξ(2)j = −1
otherwise. We use the distance generating function ω(x) = 1

2∥x∥
2
2 in all experiments.

To evaluate the performance of our asynchronous algorithm, we set λ = 0.01
and R = 100. As the feasible set is bounded, we implement Algorithm 1 with the
time-varying step-size given in Theorem 6.2. We use a batch size of b = 1000 samples.
For relative speedup comparison purposes, we run the algorithm on p = 1, 2, 4, 6, 8, 10
workers until a fixed tolerance ε = 0.01 is met.

Figure 6.2 presents the achieved relative speedup of the algorithm with respect
to the number of workers used. The relative speedup of the algorithm on p workers is
defined as S(p) = t1/tp, where t1 and tp are the time it takes to run the corresponding
algorithm (to ε-accuracy) on 1 and p workers, respectively. We observe a near-linear
relative speedup, consistent with our theoretical results. However, as the number of
workers increases, the relative speedup starts saturating due to the communication
overhead at the master side. Speedup values are averaged over 10 Monte Carlo
simulations.
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Figure 6.2: Speedup of Algorithm 1 with respect to the number of workers.

6.4 Summary

We proposed an asynchronous mini-batch algorithm that exploits multiple processors
to solve regularized stochastic optimization problems with smooth loss functions. We
established that for closed and convex constraint sets, the iteration complexity of the
algorithm with constant step-sizes is asymptotically O(1/ε2). For compact constraint
sets, we proved that the running average of the iterates generated by our algorithm
with time-varying step-size converges to the optimum at a rate O(1/

√
T ). When the
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regularization function is strongly convex and the constraint set is closed and convex,
the algorithm achieves the rate O(1/T ). We showed that the penalty in convergence
rate of the algorithm due to asynchrony is asymptotically negligible and a near-linear
speedup in the number of processors can be expected. Our computational experience
confirmed the theory.
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6.5 Appendix

In this section, we prove the main results of the paper, namely, Theorems 6.1–6.3.
We first state three key lemmas which are instrumental in our argument.

The following result establishes an important recursion for the iterates generated
by Algorithm 1.
Lemma 6.1. Suppose Assumptions 6.1–6.5 hold. Then, the iterates {x(k)}k∈N0
generated by Algorithm 1 satisfy

ϕ(x(k + 1)) − ϕ⋆ + 1
γ(k)Dω(x(k + 1), x⋆) ≤ 1

2η(k)∥e(d(k))∥
2
∗

+ ⟨e(d(k)), x(k) − x⋆⟩ + 1
γ(k)Dω(x(k), x

⋆)

+ L(τmax + 1)
2

τmax

∑
j=0

∥x(k − j) − x(k − j + 1)∥2

− 1
2
( 1
γ(k) − η(k)) ∥x(k + 1) − x(k)∥2

− µΨ

2
∥x(k + 1) − x⋆)∥2

, (6.11)

where x⋆ ∈X⋆, e(k) ∶= ∇f(x(k))− gave(k) is the error in the gradient estimate, and
{η(k)} is a sequence of strictly positive numbers.

Proof. We start with the first-order optimality condition for the point x(k + 1) in
the minimization problem (6.7): there exists subgradient s(k + 1) ∈ ∂Ψ(x(k + 1))
such that for all z ∈ dom Ψ, we have

⟨gave(d(k)) + s(k + 1) + 1
γ(k)

∇(2)Dω(x(k), x(k + 1)), z − x(k + 1)⟩ ≥ 0,

where ∇(2)Dω(⋅, ⋅) denotes the partial derivative of the Bregman distance function
with respect to the second variable. Plugging the following equality

∇(2)Dω(x(k), x(k + 1)) = ∇ω(x(k + 1)) −∇ω(x(k)),
into the previous inequality and re-arranging terms gives

1
γ(k)⟨∇ω(x(k)) −∇ω(x(k + 1)), z − x(k + 1)⟩ ≤ ⟨gave(d(k)) + s(k + 1), z − x(k + 1)⟩

