Asynchronism and convergence rates in distributed optimization

Hamid Reza Feyzmahdavian, Arda Aytekin and Mikael Johansson
KTH - Royal Institute of Technology

Motivation

Optimization as iterative algorithms

Many optimization algorithms are iterations, e.g.

\[x(t+1) = x(t) - \gamma \nabla f(x(t)) := Mx(t) \]

Optimizer \(x^\star \) is a fixed-point of \(M \).

Easy to analyze when \(M \) is a contraction mapping

\[\|Mx - My\| \leq c \|x - y\| \quad \forall x, y \in \mathbb{R}^n \]

for some \(c \in [0, 1) \) and some norm \(\| \cdot \| \). Then \(\|x(t) - x^\star\| \leq c^t \|x(0) - x^\star\| \)

Ex. Gradient mapping when \(f \) is \(\mu \)-strongly convex with \(L \)-Lipschitz gradient

Distributed implementations and asynchrony

Emerging applications require distributed implementations

Communication delays, lack of synchronization ⇒ asynchronous iterations

The impact of asynchrony

Asynchrony can cause otherwise stable iterations to diverge, or slow down.

\[
\begin{align*}
x_1(t+1) &= x_1(t) - 0.75x_1(t) - 0.7x_2(t - \tau(t)) \\
x_2(t+1) &= x_2(t) - 0.75x_2(t) - 0.7x_1(t - \tau(t))
\end{align*}
\]

Need models and tools for asynchronous iterations!
A model for asynchronous iterations

A standard form for asynchronous iterations:

\[x_i(t + 1) = \begin{cases}
 \mathcal{M}_i(x_1(\tau^i_1(t)), \ldots, x_n(\tau^i_n(t))) & \text{if } t \in \mathcal{T}^i \\
 x_i(t) & \text{otherwise}
\end{cases} \]

Here, \(\mathcal{T}^i \) is the set of times when node \(i \) executes an update, and \(\tau^j_i(t) \) is the time when the most recent version of \(x_j \) available to node \(i \) at time \(t \) was computed.

Note: Can view \(t - \tau^j_i(t) \) as information delay from node \(j \) to \(i \) at time \(t \).

Chazan and Miranker (1969), Baudet (1978), Bertsekas and Tsitsiklis (1989), …

Partially asynchronous algorithms

The iteration

\[x_i(t + 1) = \begin{cases}
 \mathcal{M}_i(x_1(\tau^i_1(t)), \ldots, x_n(\tau^i_n(t))) & \text{if } t \in \mathcal{T}^i \\
 x_i(t) & \text{otherwise}
\end{cases} \]

is called partially asynchronous if there exists \(B > 0 \) such that

a) For every \(i, t \), at least one element of \(\{t, t + 1, \ldots, t + B - 1\} \) is in \(\mathcal{T}^i \).

b) For every \(i, j \) and all \(t \in \mathcal{T}^i \), we have \(0 \leq t - \tau^j_i(t) \leq B - 1 \).

c) There holds \(\tau^i_i(t) = t \) for all \(i \) and all \(t \in \mathcal{T}^i \).

Bounded update intervals/information delays, direct access to “own” state

Totally asynchronous algorithms

The iteration

\[x_i(t + 1) = \begin{cases}
 \mathcal{M}_i(x_1(\tau^i_1(t)), \ldots, x_n(\tau^i_n(t))) & \text{if } t \in \mathcal{T}^i \\
 x_i(t) & \text{otherwise}
\end{cases} \]

is called totally asynchronous if

a) every set \(\mathcal{T}^i \) is an infinite subset of \(\mathbb{N}_0 \)

b) for every sequence \(\{t_k\} \) of elements of \(\mathcal{T}^i \) that tends to infinity, it holds that \(\lim_{k \to \infty} \tau^j_i(t_k) = \infty \) for all \(i, j \).

No node ceases to update, old information eventually purged out of system.

