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Ph.D. Thesis

A thesis submitted to the Faculties of En-
gineering, Science and Medicine at Aal-
borg University, Denmark, in partial ful-
fillment of the requirements for the Ph.D.
degree in computer science.

Copyright c© 2007 by Gy̋oző Gidófalvi





Abstract

Largely driven by advances in communication and information technology, such as
the increasing availability and accuracy of GPS technology and the miniaturization of
wireless communication devices, Location–Based Services (LBS) are continuously
gaining popularity. Innovative LBSes integrate knowledge about the users into the
service. Such knowledge can be derived by analyzing the location data of users. Such
data contain two unique dimensions,spaceandtime, which need to be analyzed.

The objectives of this thesis are three–fold. First, to extend popular data mining
methods to the spatio–temporal domain. Second, to demonstrate the usefulnessof the
extended methods and the derived knowledge in two promising LBS examples.Fi-
nally, to eliminate privacy concerns in connection with spatio–temporal data mining
by devising systems for privacy–preserving location data collection and mining.

To this extent, Chapter 2 presents a general methodology,pivoting, to extend a
popular data mining method, namely rule mining, to the spatio–temporal domain. By
considering the characteristics of a number of real–world data sources,Chapter 2 also
derives a taxonomy of spatio–temporal data, and demonstrates the usefulness of the
rules that the extended spatio–temporal rule mining method can discover. In Chapter
4 the proposed spatio–temporal extension is applied to find long, sharable patterns
in trajectories of moving objects. Empirical evaluations show that the extendedme-
thod and its variants, using high–level SQL implementations, are effective tools for
analyzing trajectories of moving objects.

Real–world trajectory data about a large population of objects moving over ex-
tended periods within a limited geographical space is difficult to obtain. To aid the
development in spatio–temporal data management and data mining, Chapter 3 devel-
ops a Spatio–Temporal ACTivity Simulator (ST–ACTS). ST–ACTS uses a number of
real–world geo–statistical data sources and intuitive principles to effectively generate
realistic spatio–temporal activities of mobile users.

Chapter 5 proposes an LBS in the transportation domain, namely cab–sharing.
To deliver an effective service, a unique spatio–temporal grouping algorithm is pre-
sented and implemented as a sequence of SQL statements. Chapter 6 identifies a
scalability bottleneck in the grouping algorithm. To eliminate the bottleneck, the
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ii Abstract

chapter expresses the grouping algorithm as a continuous stream queryin a data
stream management system, and then devises simple but effective spatio–temporal
partitioning methods for streams to parallelize the computation. Experimental results
show that parallelization through adaptive partitioning methods leads to speed–ups
of orders of magnitude without significantly effecting the quality of the grouping.
Spatio–temporal stream partitioning is expected to be an effective method to scale
computation–intensive spatial queries and spatial analysis methods for streams.

Location–Based Advertising (LBA), the delivery ofrelevantcommercial infor-
mation to mobile consumers, is considered to be one of the most promising business
opportunities amongst LBSes. To this extent, Chapter 7 describes an LBA framework
and an LBA database that can be used for the management of mobile ads. Using a
simulated but realistic mobile consumer population and a set of mobile ads, the LBA
database is used to estimate the capacity of the mobile advertising channel. The es-
timates show that the channel capacity is extremely large, which is evidence for a
strong business case, but it also necessitates adequate user controls.

When data about users is collected and analyzed, privacy naturally becomes a
concern. To eliminate the concerns, Chapter 8 first presents a grid–based framework
in which location data is anonymized through spatio–temporal generalization, and
then proposes a system for collecting and mining anonymous location data. Exper-
imental results show that the privacy–preserving data mining component discovers
patterns that, while probabilistic, are accurate enough to be useful for many LBSes.

To eliminate any uncertainty in the mining results, Chapter 9 proposes a system
for collectingexacttrajectories of moving objects in a privacy–preserving manner. In
the proposed system there are no trusted components and anonymization is performed
by the clients in a P2P network via data cloaking and data swapping. Realistic sim-
ulations show that under reasonable conditions and privacy/anonymity settings the
proposed system is effective.
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Chapter 1

Introduction

Recent advances in communication and information technology, such as the increas-
ing accuracy of GPS technology and the miniaturization of wireless communication
devices pave the road for Location–Based Services (LBS). To achieve high quality
for such services, data mining techniques are used for the analysis of thehuge amount
of data collected from location–aware mobile devices. The objectives of thisthesis
are three–fold. First, since the two most important attributes of the data collected
arelocationandtime, the thesis investigates general methods for extending existing
data mining methods to the spatio–temporal domain. Second, using two promising
LBSes, the thesis demonstrates the usefulness of the knowledge that can be extracted
by the spatio–temporal data mining methods. Finally, since privacy is a major con-
cern to users of LBSes, the thesis considers location privacy in connection with col-
lection and data mining of location traces (trajectories) of users.

In the thesis the following setting and broad definitions are assumed. Mobile
users carry location–enabled mobile terminals (PDA, mobile phone, etc). By location–
enabled it is meant that applications running on the mobile terminal have the ability
to get the current, historical, or potentially even future locations of the mobile user.
Localization of the mobile terminals can be achieved through a wide variety of po-
sitioning technologies, including but not limited to, cellular network based position-
ing, GPS based positioning, geo–referenced sensor based positioning, or even geo–
referenced user entry. Mobile users access LBSes through their mobileterminals.
An LBS is a service that has one or more of the following characteristics. AnLBS
is either explicitly or implicitly requested by the users via the mobile terminal. An
LBS delivers its service selectively based on the context of the mobile user. There
are many aspects of user–context, however in this thesis the following context aspects
are considered: the current, historical and future locations of the user, any possible
user–patterns in the user location data, and common patterns in the location dataof a
group of users.
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2 Introduction

Data mining, the process of finding, e.g., associations, or in general patterns,
within large amounts of data, often stored in relational databases, has beenapplied
successfully in the past to increase business revenue. More recently,data mining has
been suggested to be useful to derive context for user–friendly LBSes. A large part of
this context for many LBSes can be described by general patterns in user activities.
One type of user activity iswhereandwhenusers were in the past. Data mining
methods for such activities have to consider two additional dimensions, namelythe
spatial, thetemporalor jointly thespatio–temporaldimension, and are referred to as
spatio–temporal data mining methods. Due to the unique nature of the two additional
dimensions, i.e., the cardinality of the dimensions are potentially extremely large,
and the temporal dimension is cyclic for some types of applications, mining spatio–
temporal patterns poses additional challenges. To address these challenges, Chapter
2 presents a general methodology,pivoting, to extend heavily researched rule mining
methods, in particular association rule mining. By considering the characteristics of
a number of real–world data sources, Chapter 2 also derives a taxonomyof spatio–
temporal data, and demonstrates the usefulness of the rules that the extended spatio–
temporal rule mining method can mine.

Chapter 4 uses pivoting to extend a projection–based frequent itemset mining
method to discover spatio–temporal sequential patterns, i.e., frequent routes, in GPS
traces. The extended method, through (either region–based or road network based)
spatio–temporal generalization, first preprocesses the GPS traces to obtain spatio–
temporal itemsets. Then, a variant of a database projection based closed frequent
itemset mining method prunes the search space by making use of the minimum
length and sharable requirements and avoids the generation of the exponential num-
ber of sub–routes of long routes. Considering alternative modelling options for tra-
jectories leads to the development of two effective variants of the method. SQL–
based implementations are described, and extensive experiments on both real–life-
and large–scale synthetic data show the effectiveness of the method and itsvariants.

Simulation is widely accepted in database research as a low–cost method to pro-
vide synthetic data for designing and testing novel data types and access methods.
This is even more so the case for trajectory data, where the availability of real–world
data about a large population of moving objects is limited. Prior research produced
a number of moving object simulators that model the physical aspects of mobility
to various degrees, but fail to adequately address the importantsocial and geo–
demographicalaspects of mobility. Modelling the latter aspects gives rise to unique
spatio–temporal data distributions with regularities. Hence, to aid the development in
spatio–temporal data management and data mining, Chapter 3 develops ST–ACTS, a
Spatio–Temporal ACTivity Simulator. ST–ACTS uses a number of real–worldgeo–
statistical data sources and intuitive principles to generate realistic spatio–temporal
activities of mobile users. ST–ACTS considers that (1) objects (representing mobile
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users) move from one spatio–temporal location to another with the objective of per-
forming a certain activity at the latter location; (2) not all users are equally likely to
perform a given activity; (3) certain activities are performed at certainlocations and
times; and (4) activities exhibit regularities that can be specific to a single user or
to groups of users. Experiments demonstrate that ST–ACTS is effective and that the
characteristics of the generated data correspond to the input model parameters.

Clustering, the process of finding groups of similar objects among a large set of
objects, is another common general data mining technique. Clustering the spatio–
temporal domains have been largely neglected in the past. However, as Chapter 5
demonstrates, answering service requests in meaningful spatio–temporalgroups can
yield promising LBSes. The chapter presents one such LBS in the transportation
domain (cab–sharing) along with a meaningful grouping method for the specific ser-
vice. The grouping method uses a number of approximations and heuristics tofind
a near–optimal solution in the combinatorial problem space. The grouping method
is expressed as a small set of standard SQL queries. Based on syntheticdata derived
from ST–ACTS, the chapter demonstrates that the proposed method can effectively
group together cab–requests, making cab–sharing a new, promising modeof trans-
portation.

Chapter 6 outlines how the grouping algorithm can be adapted to facilitate large–
scale collective transportation systems, for example a ride–sharing system.However,
Chapter 6 identifies a scalability bottleneck in the grouping algorithm. To elimi-
nate the bottleneck, the chapter (1) expresses the grouping algorithm as acontinuous
stream query in a data stream management system, and (2) devises simple buteffec-
tive spatio–temporal partitioning methods for streams to parallelize the computation.
Extensive experimental results show that the parallel implementation using simple
adaptive partitioning methods can achieve speed–ups of several orders of magnitude
without significantly effecting the quality of the grouping.

Another highly promising LBS lies in the mobile advertising domain. The suc-
cess of mobile advertising hinges on the ability to deliver onlyrelevantinformation
to the mobile consumer. Chapter 7 investigates models for Location–Based Adver-
tising (LBA) where the relevance of a mobile ad depends on at least two factors: (1)
theproximityof the mobile consumer to the product or service being advertised, and
(2) thematchbetween the product or service and theinterestof the mobile consumer.
While the consumer can express his/her interestexplicitly, as demonstrated, it can
also beimplicitly inferred through data mining. To give indications for the business
potential of LBA, using synthetic data from ST–ACTS, the chapter gives estimates for
the capacity of the LBA channel both in the explicit and implicit case. Results show
that the capacity of the Location–Based Advertising channel is rather large, which is
evidence for a strong business case, but it also necessitates effective user–controls for
the received mobile ads, some of which are proposed in the chapter.



4 Introduction

To receive LBSes, users have to be willing to disclose their current, historical,
or future locations. Such a disclosure naturally raises concerns among the users
about potentially being tracked and followed. Hence, to assure user acceptance of
LBSes, the privacy of users is of great importance. To this extent, Chapters 8 and 9
address location privacy concerns in connection with data mining of user locations.
More specifically, Chapter 8 proposes a privacy–preserving locationdata collection
and mining system. The system uses a general framework that allows user location
data to be anonymized through spatio–temporal generalization, thus preserving pri-
vacy. The data mining component of the system mines anonymized location data
and derives probabilistic spatio–temporal patterns. A privacy–preserving method is
proposed for the core data mining task offinding dense spatio–temporal regions. An
extensive set of experiments evaluate the method, comparing it to its non–privacy–
preserving equivalent. The experiments show that the framework allows most pat-
terns to be found, even when privacy is preserved.

The anonymization process proposed in Chapter 8 introduces some uncertainty in
the patterns. To eliminate this uncertainty in patterns, Chapter 9 first adopts and com-
bines existing privacy definitions to derive privacy definitions of various strengths for
location data. Then the chapter presents a complete system for the privacy–preserving
collection ofexacttrajectories. The system is composed of an untrusted server and
clients communicating in a P2P network. Location data is anonymized in the system
using data cloaking and data swapping techniques. Experiments on simulated but re-
alistic movement data indicate that the proposed system is effective under reasonable
conditions and privacy / anonymity settings.

The contents of this thesis are based on the contents of papers that have either
been published, are to appear, or are under consideration for publication.

Since Chapters 2 to 9 are based on individual publications, they are self contained
and can be read in isolation. Since some of these chapters are closely related, this en-
tails a certain amount of overlap. In particular, some of the methods and the base
data used in the data generator, ST–ACTS, in Chapter 3, are also used in the estima-
tions in Chapter 7. Hence, there is a strong correspondence between Sections 3.4 and
3.5.4, and Sections 7.5.3 and 7.4, respectively. Furthermore, since ST–ACTS is used
to generate synthetic data for experiments in most of the papers and is referenced
extensively throughout the chapters, it is placed early in the thesis. Similarly, since
Chapter 6 provides a scalable implementation of the algorithm presented in Chapter
5, the motivation in Section 5.1, the problem definition in Section 5.2, the service
description in Section 5.3, and the description of the basic algorithm in Section 5.4
closely correspond to Sections 6.1, 6.3.1, 6.3.2, and 6.3.3, respectively.Finally, since
both Chapters 8 and 9 consider location privacy in connection with data miningof
trajectories, the motivations and review of related work in Section 8.1 are similarto
that presented in Sections 9.1 and 9.2.
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Chapter 2

Spatio–Temporal Rule Mining:
Issues and Techniques

Recent advances in communication and information technology, such as the increas-
ing accuracy of GPS technology and the miniaturization of wireless communication
devices pave the road for Location–Based Services (LBS). To achieve high quality
for such services, spatio–temporal data mining techniques are needed. This paper de-
scribes experiences with spatio–temporal rule mining in a Danish data mining com-
pany. First, a number of real world spatio–temporal data sets are described, leading to
a taxonomy of spatio–temporal data. Second, the paper describes a general method-
ology that transforms the spatio–temporal rule mining task to the traditional market
basket analysis task and applies it to the described data sets, enabling traditional as-
sociation rule mining methods to discover spatio–temporal rules for LBS. Finally,
unique issues in spatio–temporal rule mining are identified and discussed.

2.1 Introduction

Several trends in hardware technologies such as display devices and wireless com-
munication combine to enable the deployment of mobile, Location–Based Services
(LBS). Perhaps most importantly, global positioning systems (GPS) are becoming
increasingly available and accurate. In the coming years, we will witness very large
quantities of wirelessly Internet–worked objects that are location–enabledand capa-
ble of movement to varying degrees. These objects include consumers using GPRS
and GPS enabled mobile–phone terminals and personal digital assistants, tourists

7
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carrying on–line and position–aware cameras and wrist watches, vehicles with com-
puting and navigation equipment, etc.

These developments pave the way to a range of qualitatively new types of Internet–
based services [56]. These types of services, which either make little sense or are of
limited interest in the context of fixed–location, desktop computing, include: traffic
coordination and management, way–finding, location–aware advertising, integrated
information services, e.g., tourist services.

A single generic scenario may be envisioned for these location–based services.
Moving service users disclose their positional information to services, which use this
and other information to provide specific functionality. To customize the interactions
between the services and users, data mining techniques can be applied to discover
interesting knowledge about the behavior of users. For example, groups of users can
be identified exhibiting similar behavior. These groups can be characterized based
on various attributes of the group members or the requested services. Sequences of
service requests can also be analyzed to discover regularities in such sequences. Later
these regularities can be exploited to make intelligent predictions about user’s future
behavior given the requests the user made in the past. In addition, this knowledge can
also be used for delayed modification of the services, and for longer–term strategic
decision making [57].

An intuitively easy to understand representation of this knowledge is in terms
of rules. A rule is an implication of the formA ⇒ B, whereA andB are sets
of attributes. The idea of mining association rules and the subproblem of mining
frequent itemset was introduced by Agrawal et al. for the analysis of market basket
data [1]. Informally, the task of mining frequent itemsets can be defined as finding
all sets of items that co–occur in user purchases more than a user–defined number of
times. The number of times items in an itemset co–occur in user purchases is defined
to be thesupportof the itemset. Once the set of high–support, so calledfrequent
itemsets have been identified, the task of mining association rules can be defined as
finding disjoint subsetsA andB of each frequent itemset such that the conditional
probability of items inB given the items inA is higher than a user–defined threshold.
The conditional probability ofB givenA is referred to as theconfidenceof the rule
A ⇒ B. Given that coffee and cream are frequently purchased together, ahigh–
confidence rule might be that “60% of the people who buy coffee also buycream.”
Association rule mining is an active research area. For a detailed review thereader is
referred to [40].

Spatio–temporal (ST) rules can be eitherexplicit or implicit. Explicit ST rules
have a pronounced ST component. Implicit ST rules encode dependencies between
entities that are defined by spatial (north–of, within, close–to,. . . ) and/ortemporal
(after, before, during,. . . ) predicates. An example of an explicit ST rule is: “Busi-
nessmen drink coffee at noon in the pedestrian street district.” An exampleof an
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implicit ST rule is: “Middle–aged single men often co–occur in space and time with
younger women.” This paper describes experiences with ST rule mining in the Dan-
ish spatial data mining company, Geomatic.

The task of finding ST rules is challenging because of the high cardinality ofthe
two added dimensions: space and time. Additionally, straight–forward application of
association rule mining methods cannot always extract all the interesting knowledge
in ST data. For example, consider the previous implicit ST rule example, which
extracts knowledge about entities (people) with different attributes (gender, age) that
interact in space and time. Such interaction will not be detected when association
rule mining is applied in straight–forward manner. This creates a need to explore the
special properties of ST data in relation to rule mining, which is the focus of this
paper.

The contributions of the paper are as follows. First, a number of real world ST
data sets are described, and a taxonomy for ST data is derived. Second, having
the taxonomy, the described data sets, and the desirable LBSes in mind, a general
methodology is devised that projects the ST rule mining task to traditional market
basket analysis. The proposed method can in many cases efficiently eliminatethe
above mentioned explosion of the search space, and allows for the discovery of both
implicit and explicit ST rules. Third, the projection method is applied to a number
of different type of ST data such that traditional association rule mining methods are
able to find ST rules which are useful for LBSes. Fourth, as a natural extension to the
proposed method, spatio–temporally restricted mining is described, which in some
cases allows for further quantitative and qualitative mining improvements. Finally,
a number of issues in ST rule mining are identified, which point to possible future
research directions.

Despite the abundance of ST data, the number of algorithms that mine such data
is small. Since the pioneering work of [2], association rule mining methods were
extended to the spatial [21, 22, 48, 63], and later to the temporal dimension [67].
Other than in [70, 95], there has been no attempts to handle the combination of the
two dimensions. In [95] an efficient depth–first search style algorithm is given to
discover ST sequential patterns in weather data. The method does not fullyexplore
the spatial dimension as no spatial component is present in the rules, and nogeneral
spatial predicate defines the dependencies between the entities. In [70],a bottom–
up, level–wise, and a faster top–down mining algorithm is presented to discover ST
periodic patterns in ST trajectories. While the technique can naturally be applied
to discover ST event sequences, the patterns found are only within a single event
sequence.

The remainder of the paper is organized as follows. Section 2.2 introducesa num-
ber of real world ST data sets, along with a taxonomy of ST data. In Section 2.3, a
general methodology is introduced that projects the ST rule mining task to the tradi-
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tional market basket analysis or frequent itemset mining task. The proposed problem
projection method is also applied to the example data sets such that traditional associ-
ation rule mining methods are able to discover ST rules for LBSes. Finally, Sections
2.4 and 2.5 identify unique issues in ST rule mining, conclude, and point to future
work.

2.2 Spatio–Temporal Data

Data is obtained by measuring some attributes of an entity/phenomena. When these
attributes depend on the place and time the measurements are taken, the data is refer
to as ST data. Hence such ST measurements not only include the measured attribute
values about the entity or phenomena, but also two special attribute values:a location
value,wherethe measurement was taken, and a time value,whenthe measurement
was taken. Disregarding these attributes, the non–ST rule “Businessmen drink cof-
fee” would result in annoying advertisements sent to businessmen who arein the
middle of an important meeting.

2.2.1 Examples of ST Data Sets

The first ST data set comes from the “Space, Time, and Man” (STM) project [86]—
a multi–disciplinary project at Aalborg University. In the STM project activities of
thousands of individuals are continuously registered through GPS–enabled mobile
phones, referred to as mobile terminals. These mobile terminals, integrated with
various GIS services, are used to determine close–by services such asshops. Based
on this information in certain time intervals the individual is prompted to select from
the set of available services, which s/he currently might be using. Upon thisselection,
answers to subsequent questions can provide a more detailed information about the
nature of the used service. Some of the attributes collected include: location and time
attributes, demographic user attributes, and attributes about the services used. This
data set will be referred to as STM in the following.

The second ST data set is a result of a project carried out by the Greater Copen-
hagen Development Council (Hovedstadens Udviklings Råd (HUR)). The HUR pro-
ject involves a number of city busses each equipped with a GPS receiver,a laptop,
and infrared sensors for counting the passengers getting on and off at each bus stop.
While the busses are running, their GPS positions are continuously sampled toobtain
detailed location information. The next big project of HUR will be to employ chip
cards as payment for the travel. Each passenger must have an individual chip card
that is read when getting on and off the bus. In this way an individual payment de-
pendent on the person and the length of the travel can be obtained. The data recorded
from the chip cards can provide valuable passenger information. When analyzed, the



2.2 Spatio–Temporal Data 11

data can reveal general travel patterns that can be used for suggesting new and better
bus routes. The chip cards also reveal individual travel patterns which can be used
to provide a customized LBS that suggests which bus to take, taking capacitiesand
correct delays into account. In the following, the data sets from the first and second
projects of HUR will be referred to as HUR1 and HUR2, respectively.

The third ST data set is the publicly available INFATI data set [53], which comes
from the intelligent speed adaptation (INtelligent FArtTIlpasning (INFATI)) project
conducted by the Traffic Research Group at Aalborg University. Thisdata set records
cars moving around in the road network of Aalborg, Denmark over a period of sev-
eral months. During this period, periodically the location and speeds of the cars are
sampled and matched to corresponding speed limits. This data set is interesting,as it
captures the movement of private cars on a day–to–day basis, i.e., the dailyactivity
patterns of the drivers. Additional information about the project can be found in [58].
This data set will be referred to as INFATI in the following.

Finally, the last example data set comes from the Danish Meteorology Institute
(DMI) and records at fixed time intervals atmospheric measurements like tempera-
ture, humidity, and pressure for Denmark for 5 km grid cells. This data setis unique
in that unlike the other data sets it does not capture ST characteristics of moving ob-
jects, but nonetheless is ST. This data set will be referred to as DMI in the following.

2.2.2 A Taxonomy of ST Data

Data mining in the ST domain is yet largely unexplored. There does not even exist
any generally accepted taxonomy of ST data. To analyze such data it is important to
establish a taxonomy.

Perhaps the most important criterion for this categorization is whether the mea-
sured entities aremobileor immobile. The ST data in the DMI data set is immobile
in the sense that the temperature or the amount of sunshine does not move from one
location to the other, but rather, as a continuous phenomenon, changes itsattribute
value over time at a given location. On the other hand, the observed entities inthe
other four data sets are rather mobile.

Another important criterion for categorization is whether the attribute values of
the measured entities arestatic or dynamic. There are many examples of static at-
tributes values but perhaps one that all entities possess is a unique identifier. Dy-
namic attributes values change over time. This change can be slow and gradual, like
in the case of the age of an observed entity, or swift and abrupt, like in the case of
an activity performed by the observed entity, which starts at a particular time and last
for a well–specified time interval only.
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2.3 Spatio–Temporal Baskets

Following the methodology of market basket analysis, to extract ST rules for a given
data set, one needs to define STitemsandbaskets. This task is important, since any
possible knowledge that one can extract using association rule mining methods will
be about the possible dependencies of the items within the baskets.