= ⟨gave(d(k)), z − x(k + 1)⟩

+ ⟨s(k + 1), z − x(k + 1)⟩

≤ ⟨gave(d(k)), z − x(k + 1)⟩

+Ψ(z) −Ψ(x(k + 1)) − µΨ

2
∥z − x(k + 1)∥2

,

(6.12)
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where the last inequality used

Ψ(z) ≥ Ψ(x(k + 1)) + ⟨s(k + 1), z − x(k + 1)⟩ + µΨ

2
∥z − x(k + 1)∥2

,

by the (strong) convexity of Ψ. We now use the following well-known three point
identity of the Bregman distance function [170] to rewrite the left-hand side of (6.12):

⟨∇ω(a) −∇ω(b), c − b⟩ =Dω(a, b) −Dω(a, c) +Dω(b, c).

From this relation, with a = x(k), b = x(k + 1), and c = z, we have

⟨∇ω(x(k)) −∇ω(x(k + 1)), z − x(k + 1)⟩

=Dω(x(k), x(k + 1)) −Dω(x(k), z) +Dω(x(k + 1), z).

Substituting the preceding equality into (6.12) and re-arranging terms result in

Ψ(x(k + 1)) −Ψ(z) + 1
γ(k)Dω(x(k + 1), z) ≤ ⟨gave(d(k)), z − x(k + 1)⟩ + 1

γ(k)Dω(x(k), z)

− 1
γ(k)Dω(x(k), x(k + 1))

− µΨ

2
∥z − x(k + 1)∥2

.

Since the distance generating function ω(x) is 1-strongly convex, we have the lower
bound

Dω(x(k), x(k + 1)) ≥ 1
2
∥x(k + 1) − x(k)∥2,

which implies that

Ψ(x(k + 1)) −Ψ(z) + 1
γ(k)Dω(x(k + 1), z) ≤ ⟨gave(d(k)), z − x(k + 1)⟩ + 1

γ(k)Dω(x(k), z)

− 1
2γ(k)∥x(k + 1) − x(k)∥2

− µΨ

2
∥z − x(k + 1)∥2

. (6.13)

The essential idea in the rest of the proof is to use convexity and smoothness of
the expectation function f to bound f(x(k + 1))− f(z) for each z ∈ dom Ψ and each
k ∈ N0. According to Assumption 6.2, ∇F (x, ξ) and, hence, ∇f(x) are Lipschitz
continuous with the constant L. By using the L-Lipschitz continuity of ∇f and then
the convexity of f , we have

f(x(k + 1)) ≤ f(x(d(k))) + ⟨∇f(x(d(k))), x(k + 1) − x(d(k))⟩ + L
2
∥x(k + 1) − x(d(k))∥2

≤ f(z) + ⟨∇f(x(d(k))), x(k + 1) − z⟩ + L
2
∥x(k + 1) − x(d(k))∥2

, (6.14)
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for any z ∈ dom Ψ. Combining inequalities (6.13) and (6.14), and recalling that
ϕ(x) = f(x) +Ψ(x), we obtain

ϕ(x(k + 1)) − ϕ(z) + 1
γ(k)Dω(x(k + 1), z) ≤ ⟨∇f(x(d(k))) − gave(d(k)), x(k + 1) − z⟩

+ 1
γ(k)Dω(x(k), z)

− 1
2γ(k)∥x(k + 1) − x(k)∥2 − µΨ

2
∥z − x(k + 1)∥2

+ L
2
∥x(k + 1) − x(d(k))∥2.