Challenge: quantify the impact of asynchronism

We address two key questions:

1. quantify how \(B \) impacts convergence of partially asynchronous iterations

2. establish convergence rates for classes of totally asynchronous iterations

We then use this insight to design delay-insensitive optimization algorithms.
Outline

1. Motivation
2. Problem formulation
3. Convergence rates of asynchronous iterations
4. Example: power control in wireless systems
5. A delayed incremental gradient method with linear convergence rate
6. Conclusions

Outline

1. Motivation
2. Problem formulation
3. Convergence rates of asynchronous iterations
4. Example: power control in wireless systems
5. A delayed incremental gradient method with linear convergence rate
6. Conclusions

Problem formulation

Consider iterations

\[x(t + 1) = Mx(t) \]

where \(M \) is a pseudo-contraction

\[\|Mx - x^*\| \leq c\|x - x^*\| \quad \forall x \in \mathbb{R}^n \]

with respect to a block-maximum norm

\[\|x\|_b = \max_{1 \leq i \leq m} w_i \|x_i\| \]

(Here \(x = (x_1, \ldots, x_m) \in \mathbb{R}^n \), \(x_i \in \mathbb{R}^{n_i} \), and \(\| \cdot \|_i \) is any norm)

Challenge: Quantify the impact of asynchrony on the iterates.

Main result

Theorem 1. If

a) \(M \) is pseudo-contraction with modulus \(c \) w.r.t. block-maximum norm
b) There exist functions \(\beta^j : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) and \(\Delta \in \mathbb{N}_0 \) such that, \(\forall t \geq \Delta \)

\[t - t_k \leq \beta^j(t) \leq t \quad t \in (t_k, t_{k+1}] \]

for every two consecutive elements \(t_k \) and \(t_{k+1} \) in \(\mathcal{T}^i \).

c) There is a decreasing function \(\lambda : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) with \(\lim_{t \rightarrow \infty} \lambda(t) = 0 \) and

\[c \lim_{t \rightarrow \infty} \frac{\lambda(t_j) - \beta^j(t_j)}{\lambda(t)} < 1 \quad \forall i, j \]

Then, the sequence generated by (2) under total asynchronism satisfies

\[\frac{1}{w_i} \|x_i(t) - x_i^*\| \leq M\lambda(t_i), \quad t \in (t_k, t_{k+1}] \]

for all \(i \) and all \(t \), where \(M \) is a positive constant.

Main result

Theorem 1. If

a) \(M \) is pseudo-contraction with modulus \(c \) w.r.t. block-maximum norm
b) There exist functions \(\beta^j : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) and \(\Delta \in \mathbb{N}_0 \) such that, \(\forall t \geq \Delta \)

\[t - t_k \leq \beta^j(t) \leq t \quad t \in (t_k, t_{k+1}] \]

for every two consecutive elements \(t_k \) and \(t_{k+1} \) in \(\mathcal{T}^i \).

c) There is a decreasing function \(\lambda : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) with \(\lim_{t \rightarrow \infty} \lambda(t) = 0 \) and

\[c \lim_{t \rightarrow \infty} \frac{\lambda(t_j) - \beta^j(t_j)}{\lambda(t)} < 1 \quad \forall i, j \]

Then, the sequence generated by (2) under total asynchronism satisfies

\[\frac{1}{w_i} \|x_i(t) - x_i^*\| \leq M\lambda(t_i), \quad t \in (t_k, t_{k+1}] \]

for all \(i \) and all \(t \), where \(M \) is a positive constant.

Our approach

Use a continuous decreasing function \(\lambda : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) satisfying

\[\lim_{t \rightarrow \infty} \lambda(t) = 0 \]

and show that there is \(M > 0 \) such that

\[\frac{1}{w_i} \|x_i(t) - x_i^*\| \leq M\lambda(t_k), \quad \forall t \in (t_k, t_{k+1}] \]

for all \(i \), all \(t \) and every pair of consecutive elements \(t_k \) and \(t_{k+1} \) in \(\mathcal{T}^i \).
Main results

Main result (partially asynchronous iterations)

Theorem 2. Let \mathcal{M} be a pseudo-contraction in the block-maximum norm. Then, the iterates generated by (2) under partial asynchronism satisfy
\[
\frac{1}{w_i} \| x_i(t) - x_i^* \| \leq M \rho^{t_k} \quad t \in (t_k, t_{k+1})
\]
for every pair of consecutive elements t_k and t_{k+1} in T^i. Moreover,
\[
\rho = \frac{c}{2^{t-1}}
\]

Note. Convergence rate still linear. Slows down with increasing B.