2.3.1 Mobile Entities with Static and Dynamic Attributes

Consider the STM data; it is mobile in nature and has several static and dynamic
attributes. Base data contains the identity and some demographic attributes of the
user, and the activity performed by user at a particular location and time. Further
attributes of the locations where the activity is performed are also available. By
applying association rule mining on this base data one can find possible dependencies
between the activities of the users, the demographics of the users, the characteristics
of the locations there the activities are performed, and the location and time of the
activities. Since the location and time attributes are items in the baskets one may find
{Strøget,noon,businessman,café} as a frequent itemset and from it the association
rule{Strøget,noon,businessman}⇒ {caf́e}. Strøget being a famous pedestrian street
district in central Copenhagen in Denmark, this rule clearly has both a spatial and
temporal component and can be used to advertise special deals of a café shop on
Strøget to businessmen who are in the area around noon.

In the INFATI data set, a record in the base data contains a location, a time, a
driver identifier, and the current speed of the car along with the maximum allowed
speed at the particular location. The possible knowledge one can discover by apply-
ing association rule mining on the base data is where and when drivers or a particular
driver occur(s) and/or speed(s) frequently. However, one may in asense pivot this ta-
ble of base data records such that each new row represents an ST region and records
the car identifiers that happen to be in that region. Applying association rulemin-
ing on these ST baskets one may find which cars co–occur frequently in space and
time. Such knowledge can be used to aid intelligent rideshare services. It can also be
valuable information for constructing traffic flow models and for discovering travel
patterns. While the possible knowledge discovered may be valuable for certain appli-
cations, the extracted rules are not clearly ST, i.e.: there is noexplicit ST component
in them. In fact the same set of cars may frequently co–occur at severalST regions
which may be scattered in space and time. Nonetheless, it can be argued thatsince
the “co–occurrence” between the items in the ST baskets is actually an ST predicate
in itself, the extracted rules areimplicitly ST.

An alternative to this approach might be to restrict the mining of the ST baskets
to larger ST regions. While this may seem useless at first, since the baskets them-
selves already define more fine–grained ST regions, it has several advantages. First,
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Location Time CarID

1 07:30 A

1 07:30 B

2 07:31 A

2 07:31 B

2 07:31 C

3 07:32 A

3 07:32 C

3 16:20 A

3 16:20 B

2 16:21 A

2 16:21 B

1 16:22 A

1 16:22 B

Location Time CarIDs

1 07:30 A,B

2 07:31 A,B,C

3 07:32 A,C

3 16:20 A,B

2 16:21 A.B

1 16:22 A,B

Base Data Records from INFATI

Spatio-temporal Baskets

Pivoting

Figure 2.1: Process of Pivoting to Obtain ST Baskets from INFATI Base Data.

it allows the attachment of an explicit ST component to each extracted rule. Second,
it enhances the quality of the extracted rules. Finally, it significantly speedsup the
mining process, as no two itemsets from different regions are combined andtried
as a candidate. Figure 2.1 shows the process of pivoting of some example records
abstracted from the INFATI data set. Figure 2.2 shows the process and results of
spatio–temporally restricted and unrestricted mining of the ST baskets. In this ex-
ample the shown frequent itemsets are based on an absolute minimum support of 2
in both cases, however in the restricted case specifying a relative minimum support
would yield more meaningful results. Naturally the adjective “relative” refers to the
number of baskets in each of the ST regions. Figure 2.2 also shows the above men-
tioned qualitative differences in the result obtained from spatio–temporally restricted
vs. unrestricted mining. While the frequent co–occurrence of cars A and B, and
cars A and C are detected by unrestricted mining, the information that cars A and
B are approximately equally likely to co–occur in area A1 in the morning as in the
afternoon, and that cars A and C only co–occur in area A1 in the morning ismissed.

Similar pivoting techniques based on other attributes can also reveal interesting
information. Consider the data set in HUR2 and the task of finding frequentlytrav-
elled routes originating from a given ST region. In the HUR2 data set a record is
generated every time a user starts and finishes using a transportation service. This
record contains the identifier of the user, the transportation line used, andthe location
and time of the usage. For simplicity assume that a trip is defined to last at most 2
hours. As a first step of the mining, one can retrieve all the records that fall within
the ST region of the origin. Following, one can retrieve all the records within2 hours
of the users that belonged to the first set. By pivoting on the user–identifiers, one can
derive ST baskets that contain locations where the user generated a record by making
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Location Time CarIDs

1 07:30 A,B

2 07:31 A,B,C

3 07:32 A,C

3 16:20 A,B

2 16:21 A.B

1 16:22 A,B

Spatio-temporal region 1:
Area = A1 Period = 07:30-07:40

Spatio-temporal region 2:
Area = A1 Period = 16:20-16:30

Spatio-temporal Baskets

Spatio-temporally
Unrestricted Mining

Spatio-temporally
Restricted Mining

Itemset Support

{A} 6

{B} 5

{C} 2

{A,B} 5

{A,C} 2

Area Period Itemset Support

A1 7:30-7:40 {A} 3

A1 7:30-7:40 {B} 2

A1 7:30-7:40 {C} 2

A1 7:30-7:40 {A,B} 2

A1 7:30-7:40 {A,C} 2

A1 16:20-16:30 {A} 3

A1 16:20-16:30 {B} 3

A1 16:20-16:30 {A,B} 3

Figure 2.2: Process and Results of Spatio–Temporally Restricted vs. Unrestricted
Mining of ST Baskets.

use of a transportation service. Applying association rule mining to the so–derived
ST baskets one may find frequently travelled routes originating from a specific ST
region. The pivoting process for obtaining such ST baskets and the results of mining
such baskets is illustrated in a simple example in the light bordered box of Figure
2.3. Naturally, the frequent itemset mining is only applied to the ”Unique Locations”
column of the ST baskets. As before the minimum support is set to 2. Considering
the spatial relation between the locations one might consider altering the bus routes
to better meet customer needs. For example, if locations A and C are close by on the
road network, but no bus line exists with a suitable schedule between A and C, then
in light of the evidence, i.e., support of A,B,C is 2, such a line can be added.Note
that while the discovered frequent location sets do not encode any temporal relation
between the locations, one can achieve this by simply placing ST regions into theST
baskets as items. The pivoting process and the results of mining are shown inthe
dark bordered box of Figure 2.3. The discovered ST itemsets can help in adjusting
timetables of busses to best meet customer needs.

2.3.2 Immobile Entities with Static and Dynamic Attributes

So far the examples considered data sets that are mobile and have either static, dy-
namic, or both types of attribute values. Now consider an immobile ST data with
mostly dynamic attribute values, as the DMI data set. The base data can be viewed as
transactions in a relational table with a timestamp, a location identifier and some at-
mospheric measurements like temperature, humidity, and pressure. Considering the
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Base Data Records from HUR2

User Location Time Line ON/OFF

X A 08:00 7 ON

X B 08:15 7 OFF

X B 08:20 14 ON

X C 08:25 14 OFF

Y A 08:00 7 ON

Y B 08:15 7 OFF

Y D 08:18 18 ON

Y E 08:25 18 OFF

Z A 08:00 7 ON

Z B 08:15 7 OFF

Z B 08:20 14 ON

Z C 08:25 14 OFF

Pivoting

User Locations Unique Locations

X A,B,B,C A,B,C

Y A,B,D,E A,B,D,E

Z A,B,B,C A,B,C

Spatio-temporal Baskets

Frequent Itemset
Mining

Itemset Support

{A} 3

{B} 3

{C} 2

{A,B} 3

{A,C} 2

{A,B,C} 2

Pivoting

User Spatio-temporal Regions

X A_0800, B_0815, B_0820, C_0825

Y A_0800, B_0815, D_0818, E_0825

Z A_0800, B_0815, B_0820, C_0825

Spatio-temporal Baskets

Frequent
Itemset
Mining

Itemset Support

{A_0800} 3

{B_0815} 3

{C_0825} 3

{A_0800,B_0815} 3

{A_0800,C_0825} 2

{A_0800,B_0815,C_0825} 2

Figure 2.3: ST Baskets and Frequent Itemset Mining for HUR2.

geographical locations A, B, C, and D depicted in Figure 2.4, one might be interested
in trends like, when the temperature in regions A and B is high and the pressure in
regions A and C is low, then at the same time the humidity in region D is medium.
By applying something similar to the pivoting techniques above, one can extract such
information as follows. For each record concatenate the location identifierswith the
atmospheric measurements. Then, for each distinct time interval when measurements
are taken, put all concatenated values, each of which is composed of a location iden-
tifier and an atmospheric measurement, into a single, long ST basket. By performing
association mining on the derived ST baskets one can obtain the desired knowledge.

As an illustrative example, depicted in Figure 2.4, consider the four neighbor-
ing cells A, B, C, and D and the corresponding measurements of temperature(T),
humidity (H), and pressure (P) at three different times. Items in the ST baskets are
derived by concatenating a location identifier followed by an attribute symboland an
attribute value. Hence, the item ‘ATlo‘ in the ST basket at time ‘08:00’ encodes the
fact that at ‘08:00’ at location ‘A’ the temperature (‘T’) was low (‘lo’).Notice that
the extracted knowledge refers to specific locations. If one is interested inobtain-
ing knowledge about the inter–dependencies of these attributes relative (in space) to
one another, for each base data record at each distinct time interval when measure-
ments are taken, an ST basket can be constructed that encodes measurements from
neighboring cells only. So, for example considering the immediate 8 neighborsof
a cell and assuming three different attributes the number of items in each basket is
3 + 8 × 3 = 27. Considering a five–by–five relative neighborhood centered around
a cell the number of items in each basket is 75, and the number of possible itemsets,
given three possible attribute values for each of the attributes is375 ≈ 6.1 × 1034.
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Location Time T H P

A 08:00 lo hi hi

B 08:00 lo hi hi

C 08:00 hi me me

D 08:00 me me me

A 09:00 me hi me

B 09:00 hi lo lo

C 09:00 lo lo me

D 09:00 lo hi hi

A 10:00 lo hi hi

B 10:00 hi lo lo

C 10:00 hi hi me

D 10:00 lo hi hi

Time Spatial Measurements

08:00 ATlo,AHhi,APhi,BTlo,BHhi,BPhi,CThi,CHme,CPme,DTme,DHme,DPme

09:00 ATme,AThi,APme,BThi,BHlo,BPlo,CTlo,CHlo,CPme,DTlo,DHhi,DPhi

10:00 ATlo,AHhi,APhi,BThi,BHlo,BPlo,CThi,CHhi,CPme,DTlo,DHhi,DPhi

Pivoting

Base Data Records from DMI

Spatio-temporalBaskets
Frequent Itemset Mining

Geographical Locations

A

DC

B

Longest Frequent Itemset (out of 157)

{BThi,BHlo,BPlo,CPme,DTlo,DHhi,DPhi}

Figure 2.4: ST Baskets and Frequent Itemset Mining of DMI.

To reduce complexity, top–down and bottom–up mining can occur at different spatial
and temporal granularities.

While in the above examples the type of ST data that was analyzed and the type
of ST knowledge that was extracted is quite different the underlying problem trans-
formation method—referred to aspivoting—is the same. In general, one is given
base records with two sets of attributesA andB, which are selected by a data mining
expert and can contain either spatial, temporal and/or ordinary attributes.Pivoting
is then performed by grouping all the base records based on theA–attribute values
and assigning theB–attribute values of base records in the same group to a single
basket. Bellow, attributes inA are referred to aspivoting attributes orpredicates,
and attributes inB are referred to aspivotedattributes oritems. Depending on the
type of the pivoting attributes and the type of the pivoted attributes the obtainedbas-
kets can be eitherordinary, spatial, temporal, or ST baskets. Table 2.1 shows the
different types of baskets as a function of the different types of predicates used to
construct the baskets and the different types of items placed in the baskets. The sym-

pred/item type s–i t–i st–i ordinary–i

s–predicate s–b st–b s–b
t–predicate st–b t–b t–b
st–predicate st–b st–b st–b st–b

other–predicate s–b t–b st–b ordinary–b

Table 2.1: Types of Baskets as a Function of Predicate Type and Item Type.
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basket/mining type s–r t–r st–r unr

s–basket X X
t–basket X X
st–basket X X X X

other–basket X

Table 2.2: Possible Mining Types of Different Types of Baskets.

bols s, t, st, i, and b in the table are used to abbreviate the terms ‘spatial’, ‘temporal’,
‘spatio–temporal’, ‘items’, and ‘baskets’ respectively.

In the “co–occurrence” mining task, which was earlier illustrated on the INFATI
data, the concept of restricted mining is introduced. This restriction is possible due
to a side effect of the pivoting technique. When a particular basket is constructed,
the basket is assigned the value of the pivoting attribute as an implicit label. When
this implicit basket label contains a spatial, temporal, or ST component, restricting
the mining to a particular spatial, temporal, or ST subregion becomes a natural possi-
bility. It is clear that not all basket types can be mined using spatial, temporal,or ST
restrictions. Table 2.2 shows for each basket type the type of restrictionsfor mining
that are possible. The symbols s, t, st, r, and unr in the table are used to abbrevi-
ate the terms ‘spatial’, ‘temporal’, ‘spatio–temporal’, ‘restricted’, and ‘unrestricted’
respectively.

2.4 Issues in Spatio–Temporal Rule Mining

The proposed pivoting method naturally brings up questions about feasibility and
efficiency. In cases where the pivoted attributes include spatial and/or temporal com-
ponents, the number of items in the baskets is expected to be large. Thus, the number
and length of frequent itemsets or rules is expected to grow. Bottom–up, level–wise
algorithms are expected to suffer from excessive candidate generation, thus top–down
mining methods seem more feasible. Furthermore, due to the presence of very long
patterns, the extraction of all frequent patterns has limited use for analysis. In such
cases closed or maximal frequent itemsets can be mined.

Useful patterns for LBSes are expected to be present only in ST subregions,
hence spatio–temporally restricted rule mining will not only make the proposed me-
thod computationally more feasible, but will also increase the quality of the result.
Finding and merging patterns in close–by ST subregions is also expected to improve
efficiency of the proposed method and the quality of results.

Placing concatenated location and time attribute values about individual entities
as items into an ST basket allows traditional association rule mining methods to ex-
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tract ST rules that represent ST event sequences. ST event sequences can have nu-
merous applications, for example an intelligent ride–sharing application, which finds
common routes for a set of commuters and suggests rideshare possibilities to them.
Such an application poses a new requirement on the discovered itemsets, namely,
they primarily need to be “long” rather than frequent (only a few people willshare
a given ride, but preferably for a long distance). This has the followingimplications
and consequences. First, all subsets of frequent and long itemsets arealso frequent,
but not necessarily long and of interest. Second, due to the low supportrequirement
a traditional association rule mining algorithm, disregarding the length requirement,
would explore an excessive number of itemsets, which are frequent butcan never be
part of a long and frequent itemset. Hence, simply filtering out “short” itemsets after
the mining process is inefficient and infeasible. New mining methods are needed that
efficiently use the length criterion during the mining process.

2.5 Conclusions and Future Work

Motivated by the need for ST rule mining methods, this paper established a taxonomy
for ST data. A general problem transformation method was introduced, called piv-
oting, which when applied to ST data sets allows traditional association rule mining
methods to discover ST rules. Pivoting was applied to a number of ST data setsal-
lowing the extraction of both explicit and implicit ST rules useful for LBSes. Finally,
some unique issues in ST rule mining were identified, pointing out possible research
directions.

Future work will devise and empirically evaluate algorithms for both general and
spatio–temporally restricted mining, and more specialized types of mining such asthe
ride–sharing suggestions. Especially, algorithms that take advantage of the above–
mentioned “long rather than frequent” property of rideshare rules will beinteresting
to explore.



Chapter 3

ST–ACTS: A Spatio–Temporal
Activity Simulator

Creating complex spatio–temporal simulation models is a hot issue in the area of
spatio–temporal databases [80]. While existing Moving Object Simulators (MOSs)
address differentphysicalaspects of mobility, they neglect the importantsocialand
geo–demographicalaspects of it. This paper presents ST–ACTS, a Spatio–Temporal
ACTivity Simulator that, using various geo–statistical data sources and intuitive prin-
ciples, models the so far neglected aspects. ST–ACTS considers that (1)objects (rep-
resenting mobile users) move from one spatio–temporal location to another withthe
objective of performing a certain activity at the latter location; (2) not all users are
equally likely to perform a given activity; (3) certain activities are performed at cer-
tain locations and times; and (4) activities exhibit regularities that can be specific to a
single user or to groups of users. Experimental results show that ST–ACTS is able to
effectively generate realistic spatio–temporal distributions of activities, which make
it essential for the development of adequate spatio–temporal data management and
data mining techniques.

3.1 Introduction

Simulation is widely accepted in database research as a low–cost method to provide
synthetic data for designing and testing novel data types and access methods. Moving
objects databases are a particular case of databases that represent and manage changes
related to the movement of objects. To aid the development in moving object database
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research, a number of Moving Object Simulators (MOSs) have been developed [8,51,
77,81,83,91].

The so far developed MOSs have been using parameterizable random functions
and road networks to model different physical aspects of the moving objects–such
as their extent, environment and mobility–but they all neglect some important facts.
When moving objects represent mobile users, most of the time the reason for move-
ment is due to a clear objective. Namely, users move from one spatio–temporal loca-
tion to another to accomplish some task, from hereon termed as perform an activity,
at the latter location. For example, people do not just spend most of their nights at
a particular location, they comehometo be with their loved ones, to relax, eat and
sleep. Similarly, people do not just spend most of their working days at anypartic-
ular location, they go to a real–world facility, theirwork place, with the intention of
working. Finally, based on their habits and likes, in their spare time, people (more or
less regularly) go to other real–world facilities, which they like and are nearby.

To model the above mentioned social aspects of mobility is important for two
reasons. First, the locations and times where activities can be performed and the
patterns in these performed activities define a unique spatio–temporal distribution
of moving objects that is essential for spatio–temporal database management.Sec-
ond, the social aspects of mobility are essential when one wishes to extractspatio–
temporal knowledge about the regularities in the behavior of mobile users. The field
of spatio–temporal data mining is concerned with finding these regularities or pat-
terns. To develop efficient and effective spatio–temporal data management and data
mining techniques, large sets of spatio–temporal data is needed; and while location–
enabled mobile terminals are increasingly available on the market, such data setsare
not readily available.

Hence, to aid the development in spatio–temporal data management and data
mining techniques, this paper presents ST–ACTS, a probabilistic, parameterizable,
spatio–temporal activity simulator, which is based on a number of real–world data
sources consisting of:

• fine–grained geo–demographic population,
• information about businesses and facilities, and
• related consumer surveys.

The importance of the use of real–world data sources in ST–ACTS lies in the
fact, that they form a realistic base for simulation. Concretely, variables within any
given data source are dependent, and perhaps most importantly geo–dependent. For
example, there is a strong dependence between the education and the personal in-
come of people. The variables are also geo–dependent, due to the fact that similar
people or similar businesses tend to form clusters in the geographical space. Further-
more, variables are geo–dependent across the different data sources. For example,
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people working in bio–technology tend to try to find homes close to work placesin
that business branch. Using real–world data from various commercial geo–statistical
databases and common sense principles, ST–ACTS captures some of the to date not
modelled, yet important, characteristics of spatio–temporal activity data.

The remainder of this paper is organized as follows. Section 3.2 reviews re-
lated work. Section 3.3 defines the objectives of the simulation model. Section 3.4
describes in detail the source data that forms the basis for the simulation model.Sec-
tion 3.5 describes each component of the simulator and how the source data isused in
each component. Section 3.6 evaluates the simulation model in terms of its efficiency
and its simulation objectives by examining the characteristics of some simulated data.
Finally Section 3.7 concludes and points to future research directions.

3.2 Related Work

Due to the short history of spatio–temporal data management, scientific work on
spatio–temporal simulation can be restricted to a handful of publications. Thefirst,
significant spatio–temporal simulator is GSTD (Generate Spatio–Temporal Data) [91].
Starting with a distribution of points or rectangular objects, at every time step GSTD
recalculates positional and shape changes of objects based on parameterized random
functions. Through the introduction of a new parameter for controlling the change of
direction and the use of rectangular objects to model obstacles, GSTD is extended to
simulate more realistic movements, such aspreferred movement, group movements
andobstructed movement[77]. Since most objects use a network to get from one
location to the other, Brinkhoff presents a framework for network–based moving ob-
ject simulation [8]. The behavior of a moving object in this framework is influenced
by (1) the attributes of the object having a particular object class, (2) the combined
effects of the locations of other objects and the network capacity, and (3)the loca-
tion of external objects that are independent of the network. These simulators and
frameworks primarily model the physical aspects of mobility. While they can all be
extended to model the social aspects, i.e., the objective for movement and theregu-
larities in these objectives, they do not pursue to do so.

Nonetheless, the importance of modelling these social aspects of mobility is
pointed out in [8]. In comparison, ST–ACTS focuses on these social aspects of mo-
bility while placing only limited constrains on the physical aspects of mobility. In
effect, the problem solved by the above MOSs is orthogonal to the problemsolved
by ST–ACTS.

In Oporto [81]–a realistic scenario generator for moving objects motivatedby a
fishing application–the moving behavior of objects is influenced by other, either sta-
tionary or moving, objects of various object types. The influence betweenobjects
of different types can either be attraction or repulsion. While the repulsive and at-
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tractive influence of other objects is an objective for movement, unlike ST–ACTS,
Oporto does not allow the modelling of regularities in these objectives.

The GAMMA [51] (Generating Artificial Modeless Movement by genetic– Algo-
rithm) framework represents moving object behavior as a trajectory in the location–
temporal space and proposes two generic metrics to evaluate trajectory datasets. The
generation of trajectories is treated as an optimization problem and is solved bya
genetic algorithm. With appropriately modified genetic operators and fitness criteria
the framework is used to generate cellular network trajectories that as frequently as
possible cross cell boarders, and symbolic location trajectories that (1) exhibit mo-
bility patterns similar to those present in a set of real–life sample trajectories given
as input, (2) conform to real–life constraints and heuristics. Based on sample ac-
tivity trajectories, the GAMMA framework can be configured to generate activity
trajectories that contain real–life activity patterns. While the generated trajectories
will be similar to the input trajectories, since they are symbolic, they will, as the in-
put trajectories implicitly assume a location–dependent context, (see third andfourth
principle in Section 3.3). To simulate spatio–temporal activities of an entire pop-
ulation, a representative sample of context–dependent trajectories is needed, but is
hard to obtain. In comparison, ST–ACTS, based on intuitive principles anda number
of real–life geo–statistical data sources, is able to generate realistic, spatio–temporal
activity data that takes this location–dependent context of activities into account.

Time geography [46] is a conceptual basis/paradigm for human space–timebe-
havior which considers (1) the indivisibility or corporeality of the human condition;
(2) that humans typically operate over finite intervals of space and time; (3) the natu-
ral laws and social conventions that partially constrain space–time behavior; and (4)
that humans are purposive. ST–ACTS models some aspects of this paradigm in a
concrete, implemented data generator.

3.3 Problem Statement

Existing MOSs capture onlyphysicalaspects of mobility, i.e., themovementof the
objects, adequately. However, to aid the development of spatio–temporal data man-
agement and data mining methods,socialaspects of mobility that arise from human
behavioral patterns should be captured by a model. The most important principles
that govern these social aspects of mobility are:

First Principle: People move from a given location to another location with anob-
jective of performing some activityat the latter location.

Second Principle: Not all people are equally likely to perform a given activity. The
likelihood of performing an activitydepends on the interest of a given person,
which in turn depends on a number of demographic variables.
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Third Principle: Theactivities performed by a given person are highly context de-
pendent. Some of the more important parts of this context are: the current
location of the person, the set of possible locations where a given activitycan
be performed, the current time, and the recent history of activities that theper-
son has performed.

Fourth Principle: The locations of facilities, where a given activity can be per-
formed, arenot randomly distributed, but are influenced by the locations of
other facilities and the locations of the users those facilities serve.