We now rewrite the above inequality in terms of the error

e(d(k)) = ∇f(x(d(k))) − gave(d(k)),

as follows:

ϕ(x(k + 1)) − ϕ(z) + 1
γ(k)Dω(x(k + 1), z) ≤ ⟨e(d(k)), x(k + 1) − z⟩ + 1

γ(k)Dω(x(k), z)

− 1
2γ(k)∥x(k + 1) − x(k)∥2 − µΨ

2
∥z − x(k + 1)∥2

+ L
2
∥x(k + 1) − x(d(k))∥2

= ⟨e(d(k)), x(k + 1) − x(k)⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

U1

+ ⟨e(d(k)), x(k) − z⟩ + 1
γ(k)Dω(x(k), z)

− 1
2γ(k)∥x(k + 1) − x(k)∥2 − µΨ

2
∥z − x(k + 1)∥2

+ L
2

∥x(k + 1) − x(d(k))∥2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
U2

. (6.15)

We will seek upper bounds on the quantities U1 and U2. Let {η(k)}k∈N0 be a sequence
of positive numbers. For U1, we have

U1 ≤

RRRRRRRRRRR

⟨
1

√
η(k)

e(d(k)),
√
η(k)(x(k + 1) − x(k))⟩

RRRRRRRRRRR

≤
1

2η(k)
∥e(d(k))∥

2
∗
+
η(k)

2
∥x(k + 1) − x(k)∥2

, (6.16)

where the second inequality follows from the Fenchel-Young inequality applied to
the conjugate pair 1

2∥ ⋅ ∥
2 and 1

2∥ ⋅ ∥
2
∗, i.e.,

∣⟨a, b⟩∣ ≤
1
2
∥a∥

2
∗
+

1
2
∥b∥

2
.



120 Asynchronous Mini-batch Algorithm for Regularized Stochastic Optimization

We now turn to U2. It follows from definition τ(k) = k − d(k) that

U2 = (k − d(k) + 1)2
XXXXXXXXXXX

k−d(k)

∑
j=0

x(k − j) − x(k − j + 1)
k − d(k) + 1

XXXXXXXXXXX

2

=(τ(k) + 1)2
XXXXXXXXXXX

τ(k)

∑
j=0

x(k − j) − x(k − j + 1)
τ(k) + 1

XXXXXXXXXXX

2

.

Then, by the convexity of the norm ∥ ⋅ ∥, we conclude that

U2 ≤ (τ(k) + 1)
τ(k)

∑
j=0

∥x(k − j) − x(k − j + 1)∥2

≤ (τmax + 1)
τmax

∑
j=0

∥x(k − j) − x(k − j + 1)∥2
, (6.17)

where the last inequality comes from our assumption that τ(k) ≤ τmax for all k ∈ N0.
Substituting inequalities (6.16) and (6.17) into the bound (6.15) and simplifying
yield

ϕ(x(k + 1)) − ϕ(z) + 1
γ(k)Dω(x(k + 1), z) ≤ 1

2η(k)∥e(d(k))∥
2
∗

+ ⟨e(d(k)), x(k) − z⟩ + 1
γ(k)Dω(x(k), z)

+ L(τmax + 1)
2

τmax

∑
j=0

∥x(k − j) − x(k − j + 1)∥2

− 1
2
( 1
γ(k) − η(k)) ∥x(k + 1) − x(k)∥2

− µΨ

2
∥z − x(k + 1)∥2

.

Setting z = x⋆, where x⋆ ∈X⋆, completes the proof. ∎

The next result follows from Lemma 6.1 by taking summation of the relations
in (6.11).

Lemma 6.2. Let Assumptions 6.1–6.5 hold. Assume also that {γ(k)}k∈N0 is set to

γ(k) =
1

η(k) +L(τmax + 1)2 , k ∈ N0,
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where η(k) is positive for all k. Then, the iterates {x(k)}k∈N0 produced by Algorithm 1
satisfy

T−1
∑
k=0

(ϕ(x(k + 1)) − ϕ⋆) ≤
T−1
∑
k=0

1
2η(k)

∥e(d(k))∥
2
∗

+
T−1
∑
k=0

⟨e(d(k)), x(k) − x⋆⟩ +
1

γ(0)
Dω(x(0), x⋆)

+
T−1
∑
k=0

(
1

γ(k + 1)
−

1
γ(k)

)Dω(x(k + 1), x⋆)

−
µΨ

2

T−1
∑
k=0

∥x(k + 1) − x⋆∥2
,

for all T ∈ N.