Proof uses Theorem 1 with $\beta(t) = B$ and $\lambda(t) = \rho^t$.

Example (“retarding divider”)

Consider the iteration
\[
x(t + 1) = \begin{cases}
\frac{1}{2} x(t), & t \in T \\
x(t), & t \not\in T
\end{cases}
\]
where $x(t) \in \mathbb{R}$ and $T = \{2^k \mid k \in \mathbb{N}_0\}$.
Since $t_{k+1} - t_k = 2^k$, there is no uniform upper bound on inter-update times.

However, since
\[
t - t_k \leq \frac{t}{2} \leq t \quad \forall t \in (t_k, t_{k+1})
\]
$\beta(t) = t/2$ and $\lambda(t) = 1/t$ satisfy conditions of Theorem 1. It follows that
\[
|x(t)| \leq \frac{M}{t_k}, \quad t \in (t_k, t_{k+1})
\]

Thus,
\[
\frac{1}{w_i} \| x_i(t) - x_i^* \| \leq M' \rho^t,
\]
so error decays as $O(\rho^t)$

Main result (linearly bounded delays)

Theorem 3. If
a) \mathcal{M} is a pseudo-contraction with modulus c w.r.t. a block-maximum norm
b) For each $t \in T^i$, there exists $t' \in T^i$ such that $1 \leq t' - t \leq B$.
c) It holds that $0 \leq t - \tau_i(t) \leq \alpha t$ for all i, j and all $t \geq t_\alpha$.

Then, the sequence generated by (2) under total asynchronism satisfies
\[
\frac{1}{w_i} \| x_i(t) - x_i^* \| \leq M \left(\frac{t}{B} + 1 \right)^{-\zeta} \quad t \in (t_k, t_{k+1})
\]
where $\zeta = \ln c / \ln(1 - \alpha)$.

Note. Bounded by polynomial function of time. Slower as delays increase.

Discussion: iterate time vs. physical time

Upper bound decreases only at iteration times, stays constant in between.

In physical time, convergence rate depends on how update times grow large.

For partially asynchronous iterations $t - B \leq t_k$ for $t \in (t_k, t_{k+1})$, so
\[
M \rho^{t_k} \leq M' \rho^{t-B} := M' \rho^t, \quad t \in (t_k, t_{k+1})
\]
Thus,
\[
\frac{1}{w_i} \| x_i(t) - x_i^* \| \leq M' \rho^t,
\]
so error decays as $O(\rho^t)$
Applications

Application: wireless power control

User i transmits at power p_i, tries to maintain SINR target γ_i

$$\text{SINR}_i = \frac{g_{ii}p_i}{\sum_{j \neq i} g_{ij}p_j + v_i} \geq \gamma_i$$

Transmit powers that minimize total energy satisfy

$$\frac{g_{ii}p_i}{\sum_{j \neq i} g_{ij}p_j + v_i} = \gamma_i$$

or, equivalently

$$p_i = I_i(p)$$

where $I_i : \mathbb{R}_+^n \rightarrow \mathbb{R}_+$ is the interference function.

Corollary. Consider the asynchronous power control iteration, and assume

a) every mobile updates its power at least once every B time units, and
b) no information is more than D_{max} time units old.

If $I(p)$ is a c-contractive interference function, then

$$\frac{1}{\epsilon_i} |p_i(t) - p_i^*| \leq M \rho^k, \quad t \in (t_k^i, t_{k+1}^i)$$

where $M > 0$ and t_k^i and t_{k+1}^i are consecutive elements of T_i. Moreover,

$$\rho = c^{B+D_{\text{max}}}$$

Application: wireless power control

Transmit power control implements fixed-point iteration

$$p_i(t+1) = I_i(p(t))$$

Definition 1. $I : \mathbb{R}_+^n \rightarrow \mathbb{R}_+$ is a c-contractive interference function if

a) $I_i(p) \geq 0$

b) If $p \geq p'$ then $I_i(p) \geq I_i(p')$

c) There exists $c \in [0, 1)$ and a vector $\nu > 0$ such that for all $\epsilon > 0$

$$I_i(p + \epsilon \nu) \leq I_i(p) + c \epsilon \nu$$

Proposition. If $I : \mathbb{R}_+^n \rightarrow \mathbb{R}_+$ is a c-contractive interference function, then

it has a unique fixed-point $p^* \in \mathbb{R}_+^n$ and

$$\|I(p) - I(p')\|_\infty \leq c \|p - p'\|_\infty$$

Application: wireless power control

Simulations and bounds for two users in a four-user scenario

Linear interference functions, $B = D_{\text{max}} = 4$.