The first principle can be thought of as an axiom that is in relation to Newton’s
first law of motion. Movement that is motivated by the sole purpose of movementand
does not obey this principle–for example movement arising from outdoor exercise
activities–are not modelled.

The second principle can be rectified by many examples from real life. Two
of these examples are that elderly people are more likely to go to a pharmacy than
younger people and younger people are more likely to go to a pop or rock concert
than elderly people.

The third, perhaps most important principle, is due to several factors. First, move-
ment is a necessary (not always pleasurable) requirement to performsome activity,
and hence in most cases the amount of movement required to do so is minimized by
the actor, i.e., people tend to go to a café that is near by. Second, activities are not
performed with equal likelihood at different times. For example, most peopletend to
go to work in the morning hours as opposed to other parts of the day; consequently
the likelihood of performing that activity during in the morning is higher than dur-
ing other periods of the day. Furthermore, due to their nature, differentactivities
have different durations. The duration of a given activity puts a natural constraint
on the possibility of performing another activity while the previous activity lasts.
For example, people tend to start to work from the morning hours for a duration of
approximately 8 hours; consequently the likelihood of grocery shopping during the
same period is lower than otherwise. Finally, while a person may perform an activity
with a very high likelihood, the activities performed by the person are not temporally
independent. For example, it is very unlikely that even a person who likes pop and
rock concerts a lot, goes to several performances during the same Saturday evening.

The fourth principle is mainly a result of the supply–and–demand laws of eco-
nomics. Locations of facilities are mainly influenced by competition, market cost,
and market potential. For example, even though the cost of establishing a solarium
salon on the outskirts of town might be low, the market potential might not even
compensate this low cost. Hence it is very unlikely that one will finds severalso-
larium salons on one city block. The spatial process that gives rise to locations of
facilities is a complex, dynamic process with feed–back, which is governed by the
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laws of competitive markets. Hence, using a snapshot of the spatial distribution of
real–world facilities as contextual information forms a reasonable basis forconstruct-
ing a realistically model of spatio–temporal activities that can be performed atthose
facilities.

The primaryqualitativeobjective of the simulation model is to capture the above
described governing principles of human behavioral patterns and is referred to as the
validity of the simulation model. In addition, the simulation model has to achieve a
number ofquantitativeobjectives. First, the simulation model has to beeffective, i.e.,
it has to be able to generate large amounts of synthetic data within a reasonabletime.
Second, the simulation model has to beparameterizable, i.e., based on user–defined
parameters it has to be able to generate synthetic data sets with different sizes and
characteristics. Finally, the simulation model has to becorrect, i.e., the synthetic
data produced by model has to have the same statistical properties with respect to
patterns as it is defined by the model parameters and inputs.

3.4 Source Data

The source data used in the simulation model are commercial products of Geomatic,
a Danish company specializing in geo–demographic data and analysis for market seg-
mentation, business intelligence, and direct marketing [28]. Due to the commercial
nature of these data sets, the methods of their exact derivations are not tobe described
herein. Nonetheless, concepts and principles used in the derivation process and the
resulting relevant contents of the databases are explained below.

3.4.1 conzoomR© Demographic Data

conzoomR© is a commercial database product that contains fine–grained, geo–demo-
graphic information about Denmark’s population [28]. The variables thatdescribe the
statistical characteristics of the population can be divided into three groups: person,
housing unit, andhouseholdvariables. These variables and the number of categories
for each is shown in Table 3.1.

In Table 3.1, variables that have “type” in their names are categorical variables;
variables that have “count” in their name are counts of the correspondingentities
within a 100–meter grid cell; and finally, the rest of the variables are continuous
variables that have been categorized into categories that are meaningfulfor market
segmentation.

Since, for example in the countryside, the number of persons, households or units
could be very low in a 100–meter grid cell, grid cells are grouped together intomean-
ingful, large enough clusters to comply with social and ethical norms and preserve
the privacy of individuals. The basis for clustering is twofold: geography and the
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referred entity conzoomR© variable categories

person

person count 1
age 9
education type 9
employment status type 12
employment branch type 12

housing unit

unit count 1
house type 6
house ownership type 4
house area 5

household

household count 1
family type 5
fortune 6
personal income 5

Table 3.1: Variables in conzoomR©.

publicly available one–to–one housing information. The intuition behind the basis is
also twofold. First, people living in a given geographical region (be thata state, a
county, a postal district) are similar in some sense; for example, they might have a
more similar political orientation from people living in another geographical region.
Second, people living in similar houses are likely to be similar in other demographic
variables; for example an established family with a stable source of income is more
likely to be able to buy a larger, more expensive house than a person who just started
his/her career. As mentioned earlier, to preserve the privacy of individuals, the clus-
ters are constrained to contain at least some fixed number of households.Statistics
for the variables, depending on the sensitivity of the information contained inthem,
are obtained from Statistics Denmark [85] for clusters constructed at an appropriate
level of cluster size constraint, for example 20, 50, 100, and 150 households per clus-
ter. In case of a continuous variable, for example age, counts of the corresponding
entities (in this case persons in the cluster) are obtained for the categories of the given
variable.

Due to this constrained geo–clustering method, the conzoomR© clusters obtained
comply with the social and ethical norms and preserve the privacy of the individ-
ual, yet the statistics obtained are accurate enough for effective marketsegmenta-
tion. This segmentation results in grouping the Danish population into 29 conzoom R©

types, which are defined for each 100–meter grid cell. Cosmopolitan (type 3) is one
example of the 29 conzoomR© types. Comparing the demographics of type 3 to the
demographics of the rest of Denmark’s population gives thedemographic profileof
the type. This profile is partially shown in Figure 3.1. It roughly describes individu-
als that are more likely: to be middle aged (30–59 years old), to live in larger cities
in larger, multi–family houses that are either owned by them or are private rentals, to
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Figure 3.1: Partial Profile of conzoomR© Type 3.

be mostly couples with children, to have a medium to long higher education, to hold
higher level or top management positions in the financial or public sector, and to have
a better household economy (both in terms of wealth and income) than the average
Dane.

3.4.2 mobidk
TM

Daily Movement Data

mobidk
TM

is an upcoming, commercial database product that contains detailed in-
formation about the daily movement of the Danish population between home and
work [28]. Again, to preserve the privacy of users, the movement datais aggregated
to non–overlapping and connected geographical regions. It is represented in a rela-
tional database format as:〈from region, to region, count〉, meaning that from the
geographical regionfrom region, countnumber of people move on a daily basis for
work to the geographical regionto region. In ST–ACTS, these geographical regions
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are parishes, which on average contain 1176 households, and 195 100–meter grid
cells1.

3.4.3 bizmark
TM

Business Data

bizmark
TM

is a commercial database product that contains detailed information about
Danish businesses both in the public and the private sector [28]. Some of the one–
to–one information that is available about businesses is their location, the number of
employees working in them, the physical size of the business facility, and the inter-
national branch codes the businesses fall under. Detailed but aggregated information
about the employees within businesses is also available for appropriate bizmark

TM

clusters, which are constructed taking into account geography, business branch, busi-
ness size in term of number of employees and physical size of the businessfacility,
and various other descriptive business variables.

3.4.4 GallupPCR© Consumer Survey Data

GallupPCR© is a commercial database product and as the name suggests, it contains
detailed survey responses of consumers about their demographics; interests such as
culture, hobbies, and sports; household consumptions, purchasing habits; transporta-
tion habits; views on various subjects; attitudes and exposure to various advertise-
ment media [26]. The questions in the surveys are yes/no questions. To measure the
magnitude of the response of an individual survey subject to a specific question, the
original yes/no question is re–phrased with a reference to a time–frequency interval.
For example the original yes/no question “Do you go to the library?” is re–phrased
to 7 yes/no questions using the following time–frequency intervals: daily / almost
daily; 3-4 times a week; 1-2 times a week; 1-3 times a month; 1-5 times every 6
month; seldom, and never.

3.5 ST–ACTS: Spatio–Temporal ACTivity Simulator

In this section, main components of ST–ACTS and their use of the source datais
described. In the description a simulated person, who performs activities intime
and space, will be abbreviated as a simperson. A MATLAB toolbox for ST–ACTS
can be downloaded for research purposes fromhttp://www.geomatic.dk/
research/ST--ACTS/ .

1The commercial version of mobidk
TM

contains the same information for smaller, neighborhood
clusters that on average contain 230 households and 38 100–meter gridcells.
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Figure 3.2: Correlation between education and income.

3.5.1 Drawing Demographic Variables for Simpersons

The conzoomR© source data contains accurate, detailed demographic information
about the population aggregated to a cluster level. As described in Section 3.4.1,
continuous variables are discretized into categories. Clusters contain counts for all
categories for all variables. Having the exact number of persons, housing units, and
households at a grid cell level, and assuming the same distribution of variables in the
individual grid cells as in the cluster they belong to, counts for all categories for all
variables are calculated at a grid cell level. A simperson is assigned a category for
a given variable proportional to the counts of the categories for the given variable in
the grid cell the simperson lives in. In short, a category for the variable is assigned to
the simperson according to the distribution of the variable. To draw assign categories
for variables without replacement, corresponding counts in the given grid cell are
decremented. Since counts of some of the variables in the grid cell refer to entities
other than persons, but are variables that are part of the demographicvariables that
describe a person, these counts are adjusted to sum to the number of persons in the
cell.

3.5.2 Skewing Distributions Based on Correlations

The above described method for assigning categories for demographic variables has
one major flaw: demographic variables are not independent. For example the edu-
cation type variable has a strong correlation with the personal income variable. This
correlation is illustrated in Figure 3.2. Correlations are calculated between theper-
centages of the categorized variables, and samples are weighted by the number of
persons in the cells. From the colorbar on the side one can see that darker shades
mean stronger negative correlations and lighter shades mean stronger positive corre-



3.5 ST–ACTS: Spatio–Temporal ACTivity Simulator 29

1 2 3 4 5 6 7 8 9
0
5

10
Distribution of variable group: p_age −− [Selected: 5]

1 2 3 4 5 6 7 8 9
0

0.2

Distribution of variable group: p_edu

1 2 3 4 5 6 7 8 9
−0.5

0
0.5

Raw correlations for p_edu given p_age = 5

1 2 3 4 5 6 7 8 9
0
1
2

Normalized correlations for p_edu given p_age = 5

1 2 3 4 5 6 7 8 9
0

0.2

Skewed distribution for p_edu given p_age = 5 −− [Selected: 4]

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

Distribution of variable group: p_emplState

1 2 3 4 5 6 7 8 9 10 11 12
0
1
2

Normalized correlations for p_emplState given p_edu = 4

1 2 3 4 5 6 7 8 9 10 11 12
0
1
2

Joint normalized correlations for p_emplState 
given p_age = 5, p_edu = 4

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

Skewed distribution for p_emplState 
given p_age = 5, p_edu = 4 −− [Selected: 11]

Figure 3.3: Drawing Samples Without Replacement from Correlated, Multivariate
Distributions.

lations. The correlations support the common knowledge that people havinghigher
education levels tend to have better paying jobs. Similar correlations exist between
other variables.

To remedy the above described flaw, which could result in unrealistic assignment
of categories for variables to simpersons, the assignment is modified by drawing cat-
egories from skewed variable distributions that try to embed the correlationsbetween
the variables as follows. For a given simperson, the category for the first variable,
age, is drawn without replacement from unskewed distribution of the age variable.
An example of this distribution and the result of the draw is shown in the top most
left subgraph of Figure 3.3, where for the age variable the category 5 was drawn,
which represents that the simperson is in the age group 30–39. The distribution of
the second variable, education, is shown in the second–from–top left subgraph of
Figure 3.3. Given this distribution, categories 4, 6 and 8 are most likely to be as-
signed to the simperson for the education variable. However, the correlations (shown
in the third left subfigure of Figure 3.3) between the age category 5 and education
variable reveal positive correlations for categories 1 and 4, and a negative correlation
for category 8 for the education variable. After normalizing (shifting to mean1) the
correlations, the original distribution of the education variable is skewed bypair–wise
multiplying the raw counts of categories of the education variable and the normalized
correlations for the education variable given that the age category of thesimperson
is 5. This skewed distribution is shown in the bottom left subgraph of Figure 3.3 and
is used for sampling the education variable, resulting in the education category 4,
vocational training. Values for further variables are drawn from skewed distributions
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that take into account the categories for the previously drawn variables,by skewing
the distribution of the current variable by the average of the normalized correlations
for the so far drawn categories. This process is shown from top to bottomon the right
subfigures of Figure 3.3, where given that the age category a the simperson is 5 and
the education category is 4 for the third variable, employment state, the category 11
is drawn.

3.5.3 Assigning Simpersons to Work Places / Schools

Activities can be divided into two groups:free time activitiesandmandatory activ-
ities. While the notion of “mandatory” activity may differ from person to person,
for the purposes of simulation, ST–ACTS considers going toschooland work as
mandatory activities. The rest of the activities in ST–ACTS are consideredfree time
activities.

With respect to mandatory activities, simpersons can be divided into three groups:
retired, worker, and student. For the retired simpersons, it can be assumed that they
enjoy the fruits of a hard–working life and have no mandatory activities. Conse-
quently, they spend the majority of the time either at home or performing free time
activities. The following paragraphs describe the methods in ST–ACTS (and their
usage of the base data) for assigning simpersons in the worker and student groups to
their work places and schools respectively.

Assigning Worker Simpersons to Work Places:Simpersons in the worker group
are assigned towork placesin two steps. In the first step, given thehome parish
and employment branch of the simperson, the parish–to–parish commuting probabil-
ities, and the spatial distribution of businesses in branches, awork parishis assigned
to the simperson. In the second step, given the employment branch that the sim-
person works in, businesses in the same branch that are located in the work parish
of the simperson are retrieved from bizmark

TM
. Finally, proportional to the number

of employees that work in the selected businesses, the simperson is probabilistically
assigned to one of the businesses / work places.

Assigning Student Simpersons to Schools:Simpersons in the student group are
assigned to schools in two steps. In the first step, depending on the age group of the
simperson, he or she is assigned to either one of the four educational institution types,
or is assigned to be “not in school” and hence is considered to a member of the worker
group. In the second step, educational institutions of the simpersons’s educational
institution type are retrieved from bizmark

TM
, and the simperson is assigned to the
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institution that is closest to the simperson’s home2. The following paragraph explains
the first of these steps in more detail.

Simpersons in the student group can be divided into four subgroups based on
which one, if any, of the four educational institution types they attend: kindergarten,
primary school, secondary school, or college / university. As described above, each
simperson below age 30 is assigned to one of the four age groups:[0, 11], [12, 16],
[17, 22], and[23, 29]. Assuming all simpersons up to age 5 or 6 go to kindergarten
(or daycare centers), simpersons in the[0, 11] age group are assigned with equal like-
lihood to either a kindergarten, or a primary school. For each of the remaining three
age groups, based on information obtained from Statistics Denmark [85], the proba-
bilities of attending one of the four education institution types are derived, which are
shown in the table:

[12-16] [17-22] [23-29]

primary school 0.9198 0.0235 0.0002
secondary school 0.0654 0.4639 0.0552
college / university 0.0000 0.1194 0.2365
not in school 0.0148 0.3933 0.7081

Then, given the age group of the simperson and the corresponding probabilities, the
simperson is assigned to either one of the three educational institution types, or to be
“not in school” and is considered to be a member of the worker group.

3.5.4 Daily Activity Probabilities

A subset of the GallupPCR© consumer survey questions, described in Section 3.4.4
represent activities that require the movement of the consumer. Some of these ac-
tivities are shown on the y–axis of Figure 3.4. To preserve space and clarity, the
following, additional activities are included in the model, but are excluded from the
figure: art exhibition, church, pop/rock concert, museum, post office, theater, solar-
ium, hairdresser, and shopping. The shopping activity is further subdivided into 22
subtypes of shopping that are tied to a particular brand or type of store.

Using the geo–demographic parts of the surveys, each survey subjectis assigned
to one of the 29 conzoomR© types. To derive a single indicator for how likely a
given conzoomR© type is to perform a given activity, the answers to the re–phrased
time–frequency questions are normalized and averaged as follows. First,every time–
frequency interval for an activity is normalized to represent the probability of per-
forming the given activity on an average day. For example, a subject’s positive reply
to the question ”Do you perform activitya n times during a period∆t?” equivalently

2The Danish public school system is controlled by the municipalities, which assign students to
educational institutions that are nearby. Locations of these institutions are carefully planned to meet the
needs of the population.
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Figure 3.4: Sample Daily Activity Probabilities.

means that the probability of that subject to perform activitya on any given day is
P (a) = n/day(∆t), whereday is a function that returns the number of days in
period∆t. P (a) is equivalently referred to as theDaily Activity Probability(DAP)
of activity a. Second, these daily activity probabilities of individual subjects of a
given conzoomR© type are averaged. Figure 3.4 shows a sample of these daily ac-
tivity probabilities for a subset of the conzoomR© types. From the figure it can be
seen, for example, that a college student is most likely to go to a library, a cinema, a
discotheque, or a fitness center; while a retired farmer is the least likely to perform
these activities. Since the figure has the same probability scale, it also reveals that,
depending on type, going to a fitness center is about a 7 to 22 times more frequent
or popular activity as going to classical concerts. As mentioned before, ST–ACTS
includes the daily activity probabilities of 35 activities for 29 conzoomR© types.

3.5.5 Activity Simulation with Spatio–Temporal Constraints

A simple, random, discrete event activity simulator can be constructed as follows. At
every time step, a random subset of the simpersons is chosen to perform an activity.
Then, for each selected simperson, given his/her conzoomR© type and the associated
daily activity probabilities, an activity is assigned. Then, each selected simperson is
moved to the closest facility, where his/her assigned activity can be performed. This
simple simulator does not model several spatio–temporal constraints on the activi-
ties. In the following, these constraints are discussed, and for each, theproposed
modelling solution that ST–ACTS implements is presented.



3.5 ST–ACTS: Spatio–Temporal ACTivity Simulator 33

Temporal Activity Constraint: Certain activities are more likely to be performed
during specific periods than others. For example, people in the work force tend to
leave their homes for work at the beginning of a workday. Consequently,the same
people are less likely to go to a discotheque, which is presumably closed, during the
same period. To model theTemporal Activity Constraint(TAC), ST–ACTS allows
the user to define for each of the three population groups the probabilities for each
of the activities for every hour of every day of the week. These probabilities are
used to limit the ability of the simperson to perform certain activities during certain
time periods. They are not to be confused with the conzoomR© type dependentdaily
activity probabilities, which encode the activity preference of each type. Through
the TACs ST–ACTS allows the modelling of opening hours, and to some degree
sequential patterns. The TACs of an activity are defined by a 7 by 24 matrix, where
columns represent hours of the day, and rows represent days of theweek.

Activity Duration Constraint: Not all activities take the same amount of time. For
example people usually work 6-10 hours, spend about 2 hours in a cinema, and 30
minutes in a grocery store. To model this, from the starting timestamp of an ac-
tivity a that is assigned to a simpersons, s becomesoccupiedfor δoccupied (a) time
steps. During this periods is not assigned any other activities. In ST–ACTS,Activ-
ity Duration Constraint(ADC) for each activity are probabilistically drawn from the
user–defined activity duration distributions, which is normally distributed with mean
µδoccupied (a) and varianceσδoccupied (a).

Minimum Elapsed Time Between Activity Repetition Constraint: While people
prefer some activities over others, it is very unlikely that they would repeat the same,
even if preferred, activity many times, one–after–the–other within a shortperiod. For
example, it is very unlikely, that even a very active simperson, right afterfinishing his
workout at the fitness center, decides to go to a fitness center again. Thisconstraint is
modelled in ST–ACTS through the user–definedδelapsed(a), activity–dependentMin-
imum Elapsed Time Constraint(METC). The constraint is enforced by maintaining a
recent history of activities for each simperson and validating newly drawnactivities
against it.

Maximum Distance Constraint: For most activities there is amaximum distancea
person is willing to travel. This maximum distance represents a spatial constraint on
the activities that a simpersons will perform, given the current location ofs and the
locations of facilities, where a selected activitya can be performed. Hence, during
the simulation if there is no suitable facility fora within maximum distance of the
current location ofs, the activity is considered invalid fors, ands becomes idle.
TheMaximum Distance Constraint(MDC) is controlled by a user–defined, activity–
dependent parameter in ST–ACTS.
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(0) //geo–demographic data (conzoomR©): D

(0) //population movement data (mobidk
TM

): M

(0) //business data (bizmark
TM

): B

(1) procedureST–ACTS(T ,∆T ,DAP ,TAC ,ADC ,METC ,MDC )

(2) s.dem ← drawDemographicVariables(D)
(3) s.work ← simpsToWork(s,B,M )
(4) s.acts ← initSimpsActs(s,t=1)
(5) for t = 1. . .T
(6) free ← unoccupiedSimps(s.acts ,t)
(7) a ← validActsToFreeSimps(s,DAP ,TAC ,METC ,t)
(8) [f, d] ← facilitiesForActs(a,s,MDC ,B)
(9) δoccupied ← durationsOfActs(a,ADC )
(10) δtrans ← transitionTimes(d,speed(d))
(11) s.acts ← updateSimps(a,f .loc,δoccupied,δtrans,t)

Figure 3.5: Discrete Event Simulation in ST–ACTS.

Physical Mobility Constraint: To move from one location to another takes time.
While detailed simulation of this movement is not an objective of ST–ACTS, ba-
sic physical mobility constraints are modelled. After a facilityf for an activitya
is selected for a simpersons, s is moved afterδtrans time steps to the new loca-
tion. δtrans is calculated based on the Euclidian distanced in km between the current
location ofs and the location of facilityf , assuming a constant speed. This con-
stant speed, in km/h, is probabilistically drawn from the distributionspeed(d) =
max(5, N(3d, d2)). speed(d) assigns lower speeds to shorter, and higher speeds
(with larger variance) to longer distances. It, to some extent, captures common modes
of transportation, i.e., people tend to walk on shorter trips, use public transportation
or bicycle on slightly longer trips, and use a car or commuting train on even longer
trips.

3.5.6 Discrete Event Simulation

Using the conceptual building blocks presented so far, the discrete event simulation
performed in ST–ACTS can be summarized as shown in Figure 3.5. The firstthree
comments indicate that named data sets are used in the simulation, but are not user–
defined parameters of it. Arguments to ST–ACTS, shown on line 1, are the user–
defined parameters that have been described in the previous paragraphs. On line 2
demographic variables are assigned to simpersons based on skewed variable distri-
butions. On line 3 simpersons are assigned to work places and schools. Online 4,
at time stept = 1 (Monday, 00:00) all simpersons are initialized to be at “home”
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Figure 3.6: CPU and I/O Times for Simulations.

doing activity “home to stay” until the early morning hours. Following these prepro-
cessing steps, at every time stept, on line 6, currently unoccupied (free) simpersons
are found. Then, on line 7 for each free simperson a valid action is foundaccord-
ing to the daily activity probabilities (DAP) of actions for the conzoomR© type of
the simperson. Actions are valid, if they both meet the temporal activity constraint
(TAC) and the minimum elapsed time constraint (METC). On line 8 valid facilities
are found for these valid activities. Facilities are valid if they meet the maximum dis-
tance constraint (MDC). On line 9, activity durations are drawn that meet the activity
duration constraint (ADC). On line 10, according to the distances to the assigned
activities, transition times are calculated. Finally, on line 11, information about the
newly assigned activities are stored and the activity histories are updated for the af-
fected simpersons.

3.6 Evaluation of the Simulation

ST–ACTS was implemented and tested in MATLAB running on Windows XP on a
3.6GHz Pentium 4 processor with 1.5 GB main memory. The geographical extent
of ST–ACTS was restricted to the municipalities of Copenhagen and Frederiksberg
in Denmark. In this extent, the number of simpersons is 590,050 (178,826 retired,
268,615 workers, and 142,609 students), the number of working placesis 1,264,129
in 193,299 businesses, and the number of facilities is 10,544. Simulation experiments
were performed for a time step length of∆T = 5 minutes. To test the performance
of ST–ACTS, in all experiments “strict” TACs were set on the two most likely activ-
ities, go “home to visit” and go “home to stay”. TACs of other activities were setto
model opening hours of corresponding facilities. As a result a simpersonperforms
on average9.6 ± 3.2 activities per day.