Proof. Applying Lemma 6.1 with

η(k) =
1

γ(k)
−L(τmax + 1)2,

adding and subtracting γ(k + 1)−1Dω(x(k + 1), x⋆) to the left-hand side of (6.11),
and re-arranging terms, we obtain

ϕ(x(k + 1)) − ϕ⋆ + 1
γ(k + 1)Dω(x(k + 1), x⋆) ≤ 1

2η(k)∥e(d(k))∥
2
∗

+ ⟨e(d(k)), x(k) − x⋆⟩ + 1
γ(k)Dω(x(k), x

⋆)

+ ( 1
γ(k + 1) −

1
γ(k))Dω(x(k + 1), x⋆)

+ L(τmax + 1)
2

τmax

∑
j=0

∥x(k − j) − x(k − j + 1)∥2

− L(τmax + 1)2

2
∥x(k + 1) − x(k)∥2

− µΨ

2
∥x(k + 1) − x⋆∥2

.

Summing the preceding inequality over k = 0, . . . , T − 1, T ∈ N, yields
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T−1
∑
k=0

(ϕ(x(k + 1)) − ϕ⋆) + 1
γ(T )Dω(x(T ), x⋆) ≤

T−1
∑
k=0

1
2η(k)∥e(d(k))∥

2
∗

+
T−1
∑
k=0

⟨e(d(k)), x(k) − x⋆⟩ + 1
γ(0)Dω(x(0), x

⋆)

+
T−1
∑
k=0

( 1
γ(k + 1) −

1
γ(k))Dω(x(k + 1), x⋆)

+ L(τmax + 1)
2

T−1
∑
k=0

τmax

∑
j=0

∥x(k − j) − x(k − j + 1)∥2

− L(τmax + 1)2

2

T−1
∑
k=0

∥x(k + 1) − x(k)∥2

− µΨ

2

T−1
∑
k=0

∥x(k + 1) − x⋆∥2

≤
T−1
∑
k=0

1
2η(k)∥e(d(k))∥

2
∗

+
T−1
∑
k=0

⟨e(d(k)), x(k) − x⋆⟩ + 1
γ(0)Dω(x(0), x

⋆)

+
T−1
∑
k=0

( 1
γ(k + 1) −

1
γ(k))Dω(x(k + 1), x⋆)

− µΨ

2

T−1
∑
k=0

∥x(k + 1) − x⋆∥2
, (6.18)

where the second inequality used the facts

T−1
∑
k=0

τmax

∑
j=0

∥x(k − j) − x(k − j + 1)∥2
=
τmax

∑
j=0

T−j−1
∑
k=−j

∥x(k) − x(k + 1)∥2

=
τmax

∑
j=0

T−j−1
∑
k=0

∥x(k) − x(k + 1)∥2

≤
τmax

∑
j=0

T−1
∑
k=0

∥x(k) − x(k + 1)∥2

≤ (τmax + 1)
T−1
∑
k=0

∥x(k) − x(k + 1)∥2
,

and x(k) = x(0) for all k ≤ 0. Dropping the second term on the left-hand side
of (6.18) concludes the proof. ∎

Lemma 6.3. Let ∥ ⋅ ∥ be a norm over Rn and let ∥ ⋅ ∥⋆ be its dual norm. Let ω be a
1-strongly convex function with respect to ∥ ⋅ ∥ over Rn. If y1, . . . , yb ∈ Rn are mean
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zero random variables drawn i.i.d. from a distribution P, then

E
⎡
⎢
⎢
⎢
⎢
⎣

∥
1
b

b

∑
i=1
yi∥

2

∗

⎤
⎥
⎥
⎥
⎥
⎦

≤
c

b2

b

∑
i=1

E [∥yi∥
2
∗] ,

where c ∈ [1, b] is given by

c =

⎧⎪⎪
⎨
⎪⎪⎩

1, if ∥ ⋅ ∥∗ = ∥ ⋅ ∥2,

2 max∥x∥=1 ω(x), otherwise.