Bounds valid, but not tight (for these users)
Application: wireless power control

Assume that information delay for user 1 grows increasingly large

\[t - \tau^1_j(t) = t - \tau^1(t) = [0.1t] \]

while other delays, execution times remain unchanged.

Simulations and bounds from Theorem 3.

Proof sketch

Theorem 1 (recollection and interpretation) If

a) \(\mathcal{M} \) is pseudo-contraction with modulus \(c \) w.r.t. block-maximum norm

b) There exist functions \(\beta^i : \mathbb{R}_+ \to \mathbb{R}_+ \) and \(\Delta \in \mathbb{N}_0 \) such that, \(\forall t \geq \Delta \)

\[t - t^*_k \leq \beta^i(t) \leq t \quad t \in (t^*_k, t^*_{k+1}] \]

for every two consecutive elements \(t^*_k \) and \(t^*_{k+1} \) in \(T^i \).

c) There is a decreasing function \(\lambda : \mathbb{R}_+ \to \mathbb{R}_+ \) with \(\lim_{t \to \infty} \lambda(t) = 0 \) and

\[c \lim_{t \to \infty} \frac{\lambda(t^*_j(t) - \beta^j(t^*_j(t)))}{\lambda(t)} < 1 \quad \forall i, j \]

Then, the sequence generated by (2) under total asynchronism satisfies

\[\frac{1}{w_i} \| x_i(t) - x^*_i \|_i \leq M \lambda(t^*_k), \quad t \in (t^*_k, t^*_{k+1}] \]

for all \(i \) and all \(t \), where \(M \) is a positive constant.

Proof sketch

Step 1. Find initial time \(\hat{T} \) such that hypotheses satisfied for \(t = 0, \ldots, \hat{T} \):

Let \(t^*_0 \) be smallest element of \(T^i \). By total asynchronism, there is \(\hat{T} \) such that

\[\tau^j_i(t) = \max \{ \Delta, \max_{1 \leq m \leq k} t^*_m + 1 \} \quad \forall t \geq \hat{T} \]

By condition c), we can find \(\hat{T} \) such that

\[c \lambda \left(\tau^j_i(t) - \beta^j(\tau^j_i(t)) \right) \leq \lambda(t) \quad \forall t \geq \hat{T} \]

Let \(\hat{T} = \max \{ \hat{T}, \hat{T} \} \) and define \(M = \| x(0) - x^* \|_{w} / \lambda(\hat{T}) \).

Since \(\{ x \mid \| x(t) - x^* \|_{w} \leq \| x(0) - x^* \|_{w} \} \) is invariant and \(\lambda(t) \) decreasing

\[\frac{1}{w_i} \| x_i(t) - x^*_i \|_i \leq M \lambda(t^*_k), \quad t \in (t^*_k, t^*_{k+1}] \]

for all \(t = 0, \ldots, \hat{T} \).

Step 2. Induction: assume true until \(t' \), show that it holds for \(t' + 1 \).

First consider \(t' \in T^i \), and define \(k' : t' \in (t^*_{k'}, t^*_{k'+1}] \). Then, by a)

\[\frac{1}{w_i} \| x_i(t' + 1) - x^*_i \|_i \leq c \max_{1 \leq j \leq m} \left\{ \frac{1}{w_j} \| x_j(\tau^j(t')) - x^*_j \|_j \right\} \]

Noting that \(\tau^j(t') \leq t' \), we apply the induction hypothesis and find

\[\frac{1}{w_j} \| x_j(\tau^j(t')) - x^*_j \|_j \leq M \lambda(t^*_{k'}) \leq M \lambda(t^*_{j'}) - \beta^j(\tau^j(t'))) \leq \frac{M}{c} \lambda(t') \]

It thus holds

\[\frac{1}{w_i} \| x_i(t' + 1) - x^*_i \|_i \leq M \lambda(t') = M \lambda(t^*_{k'+1}) \]

Since \(t' + 1 \in (t^*_{k'}, t^*_{k'+2}] \), the assertion holds for \(t' + 1 \). (\(t' \not\in T^i \) trivial)
Outline

1. Motivation
2. Problem formulation
3. Convergence rates of asynchronous iterations
4. Example: power control in wireless systems
5. A delayed incremental gradient method with linear convergence rate
6. Conclusions

So far...