To evaluate the effectiveness of ST–ACTS, simulations were performed for vary-
ing sizes of randomly selected subsets of simpersons during the course ofa single day
(24 hours). Figure 3.6 shows both the CPU times (right y–axis) and the I/O timefor
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logging the events (left y–axis). Both of these quantities scale approximatelylinearly
with the number of simpersons. In short, the simulation is fast and scales well.

In a larger experiment activities of the total population for the course of a full
week have been simulated. The table below shows the output of ST–ACTS for a
cosmopolitan type simperson during the course of a day.

a.begin a.loc(x) a.loc(y) a.end a.name

8:35 722941 6172634 15:50 work / school
17:05 720408 6173933 17:45 Fakta
18:55 721350 6177550 20:20 home to visit
20:45 723555 6175390 21:10 solarium
21:50 723483 6175299 23:30 cinema
23:40 721350 6177550 8:25 home to stay

The simulation, without logging the individual events and only keeping statistics
about activities, took 98 minutes. To evaluate the validity of ST–ACTS, the gath-
ered statistics have been analyzed. Due to space limitation, only some results ofthis
analysis are discussed in detail, while others are only summarized.

To evaluate ST–ACTS’s ability to generate the correct distribution of activities,
the input DAPs have been compared to the simulated DAPs, shown in Figure 3.7.
While, due to the previously mentioned “strict” TACs, the simulated DAPs are about
4 times higher than the input DAPs, the relative simulated DAPs among activities is
similar to the input DAPs. By using less “strict” TACs, i.e.: allowing simpersons to
go home earlier after work, the scale of simulated DAPs match that of the input DAPs.
Differences in the relative DAPs can be explained by the effects of spatio–temporal
constraints on activities.
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Figure 3.7: Input and Simulated DAPs.

To evaluate ST–ACTS’s ability to control temporal constraints on activities, counts
for each assigned activity for every hour–of–day and day–of–week were maintained.
Figure 3.8 shows the average number of assigned activities for each hour–of–day av-
eraged over the days–of–week. Due to the large variation in frequencycounts for
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Log−frequency counts for group retired averaged for a week
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Figure 3.8: Validity of ST–ACTS in Terms of TACs.

different activities in different periods of the day, the base 2 logarithm of frequency
counts are shown. From the figure it can be seen that certain groups perform certain
activities at certain times of the day more frequently than other groups. For exam-
ple, it can be seen that the retired group is more likely to perform activities during
working hours, simply because they are free to do so. Opening and closing times
of facilities is also controlled by the parameters. For example, no one goes to dis-
cotheques during the day, and no one goes to shopping centers in the middleof the
night.

To evaluate ST–ACTS’s ability to control spatial constraints on activities, the
daily distance travelled to work by an average simperson (2.7±2.3 km) was compared
to the total daily distance travelled by an average simperson (8.3 ± 3.6 km). While
for the same numbers no ground truth was available to evaluate against, considering
the average 9.6 activities per day the numbers seem reasonable. The simulated data
has also been verified that no trips violate the activity–dependent maximum distance
criteria.
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3.7 Conclusions and Future Work

Realistic models that simulate the spatio–temporal activities of users, and hencethe
distribution of moving objects, are essential to facilitate the development of ade-
quate spatio–temporal data management and data mining techniques. In this paper,
ST–ACTS, the first of such simulators is presented. Experimental results show that,
using a number of real–world geo–statistical data sources and intuitive principles,
ST–ACTS is able to effectively generate realistic spatio–temporal activity data. It
is also demonstrated that the generated data has the same characteristics as itis de-
fined by the user–controllable model parameters. ST–ACTS has been implemented
in MATLAB and is available for research purposes.

While the correspondence between the characteristics of the generated data and
the model parameters is demonstrated, the accuracy of the simulation has to be nec-
essarily affected by the limited modelling of physical aspects of mobility. Hence in
future work, integrating the output of ST–ACTS as an input to sophisticatednetwork–
based moving object simulation as in [8] is planned. Such a more complex simulator
will provide synthetic data sets that can aid the development in telematics, intelligent
transportation systems, and location–based services.



Chapter 4

Mining Long, Sharable Patterns in
Trajectories of Moving Objects

The efficient analysis of spatio–temporal data, generated by moving objects, is an
essential requirement for intelligent location–based services. Spatio–temporal rules
can be found by constructing spatio–temporal baskets, from which traditional associ-
ation rule mining methods can discover spatio–temporal rules. When the items in the
baskets are spatio–temporal identifiers and are derived from trajectories of moving
objects, the discovered rules represent frequently travelled routes. For some applica-
tions, e.g., an intelligent ride–sharing application, these frequent routes are only in-
teresting if they are long and sharable, i.e., can potentially be shared by several users.
This paper presents a database projection based method for efficiently extracting such
long, sharable frequent routes. The method prunes the search spaceby making use
of the minimum length and sharable requirements and avoids the generation of the
exponential number of sub–routes of long routes. Considering alternative modelling
options for trajectories, leads to the development of two effective variantsof the me-
thod. SQL–based implementations are described, and extensive experiments on both
real life– and large–scale synthetic data show the effectiveness of the method and its
variants.

4.1 Introduction

In recent years Global Positioning Systems (GPS) have become increasingly avail-
able and accurate in mobile devices. As a result large amounts of spatio–temporal
data is being generated by users of such mobile devices, referred to asmoving ob-
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jects in the following. Trajectories of moving objects, or trajectories for short, con-
tain regularities or patterns. For example, a person tends to drive almost every week-
day to work approximately at the same time using the same route. The benefits of
finding such regularities or patterns is many–fold. First, such patterns canhelp the
efficient management of trajectories. Second, they can be used to facilitatevarious
Location–Based Services (LBS). One LBS example is an intelligent rideshare appli-
cation, which finds sharable routes for a set of commuters and suggests rideshare
possibilities to them, is considered. Such a rideshare application can be one possible
solution to the ever increasing congestion problems of urban transportationnetworks.

Patterns in trajectories for an intelligent rideshare application are only interest-
ing if those patterns are sharable by multiple commuters, are reoccurring frequently,
and are worthwhile pursuing, i.e., are long enough for the savings to compensate for
the coordination efforts. The discovery of Long, Sharable Patterns (LSP) in trajec-
tories is difficult for several reasons. Patterns do not usually exist along the whole
trajectory. As a example, consider two commutersA andB living in the same area
of town, leaving for work approximately the same time, and working in the same
part of town. Given the underlying road network and traffic conditions,for a given
support threshold the middle part of the trips of the two commuters may be frequent,
the initial and final parts may not. In recent work [30] a general problemtransforma-
tion method, calledpivoting, was proposed for the analysis of spatio–temporal data.
Pivoting is the process of grouping a set of records based on a set ofattributes and
assigning the values of likely another set of attributes to groups or baskets. Pivoting
applied to spatio–temporal data allows the construction of spatio–temporal baskets,
which can be mined with traditional association rule mining algorithms. When the
items in the baskets are spatio–temporal identifiers and are derived from trajectories,
the discovered rules represent frequently travelled routes. While thereexist several
efficient association rule mining methods [40], the straight–forward application of
these algorithms to spatio–temporal baskets representing trajectories is infeasible for
two reasons. First, all sub–patterns of frequent patterns are also frequent, but not
interesting, as longer patterns are preferred. Second, the support criterion used in
association rule mining algorithms is inadequate for a rideshare application, i.e.,a
frequent itemset representing a frequent trajectory pattern, may be supported by a
single commuter on many occasions and hence presents no rideshare opportunity.

In this paper, to overcome the above difficulties of finding LSPs in trajectories, a
novel method is given. According to a new support criterion, the proposed method
first efficiently filters the trajectories to contain only sub–trajectories that are fre-
quent. Next, it removes trajectories that do not meet the minimum length criterion.
Then it alternates two steps until there are undiscovered LSPs. The firststep entails
the discovery of a LSP. The second step entails the filtering of trajectories by the
previously discovered pattern. An advantage of the proposed method is the ease of
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implementation in commercial Relational Database Management Systems (RDBM-
Ses). To demonstrate this, a SQL–based implementation is described. Considering
the global modelling of trajectories, leads to the development of two other effective
variants of the proposed method. The effectiveness of the method and its variants are
demonstrated on the publicly available INFATI data, which contains trajectories of
cars driving on a road network, and on a number of large–scale synthetic data sets.

The herein presented work is novel in several aspects. It is the first toconsider the
problem of mining LSPs in trajectories. It describes a novel transformation, and the
relationship between the problem of mining LSPs in trajectories and mining frequent
itemsets. Finally, it describes an effective method with a simple SQL–implementation
to mine such LSPs in trajectories.

The remainder of the paper is organized as follows. Section 4.2 reviews related
work. Section 4.3 describes the transformation, the use of the framework infre-
quent itemset mining, and formally defines the task of mining LSPs in trajectories.
Section 4.4 discusses a naı̈ve method for mining LSPs and points out its shortcom-
ings. Section 4.5 describes the proposed algorithm and a SQL–based implementation
for mining LSPs. Section 4.6 presents alternative modelling of trajectories andde-
rives variants of the proposed method based on these modelling options. Section 4.7
presents detailed experimental results. Finally, Section 4.8 concludes and points to
future research.

4.2 Related Work

Frequent pattern mining is a core field in data mining research. Since the firstsolu-
tion to the problem of frequent itemset mining [1,2], various specialized in–memory
data structures have been proposed to improve the mining efficiency, see [40] for an
overview. It has been recognized that the set of all frequent itemsets istoo large for
analytical purposes and the information they contain is redundant. To remedy this,
two modification to the task have been proposed: mining of Closed Frequent Itemsets
(CFI) and mining of maximal frequent itemsets. A frequent itemsetX is closedif no
itemsetY exists with the same support asX such thatX ⊂ Y . A frequent itemsetX
is maximalif no frequent itemsetY exists such thatX ⊂ Y . Prominent methods that
efficiently exploit these modifications to the problem are MAFIA [9], GenMax[42],
CLOSET [76], CLOSET(+) [98], and CHARM [104]. Later in the paper, a rela-
tionship between the problems of mining LSPs in trajectories and mining CFIs are
described. While CFI mining methods can be modified to find the desired solution
that meets thesharablecriterion, they employ complex data structures and their im-
plementation is quite involved; hence their augmentation is difficult. In particular,a
projection–based CFI mining algorithm that employs an in–memory FP–tree to rep-
resent itemsets, would need to be modified at every node to maintain a set of distinct
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objects at that have transactions associated with them that support the itemset that
is represented by the node. In comparison, the herein presented method –building
on work presented in [84]–exploits the power of commercial RDBMSs, yielding a
simple, but effective solution.

Since trajectories are temporally ordered sequences of locations, sequential pat-
tern mining [3] naturally comes to mind. However, a straight forward interpretation
of trips as transactions and application of a state–of–the–art closed frequent sequen-
tial pattern mining algorithm [103] does not yield the desired solution, since in this
case sequences of frequent sub–trajectories would be found. Furthermore, since the
trajectories can contain hundreds of items, closedness checking of frequent itemsets
even for prominent methods would be computationally expensive. Interpreting single
elements of trajectories as transactions and applying closed sequential pattern mining
could find frequent sub–trajectories. However a number of problems arise. First, to
meet the sharable criterion, the in–memory data structures would need similar, non–
trivial augmentation as described above. Second, since patterns in trajectories could
be extremely long, even state–of–the–art sequential mining methods [95,103] would
have a difficulties handling patterns of such lengths. Third, patterns in trajectories
repeat themselves, which cannot be handled by traditional sequential pattern mining
algorithms. The extraction of spatio–temporal periodic patterns from trajectories is
studied in [70], where a bottom–up, level–wise, and a faster top–down miningalgo-
rithm is presented. Although the technique is effective, the patterns foundare within
the trajectory of a single moving object. In comparison, the herein presentedmethod
effectively discovers long, sharable, periodic patterns.

Moving objects databases are particular cases of spatio–temporal databases that
represent and manage changes related to the movement of objects. A necessary com-
ponent to such databases are specialized spatio–temporal indices such as the Spatio–
Temporal R–tree (STR–tree) and Trajectory–Bundle tree (TB–tree) [55]. An STR–
tree organizes line segments of a trajectory according to both their spatial properties
and the trajectories they belong to, while a TB–tree only preserves trajectories. If
trajectories are projected to the time–of–day domain, STR–tree index values on the
projected trajectories could be used as an alternative representation of trajectories.
While this approach would reduce the size of the problem of mining LSPs in tra-
jectories, it would not solve it. In comparison, the herein presented method solves
the problem of mining LSPs in trajectories, which is orthogonal, but not unrelated to
indexing of trajectories.

In [97] a way to effectively retrieve trajectories in the presence of noiseis pre-
sented. Similarity functions, based on the longest sharable subsequence, are defined,
facilitating an intuitive notion of similarity between trajectories. While such an effi-
cient similarity search between the trajectories will discover similar trajectories,the
usefulness of this similarity in terms of length and support would not be explicit.



4.3 Long, Sharable Patterns in Trajectories 43

0 5 10 15 20 25 30 35 40
0

5

10

15
Mon 8:00

Tu 8:00

Wed 8:00 

x−dimension

y−dimension

tim
e−

di
m

en
si

on
 / 

da
te

−
tim

e 
do

m
ai

n trip 1

trip 2

trip 3

d
k
 > δ → start of trip 1

d
k
 < δ → end of trip 1

(a) Identification of Trips in Raw Trajectories.

0 5 10 15 20 25 30 35 40

0

5

10

15
8:00

8:05

8:10

8:15

8:00

8:00

8:30

8:35

x−dimension
y−dimension

tim
e−

di
m

en
si

on
 / 

tim
e−

of
−

da
y 

do
m

ai
n

spatio−temporal region

(b) Time–Of–Day Projection and Spatio–Temporal
Region Substitution.

Figure 4.1: From Trajectories to Transactions.

In comparison, there herein proposed method returns only patterns that meet the
user–specified support and length constraints. Furthermore, the trajectory patterns
returned by the proposed method are explicit, as opposed to the only implicit patterns
contained in similar trajectories.

4.3 Long, Sharable Patterns in Trajectories

The following section describes a novel transformation of raw trajectories. This trans-
formation allows (1) the formulation of the problem of mining LSPs in trajectories
in a framework similar to that used in frequent itemset mining, (2) to establish a
relationship between the two problems.

4.3.1 From Trajectories to Transactions

The proposed transformation of raw trajectories consists of three steps:identification
of trips, projection of the temporal dimension, and spatio–temporal region substitu-
tion. It is assumed that locations of moving objects are sampled over a long history.
That is, a raw trajectory is a long sequence of(x, y, t) measurements at regular time
intervals.

Identification of Trips
A trip is a temporally consecutive set or sequence of measurements such that for

any measurementmi in the sequence, the sum of spatial displacement during the
k measurements immediately followingmi, denoteddk, is larger than some user–
defined displacement,δ. Trips can be identified in a straight–forward manner by lin-
early scanning through a trajectory, and calculatingdk using a look–ahead window
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of k measurements. That is, scanning through the total trajectory from the begin-
ning, the first measurement for whichdk > δ, signals the beginning of the first trip.
Consecutive measurements are part of this trip until a measurement is reached for
which dk ≤ δ, which signals the end of the first trajectory. Trips following the first
trip are detected in the same fashion from the remaining part of the total trajectory.
Figure 4.1(a) shows three example trips that are derived from the total trajectory of
one moving object.

Projection of the Temporal Dimension
Since frequent patterns within a single object’s trajectory are expected to repeat

themselves daily, the temporal dimension of the so identified trips is projected down
to the time–of–day domain. This projection is essential to discover the daily periodic
nature of patterns in trajectories. Mining patterns with other periodicity can befa-
cilitated by projections of the temporal domain to appropriate finer, or coarser levels
of granularity. Finer levels of granularity can be used to detect patterns with shorter
periodicity. For example, a delivery person might use a different route depending on
the time–of–hour knowing that at the given time of the hour certain traffic conditions
arise, which make an otherwise optimal delivery route sub–optimal. The detection
of these patterns in delivery routes requires the projection of the temporaldimen-
sion to the time–of–hour domain. Conversely, coarser levels of granularitycan be
used to detect patterns with longer periodicity. For example, a person might visit his
bank only at the end of pay periods. The detection of this pattern requiresthe pro-
jection of the temporal dimension to the day–of–month domain. Finally, to discover
the pattern that the above mentioned person makes these visits to his bank Saturday
mornings following the end of pay periods, requires the projection of the temporal
domain to a combination of the day–of–month, the day–of–week, and the part–of–
day domains. Performing different projections is part of the inherently iterative and
only semi–automatic process of doing data mining when the exact format of the pat-
terns searched for is not known beforehand. Figure 4.1(b) shows the projection of
the temporal dimension to the time–of–day domain for the three trips identified in
Figure 4.1(a). Since the projection of a single database record is a constant time op-
eration, the total processing time of this transformation step is optimal and linear in
the number of database records.

Spatio–Temporal Generalization and Substitution
Trajectories are noisy. One source of this noise is due to imprecise GPS mea-

surements. From the point of view of patterns in such trajectories, slight deviation
of trajectories from the patterns can be viewed as noise. Examples of suchdevia-
tions could be due to a few minute delay, or to the usage of different lanes onthe
route. Hence, while a person might be driving from home to work at approximately
the same time of day using approximately the same route, the chance of two identi-
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Figure 4.2: Process / Outcome of Map Matching.

cal trajectories is highly unlikely. Consequently, patterns in raw trajectoriesare few
and certainly not long. Thus, patterns have to be mined in trajectories that are repre-
sented in a generalized way, yielding general patterns in trajectories. There are at least
two different approaches to achieve this generalization of trajectories: region–based
spatio–temporal generalization and road network based spatio–temporal generaliza-
tion.

In the region–based spatio–temporal generalization approach individual (x, y, t)
measurements of a trajectory are discretized and mapped to the spatio–temporal re-
gions they fall into. Thus, a generalized trajectory is constructed by substituting
(x, y, t) measurements with the spatio–temporal regions they map to. If within a tra-
jectory multiple(x, y, t) measurements map to the same spatio–temporal region, they
are substituted with a single instance of the corresponding spatio–temporal region.
The box in Figure 4.1(b) represents such a spatio–temporal region. Since region–
based spatio–temporal substitution of a single database record can be achieved using
simple arithmetics from the spatial and temporal coordinates, the processing timeof
this transformation step is optimal and linear in the number of database records.

In the road network based spatio–temporal generalization approach, objects are
assumed to be moving on a road network and coordinates of individual(x, y, t) mea-
surements of a trajectory are matched to road segments of the underlying road net-
work. The process of matching trajectories to road segments is called map matching
and has been studied extensively in the recent past. Figure 4.2 shows theoutcome of
map matching, where noisy GPS readings are “snapped” to the most likely road seg-
ments the object was actually moving on. In general, two map matching approaches
exist: on–line and off–line map matching. In on–line map matching, the noisy GPS
readings are positioned onto the road network taking into account the pastreadings
and the topology of the road network. In off–line map matching, the positioningof
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Figure 4.3: Illustration of the Sample Trajectory DB.

GPS readings onto the road network is performed with some delay, hence methods
can take into consideration “future” measurements, which generally increases the
matching accuracy and reduces the necessary computation. In [79] a summary of dif-
ferent on–line and off–line map matching algorithms is provided and disadvantages
of each approach is described. Once the coordinates of trajectories are map matched,
the individual(x, y, t) measurements of a trajectory are discretized and mapped to the
spatio–temporal identifiers composed of a combination of road segment identifiers
and temporal intervals. If within a trajectory multiple(x, y, t) measurements map to
the same spatio–temporal identifier, they are substituted with a single instance ofthe
corresponding spatio–temporal identifier. The map matching task can be performed
in a distributed fashion by on–board navigation units of the moving objects. Based
on the map matching results the road network based spatio–temporal substitutionof
a single database record can be achieved in constant time using simple arithmetics
from the temporal values, hence the processing time of this transformation step is
optimal and linear in the number of database records.

4.3.2 Example Trajectory Database

Figure 4.3 visualizes a sample trajectory database. It shows the trajectoriesof trips
of 5 moving objects, which were derived using the three transformation steps de-
scribed in Section 4.3.1. For clarity, the temporal dimension is projected down tothe
2D–plane. Spatio–temporal regions are defined by the square cells and afive minute
interval centered around time instances written inside the square. Each connected
line represents specific trips of a particular object. The number of times that trip was
performed by the object is represented in the width of the line, and is also written
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in parenthesis next to the object name in the legend. For example, the trip trajectory
associated with object3 was performed4 times by the object. The object was in
spatial regions HD, HC, HB, IB, and IC during time intervals8:05 ± 2.5 minutes,
8:10± 2.5 minutes,8:15± 2.5 minutes,8:20± 2.5 minutes, and8:25± 2.5 minutes,
respectively. In the following a spatio–temporal region will be referred toby its con-
catenated values of the cell identifiers along the x– and y–axis, and the corresponding
time instance denoting the center of the time interval of the spatio–temporal region.
Hence, trips associated with object3 will be denoted by the a sequence{HD8:05,
HC8:10, HB8:15, IB8:20, IC8:25}. Furthermore, the trajectory databaseT is as-
sumed to be in a relational format with schema〈oid, tid, item〉, whereitem is a
single item, that is part of the transactiontid associated with objectoid. Hence, each
of the four trips of object3 is represented by5 unique rows inT .

4.3.3 Problem Statement

After performing the three above transformation steps, the data set can berepresented
in a databaseT containing tuples〈oid, tid, s〉, whereoid is an object identifier,tid
is a trip identifier, ands is a sequence of spatio–temporal region identifiers. Since
spatio–temporal region identifiers contain a temporal component, the sequences can,
without loss of information, be represented as asetof spatio–temporal region iden-
tifiers. Conforming to the naming convention used in the frequent itemset mining
framework, a spatio–temporal region identifier will be equivalently referred to as an
item, and a sequence of spatio–temporal region identifiers will be equivalentlyre-
ferred to as atransaction. Let X be a set of items, called anitemset. A transactiont
satisfiesan itemsetX iff X ⊆ t. Let STX denote the set of transactions that satisfy
X. The following definitions are emphasized to point out the differences between the
frequent itemset mining framework and the one established here.

Definition 1 Then–support of an itemsetX in T , denoted asX.supp(n), is defined
as the number of transactions inSTX if the number of distinctoids associated with
the transactions inSTX is greater than or equal ton, and 0 otherwise. Then–
support of an itemi in T , denoted asi.supp(n), is equal to then–support of the
itemset that contains onlyi.

Definition 2 Thelength of an itemsetX, denoted as|X|, is defined as the number
of items inX.

Definition 3 An itemsetX is n–frequent in T if X.supp(n) ≥ MinSupp, andX
is long if |X| ≥ MinLength, whereMinLength, MinSupp, andn are user–defined
values.
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Definition 4 An itemsetX is n–closedif there exists no itemsetY such thatX ⊂ Y
andX.supp(n) = Y.supp(n).

The task of mining LSPs in trajectories can be defined as finding all long,n–
closed,n–frequent itemsets. Itemsets that meet these requirements are also referred
to as LSPs, or just patterns.