Proof. The result follows from [171, Lemma B.2] and convexity of the norm ∥ ⋅ ∥∗.
For further details, see [150, §4.1]. ∎

6.5.1 Proof of Theorem 6.1
Assume that the step-size {γ(k)}k∈N0 is set to

γ(k) = γ =
1

η +L(τmax + 1)2 ,

for some η > 0. It is clear that γ satisfies (6.8). Applying Lemma 6.2 with µΨ = 0,
γ(k) = γ and η(k) = η, we obtain

T−1
∑
k=0

(ϕ(x(k + 1)) − ϕ⋆) ≤
T−1
∑
k=0

1
2η

∥e(d(k))∥2
∗
+
T−1
∑
k=0

⟨e(d(k)), x(k) − x⋆⟩ +
Dω(x(0), x⋆)

γ
,

(6.19)

for all T ∈ N. Each x(k), k ∈ N, is a deterministic function of the history ξ[k−1] ∶=
{ξi(t) ∣ i = 1, . . . , b, t = 0, . . . , k − 1} but not of ξi(k). Since ∇f(x) = Eξ[∇xF (x, ξ)],
it follows that

E∣ξ[k−1] [⟨e(d(k)), x(k) − x
⋆⟩] = 0.

Moreover, as ξi and ξj are independent whenever i ≠ j, it follows from Lemma 6.3
that

E[∥e(d(k))∥2
∗] = E

⎡
⎢
⎢
⎢
⎢
⎣

∥
1
b

b

∑
i=1

(∇f(x(d(k))) −∇xF (x(d(k)), ξi))∥

2

∗

⎤
⎥
⎥
⎥
⎥
⎦

≤
c

b2

b

∑
i=1

E [∥∇f(x(d(k))) −∇xF (x(d(k)), ξi)∥
2
∗]

≤
cσ2

b
,
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where the last inequality follows from Assumption 6.3. Taking expectation on both
sides of (6.19) and using the above observations yield

T

∑
k=1

(E[ϕ(x(k))] − ϕ⋆) ≤
cσ2

2ηb
T +

Dω(x(0), x⋆)
γ

.

By the convexity of ϕ, we have

ϕ(xave(T )) = ϕ(
1
T

T

∑
k=1

x(k)) ≤
1
T

T

∑
k=1

ϕ(x(k)),

which implies that

E[ϕ(xave(T ))] − ϕ⋆ ≤
cσ2

2ηb
+
Dω(x(0), x⋆)

γT
.

Substituting η = γ−1 −L(τmax + 1)2 into the above inequality proves the theorem.

6.5.2 Proof of Theorem 6.2
Assume that the step-size {γ(k)}k∈N0 is chosen such that γ(k)−1 = L(τmax+1)2+α(k)
where

α(k) =
σ
√
c
√
k + 1

R
√
b

.

Since γ(k) is a non-increasing sequence, and Dω(x, y) ≤ R
2 for all x, y ∈ dom Ψ, we

have
T−1
∑
k=0

(
1

γ(k + 1)
−

1
γ(k)

)Dω(x(k + 1), x⋆) ≤ (
1

γ(T )
−

1
γ(0)

)R2.