Established rather general convergence estimates for asynchronous iterations.
Psuedo-contraction in block-maximum norm essential to analysis.

When the gradient iteration

\[x(t+1) = x(t) - \gamma \nabla f(x(t)) \]

is a contraction mapping, this is typically w.r.t. the Euclidean norm.

Can we use our insight to design delay-insensitive optimization algorithms?

A delayed incremental gradient method

Delayed incremental gradient methods

Common set-up in machine-learning applications:

\[
\text{minimize } \frac{1}{M} \sum_{m=1}^{M} f_m(x)
\]

Centralized coordinator, workers that compute delayed (partial) gradients

State-of-the-art

\[
i(t) = \mathcal{U}[1,M] \\
x(t+1) = x(t) - \gamma \nabla f_i(t)(x(t - \tau(t)))
\]

Converges linearly to ball around origin.

Limitations:
- Analysis assumes strong convexity and bounded gradients (!)
- Convergence proof valid for one particular value of \(\gamma \).
- Step-size depends on \(M \), max-delay and gradient norms at optimum

Note. Iterations mixing delayed and current states often hard to analyze.
A delayed incremental gradient method

Delayed gradient iterations

Instead of updating based on delayed gradient
\[x(t + 1) = x(t) - \gamma \nabla f(x(t - \tau(t))) \]
we consider updating based on delayed gradient mapping,
\[x(t + 1) = x(t - \tau(t)) - \gamma \nabla f(x(t - \tau(t))) \] \hspace{1cm} (1)

Proposition 1. Let \(f \) be \(\mu \)-strongly convex and have \(L \)-Lipschitz continuous gradient. If \(0 \leq \tau(t) \leq \tau_{\text{max}} \) for all \(t \), then \(\{x(t)\} \) generated by (1) satisfies
\[\|x(t) - x^*\| \leq \left(\frac{\kappa - 1}{\kappa + 1} \right) \frac{t}{\tau_{\text{max}} + 1} \]
where \(\kappa = L/\mu \).

M. Johansson (KTH) Embrp't14 - Lucca, Italy - September 8-9, 2014 29 / 40

A delayed incremental gradient method

Our algorithm

To minimize
\[f(x) = \frac{1}{M} \sum_{m=1}^{M} f_m(x) \]
we propose the following algorithm
\[i(t) = U[1, M] \]
\[s(t) = x(t - \tau(t)) - \gamma \nabla f_{i(t)}(x(t - \tau(t))) \]
\[x(t + 1) = (1 - \theta)x(t) + \theta s(t) \]

M. Johansson (KTH) Embrp't14 - Lucca, Italy - September 8-9, 2014 30 / 40

A delayed incremental gradient method

Delayed gradient iterations: quadratic objective functions

Consider minimization of the quadratic function
\[f(x) = \frac{1}{2} (Lx_1^2 + \mu x_2^2) \]
with \(\tau(t) = 1 \) for all \(t \).

Then, delayed gradient iteration has convergence factor
\[c_g = \frac{\kappa}{\kappa + 1} \]
while the delayed prox iteration has convergence factor
\[c_p = \sqrt{\kappa^2 - 1} \frac{1}{\kappa + 1} < c_g \]

Potentially faster and easier to analyze

M. Johansson (KTH) Embrp't14 - Lucca, Italy - September 8-9, 2014 31 / 40

Main result

Theorem 4. Assume that
a) each \(f_m \) is convex and has \(L_m \)-Lipschitz gradient on \(\mathbb{R}^n \)
b) the overall objective \(f \) is \(\mu \)-strongly convex
Then, if \(\gamma \in (0, \mu/\max_m L_m^2) \) the iterates generated by our method satisfy
\[E_t[f(x(t))] - f^* \leq c^t(f(x(0)) - f^*) + e \]
with
\[c = \left(1 - 2\gamma \mu \theta \left(1 - \gamma \frac{\max_m L_m^2}{\mu} \right) \right)^{1/(\tau_{\text{max}} + 1)} \]
and
\[e = \frac{\gamma \max_m L_m}{2M(\mu - \gamma \max_m L_m^2)} \sum_{m=1}^{M} \|\nabla f_m(x^*)\| \]

Note. Linear convergence to ball around optimum. Error/speed trade-off.