4.4 Näıve Approach to LSP Mining

The here presented naı̈ve approach uses the convenience and efficiency of an RDBMS.
For ease of exposure, consider the problem of finding long sub–trajectories in trajec-
tories. Meeting the unique support requirement of the original task does not sub-
stantially change the complexity of method to be described, but eases the description
and analysis of it. Finding pairs of trajectories that have long sub–trajectories can be
efficiently solved using 2–way self–joins. Generally,K–way self–joins can be used
to find groups ofK trajectories that share parts of their trajectories. Consequently,
to discover all long sub–trajectories, self–joins could be used in an iterative way, first
discovering pairs, then triples, and so on, finally leading to groups ofK trajectories
that have long, sharable sub–trajectories. A solution based on self–joinshas several
drawbacks. As the number of trajectories is increasing, the maximum size of groups
of trajectories that have a long sub–trajectory is expected to increase as well. Natu-
rally, as this maximum group size is increasing, the number of self–joins that need
to be performed is increasing as well. Although the sizes of the intermediate result
sets of the consecutive joins that compose theK–way self–join are non–increasing
with every join operation, and hence the required time to compute these joins is also
non–increasing, the describedK–way self–join method is inefficient. In fact its worst
case running time is exponential inK, which is illustrated in the following. Consider
a set ofK trajectories that have a long sharable sub–trajectory in them. The iter-
ative K–way self–join method in the first iteration, discovers all pairs of theseK
trajectories. Then in the next step, it discovers all groups of3 of these trajectories,
alternatively leading to the discovery of2K subsets of theseK trajectories. This is
clearly inefficient from a computational point of view not to mention the complexity
it introduces in the discovered results. Since the ultimate goal of an intelligent ride-
share application is the optimal coordination of possible rideshare opportunities of a
set of commuters, the exponentially large number of discovered patterns is clearly a
disadvantage from the user’s point of view.
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4.5 Projection–Based LSP Mining

Now let us turn to the description of the proposed method for mining LSPs in tra-
jectories. This description is based on a number of observations, each ofwhich is
associated with a particular step in the method. These observations are also stated
as lemmas, and their corresponding proofs show the correctness and completeness of
the method. To demonstrate the simplicity of the implementation in a RDBMS, for
each step a simple SQL–statement is given. The effect of each step is also illustrated
on the previously introduced sample trajectory database assumingMinLength = 4,
MinSupp = 2, andn = 2.

4.5.1 STEP 1: Filtering of Infrequent Items

Items, i.e., spatio–temporal regions that are not frequent inT cannot be part of a
LSP. Hence as first step of the method,T is filtered such that it contains items with
n–support larger than or equal toMinSupp.

Lemma 1 An itemi with i.supp(n) < MinSupp cannot appear in a LSPp.

Proof 1 The proof trivially follows from the minimum requirement of then–support
of a patternp. If i appears in a patternp, then the set of transactions satisfyingp must
be a subset of the transactions satisfyingi. Consequently,p.supp(n) ≤ i.supp(n).
For p to be a patternp.supp(n) ≥ MinSupp. This is a clear contradiction, hencei
cannot appear in a pattern.

The first step can be formulated in two SQL statements. The first statement finds
items that meet the unique support criterion. The second statement constructs a fil-
tered view ofT , calledTFV, in which transactions only contain the items found by
the previous statement.

INSERT INTO F (item, i_cnt)
SELECT item, count(*) i_cnt FROM T
GROUP BY item
HAVING COUNT(DISTINCT oid)>=n AND COUNT(*)>=MinSupp

CREATE VIEW TFV AS
SELECT T.oid, T.tid, T.item FROM T, F WHERE T.item=F.item

The effects of the first step are illustrated in Figure 4.4. Spatio–temporal regions,
which are part of trajectories that belong to less than2 distinct objects, are removed
from trajectories. From the point of view of an intelligent rideshare application these
spatio–temporal regions are uninteresting, since these parts of the trajectories cannot
be shared by any objects, i.e., are not sharable.
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Figure 4.4: The Sample DB after STEP 1.

4.5.2 STEP 2: Filtering of Short Transactions

Transactions, i.e., trip trajectories, having less thanMinLength frequent items cannot
satisfy a LSP. Hence, the second step of the method further filtersTFV and constructs
TF that only contain transactions that have at leastMinLength number of items.

Lemma 2 A transactiont with |t| < MinLength cannot satisfy a LSPp.

Proof 2 The proof trivially follows from the definition of a LSP and the definition of
a transaction satisfying a pattern.p is a LSP ⇐⇒ p.supp(n) ≥ MinSupp and
|p| ≥ MinLength. For t to satisfyp, by definition all the items inp has to be present
in t. Since|t| < MinLength and|p| ≥ MinLength, there must exist at least one item
in p that is not int. Hence,t cannot satisfyp.

The second step can be formulated in one SQL statement. The sub–select is used
to find trip identifiers that have at leastMinLength number of items. The outer part
of the statement selects all records belonging to these trip identifiers and inserts them
into TF.

INSERT INTO TF (tid, oid, item)
SELECT tid, oid, item FROM TFV WHERE tid IN

(SELECT tid FROM TFV GROUP BY tid
HAVING COUNT(item)>=MinLength)

The effects of the second step are illustrated in Figure 4.5. In particular, the
remaining sharable parts of trips belonging to objects3 and5 are deleted, because
the length of them is not greater than or equal toMinLength, which is 4 in the
example. Also, note that although in this case items HB8:15 and IB8:20 did not
become infrequent inTF, they lostn–support.
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Figure 4.5: The Sample DB after STEP 2.

Before stating further observations and continuing with the development ofthe
proposed method it is important to note the following. The set of discoverableLSPs
from T is equivalent to the set of discoverable LSPs fromTF. This is ensured by
first two observations. Since further steps of the proposed method will discover LSPs
from TF, these two observation ensure the correctness of the method so far. However,
it is also important to note that not all transactions inTF necessarily satisfy a LSP.
This is due to the sequentiality of the first two steps. After the first step all the
remaining items in transactions are frequent items. Then, in the second step, some
of these transactions, which are not long, are deleted. Due to this deletion afrequent
item in the remaining long transactions may become non–frequent, which in turn may
cause some transactions to become short again. While there is no simple solutionto
break this circle, note that the correctness of the first and second stepsare not violated
since the deleted items and transactions could not have satisfied a LSP.

4.5.3 STEP 3: Item–Conditional DB Projection

For the following discussion, adopted from [76], let an item–conditional database of
transactions, equivalently referred to as an item–projected database, bedefined as:

Definition 5 LetT be a database of transactions, andi an item inT . Then, the item–
conditional database of transactions, is denoted asT|i and contains all the items from
the transactions containingi.

The construction of an item–conditional database of transactions can be formu-
lated in a single SQL statement as:

INSERT INTO T_i (oid, tid, item)
SELECT t1.oid, t1.tid, t1.item FROM TF t1, TF t2
WHERE t1.tid = t2.tid and t2.item = i
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Given n frequent items inT , the problem of finding CFIs can be divided into
n subproblems of finding the CFIs in each of then item–projected databases [76].
Using the divide–and–conquer paradigm, each of thesen subproblems can be solved
by recursively mining the item–projected databases as necessary.

4.5.4 STEP 4: Discovery of the Single Most Frequent Closed Itemset

Since i is in every transaction of the item–projected databaseT|i, and hence has
maximumn–support, the items inT|i can be grouped in two: items that have the
samen–support asi, and items that haven–support less than that ofi. The set of
items that have the samen–support in theT|i asi is the Single Most Frequent Closed
Itemset (SMFCI) inT|i. The fourth step of the method discovers this SMFCI.

Lemma 3 Let i be an item andTF |i its corresponding item–projected database. Let
A be the set of items that have the samen–support inTF |i asi. ThenA is the SMFCI
in TF |i.

Proof 3 Complementary toA, let B be a set of items that haven–support less than
i in TF |i. For A to be closed there should not exist an itemsetX such thatA ⊂ X
andA.supp(n) = X.supp(n). This implies that there should not exist an extra item
ie that is present in all transactions in whichi is present. These transactions are
exactly the set of transactions that make upTF |i. The only remaining items that are
not in A and are present inTF |i are items inB. Since items inB haven–support
less than the items inA they could not be added toA to form an itemsetX such
that A.supp(n) = X.supp(n). HenceA is a closed itemset. ThatA is the SMFCI
trivially follows from the fact that the number of transaction inTF |i is A.supp(n).

The fourth step can be formulated in two SQL statements. The first statement
derives then–support ofn–frequent of items inTF |i,while the second statement
selects those items from thesen–frequent items that have maximumn–support.

INSERT INTO FT_i (item, i_cnt)
SELECT item, COUNT(*) i_cnt FROM T_i
GROUP BY item HAVING COUNT(DISTINCT oid)>=n

SELECT item FROM FT_i
WHERE i_cnt = (SELECT MAX(i_cnt) FROM FT_i)

Figure 4.6 shows the effects of projectingTF based on the item FC8:05. The
numbers in parentheses show then–support of the items inTF |FC8:05 and TF re-
spectively. The SMFCI that is immediately discovered fromTF |FC8:05 is {FC8:05,
GB8:10, HB8:15, IB8:20, JB8:25, KB8:30}. LA8:35 is the only item that is in
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Figure 4.6: Item–Conditional Sample DBTF |FC8:05and Pattern Discovery.

TF |FC8:05, but is not in the discovered SMFCI. Since further projectingTF |FC8:05

on LA8:35 yields a database of transactions where no item meets the minimumn–
support criterion, the discovered SMFCI is the only CFI present inTF |FC8:05. Since
the discovered SMFCI meets both the minimum length and an minimumn–support
criteria it is a pattern.

Lemma 4 Given an item–projected databaseTF |i and a partitioning of items in it
into a set of most frequent itemsA, and a complementary set of itemsB, the recursive
application of item–projection based on items inB followed by the discovery of the
most frequent closed itemsets in the respective projected databases findsall CFIs in
the item–projected databaseTF |i.

Proof 4 Given any CFIX with X.supp(n) < A.supp(n) in TF |i, X contains at
least1 item b ∈ B. If not, thenX contains only items inA, henceX.supp(n) ≥
A.supp(n), which is a clear contradiction. Then by Lemma 3,X will be found as
the SMFCI inTF |i|b, sinceTF |i|b contains all, and only those transaction fromTF |i

that satisfyb.

4.5.5 STEP 5: Deletion of Unnecessary Items

The subproblems that are recursively solved by the method presented sofar are over-
lapping. That is to say, viewed from a top level, a CFI that hasn items is at least once
discovered in each of then corresponding item–projected databases. To eliminate
this redundancy, both in the mining process and the result set, observe that an itemj
can be deleted fromTF if it has the samen–support inTF |i as inTF. The intuition
behind the observation is the following. Ifj has the samen–support inTF |i as in
TF, it implies that all the transactions inTF that satisfyj are also present inTF |i.
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Thus, the set of patterns containingj, which can be discovered fromTF, can also be
discovered fromTF |i.

Lemma 5 After the construction ofTF |i, an itemj can and must be deleted fromTF
if it has the samen–support inTF |i as inTF.

Proof 5 If j has the samen–support inTF as inTF |i, then the set of transactions
that satisfyj in TF is exactly the same set of transactions that satisfyj in TF |i.
Since Lemma 4 guarantees that all closed frequent itemsets will be found inTF |i,
including those thatj participates in, it is needless and incorrect to construct and
mineTF |j at a later point to find same CFIs thatj participates in again. Hence,j
can and must be deleted fromTF .

The fifth step can be formulated in one SQL statement. The statement deletes all
items inTF that have the samen–support inTF as inTF |i.

DELETE FROM TF WHERE TF.item IN
(SELECT F.item FROM F, FT_i

WHERE F.item = FT_i.item
AND F.i_cnt = FT_i.i_cnt)

Figure 4.7 shows the effects of deleting the unnecessary items after the mining
of TF |FC8:05. Since items FC:8:05 and IB8:20 have the samen–support inTF |FC8:05

as inTF, shown in Figure 4.6, they are deleted fromTF. Items remaining inTF are
shown in Figure 4.7.

4.5.6 Item–Projection Ordered by Increasingn–Support

A LSPp in T , containing itemsi1 . . . ik, can be discovered from any one of the item–
projected databasesT|i1 , . . . , T|ik . Steps 4 and 5 of the proposed method assure that
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Figure 4.8: Item–Conditional DBTF |LA8:35 and Pattern Discovery.

p will be discovered from exactly one of these item–projected databases, but the me-
thod presented so far does not specify which one. While this point is irrelevant from
the point of view of correctness, it is crucial from the point of view of effectiveness.

To illustrate this, assume thati1.supp(n) < i2.supp(n) < . . . < ik.supp(n).
If projections are performed in decreasing order of itemn–support, then, firstT|ik is
constructed, thenT|ik|ik−1

is constructed from it, and so on, all the way toT|ik|ik−1|...|i1 ,
from which finallyp is discovered. If on the other hand, projections are performed in
increasing order of itemn–support, thenp is discovered from the first item–projected
database that is constructed, namelyT|i1 .

Assume thatp and its qualifying(k − l + 1) (at leastl–long) sub–patterns are
the only LSPs inT . Then during the whole mining process, the total number of
projections in the decreasing processing order isPdec = k, whereas in the increasing
processing order the total number of projections is onlyPinc = k − l + 1. If k andl
are comparable and large, thenPdec ≫ Pinc . Similar statements can be made about
the total size of the projected databases in both cases. Hence, item–projection should
be performed in increasing order of itemn-support.

4.5.7 Alternating Pattern Discovery and Deletion

Alternating steps 3, 4 and 5, all patterns can be discovered in a recursive fashion.
The sequential application of these steps is referred to as aPattern Discovery and
Deletion phase(PDD). Mining terminates when all items have been deleted fromTF.

Figures 4.6 and 4.7 shows the effects of the first of these PDD phases. Figures 4.8
and 4.9 show the effect of the next pattern PDD phase. Since after the first PDD phase
LA8:35 has the lowestn–support inTF, namely 8, it is chosen as the next item to
base the database projection on. Figure 4.8 showTF |LA8:35 with the corresponding
n–support of the items inTF |FC8:05 andTF respectively. Since all the items have
the samen–support inTF |FC8:05as LA8:35, namely 8, the closed itemset{GB8:10,
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HB8:15, JB8:25, KB8:30, LA8:35} is discovered. Since this closed itemset both
meets the minimum length andn–support requirements it is recorded as a pattern. In
the deletion part of this PDD phase, item LA8:35 is deleted fromTF as the only item
that have the samen–support inTF |LA8:35 as inTF. The results of this deletion are
shown on Figure 4.9.

The third and final PDD phase is implicitly shown in Figure 4.9. Since after the
second PDD phase all the items inTF have the samen–support, the next projection
is performed on any one of the items,i, and the resulting item–projected database,
TF |i, is identical to the current state ofTF, depicted on Figure 4.9. Since all the items
in TF |i have the samen–support asi, the closed itemset{GB8:10, HB8:15, JB8:25,
KB8:30} is discovered. Since this closed itemset meets both the minimum length and
n–support requirements, it is recorded as a pattern. Finally, items having thesamen–
support inTF |i as inTF, which in this case means all the items inTF |i, are deleted
from TF. After this deletion part of the final PDD phase,TF becomes empty and the
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Figure 4.10: Three Patterns in the Sample DB.
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(1) procedureMineLSP(T , MinSupp, MinLength, n)
(2) TF 0

freq ← MinSupportFilter(T , MinSupp, n)
(3) TF 0

long ← MinLengthFilter(TF 0
freq , MinLength)

(4) for each freq itemi in TF 0
long ordered by ascn–supp

(5) TF 0
|i ← ConstructConditionalDB(TF 0

long , i )
(6) FindLSP(TF 0

|i, 1, MinSupp, MinLength, n)

(1) procedure FindLSP(T , L, MinSupp, MinLength, n)
(2) TFL

freq ← MinSupportFilter(T , MinSupp, n)
(3) TFL

long ← MinLengthFilter(TFL
freq , MinLength)

(4) (P ,P .supp(n)) ← FindSMFCI(TFL
long )

(5) TFL−1
long ← DeleteUnnecessaryItems(TFL−1

long , TFL
freq )

(6) if P .supp(n) ≥ MinSupp and |P | ≥ MinLength

(7) StorePattern(P , P .supp(n))
(8) for each freq itemi in TFL

long ordered by ascn–supp
(9) if i is not inP

(10) TFL
|i ← ConstructConditionalDB(TFL

long , i )
(11) FindLSP(TFL

|i, L + 1, MinSupp, MinLength, n)

Figure 4.11: The LSP Algorithm.

mining terminates. Figure 4.10 shows the three patterns that are discovered during
the mining. Supportingoids,n–supports, and length for each discovered patterns are
shown in the legend.

4.5.8 LSP Mining Algorithm

Using the observations and the associated steps, the complete algorithm for mining
LSPs in trajectories is given in Figure 4.11. Since item–projected databases are con-
structed at every level of the recursion and are modified across levels when deleting
unnecessary items, the level of recursionL is passed as an argument in the recursive
procedure, and is used as a superscript to associate databases to the levels they were
constructed in.

Lines 2 and 3 in the MineLSP procedure represent steps 1 and 2 of the method,
and they construct the filtered database of transactions at the initial level, level 0.
Line 4 processes frequent items inTF 0 in ascending order ofn–support. Line 5
represent step 3 of the method, and for each such frequent itemi, it constructs the
item–conditional database of transactionsTF 0

|i at level0. Line 6 calls procedure

FindLSP to extract all LSPs fromTF 0
|i recursively.
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Lines 2 and 3 in the FindLSP procedure represent steps 1 and 2 of the method,
and they construct the filtered database of transactions at the current level L. Line
4 represents step 4 of the method, and it finds the SMFCIP in TFL

long . Line 5
represents step 5 of the method, and it deletes all items from the filtered database of
transactions of the previous level,TFL−1

long , that have the samen-support inTFL−1
long

as inTFL
freq , the current level. Lines 6 and 7 check if the single most frequent closed

itemsetP meets the minimum requirements and store it accordingly. Lines 8 and 9
processes frequent items inTFL

long , which are not inP , in ascending order ofn–
support. Line 10 represent step 3 of the method, and for each such frequent itemi it
constructs the item–conditional database of transactionsTFL

|i at the current levelL.

Finally, line 11 recursively calls procedure FindLSP to find LSPs inTFL
|i at the next

level.
The structure and functionality of procedures MineLSP and FindLSP have a sig-

nificant overlap. While the two functions can be merged into one, the separation of
the two is used to emphasize the facts that (1) DeleteUnnecessaryItems presumes the
existence of databases constructed at the previous level, and (2) FindSMFCI correctly
operates only on an item–projected database, and hence it can only be applied at level
1 and above.

Several implementation details are worth mentioning. First, DeleteUnneces-
saryItems deletes items fromTFL−1

long based on then–support of items inTFL
freq ,

notTFL
long . This is important, as it was noted that MinLengthFilter decreases then–

support of items inTFL
freq , thereby possibly making an unnecessary item appear to

be necessary. Second, arguments to functions and operands in statements are logical,
i.e., the functions and statements can be more efficiently implemented using previ-
ously derived tables. For example, both FindSMFCI and DeleteUnnecessaryItems
are implemented using previously derivedn–support count tables not the actual tra-
jectory tables. Third, simple shortcuts can significantly improve the efficiencyof
the method. For example, during the derivation ofTFL

freq , if the number of unique

frequent items inTFL
freq is less thanMinLength, no further processing is required

at that level, since none of the CFIs that can be derived fromTFL
freq are long. To

preserve clarity, these simple shortcuts are omitted from Figure 4.11.

4.6 Alternative Modelling of Trajectories and Mining of LSPs

The region–based and the road network based spatio–temporal generalization ap-
proaches, presented in Section 4.3, model trajectories at a local (micro) level. Con-
sequently, the method presented in Section 4.5 analyzes the trajectories at thelo-
cal level and derives local (micro) patterns. Alternatively, trajectoriescan also be
modelled at the global (macro) level, whereby trips in trajectories are represented as
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origin–destination pairs. Global (macro) modelling and analysis of trajectories is a
domain of considerable interest in transportation and urban analysis [41]. For exam-
ple, recently a Cab–Sharing Service was proposed as an effective, door–to–door, on–
demand transportation service [33]. One component of the proposed Cab–Sharing
System is a Cab–Routing / Scheduling Engine. The task of this engine is to route idle
cabs and assign cabs to requests or groups of requests, so called cab–shares, such that
the demand for cabs is optimally served both in terms of the transportation cost of
idle cabs and the service time of requests. To enable this optimization, as futurework,
the use of spatio–temporal patterns in cab requests for cab request demand prediction
is proposed. Since cab requests are naturally represented as origin–destination pairs,
the usefulness of macro analysis is apparent.

Hence, in the following two alternative options for modelling trajectories and
mining of LSPs are described. Section 4.6.1 describes a simple method with an
SQL implementation for mining LSPs in trajectories modelled at the global (macro)
level. Section 4.6.2, using some intuitive assumptions, combines the macro and micro
modelling options and LSP mining methods to derive a hybrid version.

4.6.1 Macro Modelling of Trajectories and Mining of LSPs

As briefly described above, when modelling trajectories at the global (macro) level,
trips in trajectories are represented as origin–destination pairs. The preprocessing
of raw trajectories can be achieved using the same three transformation steps as de-
scribed in Section 4.3. This includes the possibility of using either the region–based
or the road network based spatio–temporal generalization approaches as is required
from the application at hand. In the so obtained transaction database, a trajectory
belonging to a particular object has exactly two items.

Mining global (macro) LSPs in the so obtained trajectory database can be achieved
using a single SQL statement as follows.

SELECT o_item, d_item, SUM(supp) AS nsupp FROM
(SELECT oid, o_item, d_item, COUNT(*) AS supp FROM T

WHERE dist(o_item, d_item) >= MinDist
GROUP BY oid, o_item, d_item) a

GROUP BY o_item, d_item
HAVING COUNT(*) >= n AND SUM(supp) >= MinSupp

The statement, without loss of generality, assumes that the trajectory databaseT has
the schema〈oid, tid, o item, d item〉, where in addition to the previously used nota-
tion, o item and ditem are generalized spatio–temporal regions, or identifiers of the
origin and destination of the trajectory, respectively. Since all the trajectories in the
databaseT have exactly two items, it does not make sense to talk about the length
of a trajectory in terms of number of items it contains. Instead, a distance function
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dist() between two locations or items can be defined, and patterns can be evaluated
against aMinDist criterion. The inner select statement calculates the supports for
object–specific origin–destination item combinations that satisfy theMinDist crite-
rion. The outer select statement aggregates the results of the inner selectstatement,
and identifies origin–destination item combinations that meet then–support criterion,
i.e., global (macro) LSPs, and calculates their correspondingn–supports.

4.6.2 Hybrid Modelling of Trajectories and Mining of LSPs

The proposed global (macro) modelling approach of trajectories, the global (macro)
LSP mining method and the SQL implementation given for it are likely to be very ef-
ficient due to the indexing and aggregation support provided by RDBMSs. However,
the discovered global (macro) LSPs, will have very little relation to each other. For
example, a set of individual global (macro) LSPs, considering the underlying road
network, might give rise to local (micro) LSPs that do not exist in the macro model,
but have a support that is equal to the sum of then-supports of the individual patterns.
As an illustrative example consider the road network represented by the solid black
lines in Figure 4.12. Assume that for a particular setting of the parameters, theglobal
(macro) LSP mining method finds two global (macro) LSPs,{FA8:00, LA8:30} and
{FC8:00, LC8:30}, with n–supports 10 for each. Assuming that the spatial regions
FA, LA, FC, and LC cover the only four cities in the area, and hence trajectories
only start and finish in these regions, the global (macro) LSP mining method willnot
discover the local (micro) LSP{GB8:05, HB8:10, IB8:15, JB8:20, KB8:25} with
n–support 20.

To overcome this deficiency of the global (macro) LSP mining method, the global
(macro) and the local (micro) modelling approaches and LSP mining methods can be
combined into a hybrid modelling and LSP mining method as follows. First, perform
global (macro) LSP mining on the spatio–temporally generalized input trajectories.
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(1) procedureHybridMineLSP(Traj I , MinDist , MinSupp, MinLength, n)
(2) TrajG ← STGeneralize(Traj I )
(3) LSPmacro ← MacroMineLSP(TrajG, MinDist , MinSupp, n)
(4) TrajA ← ApproximateTraj(LSPmacro)
(5) TrajGA ← STGeneralize(TrajA)
(6) LSPmicro ← MineLSP(TrajGA, MinLength, MinSupp = 1, n = 1)

Figure 4.13: The Hybrid LSP Mining Method.