Applying Lemma 6.2 with µΨ = 0 and η(k) = α(k), taking expecation, and using
Lemma 6.3 completely identically to the proof of Theorem 6.1, we then obtain

T

∑
k=1

(E[ϕ(x(k))] − ϕ⋆) ≤
R2

γ(T )
+
cσ2

2b

T−1
∑
k=0

1
α(k)

. (6.20)

Viewing the sum as an lower-estimate of the integral of the function y(t) = 1/
√
t + 1,

one can verify that
T−1
∑
k=0

1
α(k)

=
T−1
∑
k=0

1
α̃
√
k + 1

≤
1
α̃

(1 + ∫
T−1

0

dt
√
t + 1

)

≤
2
√
T

α̃
,

where α̃ = (σ
√
c)/(R

√
b). Substituting this inequality into the bound (6.20), we

obtain the claimed guaranteed bound.
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6.5.3 Proof of Theorem 6.3
Assume that {γ(k)}k∈N0 is set to γ(k)−1 = 2L(τmax + 1)2 + β(k), with

β(k) =
µΨ

3Q
(k + τmax + 1).

We first describe some important properties of γ(k) relevant to our proof. Clearly,
γ(k) is non-increasing, i.e.,

1
γ(k)

≤
1

γ(k + 1)
, (6.21)

for all k ∈ N0. Since γ(0)−1 ≤ γ(k)−1, we have

2L(τmax + 1)2 +
µΨτmax

3Q
≤

1
γ(k)

. (6.22)

Moreover, one can easily verify that

1
γ(k + 1)2 −

1
γ(k)2 =

µΨ

Q
(

4L
3

(τmax + 1)2 +
µΨ

3Q
(

2
3
(k + τmax) + 1))

≤
µΨ

Q
(2L(τmax + 1)2 +

µΨ

3Q
(k + τmax + 1))

=
µΨ

Q

1
γ(k)

,

which implies that

1
γ(k + 1)2 ≤

1
γ(k)

(
1

γ(k)
+
µΨ

Q
) , (6.23)

for all k ∈ N0. Finally, by the definition of γ(k), we have

γ(k)

γ(k + τmax)
= 1 +

µΨ
3Qτmax

2L(τmax + 1)2 + µΨ
3Q(k + τmax + 1)

≤ 1 + µΨτmax

6LQ(τmax + 1)2 ,

and hence,

1
γ(k + τmax)

≤ (1 + µΨτmax

6LQ(τmax + 1)2 )
1

γ(k)
. (6.24)

We are now ready to prove Theorem 6.3. Applying Lemma 6.1 with

η(k) =
1

2γ(k)
, k ∈ N0,
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and using the fact

Dω(x(k + 1), x⋆) ≤ Q
2
∥x(k + 1) − x⋆∥2

,

by Assumption 6.6, we obtain

ϕ(x(k + 1)) − ϕ⋆ + ( 1
γ(k) +

µΨ

Q
)Dω(x(k + 1), x⋆) ≤ γ(k)∥e(d(k))∥2

∗

+ ⟨e(d(k)), x(k) − x⋆⟩ + 1
γ(k)Dω(x(k), x

⋆)

+ L(τmax + 1)
2

τmax

∑
j=0

∥x(k − j) − x(k − j + 1)∥2

− 1
4γ(k)∥x(k + 1) − x(k)∥2.

Multiplying both sides of this relation by 1/γ(k), and then using (6.23), we have

1
γ(k)(ϕ(x(k + 1)) − ϕ⋆) + 1

γ(k + 1)2Dω(x(k + 1), x⋆) ≤ ∥e(d(k))∥2
∗

+ 1
γ(k) ⟨e(d(k)), x(k) − x

⋆⟩ + 1
γ(k)2Dω(x(k), x

⋆)

+ L(τmax + 1)
2γ(k)

τmax

∑
j=0

∥x(k − j) − x(k − j + 1)∥2

− 1
4γ(k)2 ∥x(k + 1) − x(k)∥2.