M. Johansson (KTH) Embrp't14 - Lucca, Italy - September 8-9, 2014 32 / 40
A delayed incremental gradient method

Numerical results

Representative convergence behaviour

Comparison with Hogwild!

Our algorithm converges faster with theoretically justified stepsizes.

Proof sketch

Lemma 5. Let \(\{V(t)\} \) be a sequence of real numbers satisfying

\[
V(t + 1) \leq pV(t) + q \max_{t - \tau(t) \leq s \leq t} V(s) + r
\]

for some non-negative numbers \(p, q \) and \(r \). If \(p + q < 1 \), and

\[
0 \leq \tau(t) \leq \tau_{\text{max}}
\]

Then,

\[
V(t) \leq c^t V(0) + e
\]

where \(c = (p + q)^{1/(1+\tau_{\text{max}})} \) and \(e = r/(1 - p - q) \).

Proof of Lemma 5. First note that since \(p + q < 1 \),

\[
1 \leq (p + q)^{-\tau_{\text{max}}/(1+\tau_{\text{max}})}
\]

so, since \(c = (p + q)^{1/(1+\tau_{\text{max}})} \),

\[
p + qc^{-\tau_{\text{max}}} = p + q(p + q)^{-\tau_{\text{max}}} \leq (p + q)(p + q)^{-\tau_{\text{max}}} = c
\]

Assertion holds for \(t = 0 \). Assume that it holds for \(t = 0, \ldots, \bar{t} \). Then

\[
V(\bar{t}) \leq c^\bar{t} V(0) + e, \quad V(s) \leq c^s V(0) + e \quad s = \bar{t} - \tau_{\text{max}}, \ldots, \bar{t}
\]

We then have

\[
V(\bar{t} + 1) \leq p c^\bar{t} V(0) + pe + q \max_{\bar{t} - \tau(\bar{t}) \leq s \leq \bar{t}} c^s V(0) + qe + r
\]

\[
\leq pc^\bar{t} V(0) + pe + qc^{\bar{t} - \tau_{\text{max}}} V(0) + qe + r = c^{\bar{t}+1} V(0) + e.
\]
A delayed incremental gradient method

Proof sketch

Proof of Theorem 4. Consider

\[V(t + 1) = \mathbb{E}_t [f(x(t + 1))] - f^* = \mathbb{E}_{t-1} \left[\mathbb{E}_{t-1} [f(x(t + 1))] \right] - f^* \]

Since \(f \) is convex and \(\theta \in [0, 1] \),

\[f(x(t + 1)) - f^* = f((1 - \theta)x(t) + \theta s(t)) - f^* \leq (1 - \theta)(f(x(t)) - f^*) + \theta(f(s(t)) - f^*) \]

We establish the following bound on \(f(s(t)) - f^* \):

\[\mathbb{E}_{t-1} [f(s(t))] - f^* \leq \left(1 - 2\mu \gamma \left(1 - \frac{\alpha \max_m L^2_m}{\mu} \right) \right) (f(x(t - \tau(t))) - f^*) + \frac{\gamma^2 \max_m L_m}{M} \sum_{m=1}^{M} \| \nabla f_m(x^*) \|^2 \]

Allows to express \(V(t + 1) \) in terms of \(V(t), \ldots V(t - \tau_{\text{max}}) \) plus error term.

Conclusions

Conclusions

- Convergence analysis of asynchronous iterations
- A general theorem covering both totally and partially asynchronism
- Asynchronism affects rates, not only factors
- A delayed incremental gradient method
- Running averages of delayed incremental gradient mappings
- Converges faster, and under less restrictive assumptions, than alternatives
- Not everything is in “the book” - many open problems!

References

References

Complete statements and proofs can be found in