Then, using the global (macro) LSPs and the underlying road network,approximate
trajectories for the global (macro) LSPs, i.e., find shortest paths betweenorigin–
destination pairs. Then, spatio–temporally generalize the approximated trajectories
and mine local (micro) LSPs in them, taking into account the global (macro)n–
supports of the approximated trajectories. Taking into accountn–supports of the
approximated trajectories can either be achieved by slightly modifying the local(mi-
cro) LSP mining method in Section 4.5, or simply the original version of it can be
called with parametersn = 1 andMinSupp = 1. The latter is necessary and suffi-
cient to ensure that (1) the approximated trajectories belonging to the global(macro)
LSPs are found as local (micro) LSPs as well, and (2) the local (micro) LSPs found
meet the originaln–support criterion. Note that the spatio–temporal generalization
of the input and approximated trajectories can either be regions–based orroad net-
work based. Figure 4.13 gives the pseudo code of the hybrid LSP mining method, as
described above.

While the hybrid LSP mining method is likely to reduce the number of input tra-
jectories to the local (micro) LSP mining method called internally, thereby achieving
a significant speed–up in running time, it does not findall the local (micro) LSPs.
As an example consider the trajectories in Figure 4.12. IfMinSupp = 20, then the
hybrid LSP mining method will not find any patterns in the global (macro) LSP min-
ing phase, and consequently will not find any local (micro) LSPs, even though the
local (micro) LSP{GB8:05, HB8:10, IB8:15, JB8:20, KB8:25} has ann–support of
20. Similarly, it can be argued that the hybrid LSP mining method will not find any
LSPs in the example trajectory database in Section 4.3.2, for the parameters used in
the running example in Section 4.5. However, as the spatio–temporal generalization
granularity used in the mining is decreased the chances not identifying global (macro)
LSPs that give rise to local (micro) LSPs is decreased. In summary, the hybrid LSP
mining method is likely an effective alternative that provides lossy and approximate
results when compared to the local (micro) LSP mining method.
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4.7 Experimental Evaluation

The proposed LSP mining methods were implemented using MS–SQL Server 2000
running on Windows XP on a 3.6GHz Pentium 4 processor with 2GB main memory.
Three groups of experiments were performed to test: (1) the parameter sensitivity of
the local (micro) LSP mining method, (2) the scale–up properties of the local (mi-
cro) LSP mining method, and (3) the effectiveness of the global (macro) modelling
and LSP mining method with respect to its parameters. The three groups of experi-
ments were performed on the following three data sets respectively: (1) thepublicly
available INFATI data set [58], which comes from intelligent speed adaptation exper-
iments conducted at Aalborg University, (2) the synthetic ST–ACTS trajectory data
set, and (3) the ST–ACTS origin–destination data set, both of which were derived
from ST–ACTS, a probabilistic, parameterizable, realistic Spatio–TemporalACTiv-
ity Simulator [31]. Sections 4.7.1, 4.7.2 and 4.7.3 describe these data sets in detail,
while Sections 4.7.4, 4.7.5 and 4.7.6 present the results of the respective groups of
experiments. Finally, Section 4.7.7 visualizes some of the mining results.

4.7.1 The INFATI Data Set

The INFATI data set records cars moving around in the road network ofAalborg,
Denmark over a period of several months. 20 distinct test cars and familiespartic-
ipated in the INFATI experiment; Team–1 consisting of 11 cars operated between
December 2000 and January 2001 and Team–2 consisting of 9 cars operated between
February and March 2001. Each car was equipped with a GPS receiver, from which
GPS positions were sampled every second whenever the car was operated. Additional
information about the experiment can be found in [58].

The method presented in Section 4.3.1 identifies trips from continuous GPS mea-
surements, which is not the case in the INFATI data. Hence in this case, a tripwas
defined as sequence of GPS readings where the time difference betweentwo consec-
utive readings is less than 5 minutes. Using the definition, the INFATI data contains
3,699 trips. After projecting the temporal dimension to the time–of–day domain
and substituting the noisy GPS readings with 100 meter by 100 meter by 5 minutes
spatio–temporal regions, the resulting trajectory database has the followingcharac-
teristics. There are 200,929 unique items in the 3,699 transactions. The average
number of items in a transaction is approximately 102. The averagen–support of 1–,
2–, and 3–frequent items is 1.88, 4.2 and 6.4 respectively. Notice that the averages
only include then–supports of 1–, 2–, and 3–frequent items.
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4.7.2 The ST–ACTS Trajectory Data Set

The ST–ACTS trajectory data set is based on the output of ST–ACTS, a probabilis-
tic, parameterizable, realistic Spatio–Temporal ACTivity Simulator [31]. Based on
a number of real world data sources and a set of principles that try to model the
social and some of thephysicalaspects of mobility, ST–ACTS simulates realistic
spatio–temporal activity sequences of approximately 600,000 individuals inthe city
of Copenhagen, Denmark. Since the aim of ST–ACTS is to simulate realistic spatio–
temporal activities of individuals that contain patterns, rather than to simulate detailed
movements of individuals, the output of the ST–ACTS for each simulated individual
is a sequence of timestamped locations and activities. Two consecutive locations in
such a sequence can be seen as the origin and the destination of a trip’s trajectory.
To obtain a realistic approximation for the missing part of the trajectories, usingthe
underlying road network, segment–based shortest path calculations were performed
between the origin–destination pairs of the trips. The so obtained trip trajectories are
analogous in form and semantics to the trajectories that can be obtained usingthe
road network based spatio–temporal generalization approach as explained in Section
4.3.1.

For the period of three working days, spatio–temporal activities of 5,000 individ-
uals were simulated, resulting in a total of 64,144 trips. Using segment–based routing
between origin–destination pairs, an average trip is 1,850 meters long with a standard
deviation of 1,937 meters, and is made up of 28 road segments with a standard devia-
tion of 27 road segments. An average road segment is 66 meters long with a standard
deviation of 64 meters. After projecting the temporal dimension to the time–of–day
domain and using the road segments as spatial–, and a 15–minute interval as tem-
poral, generalization units, the resulting trajectory database has the following char-
acteristics. There are 330,940 unique items in the 64,144 transactions. The average
number of items in a transactions is approximately 28. To test the scale–up proper-
ties of the proposed method, varying sized subsets of the ST–ACTS trajectory data
set were constructed. Figure 4.14 summarizes the characteristics of thesesubsets in
terms of the number (Figure 4.14(a)) andn–support (Figure 4.14(b)) ofn–frequent
items. While not shown in Figure 4.14, the number of trajectories linearly scaleswith
the number of objects in the data sets between 6,601 trajectories for 500 objects and
64,144 trajectories for 5,000 objects. Similar linear relationships exist between the
number of objects and the averagen–support ofn–frequent items, Figure 4.14(b).
The logarithmic like relationships between the number of objects and the number of
n–frequent items is due to the fact that the increasing number of trajectories traverse,
and maken–frequent, an increasing fraction of road segments of the total road net-
work, see Figure 4.14(a). In other words, the number ofn–frequent items naturally
saturates as the density of the trajectories increases.
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Figure 4.14: Data Characteristics of Varying Sized Subsets of the ST–ACTS Trajec-
tory Data Set.

4.7.3 The ST–ACTS Origin–Destination Data Set

The ST–ACTS origin–destination data set, similarly to the ST–ACTS trajectory data
set, is also based on the output of ST–ACTS. However, it includes the spatio–temporal
activities of 50,000 individuals for a period of three working days, resulting in a total
of 835,806 trips. The average Euclidean distance between the origins anddestina-
tions of the trips is 1,199 meters with a standard deviation of 1.555 meters. After
projecting the temporal dimension to the time–of–day domain and substituting the
origins and destinations of trips with 100 meter by 100 meter by 15–minute spatio–
temporal regions, the resulting trajectory database has the following characteristics.
There are 139,480 unique items in the 1,671,612 transactions. The number ofitems
in every transactions is exactly 2, which correspond to an origin and a destination
spatio–temporal region. The averagen–support (and count) of 1–, 2–, 3–, and 4–
frequent items is 1.12 (1,497,871), 2.14 (152,255), 3.24 (17,267), and 4.09 (3854)
respectively. Notice that the averages only include then–supports of 1–, 2–, 3–, and
4–frequent items.

4.7.4 Sensitivity Experiments forMinSupp and MinLength Parameters

The first group of experiments was performed to test the sensitivity of local (micro)
LSP mining method with respect to theMinSupp andMinLength parameters, and
was using the INFATI data set as input. Two sets of experiments were performed,
each varying one of the two parameters of the algorithm,MinSupp andMinLength.
The performance of the algorithm was measured in terms of processing time and
working space required, where the working space required by the algorithm was ap-
proximated by the sum of the rows in the projected tables that were constructed by



4.7 Experimental Evaluation 65

100 150 200 250 300 350 400 450 500
10

1

10
2

10
3

10
4

MinLength

to
ta

l p
ro

ce
ss

in
g 

tim
e 

(s
ec

)

Absolute Time and Space Performace vs MinLength

100 150 200 250 300 350 400 450 500
10

2

10
4

10
6

10
8

to
ta

l w
or

ki
ng

 s
pa

ce
 (

# 
of

 r
ow

s)working space

processing time

(a) Absolute Time and Space.

10
0

10
1

10
2

10
3

10
4

Number of Patterns and Ineffective Projections vs MinLength

# 
of

 p
at

te
rn

s

MinLength
100 150 200 250 300 350 400 450 500

10
0

10
1

10
2

10
3

10
4

# 
of

 in
ef

fe
ct

iv
e 

pr
oj

ec
tio

ns

ineffective projections

patterns

(b) Number of Patterns.

100 150 200 250 300 350 400 450 500
0

20

40
Relative Time and Space Performace vs MinLength

pr
oc

es
si

ng
 ti

m
e 

pe
r 

pa
tte

rn
 (

se
c)

MinLength

0

5000

10000

w
or

ki
ng

 s
pa

ce
 p

er
 p

at
te

rn
 (

# 
of

 r
ow

s)processing time

working space

(c) Relative Time and Space.

Figure 4.15: Performance Evaluation for VariousMinLength Settings.

the algorithm. Both measures were evaluated in an absolute and a relative, per pat-
tern, sense. Figures 4.15(a), 4.15(b), and 4.15(c) show the results of the first set of
experiments, whereMinSupp = 2, n = 2 andMinLength is varied between 120
and 530. Lower settings forMinLength were also tested, but due to the very low
MinSupp value these measurement were terminated after exceeding the 2 hour pro-
cessing time limit. Noting the logarithmic scale in Figure 4.15(a) it is evident that
both the running time and the working space required by the algorithm exponentially
increase as theMinLength parameter is decreased. Examining the same quantities
in a relative, per pattern sense, Figure 4.15(c) reveals that the average running time
and average working space required per pattern is approximatelylinearly decreasing
as theMinLength parameter is decreased. The presence of the two irregular bumps
in Figure 4.15(c) can be explained in relation to the number of patterns found, and
the number of ineffective projections that yield no patterns, shown in Figure 4.15(b).
The sharp increases in relative processing time and working space are due to the fact
that the algorithm is unable to take some of the shortcuts and it performs relatively
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Figure 4.16: Performance Evaluation for VariousMinSupp Settings.

more ineffective projections yielding no pattern discovery. The sharp decreases can
be explained by the presence of an increasing number of patterns that share the total
pattern discovery cost.

Similar observations can be made about the second set of experiments, shown in
Figures 4.16(a), 4.16(b), and 4.16(c), whereMinLength = 50, n = 2 andMinSupp

is varied between 7 and 33. For example, the sharp decrease in relative processing
time in Figure 4.16(c) when going fromMinSupp = 33 to MinSupp = 32 is simply
due to the sudden appearance of patterns in the data for the given parameters. While
there is only 1 pattern forMinSupp = 33, and an order of magnitude more number
of patterns forMinSupp = 32, the projections performed and hence the absolute
processing time to discover these patterns is approximately the same in both cases.
Hence, the relative processing time forMinSupp = 33 is an order of magnitude
larger than that forMinSupp = 32.
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Figure 4.17: Performance Evaluation for Various Sized Data Sets, i.e., Number of
Objects.

4.7.5 Scale–up Experiments for Various Input Data Sizes

The second group of experiments was performed to test the scale–up properties of
the local (micro) LSP mining method for varying size input data, and was performed
using the ST–ACTS trajectory data set. For this group of experiments the algorithm’s
parameters were kept constant atn = 4, MinSupp = 8 andMinLength = 25. In
other words, the patterns sought for were sub–trajectories with a minimum length of
25 road segments that were supported by at least 4 objects on average at least two
times per object. The evaluation measures used in the experiments were the same
as in the sensitivity experiments described in Section 4.7.4. Figure 4.17 showsthe
results of this group of experiments. The results can be summarized as follows. As
the number of objects increases linearly, i.e. the density of the trajectories increases
linearly, the number of patterns increases sub–exponentially, see Figure4.17(b). This
naturally leads to a sub–exponential increase in absolute running time (Figure 4.17(a)
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left) and working space (Figure 4.17(a) right). However, the examinationof the same
quantities in a relative, per pattern sense, see Figure 4.17(c), reveals that the average
running time required per pattern gradually decreases to a close to constant value of
a few seconds as the density of the trajectories increases. This is due to thefact that
as the density of the trajectories is increasing, the number of ineffective projections
relative to the number of patterns, i.e., the gap between the two, is decreasing, see
Figure 4.17(c). Similar observations can be made about the average working space
required per pattern. In summary, the scale–up experiments show that boththe run-
ning time of, and working space required by the local (macro) LSP mining method
scale sub–exponentially with the input data size and linearly with the output datasize.
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Figure 4.18: Number of Global (Macro) LSPs for Varying Spatio–Temporal Granu-
larities and Parameter Settings.
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Figure 4.19: LSP Discovery Results in the INFATI Data Set.

4.7.6 Global (Macro) Modelling and LSP Mining Experiments

The third group of experiments was performed to test the effectiveness of the global
(macro) modelling and LSP mining method, as presented in Section 4.6.1. The ex-
periments were performed for varying spatio–temporal generalization granularities
for varying n, MinSupp andMinDist parameters, and were using the ST–ACTS
origin–destination data set. Figure 4.18 shows the results of this group of experi-
ments. The trends in the results are as expected. As the values for the parameters
n, MinSupp andMinDist increases the number of global (macro) LSPs decreases,
shown in Figures 4.18(a), 4.18(b), and 4.18(c), respectively. Similarly, all experi-
ments show that as the spatio–temporal regions become coarser the number of pat-
terns found increases. Perhaps more notable is the fact that for the rather large data
set, with appropriate indexing the running time of the global (macro) LSP mining
method is independent of the parameters and is under 2 seconds.

4.7.7 Visualization of Patterns

To see the benefits of mining LSPs, the mining results of two mining tasks are visual-
ized in the following. Figure 4.19 presents the mining results of finding local (micro)
patterns in the region–based spatio–temporally generalized INFATI data using the
LSP algorithm from Section 4.5. Figure 4.19(a) shows a 50–fold down–sampled ver-
sion of the trajectories of the 20 moving objects in the INFATI data set. While some
regularities are apparent in it to the human eye, to find LSPs in it seems like a daunt-
ing task. Figure 4.19(b) shows 28 LSPs in it that are at least 200 long, sharable for at
least 2 distinct objects, and have a support of at least 2.

Figure 4.20 presents the mining results of finding local (micro) patterns in the
road network based spatio–temporally generalized ST–ACTS origin–destination data
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Figure 4.20: LSP Discovery Results for the ST–ACTS Origin–Destination Data Set.

using the hybrid LSP mining algorithm from Section 4.6.2. The global (macro) min-
ing of LSPs was performed for parametersn = 4, MinSupp = 8, andMinDist =
5, 000 meters, and resulted in 109 global (macro) LSPs. After determining the value
for theMinLength parameter at 80, based on the minimum number of road segments
in the approximated trajectories of the global (macro) LSPs, the local (micro)mining
of LSPs resulted in 298 local (micro) LSPs. Figure 4.20(a) shows the overall supports
(frequencies) of the road segments in the data. Figure 4.20(b) shows themaximum
n–supports of the road segments induced by the collection of the 298 local (micro)
LSPs. While, as described in Section 4.6.2, the hybrid LSP algorithm is not likely to
find all local (micro) LSPs, it does find a relatively large number of additional local
(micro) LSPs in a rather large data set under 144 seconds.

It is important to note that the LSPs contain additional information, which is only
partially, or not presented in Figures 4.20(b) and 4.19(b), respectively. In particular,
then–supports, distances, and lengths are available forindividual patterns, and the
patterns naturally have a temporal aspect to them. With regards to the latter feature
of the patterns, since the items in a pattern have a temporal component, an individual
pattern refers to a particular time–of–day. Furthermore, since the spatio–temporally
generalized items in a given pattern form a sequence in time, the patterns havea
direction. While a simple temporal, frequency analysis of road segments can reveal
aggregatedinformation about the number of objects on the road segments at a given
time–of–day, such analysis will not reveal movement patterns (including directions)
of similarly moving objects. This additional information of the LSPs is likely to
be of immense value in transportation and urban planning, and is necessaryfor the
application at hand, be that intelligent ride–sharing or cab–sharing.
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4.7.8 Summary of Experimental Results

In conclusion, the experimental evaluations can be summarized as follows. First, the
sensitivity experiments show that the LSP mining method, presented in Section 4.5, is
effective and is robust to changes in the user–defined parameter settings,MinLength

andMinSupp, and is a useful analysis tool for finding LSPs in moving object tra-
jectories. Second, the scale–up experiments show that while the absolute running
time and space required to find LSPs scales exponentially with the input data size,
this is mainly due to the fact that the number of LSPs that are present in the input
data, i.e., the output data size, also scales exponentially with the input data size. The
scale–up experiments also demonstrate that the relative, per pattern, performance of
the LSP mining method gradually decreases to a constant value as the input data size
is increased. This later property of the LSP method is due to the fact that as the in-
put size is increased, i.e., the density of the trajectories is increased, the effects of
theMinLength andMinSupp pruning criteria become more dominant and relatively
less and less ineffective projections are performed. Third, the experiments relating to
global (macro) modelling and LSP mining, show that this modelling option and LSP
mining method is extremely effective on large data sets, and is rather insensitive to
the user–defined parameter settings,n, MinDist andMinSupp. Finally, brief exper-
iments show that the hybrid modelling and LSP mining method, while missing some
local (micro) LSPs due to the partial global (macro) modelling, is able to find local
(micro) LSPs in large data sets effectively.

4.8 Conclusions and Future Work

The herein presented work, for the first time, considers the problem of mining LSPs
in trajectories and transforms it to a framework similar to that used in frequentitem-
set mining. The transformation allows both region–based and road networkbased
spatio–temporal generalizations of trajectories. Two methods and their simple SQL–
implementations are presented for mining either local (micro) or global (macro)LSPs
in such spatio–temporally generalized trajectories. In an attempt to speed up the local
(micro) LSP mining method, the two methods are combined to a hybrid LSP mining
method, which is able to rapidly find most of the local (micro) LSPs. The effective-
ness of the different LSP methods is demonstrated through extensive experiments on
both a real world data set, and a number of large–scale, synthetic data sets.

Future work is planed along several directions. First, as discussed, thehybrid LSP
method, while is able to achieve significant speed–up compared to the local (micro)
LSP mining method, it does not find all the local (micro) LSPs in the trajectories.
Hence future work will consider to quantify (1) the speed–up of the hybrid LSP
method, and (2) the fraction of the local (micro) LSPs found by the hybrid LSP
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method. Second, the large number of patterns discovered are difficult to analyze. To
reduce this number, future work will consider the mining of a compressed patterns in
trajectories [101]. Finally, future work will consider the partitioning of trajectories
using index structures designed for trajectories, like in [55], to allow the distributed /
parallel mining of LSPs.



Chapter 5

Cab–Sharing: An Effective,
Door–To–Door, On–Demand
Transportation Service

City transportation is an increasing problem. Public transportation is costeffective,
but do not provide doortodoor transportation; This makes the far more expensive
cabs attractive and scarce. This paper proposes a location–based Cab–Sharing Ser-
vice (CSS), which reduces cab fare costs and effectively utilizes available cabs. The
CSS accepts cab requests from mobile devices in the form of origin–destination pairs.
Then it automatically groups closeby requests to minimize the cost, utilize cab space,
and service cab requests in a timely manner. Simulation–based experiments show
that the CSS can group cab requests in a way that effectively utilizes resources and
achieves significant savings, making cab–sharing a new, promising mode of trans-
portation.

5.1 Introduction

Transportation in larger cities, including parking, is an ever increasing problem that
affects the environment, the economy, and last but not least our lives. Traffic jams
and the hustle of parking take up a significant portion of our daily lives andcause
major headaches. Solving the problem by extending the road network is a costly
and non–scalable solution. A more feasible solution to the problem is to reducethe
number of cars on the existing road network. To achieve this, collective / public
transportation tries to satisfy the general transportation needs of larger groups in a

73
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cost–effective manner. While being cost–effective, the services offered by public
transportation often (1) do not meet the exact, door–to–door transportation needs
of individuals, (2) require multiple transfers and detours that significantlylengthen
travel times, and (3) are limited in off–peak hours. For these reasons, thefar more
expensive service offered by cabs / taxis, which meet the exact transportation needs of
individuals and also eliminates the problem of parking, are in great demand.To better
satisfy this demand, this paper presents an LBS that makes use of simple technologies
and tools to offer a new cost– and resource–effective, door–to–door transportation
means, namelycab–sharing.

Collective transportation is not a new concept. It is encouraged and subsidized
by transportation authorities all over the world. The optimization of collective trans-
portation has also been considered. For an extensive list of researchpapers in this
area, the reader is referred to [92]. Two papers, however, are worth highlighting.
First, in [32], where the idea of the present research originates from, inan off–line
fashion, long, shareable patterns are sought in historical trajectories of moving ob-
jects to aid an intelligent ride–sharing application. Second, in [17] an almost “per-
sonalized” transportation system is proposed that alters the fixed–line buss service to
include variable itineraries and timetables. In comparison, the herein proposed CSS
treats the optimization of collective transportation as a truly online process, and alters
the inherently routeless transportation service offered by cabs.

5.2 Problem Statement

Let R
2 denote the 2-dimensional Euclidean space, and letT ≡ N

+ denote the totally
ordered time domain. LetR = {r1, . . . , rn} be a set ofcab requests, such that
ri = 〈tr, lo, ld, te〉, wheretr ∈ T is therequest timeof the cab request,lo ∈ R

2 and
ld ∈ R

2 are theorigin anddestination locationsof the cab request, andte ≥ tr ∈ T

is theexpiration timeof the cab request, i.e., the latest time by which the cab request
must be serviced. A cab requestri =< tr, lo, ld, te > is valid at timet if tr ≤ t ≤ te.
Let ∆t = te − tr be called thewait timeof the cab request. Let acab–shares ⊆ R
be a subset of the cab requests. A cab–share is valid at timet if all cab requests
in s are valid at timet. Let |s| denote the number of cab request in the cab–share.
Let d(l1, l2) be a distance measure between two locationsl1 andl2. Let m(s, d(., .))
be a method that constructs a valid and optimal pick–up and drop–off sequence of
requests for a cab–shares and assigns a unique distance to this sequence based on
d(., .). Let thesavingsp for a cab requestri ∈ s bep(ri, s) = 1− m(s,d(.,.))/|s|

m({ri},d(.,.)) . Then,
thecab–sharing problemis to find a disjoint partitioningS = {s1 ⊎ s2 ⊎ . . .} of R,
such that∀sj ∈ S, sj is valid, |sj | ≤ K, and the expression

∑

sj∈S

∑

ri∈sj
p(ri, sj)

is maximized.
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Figure 5.1: Cab–Sharing Service Components and Process.