Summing the above inequality from k = 0 to k = T − 1, T ∈ N, and dropping the first
term on the left-hand side yield

1
γ(T )2Dω(x(T ), x⋆) ≤

T−1
∑
k=0

∥e(d(k))∥2
∗

+
T−1
∑
k=0

1
γ(k) ⟨e(d(k)), x(k) − x

⋆⟩ + 1
γ(0)2Dω(x(0), x

⋆)

+ L(τmax + 1)
2

T−1
∑
k=0

τmax

∑
j=0

1
γ(k)∥x(k − j) − x(k − j + 1)∥2

− 1
4

T−1
∑
k=0

1
γ(k)2 ∥x(k + 1) − x(k)∥2. (6.25)

What remains is to bound the third term on the right-hand side of (6.25). It follows
from (6.21)–(6.24) that
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L(τmax + 1)
2
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∑
j=0

1
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= L(τmax + 1)
2
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∑
j=0

T−j−1

∑
k=0

1
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2
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∑
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T−1
∑
k=0

1
γ(k + j)∥x(k) − x(k + 1)∥2
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≤ L(τmax + 1)

2
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∑
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∑
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1
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∥x(k) − x(k + 1)∥2

= L(τmax + 1)2

2

T−1
∑
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(6.24)
≤

2L(τmax + 1)2 + µΨτmax
3Q

4

T−1
∑
k=0

1
γ(k)∥x(k) − x(k + 1)∥2

(6.22)
≤ 1

4

T−1
∑
k=0

1
γ(k)2 ∥x(k) − x(k + 1)∥2

.

Substituting the above inequality into (6.25), and then taking expectation on both
sides (similarly to the proof of Theorems 6.1 and 6.2), we have

1
γ(T )2E[Dω(x(T ), x⋆)] ≤

cσ2T

b
+

1
γ(0)2Dω(x(0), x⋆). (6.26)

As the distance generating function ω(x) is 1-strongly convex,

1
2
∥x(T ) − x⋆∥2 ≤Dω(x(T ), x⋆).

Moreover, by the definition of γ(k),

µΨ(T + 1)
3Q

≤ β(T ) ≤
1

γ(T )
.

Combing these inequalities with the bound (6.26), we conclude

E[∥x(T ) − x⋆∥2] ≤
18cσ2Q2

bµ2
Ψ(T + 1)

+
2 ( 6LQ

µΨ
+ 1)

2
(τmax + 1)4

(T + 1)2 Dω(x(0), x⋆).

The proof is complete.





Chapter 7

Conclusions and Future Work

In this chapter, we conclude the thesis by summarizing the main results and
presenting some possible directions for future research.

7.1 Conclusions

In this thesis, we addressed several topics concerning the convergence analysis
of positive nonlinear systems, contractive fixed-point iterations and stochastic
optimization algorithms in the presence of time-delays. The main contributions are
the following:

Delay-independent stability of positive systems: In Chapter 3, we ex-
tended a fundamental property of positive linear systems to a class of positive
nonlinear systems. Specifically, we demonstrated that the stability of homogeneous
positive monotone systems is independent of the magnitude and variation of time-
varying delays. Since quantitative stability measures can be highly dependent on
how fast the delays can grow large, we derived explicit expressions that allow us to
quantify the impact of delays on the decay rate of homogeneous positive systems.
We also showed that the best decay rate of positive linear systems that our results
guarantee can be found by solving a tractable convex optimization problem.

Delay-independent stability of general positive monotone (not necessarily ho-
mogeneous) systems was discussed in Chapter 4. We presented a set of necessary
and sufficient conditions for asymptotic stability of positive monotone systems with
heterogeneous time-varying delays. We then proved that if a positive monotone
system whose vector field is sub-homogeneous is globally asymptotically stable, then
the corresponding system with bounded time-delays is also globally asymptotically
stable. Furthermore, we used our results to analyze delay-independent stability of
continuous-time power control algorithms in wireless networks.

Convergence rates of asynchronous contractive iterations: In Chapter 5,
we studied the convergence of asynchronous fixed-point iterations involving maximum
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norm pseudo-contractions. We presented a powerful approach for characterizing
the convergence rate of totally asynchronous iterations, where both the update
intervals and communication delays may grow unbounded. Our approach also allows
to explicitly quantify how the degree of asynchronism affects the convergence rate of
partially asynchronous algorithms, where the update intervals and communication
delays have a fixed upper bound. We demonstrated how our results can be used to
analyze the impact of asynchrony on the convergence rate of discrete-time power
control algorithms in wireless networks.

Asynchronous algorithm for stochastic optimization: Mini-batch opti-
mization is a powerful paradigm for large-scale learning. However, the state-of-the-art
parallel mini-batch algorithms assume synchronous operation or cyclic update orders.
When worker nodes are heterogeneous (due to different computational capabilities
or different communication delays), synchronous and cyclic operations are inefficient
since they will leave workers idle waiting for the slower nodes to complete their
computations. In Chapter 6, we proposed an asynchronous mini-batch algorithm
for regularized stochastic optimization problems that eliminates idle waiting and
allows workers to run at their maximal update rates. We showed that the algorithm
achieves the rate O(1/

√
T ) for general convex regularization functions, and the

rate O(1/T ) for strongly convex regularization functions by suitably choosing the
step-size values. In both cases, the impact of asynchrony on the convergence rate of
our algorithm is asymptotically negligible, and a near-linear speedup in the number
of workers can be expected.

7.2 Future work

There are several directions to further develop the work presented in the thesis.
Some of them are discussed below.

Non-monotone positive systems: The results of Chapters 3 and 4 hold for
positive nonlinear systems which are monotone. This may give the impression
that the delay-independence property stems from monotonicity of such systems.
Nonetheless, as shown in [128,172], the stability of particular classes of non-monotone
positive systems are insensitive to time-delays. Extensions of our results to more
general classes of positive nonlinear systems, for which the monotonicity assumption
does not hold, is an interesting future topic to investigate.

Control design: In Chapter 3, we developed two theorems for global µ-stability
of homogeneous positive systems that quantify the convergence rates for various
classes of time-delays. It would be interesting to design controllers for time-delay
homogeneous positive systems that guarantee that the resulting closed-loop system
is positive and globally µ-stable with a desired decay rate.

Broad classes of asynchronous iterations: In Chapter 5, we considered fixed
point iterations under contractivity assumption with respect to the maximum norm.
It may be possible to derive convergence rate results for asynchronous iterations
involving contraction mappings with respect to other norms, non-expansive mappings,
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and monotone mappings.
Non-i.i.d sampling: In order to establish our results in Chapter 6, we assumed

that the stochastic oracle can generate i.i.d. samples from the distribution over
which we optimize. This assumption is commonly used in the analysis for stochastic
optimization algorithms, for example, [18–22,154–156]. Recently, stochastic gradient
methods for nonsmooth stochastic optimization were developed for situations in
which there is no access to i.i.d. samples from the desired distribution [173]. Under
reasonable assumptions on the ergodicity of the stochastic process that generates the
samples, [173] obtained the convergence rate for serial mirror descent methods. It
would be very interesting to extend this result to regularized stochastic optimization
with smooth objective functions and investigate the convergence of asynchronous
mini-batch algorithms when the random samples are dependent.

Accelerated asynchronous methods: For general convex regularization func-
tions, the convergence rate of our asynchronous algorithm presented in Chapter 6
is

O (
L(τmax + 1)2

T
+

σ
√
T
) .

The first term is related to the smooth component in the objective function and the
existence of time-delays in gradient computations while the second term is related
to the variance in stochastic gradients. As mentioned in Section 6.1, the accelerated
stochastic approximation method proposed in [19] can reduce the impact of the
smooth component significantly in the absence of asynchrony and achieve the rate

O (
L

T 2 +
σ

√
T
) .

Hence, an interesting question is whether an asynchronous version of this method
decreases or increases the effects of time-delays on the convergence rate. Answering
this question is, however, challenging and nontrivial, since the convergence analysis
of accelerated first-order methods even in a deterministic and serial setting is much
more involved than that of non-accelerated methods [85].
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