5.3 Cab–Sharing Service

The Cab–Sharing Service (CSS) is depicted in Figure 5.1. Before using the CSS, a
user signs up with the CSS and creates a prepaid user account to pay forthe service.
A registered user sends a cab request in the form of an origin–destination pair and
an optional validity period of the request. In case no validity period is specified, the
cab request is assumed to be valid from the time it is received until some default
time limit has been reached. The requests are submitted via a mobile device by
sending two address lines to a premium SMS service, called Premium Cab–Sharing
Service. A more user–friendly specification of requests could include GPS–based
localization of origins and/or the ability of users selecting origins and/or destinations
from a list of frequent addresses, or even a voice–recognition–enabled, automatic call
center. In either case, once received, the Premium Cab–Sharing Service sends the
two address lines to a Geocoding Service, which validates them and returnsthe exact
coordinates for them. Then these origin and destination coordinates, alongwith a
user identifier are sent to a Cab–Sharing Engine. The Cab–Sharing Engine then, in an
online fashion, automatically groups “closeby” requests into a cab–shareto minimize
the total transportation cost, thereby providing significant savings to the users of the
service. Once a cab–share is constructed, the cost of the share is deducted from the
account of every participant of the cab–share. Then, after receiving the information
about the cab–share, the CSS forwards the information to the Cab–Scheduling / Cab–
Routing Engine, which assigns cabs to cab–shares so that cab space is utilized and
cab requests are serviced in a timely manner. Finally, the CSS sends an SMS tothe
user about the cab fare, such as cost and schedule of the fare. A web–demo of the
CSS is available at:http://www.cs.aau.dk/˜gyg/CSS/ .
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5.4 Grouping of Cab Requests

Cab requests can be viewed as data points in spatio–temporal space. Partitioning n
data points intok groups based on pairwise similarity of the data points according to
a distance measure is referred to as the clustering problem, an extensivelyresearched
problem of computer science. Clustering is known to be NP–hard [49]. However,
there are a number of efficient bottom–up and top–down methods that approximate
the optimal solution within a constant factor in terms of a clustering criterion, which
is expressed in terms of the distance measure.

Hence it is only natural to approach the cab–sharing problem as a clustering prob-
lem and adopt efficient approximations to the task at hand. For these approximation
algorithms to converge to a local optima, an appropriate distance metricd(., .) be-
tween two cab requests and/or cab–shares needs to be devised. Ford(., .) to be a
metric for any three cab requests or cab–sharesi, j, k is has to satisfy the following
four conditions:d(., .) ≥ 0 (non–negativity),d(i, i) = 0 (identity),d(i, j) = d(j, i)
(symmetry), andd(i, j) + d(j, k) ≥ d(i, k) (triangular inequality).

While a clustering approach may find a near–optimal cab–sharing solution, ithas
several drawbacks. Since a cab request is only valid during a specifictime interval,
the set of valid cab request that can be considered for clustering is changing over
time. While a hard time–constraint can be incorporated into a distance measure,
the measure will not satisfy the triangular inequality requirement. An alternative
approach could at every time stept retrieve the set of valid cab requests, and perform a
partitioning–based clustering on the set according to some distance metric. However,
since at any time instancet the number of valid cab requestsnt and the number of
possibleK-sized valid cab–shares are comparable, an iterative partitioning–based
clustering approach would entailO(n2

t ) distance calculations per iteration at every
time instancet, making it infeasible in practice.

Since a cab requestri has a request timetr and an expiration timete it is natu-
ral to view it as a part of a data stream. When finding cab–shares in such astream,
two opposite approaches are obvious. In the first approach, referred to as thelazy
approach, the grouping of requests is delayed as long as possible to findcab–shares
with higher savings. In the second approach, referred to as theeagerapproach, re-
quest are grouped into cab–shares as early as possible to deliver a timelyservice.
Next, the lazy version of a greedy, bottom–up grouping of cab requests isdescribed.
For ease of presentation, the described grouping method instead of maximizing sav-
ings, solves the equivalent problem of minimizing total travel cost; it is shownin
Figure 5.2.

At any timet, valid cab requests can be divided into two sets:Rx, the set of valid
requests that expire at time stept, andRq, the rest of the valid requests that expire
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(1) procedurecabShare(R, K, min saving )
(2) S ← ∅
(3) for t = 1 . . . T

(4) {Rx, Rq} ← getValidRequests(R, t)
(5) E ← calculateE(Rx, {Rx ∪ Rq})
(6) while (|Rx| > 0)

(7) êmin ← mini mink≤K

∑

k

1
E(i,k)

k

(8) {i, k} ← argmini argmink≤K

∑

k

1
E(i,k)

k

(9) s ← {r1
i , r2

i , . . . rk
i }

(10) if p̂(ri, s) < min saving then break
(11) S ← {S ∪ s}
(12) E ← removeSfromE(E, s)
(13) S ← {S∪ addRestAsSingles(Rx) }

Figure 5.2: Lazy Version of a Greedy, Bottom–Up Grouping of Cab Requests.

some time aftert (line 3). Given two cab requestsri andrj , let

e(ri, rj) =
m({ri, rj}, d(., .)) − m({ri}, d(., .))

m({ri}, d(., .))

be thefractional extra costof includingrj in ri’s cab fare. Using the pairwise frac-
tional extra costs, the fractional extra cost of a cab shares w.r.t. ri is estimated as
ê(s) =

∑

rj∈s e(ri, rj), and the average savings for a cab requestrj ∈ s is estimated

as p̂(rj , s) = 1 − 1+ê(s)
|s| . Furthermore, letrk

i be the cab request that has thek-th
lowest fractional extra cost w.r.t.ri. In line 4, these fractional extra costs are calcu-
lated between cab requests inRx and{Rx ∪Rq} and for allri ∈ Rx these fractional
extra costs are stored in a 2–dimensional arrayE, such thatE[i, k] = e(ri, r

k
i ), i.e.,

E is sorted increasingly in row major order. Then, using only the lowestK entries
for each cab request inE, in an iterative fashion the currently best (lowest amortized
cost / highest savings) cab–shares is found (lines 7–9) and request in it are removed
from consideration (line 12) by settingE[rj , .] andE[., rj ] to some large value for
all rj ∈ s. This process continues until the currently best savingspmax is less than
min saving , at which point all the remaining cab request inRx are assigned to
their own “cab–share” resulting in no savings for them (line 13).

5.5 A Simple SQL Implementation

The grouping method for parametersmax k andmin saving can be easily imple-
mented in a few SQL statements as described bellow. First, after geocoding, valid
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requests are stored in a tableR q = 〈rid,tr,te,xo,yo,xd,yd 〉, whererid
is a unique identifier for the request,tr and te are request and expiration times,
and (xo,yo ) and (xd,yd ) are origin and destination coordinates. Then, using a
temporal predicate, expiring requests are selected fromR q and stored in a tableR x
with the same schema. Finally, a distance functiond(x1,y1,x2,y2) is defined
between two 2D coordinates. Then, the fractional extra cost functione for the origin
and destination coordinates of the requestsri andrj can be defined in SQL–99 [87]
as follows.

CREATE FUNCTION e(rixo FLOAT, riyo FLOAT,
rixd FLOAT, riyd FLOAT,
rjxo FLOAT, rjyo FLOAT,
rjxd FLOAT, rjyd FLOAT)

RETURNS FLOAT
BEGIN

DECLARE ri_dist, ed FLOAT
SET ri_dist = d(rixo, riyo, rixd, riyd)
SET ed = d(rjxo, rjyo, rixo, riyo)

+ d(rjxd, rjyd, rixd, riyd)
RETURN (ed / ri_dist)

END

5.5.1 STEP 1: Calculating Fractional Extra Costs

After creating a tableE = 〈ri,rj,e 〉 to store the fractional extra costs, the frac-
tional extra costs between the requestsri in R x andrj in R q can be calculated in
SQL–99 as follows.

INSERT INTO E (ri, rj, e)
SELECT x.rid ri, q.rid rj,

e(x.xo,x.yo,x.xd,x.yd,q.xo,q.yo,q.xd,q.yd)
FROM R_x x, R_q q
WHERE x.rid <> q.rid

AND e(x.xo,x.yo,x.xd,x.yd,q.xo,q.yo,q.xd,q.yd) <= 1

The first condition in theWHEREclause excludes the fractional extra cost ofri
with itself, which is 0 by definition. The reason for doing so is to avoid falsely
identifying ri on its own as the currently best (lowest amortized cost = 0 / highest
savings = 1) “cab–share” in the processing steps to follow. The secondcondition in
theWHEREclause is a pruning heuristic that excludes(ri ,rj ) request combinations
from E where the fractional extra cost exceeds 1, in which case neitherri nor any
cab–share containingri can benefit from includingrj .
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5.5.2 STEP 2: Calculating Amortized Costs

Relational Database Management Systems (RDBMSs) areset oriented and the in-
herently declarative SQL language does not provide adequate support to implement
operations onsequences, e.g., cumulative sum. Procedural language constructs that
allow iteration over the elements of a sequence do exist in SQL, but are implemented
less efficiently. Hence, programmers normally revert to other procedural languages
to perform such operations. Nevertheless, the calculation of cumulative sum can be
implemented in SQL in a declarative fashion using a self–join. Hence, after creat-
ing a tableAE = 〈ri,rj,ae,k 〉, the summations on line 7 and 8 of the grouping
method in Figure 5.2, i.e. the amortized costs can be calculated in a single SQL–99
statement as follows.

INSERT INTO AE (ri, rj, ae, k)
SELECT a.ri, a.rj, (SUM(b.e)+1)/(COUNT(*)+1) ae, COUNT(* )+1 k
FROM E a, E b
WHERE a.ri = b.ri AND a.e >= b.e
GROUP BY a.ri, a.rj
HAVING COUNT(*)+1 <= max_k

TheWHEREclause for every(ri ,rj ) combination from the tablea assigns aset
of (ri ,rj ) combinations from the tableb, such thatri ’s match in the two tables and
the fractional extra costs values (e) in tableb are less than or equal to the values in
tablea. The latter condition in a sense imposes anorder on theset. The aggregation
for each such(ri ,rj ) combination (set) is achieved through theGROUP BYclause.
The corresponding aggregatesae andk are calculated by the two expressions in the
SELECTstatement, whereae is the amortized cost of the best cab–share of sizek
that contains requestsri andrj . Finally, theHAVINGclause excludes cab–shares
larger than sizemax k from further consideration. Note that, while the calculations
of sequence–oriented cumulative aggregates, for example amortized cost (ae) are
simple to express in SQL, the computation performed is not optimal. While the
computational complexity of sequence–oriented cumulative aggregates isO(n), for
a sequence of lengthn, the complexity of the above method based on self–joins is
O(n2). Nevertheless, the self–join based simple SQL implementation can process in
real–time up to 100,000 requests per day.

5.5.3 STEP 3: Selecting the Best Cab–Share

After creating a tableCS = 〈sid,rid 〉 to store the cab–shares, one can select
the savings,b savings , the size,b k , and, conditioned on themin savings
parameter, store the requests of the currently best cab–share (with ID =s) in two
SQL–99 statements as follows.
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SELECT ri, (1-ae), k INTO b_rid, b_savings, b_k
FROM AE ORDER BY ae LIMIT 1

INSERT INTO CS (sid, rid)
SELECT s sid, b_rid rid FROM AE
UNION
SELECT s sid, rj rid FROM AE WHERE k <= b_k AND ri = b_rid

5.5.4 STEP 4: Pruning the Search Space

Since a cab request can only be part of a single cab–share, if the current best cab–
share meets the minimum saving requirement, and is added toCS, the requests in it
have to be discarded from further considerations for finding cab–shares in the future.
This can be achieved by deleting tuples from theE table that refer to the requests in
question. The SQL–99 statement for this is as follows.

DELETE FROM E
WHERE ri IN (SELECT rid FROM CS WHERE sid = s)

OR rj IN (SELECT rid FROM CS WHERE sid = s)

5.5.5 Periodic, Iterative Scheduling of Cab Requests

All cab requests inR x are grouped in an iterative fashion by executing steps 2
through 4 until (1) there are no more cab–shares that meet the minimum savings re-
quirement, or (2) all requests inR x has been assigned to some cab–share. The loop
iterating through these steps is placed in a stored procedure. Using the automatic task
scheduling facilities of the operating system,cron in Linux or Task Scheduler
in Windows, this stored procedure is executed periodically. Keeping the period of the
executions of the stored procedure short (frequency of executionshigh) has several
advantages. First, the shorter the period, the longer requests can be delayed until they
have to begrouped into cab–shares, giving the requests more opportunities to end up
in a good cab–share. In effect, the set of expiring requests is composed of requests
that will expire before the next scheduled execution of the stored procedure. Second,
smaller sets of expiring requests means smallerE andAE tables, which are cheaper
to maintain during the iterations of a single execution of the stored procedure.

5.6 Experiments

To test the proposed methods, cab request data was simulated using ST–ACTS, a
spatio–temporal activity simulator [31]. Based on a number of real world data sources,
ST–ACTS simulates realistic trips of approximately 600,000 individuals in the city of
Copenhagen, Denmark. For the course of a workday, out of the approximately 1.55
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Figure 5.3: Performance Evaluations for Varying Number of Cab Requests.

million generated trips, approximately 251,000 trips of at least 3–kilometer length
were selected and considered as potential cab requests. Experiments were performed
for various maximum cab–share sizesK ∈ [2, 8], wait times∆t ∈ [1, 20], and cab re-
quest densities, i.e., various–sized, random subsets of the set of potential cab requests.
Figures [5.3(a), 5.3(b)], in which the units on the x scale is 10,000 cab requests, show
some of the results for parameter settingsK = 4, min saving = 0.3, and∆t = 15
minutes (common for all cab requests).

Figure 5.3(a) shows (1) the fraction of unshared cab requests, and (2) the average
savings forall fares, and for theshared fares only. As the density of cab requests in-
creases, and hence the likelihood of two individuals wanting to travel around the same
time from approximately the same origin location to approximately the same desti-
nation location increases, the number of cab–shares, meeting the requiredminimum
savings also increases. Consequently, the fraction of unshared requests decreases to
a point where only about 2% of the cab requests cannot be combined into cab–shares
that meet the required minimum savings. Similarly, as the density of the cab requests
increases, the average savings for fares also increases up to a pointwhere the average
savings per fares is0.66 ± 0.11 considering all the fares, and is0.68 ± 0.06 con-
sidering shared fares only. In other words, the CSS is able to group cabrequests in
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a way such that the cost of 97.5% of the cab fares can be reduced by twothirds on
average. Figure 5.3(b) shows how well cab space is utilized. As the density of cab
requests increases, the average number of passengers per cab alsoincreases up to a
point where the average number of passengers per cab is3.89 ± 0.49 considering all
the fares, and is3.94 ± 0.27 considering shared fares only.

Due to space limitations, the detailed results of the experiments showing the ef-
fects of parameters∆t andK are omitted, but they can be summarized as follows.
The∆t experiments confirm that due to the linear relationship between∆t and the
resulting spatio–temporal density ofvalid cab requests, there exists a correspondence
between the above results and the omitted results, i.e., since the spatio–temporalden-
sity of valid cab requests for 15,000 requests with∆t = 15 minutes are about the
same as for 30,000 requests with∆t = 7.5 minutes, the average savings and cab
utilization are approximately the same in both cases. TheK experiments confirm
that under a fixed cab request density, both the savings and cab utilizations saturate.
In the case of 30,000 requests forK ∈ [2, 8], the average savings for shares grad-
ually increases from0.47 to 0.79 and the average number of passengers for shares
gradually increases from2 to 6.1.

The savings come at the expense of some delay in the CSS when meeting the
end–to–end transportation needs of its users. There are three sources for this delay.
First, thegrouping time, i.e., the time that a user has to wait until his/her requests
is grouped into a cab–share, which is upper bounded by thewait timeparameter of
the requests. Second, thepickup time, i.e., the extra time a user has to wait because
some of the other members of the cab–share need to be picked up before him/her.
Finally, theadditional travel time, i.e., the extra time the cab–fare takes due to the
increased length of the shared part of the cab–fare. Because no realistic simulation
of the transportation phase of the CSS was performed, the delay incurreddue to
the latter two sources has been evaluated in terms of extra distances relativeto the
length of the original requests. Due to the close to constant results for various cab
request densities, the measurements on the delay due to the above three sources can
be (independently from the cab request density) summarized as follows. The average
grouping time is11.7 minutes with a standard deviation of5.9 minutes. The aver-
age pickup time is equivalent to10.7 ± 13.5% of the length of the original request.
Given the average length of requests of4.95 kilometers, and assuming an average
transportation speed of 40 km/h in the city, the average pickup time is approximately
0.8 ± 1.1 minutes. The average additional travel time is equivalent to7.9 ± 10.1%
of the length of the original request, or is approximately0.6 ± 0.9 minutes. Hence
in total, the approximate additional service delay an average CSS user experiences
compared to using a conventional cab service is approximately12.1 ± 7.9 minutes,
arguably a small price to pay for the savings.
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5.7 Conclusions and Future Work

Motivated by the need for a novel transportation alternative that is convenient, yet
affordable, this paper proposes a new LBS, namely a Cab–Sharing Service (CSS).
To achieve the desired reduction in transportation cost, the paper proposes a greedy
grouping algorithm, along with a simple but effective SQL implementation, that op-
timally groups “close by” requests into cab–shares. Experiments on simulated, but
realistic cab request data show that in exchange of a short (5–15 minute)wait time,
the CSS can group together requests in a way that effectively utilizes resources and
provides significant savings to the user.

Future work is planned along several directions. First, since it is naturalto view
the incoming requests as a data stream, the CSS is being implemented using an in–
memory Data Stream Management System (DSMS) [106]. Second, the cab–sharing
problem is a hard optimization problem, hence investigating new heuristics for it
is planned. Third, while the proposed greedy method is computationally efficient, a
number of improvements to it are possible, for example to use spatial indices to prune
the search space of possible cab–share candidates. Finally, while not considered here,
the optimization of the Cab–Scheduling / Routing Engine through spatio–temporal
cab request demand prediction is planned.





Chapter 6

Highly Scalable Trip Grouping for
Large–Scale Collective
Transportation Systems

Transportation–related problems, like road congestion, parking, and pollution are in-
creasing in most cities. In order to reduce traffic, recent work has proposed methods
for vehicle sharing, for example for sharing cabs by grouping “closeby” cab requests
and thus minimizing transportation cost and utilizing cab space. However, the meth-
ods proposed so far do not scale to large data volumes, which is necessary to facili-
tate large–scale collective transportation systems, e.g., ride–sharing systems for large
cities.

This paper presents highly scalabletrip grouping algorithms, which generalize
previous techniques and support input rates that can be orders of magnitude larger.
The following three contributions make the grouping algorithms scalable. First,the
basic grouping algorithm is expressed as a continuous stream query in a data stream
management system to allow for a very large flow of requests. Second, following
the divide–and–conquer paradigm, four space–partitioning policies fordividing the
input data stream into sub–streams are developed and implemented using continu-
ous stream queries. Third, using the partitioning policies, parallel implementations
of the grouping algorithm in a parallel computing environment are described. Exten-
sive experimental results show that the parallel implementation using simple adaptive
partitioning methods can achieve speed–ups of several orders of magnitude without
significantly effecting the quality of the grouping.

85



86 Highly Scalable Trip Grouping for Large–Scale CT Systems

6.1 Introduction

Transportation–related problems, like congestion, parking, and pollution are increas-
ing in most cities. Waiting in traffic jams not only degrades the quality of social life,
but according to estimates, the economic loss caused by traffic jams in most coun-
tries is measured in billions of US dollars yearly. Parking is also a serious problem.
According to estimates, in the inner cities of some larger cities as high as 25% of the
drivers on the road are only looking for empty parking places; which again causes un-
necessary congestion. Finally, the increasing number of vehicles idling onthe roads
results in an unprecedented carbon emission, which has unquestionably negative ef-
fects on the environment.

By reducing the number of vehicles on the roads, Collective Transportation (CT)
clearly provides a solution to these problems. Public transportation, the most com-
mon form of CT, tries to meet the general transportation demands of the population
at large. By generalizing the transportation needs, the individual is ofteninconve-
nienced by long wait times at off–peak hours or between connections, and a lim-
ited number of access points (bus / metro / train stops) from which the individual
is forced to use other methods of transportation (walking / bicycling / using apri-
vate car). Ride–sharing, or car pooling, another form of CT is becomingwidespread
in metropolitan areas. In almost all cases, ride–sharing is encouraged bylocal trans-
portation authorities by facilitating car pool lanes that are only accessible to multiple–
occupancy vehicles and by eliminating tolls on bridges and highways for these ve-
hicles. Despite the encouragement there is a tremendous amount of unusedtrans-
portation capacity in the form of unoccupied seats in private vehicles. Thisfact can
mainly be attributed to the lack of effective systems that facilitate large–scale ride–
sharing operations. The systems that do exist [10, 52, 94] are either 1)offered from
a limited number access points due to the system infrastructure constraints, 2)have
inadequate methods for the positioning of trip requests and / or vehicles, or3) have
either inefficient or ineffective methods for matching or grouping trip requests and
trip offers.

In a recent paper [33], yet another form of CT, namely cab–sharingwas proposed
to use unoccupied cab space to reduce the cost of transportation, ultimatelyresulting
in direct savings to the individual. The described Cab–Sharing System (CSS) over-
comes most of the above limitations of existing ride–sharing systems. In particular,
at the heart of the system is a trip grouping algorithm that is able to find subsets of
closeby trip requests, which can be grouped into collective cab fares to minimize the
transportation cost, or equivalently maximize the savings to the user. Using a sim-
ple implementation in standard SQL, assuming a reasonable number (high spatio–
temporal density) of trip requests, the trip grouping algorithm was demonstrated to
be able to group trip requests effectively. The trip grouping algorithm canbe gen-
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eralized to facilitate other CT systems, e.g., a ride–sharing system. However,as it
is demonstrated in the present paper, due to its algorithmic complexity, the grouping
algorithm scales poorly as the volume of trip requests increases. This limits its appli-
cability to facilitate large–scale CT systems, such as a metropolitan or nation–wide
ride–sharing system.

To make the trip grouping algorithm scale to input rates several orders of mag-
nitude larger than in a typical cab–sharing application, this paper makes the follow-
ing three contributions. First, using a Data Stream Management System (DSMS),
SCSQ [106], the trip grouping algorithm is expressed as a continuous stream query
to allow for continuous processing of large trip request streams. Second, follow-
ing the divide–and–conquer paradigm,static and adaptiveversions of two space–
partitioning policies (point quadand KD partitioning) for dividing the input data
stream into sub–streams are developed and implemented using continuous stream
queries. Finally, using the partitioning policies, the grouping algorithm is imple-
mented using a data stream management system in a parallel computing environment.
The parallelization of the implementation is facilitated by using an extension of the
query language in which processes are query language objects. Extensive experimen-
tal results show that the parallel implementation using simple partitioning methods
can achieve speed–ups of several orders of magnitude without significantly affect-
ing the quality of the grouping. In particular, an adaptive partitioning method called
adaptive KD partitioningachieves the best overall performance and grouping quality.

The remainder of this paper is organized as follows. Section 6.2 reviews related
work. Section 6.3 defines the vehicle–sharing problem, reviews the operational as-
pects of a recently proposed Cab–Sharing System (CSS), describes and analyzes a
trip grouping algorithm that solves the vehicle–sharing problem and is employed to
facilitate the CSS. Furthermore, a new Ride–Sharing System (RSS) is proposed, and
the trip grouping algorithm is adapted to meet the application requirements of the
proposed RSS. Section 6.4, describes the main contributions of the paper inmak-
ing the trip grouping algorithm highly scalable, hence applicable in large–scale CT
system, such as an RSS. Section 6.6 describes and analyzes the results ofthe ex-
periments that were conducted to measure the performance of the proposed highly
scalable trip grouping algorithm. Finally, Section 6.7 concludes and points to future
research directions.

6.2 Related Work

The optimization of CT has been studied in the scientific community for years [17,
92]. However, with the exception of the work presented in [33], on whichthe present
paper is based, it is believed that no previous research has considered the online
grouping of trip requests. The problem of groupingn objects into a number of groups
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is in general referred to as the clustering problem, which is an extensivelyresearched
problem in computer science. However, the unique requirements of the problem of
vehicle–sharing mean that general clustering techniques have limited applicability.

Vehicle–sharing as a form of CT has been considered in industrial and commer-
cial settings. For example, most taxi companies in larger cities have been offering
the possibility of shared transportation between a limited number of frequent origins
and destinations. Scientifically very little is known about the computational aspects
of these vehicle–share operations. However, the computer systems supporting such
operations are likely to be semi–automatic, to perform batch–grouping of requests,
and to suffer from scalability problems. In comparison, the trip grouping algorithm
proposed in this paper is automatic, performs online–grouping or requests, and is
highly scalable.

More automatic systems that perform online optimization of vehicle–sharing also
exist [10, 52, 94]. These systems however perform a computationally easier task.
They either match pairs of trip requests only [52] or are offered from / between a
limited set of locations [10, 52, 94]. Additionally, the high volume scalability of
these systems has not been demonstrated. Nonetheless, the analysis in [93] and the
existence of these systems are evidence that the problem considered by the paper is
real and has industrial applications.

Parallel processing of high volume data streams has been considered by sev-
eral papers [11, 54, 64, 68, 102, 105, 106]. To parallelize continuous stream queries,
[54,105,106] decompose the computation of a single continuous stream query into a
partition, a compute, and a combine phase. In [54], the distributed executionstrate-
gies are expressed asdata flow distribution templates, and queries implementing the
three phases are specified in separate scripts. In contrast, in [106], through the use
of stream operators, the implementations of the three phases become part ofa single
parallel, continuous stream query, which is elegantly expressed in the query language.
The present work utilizes the stream processing engine and query language in [106]
to express and evaluate different (parallel) stream processing strategies for an RSS.

In [54], two different stream partitioning strategies are considered:window dis-
tribute (WD) andwindow split(WS). In WD, entire logical windows are distributed
among compute nodes. In WS, an operator dependent stream split function splits
logical windows into smaller ones and assigns them to particular compute nodesfor
processing. WS has several advantages over WD. First, in applicationswhere the
execution time of the stream query scales superlinearly with the size of the logical
window, WS provides superior parallel execution performance over WD. Second, in
real–time response systems, where the query scales superlinearly, WD is not appli-
cable as it can introduce severe delays in the result stream. Third, in systems where
the quality of the results that are computed in parallel are highly dependent on the
tuples inside the logical windows of the compute nodes, WD provides inferiorre-
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sults in quality over WS, because individual tuples are not considered in the partition
phase. As all of the above three conditions hold in the case of vehicle–sharing, WD
is clearly not of interest. WS is similar to the spatial stream partitioning methods
presented in this paper in the sense that both presented partitioning methods consider
individual tuples in the partitioning process. However, in the static cases nowindows
are formed over the stream, but rather tuples are assigned to compute nodes based on
a general partitioning table. In contrast, in the adaptive cases windows are formed
over the stream, the partitioning table is periodically updated based on the tuplesin a
window, and then tuples are assigned to compute nodes the same way as in the static
case.

Database indices support the efficient management and retrieval of datain large
databases. In particular, spatial indices support efficient retrieval of spatial objects,
i.e., objects that have physical properties such as location and extent. Spatial indices
can be divided into two types:data partitioningandspace partitioningspatial in-
dices [82]. The partitioning mechanisms used in spatial indices have a close relation
to the partitioning performed in the present paper.

Data partitioning indices usually decompose the space based on Minimum Bound-
ing Rectangles (MBRs). A primary example is the R–tree that splits space with hier-
archically nested, and possibly overlapping Minimum Bounding Rectangles (MBRs)
[45]. However, for the application at hand, data partitioning schemes arenot well
suited for several reasons. They often use a non–disjoint decomposition of space.
Consequently, a naı̈ve partitioning based on MBRs could either assign requests to
several partitions, and hence later to several shares, or could assignrequests from a
region where several MBRs overlap to several partitions, thereby potentially elimi-
nating good matches. While a disjoint partitioning of space could be derived based
on the MBRs, the computation to derive such a partitioning would be complex and
potentially expensive, and the derived partitions will, most likely not be balanced.

On the other hand, space partitioning indices decompose the entire space into
disjoint cells. These disjoint cells can be based on a regular grid, or on anadaptive
grid. Regular grids can result in empty partitions because of skewed data distribu-
tions. Hence, a regular grid is not well–suited for the application at hand asit does
not support load–balancing.

Quad–trees partition the space into four quadrants in a recursive fashion [23].
Quad–trees divide each region into four equally sized regions, whilepoint quad trees
allow the size of the regions to be dynamic. Quad–trees have been extendedto higher
dimensions also. One of the space partitioning methods used in this paper is quite
similar to a 1–level deep, four dimensional so–called “Point Quad–tree” [82] with
the exception that in the herein considered space partitioning method a split point is
not necessarily a data point. Thek–d–tree is a space partitioning spatial index that
hierarchically divides each dimension into two along each of thek dimensions [6,7].
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The other partitioning method used in this paper corresponds to a 1–level deep, four
dimensionalk–d–tree.

6.3 Vehicle–Sharing

Large–scale, personalized, on–demand CT systems need efficient andeffective com-
puter support. Systems providing this support have two aspects. First, anoperational
aspect as to how information is communicated between the user and the servicepro-
vided by the system, and how trip requests are processed. Second, a computational or
algorithmic aspect as to how the optimization of CT is performed. The following sub-
sections study an existing CT system and propose a new one. Section 6.3.1 formalizes
the vehicle–sharing problem, adopted from [33]. Section 6.3.2 describesthe opera-
tional aspects of a Cab–Sharing System (CSS)–an instance of a CT system in which
the shared vehicles are cabs. Section 6.3.3 describes the computational oralgorithmic
aspects of the trip grouping algorithm employed in the CSS. Section 6.3.4 describes
the problems that arise when the trip grouping algorithm is applied in larger scale
CT systems. Section 6.3.5 proposes a Ride–Sharing Service (RSS) and describes
its operational requirements. Finally, Section 6.3.6 describes how the trip grouping
algorithm in Section 6.3.3 can be modified to meet these requirements.

6.3.1 The Vehicle–Sharing Problem

Let R
2 denote the 2-dimensional Euclidean space, and letT ≡ N

+ denote the to-
tally ordered time domain. LetR = {r1, . . . , rn} be a set oftrip requestsri =
〈tr, lo, ld, te〉, wheretr ∈ T is therequest time, lo ∈ R

2 andld ∈ R
2 are theorigin

anddestination locations, andte ≥ tr ∈ T is theexpiration time, i.e., the latest time
by which the trip request must be accommodated. A trip requestri =< tr, lo, ld, te >
is valid at timet if tr ≤ t ≤ te. ∆t = te − tr is called thewait timeof the trip re-
quest. Avehicle–shares ⊆ R is a subset of the trip requests. A vehicle–share is
valid at timet if all trip requests ins are valid at timet. Let |s| denote the number
of trip request in the vehicle–share. Letd(l1, l2) be a distance measure between two
locationsl1 andl2. Let m(s, d(., .)) be a method that constructs a valid and optimal
pick–up and drop–off sequence of requests for a vehicle–shares and assigns a unique
distance to this sequence based ond(., .). Let thesavingsp for a trip requestri ∈ s be
p(ri, s) = 1− m(s,d(.,.))/|s|

m({ri},d(.,.)) . Then thevehicle–sharing problemis defined as follows.

Definition 6 For a givenmaximum vehicle–share sizeK, and minimum savings
min savings∈ [0, 1], the vehicle–sharing problem is to find a disjoint partitioning
S = {s1 ⊎ s2 ⊎ . . .} of R, such that∀sj ∈ S, sj is valid, |sj | ≤ K, and the
expression

∑

sj∈S

∑

ri∈sj
p(ri, sj) is maximized under the condition that∀ri ∈ sj

p(ri, sj) ≥ min savings or {ri} = sj .
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Figure 6.1: Cab–Sharing Service Components and Process.

6.3.2 Overview of the Cab–Sharing System

The Cab–Sharing System (CSS) proposed in [33] is a Location–Based Service (LBS)
in the transportation domain. In its most simple form, it is accessible to the user via
a mobile phone through an SMS interface. The components and operation ofthe
CSS is depicted in Figure 6.1 and can be described as follows. The user inputs two
addresses with an optional maximum time that s/he is willing to wait. The service in
turn then:

1. geocodes the addresses,
2. calculates an upper bound on the cost of the fare,
3. validates the user’s account for sufficient funds,
4. submits the geocoded request to a pool of pending requests,
5. within the maximum wait time period finds a nearly optimal set of “closeby”

requests using a number of heuristics (described in Section 6.3.3),
6. delivers the information about the set (request end points, and suggested pickup

order) to the back–end cab dispatch system,
7. delivers information about the fare (estimated time or arrival, cost, savings,

etc...) to the involved users.

6.3.3 A Trip Grouping Algorithm

Finding the optimal solution to the vehicle–sharing problem is computationally diffi-
cult. Givenn requests, the number of possible disjoint partitionings, where the size
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of the vehicle–shares is exactlyK is:
(

n

K

)

×
(

n − K

K

)

× · · · ×
(

2K

k

)

×
(

k

k

)

=
n!

⌈n/K⌉ × K!
.

In the case ofn = 100 andK = 4, this expression evaluates to a number that has
155 digits. The number of possible disjoint partitions, where the size of the vehicle–
shares is at mostK = 4 is even larger. Clearly, evaluating all possible options and
selecting the most optimal one is not a feasible approach. Instead, the Trip Grouping
(TG) algorithm at the heart of the CSS tries to derive a nearly optimal solutionby
employing a number of heuristics and approximations. The steps of the TG algorithm
along with the applied heuristics and approximations are described next.

1. Distinguish between the set of expiring trip requests (Rx) and all valid re-
quests (Rq). Wait with mandatory grouping of trip requests until expiration
time. Since a request can also be grouped into a vehicle–share before its ex-
piration time with another expiring request, thislazyheuristic, does not make
the algorithm miss out on an early, cost–effective grouping for the request, but
rather gives the requests more opportunities to be part of one.

2. Based on the distance measured(., .), define a pair–wisefractional extra cost
(FEC) between two requests and calculate it for every pair of expiring and valid
requests. In the TG algorithm the fractional extra cost between two requestsri

andrj (w.r.t. ri) is defined asFEC (ri, rj) =
d(ri.lo,rj .lo)+d(ri.ld,rj .ld)

d(ri.lo,ri.ld) . In the
case when the distance measured(., .) is the Euclidean distance, the calcula-
tions of fractional extra costs between three requestsr1, r2, andr3 (w.r.t. r1)
are shown in Figure 6.2. Note that the defined fractional extra cost is an upper
bound on the true fractional extra cost, as there may be a shorter route than to
serve the requests in the order assumed by the fractional extra cost calculation,
i.e.,rj .lo → ri.lo → ri.ld → rj .ld.

3. Consider the bestK–sized vehicle–share for an expiring requestri ∈ Rx to
be composed of the firstK requests with lowest FEC forri. This heuristic
assumes that pair–wise fractional extra costs are additive.

4. Estimate the Amortized Cost (AC) of a vehicle–shares (w.r.t. ri) as the nor-

malized cumulative sum of FECs as:AC (ri, s) =
1+

∑

rj∈s FEC (ri,rj)

|s| . This
heuristic assumes that there exists an optimal pick–up and drop–off sequence
for requests ins, such the cost of this sequencem(s, d(., .)) ≤ AC (ri, s) ∗
d(ri.lo, ri.ld).

5. Greedily group the “best”, maximumK-sized vehicle–share that has the min-
imum amortized cost over all expiring trip requests. This heuristic is greedy
because it possibly assigns a not–yet–expiring requestrj to a vehicle share of
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FEC(r1,r2) = (d2’ + d2’’) / d1

FEC(r1,r3) = (d3’ + d3’’) / d1

AC({r1,r2,r3})= 

(1 + FEC(r1,r2) + FEC(r1,r3)) / 3
r1_orig

r2_orig

r1_dest

r2_dest

d1

d2’’

d2’

r3_dest

d3’

d3’’

r3_orig

Figure 6.2: Illustration of Fractional Extra Cost (FEC) and Amortized Cost(AC)
Calculations w.r.t. Request r1.

an expiring request, without considering what the current or even future best
vehicle–share would be forrj .

6. Remove requests that are part of the “best” vehicle–share from further consid-
eration.

7. Repeat steps 2 through 7 as long as the “best” vehicle–share meets the mini-
mum savings requirement.

8. Assign remaining trip requests to their own (single person) “vehicle–shares”.

Even though the TG algorithm is based on heuristics, estimations and assump-
tions, in [33], it has been found to effectively optimize the vehicle–sharingproblem.
Furthermore, while some assumptions about extra costs for vehicle–shares do not
hold in all cases, the combination of the approximations and assumptions resultin an
estimated cost for the vehicle–shares that is higher than the true minimum cost ifthe
optimal pick–up and drop–off sequence is considered.

6.3.4 Problems with Large–Scale CT Systems

Unfortunately, the TG algorithm cannot be naively applied to facilitate a large–scale
CT system, such as a ride–sharing system. Since the TG algorithm needs to calculate
the pairwise fractional extra costs between expiring requests and all requests in the
queue, the algorithmic complexity of the TG algorithm isΩ(n2). In [33] an simple
but effective implementation of the TG algorithm was able to handle loads of up to
50,000 requests per day, during which at peak traffic hours the numberof requests
within 10 minutes was at most 2,500. However as input sizes increase the execution
times of any serial implementation of the TG algorithm will reach a point where con-
tinuous grouping is not possible, i.e., the algorithm is not able to find nearly optimal
groups for all the expiring request before they actually expire. This is demonstrated
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Figure 6.3: Scalability Problems of the General Trip Grouping Algorithm.

in Figure 6.3, where, using a highly efficient implementation of the TG algorithm, a
load of 250,000 requests with common wait times of 10 minutes are grouped minute–
by–minute. This efficient implementation of the TG algorithm is able to keep up with
the request flow most of the time, but when the number of pending requests exceeds
about 5,200 (during rush hour), it is not able to find groups for the expiring requests
within the allowed execution time of 60 seconds. In the example thegrouping cycle
timeof the TG algorithm is 60 seconds, i.e. the algorithm is responsible for grouping
the request that will expire within the next 60 seconds. Altering this grouping cycle
time does not eliminate the lagging of the algorithm in case of large input sizes. In
fact, independent of the grouping cycle time, throughout the validity periodof a re-
quest, the request is considered as an expiring request exactly once,at which point is
compared to all other requests. Figure 6.3 also reveals that the computational com-
plexity of the implementation of the TG algorithm isO(n3). This is due to the fact
that, as described by the third heuristic in Section 6.3.3, the bestK–sized vehicle–
share is composed of the firstK requests with lowest FEC for an expiring request.
This necessitates a linear–time top–K selection for each expiring request, making the
algorithmic complexity of the TG algorithmΩ(n3). Consequently, the above de-
scribed scalability problems severely limit the applicability of the TG algorithm in a
large–scale CT system.
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6.3.5 Ride–Sharing Application Requirements

Ride–sharing is a type of vehicle–sharing, where private vehicles are used as trans-
portation. This fact represents additional requirements on solution to the general
trip–sharing problem. In the context of ride–sharing there areride–requestsandride–
offers. Ride–requests are synonymous to trip requests both in form and semantics,
with the exception that ride–requests do not necessarily have to be served. Ride–
offers in addition to the attributes of a trip request have at least three more important
attributes. The first attribute specifies whether or not the offering person is willing to
leave his / her vehicle behind. A person offering a ride with willingness of leaving his
/ her vehicle behind is either willing to take alternate modes of transportation or relies
on the efficient operation of the ride–sharing system for future trips untilhe / she re-
turns to his / her vehicle. A person not willing to leave his her vehicle behind values
or needs his / her independence throughout the day. The second attribute specifies
a maximum relative extra costthe offering person is prepared to incur. Finally, the
third attribute specifies themaximum number of additional passengersthe offering
person’s vehicle can accommodate.

6.3.6 Application of the TG Algorithm in an RSS

It is clear that the TG algorithm cannot be applied in its current form for a ride–
sharing application. However, a few simple modifications can make it applicable.
First, in the context of ride–sharing the ride offering person would like to leave as
soon as the “best” vehicle–share that can be constructed meets the maximum relative
extra cost requirements of the ride–offer. Hence, it makes sense to prioritize the
order of greedy grouping based on the time the ride–offers have been present in the
system. Second, because maximum relative extra cost requirements are defined by
ride–offers individually, in every grouping cycle (execution of the TG algorithm) the
“best” vehicle–share forall ride–offers needs to be considered. Third, every vehicle–
share needs to fulfill the following two conditions: 1) it can contain only one ride–
offer where the offering person is not willing to leave his / her vehicle behind, and 2)
it has to contain at least one ride–offer of any type. To fulfill the above conditions it
is enough to distinguish between two different sets: 1) the set of ride–offers of either
type{Rō

o∪Ro
o}, and 2) the joint set of ride–request and ride–offers where the offering

person is willing to leave his / her vehicle behind{Rr ∪ Ro
o}. Associating these sets

to sets used by the TG algorithm asRx = {Rō
o ∪ Ro

o} andRq = {Rr ∪ Ro
o}, the

vehicle shares constructed by the TG algorithm fulfill the above two conditions.
Obviously, the modifications to the TG algorithm that are necessary to facilitate

the proposed RSS are straight–forward. However, to preserve clarityin represen-
tation, the remainder of the paper considers only the implementation of a highly
scalable TG algorithm.
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6.4 Highly Scalable Trip Grouping

Although the TG algorithm can be modified to meet the unique requirements of the
proposed RSS, as it was demonstrated in Section 6.3.4, the algorithm in its present
form does not scale with the input size and hence cannot be applied in large scale CT
systems, such as the proposed RSS. This section describes a parallel implementation
of the TG algorithm in the SCSQ Data Stream Management System.

Queries and procedures in SCSQ [105] (pronouncedsis–queue) are specified in
the query language SCSQL [106] (pronouncedsis-kel). SCSQL is similar to SQL, but
is extended with streams as first–class objects. SCSQ also features a main memory
database. This database is used to keep the trip requests that are waiting along with
statistics about the data distributions, which are used by the partitioners. Thewaiting
requests are processed by the TG algorithm.

Details of the implementations are organized as follows: Section 6.4.1 describes
how the trip grouping algorithm is implemented as a stored procedure in SCSQL.
Section 6.4.2 outlines how SCSQ allows parallelization of the continuous stream
query implementation of the TG algorithm. Section 6.4.3 describes four spatial parti-
tioning methods that are used to partition the stream of trip requests into sub–streams
for parallelization purposes.

6.4.1 Processing of a Request Stream

The TG algorithm is expressed as a procedure in SCSQL. Thetg procedure takes
an input window of the most recently arrived trip requests, and the three algo-
rithm parametersK, min savings , andwait time The output oftg is a vector
of best vehicle–shares,bcss . tg executes as follows. First, on line 6, all requests in
input window are added to the main memory table of waiting requestsq. Then, on
line 7, based on thewait time parameter and the current timect (indicated by the
end of theinput window ), expiring requests,ex , are selected fromq. The for
each loop on line 10 iterates over each requestr in ex as follows. On line 12, the
requestr is removed from theq. Then, in a compound query on lines 13–18, the best,
maximumK–sized vehicle–share forr is found. The first part of the compound query,
on line 16, calculates the fractional extra costscalc FEC(r)=<r,ri,fec> be-
tweenr and all other requests inq, and selects the tuples for theK requests with
the lowest fractional extra costs. The remaining parts of the compound query, on
lines 17–18, calculates the amortized costscalc AC(fec)=<r,ri,ac> based
on the top–K fractional extra costs, and selects the lowest of these costs.The best
vehicle–share that corresponds to this lowest amortized cost is assignedto s on line
13. Finally, if thesavings of s is greater than equal tomin savings , then the
members of s are added to the best vehicle–shares,bcss (line 21), and are removed
from q (line 22). Otherwise,r could not share its trip, and will be the only one in its
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vehicle–share (line 25). The implementations of the derived functionsinsert q,
get end , select ex q, remove q, subvector , calc FEC, savings , and
members are omitted to preserve brevity. For efficiency reasons, core functionsthat
need to iterate over a set, such astopk andcalc ACare implemented as foreign
functions in LISP. Foreign functions allow subroutines defined in C/C++, Lisp, or
Java to be called from SCSQL queries. The implementation of these functions are
also omitted. The following is the listing of thetg procedure in SCSQL:

(1) create function tg(vector input_window,
(2) integer K, real min_savings,
(3) integer wait_time)->vector
(4) as begin
(5) declare vector ex, vector bcss, timeval ct;
(6) insert_q(in(input_window));
(7) set ct = get_end(input_window);
(8) set ex = select_ex_q(curr_time, wait_time);
(9) set bcss = {};
(10) for each vector r where r = in(ex)
(11) begin
(12) remove_q(r);
(13) set s = select subvector(ac,0,i)
(14) from vector fec, vector ac,
(15) integer i, integer k
(16) where fec = topk(calc_FEC(r),2,K)
(17) and ac = calc_AC(fec,2)
(18) and i = min(ac,2);
(19) if savings(s) >= min_savings
(20) begin
(21) set bcss = concat(bcss,members(s));
(22) remove_q(members(s));
(23) end;
(24) else
(25) set bcss = concat(bcss,r);
(26) end;
(27) result bcss;
(28)end;

6.4.2 Parallel Stream Processing in SCSQ

Apart from streams and tables, SCSQL also includes Stream Processes (SPs) as first–
class objects in queries. SPs allows dynamic parallelization of continuous queries,
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Figure 6.4: Communication Pattern of TGs Working in Parallel.

which is used in this paper to divide the incoming trip requests. The user associates
subqueries with SPs. Massively parallel computations are defined in terms of sets of
parallel subqueries, executing on sets of SPs.

The output of an SP is sent to one or more other SPs, which are calledsubscribers
of that SP. The user can control which tuples are sent to which subscriber using a
postfilter. The postfilter is expressed in SCSQL, and can be any function that operates
on the output stream of its SP. For each output tuple from the SP, the postfilter is called
once per subscriber. Hence, the postfilter can transform and filter the output of an SP
to determine whether a tuple should be sent to a subscriber. Postfilters wereused in
the experiments to partition the input stream between the SPs that are carryingout
TG.

The divide–and–conquer experiments are expressed as queries in SCSQL. All
these queries have the same communication pattern between SPs, as shown in Fig-
ure 6.4. A Partition SP reads a stream of incoming trip requests (S1). That stream is
partitioned into partial streams, which are sent to the Compute SPs. Each Compute
SP executes thetg procedure on its partial stream. Also, each Compute SP evaluates
the savings achieved, by comparing the total cost of all trips with the total cost of the
shared trips. The results of all Compute SPs are merged together by a Combine SP.
The resulting stream of cab requests (S2) is sent to the user.

6.4.3 Spatial Partitioning Methods

Section 6.3.4 showed that the TG algorithm does not scale well enough for large–
scale CT systems. The key idea to overcome the scaling issue is a divide–and–
conquer approach. All requestsri = 〈tr, lo, ld, te〉 are characterized by its origin
and destination locations,lo ∈ R

2 andld ∈ R
2. Hence, a request can be geographi-

cally characterized by a point inlo × ld. In other words, a request is geographically
characterized by a point inR4. The divide–and–conquer approach is to partition
this space and assign each partition to one TG. Intuitively, this approach willgain in
execution time since each TG has less workload, but will lose some of the vehicle–
sharing opportunities since none of the partitions are able to probe all combinations
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that a serial implementation can do. The goal is to find a partitioner that executes
efficiently and achieves maximum savings. The following partitioning strategiesare
implemented in SCSQL and investigated experimentally.

6.4.3.1 Baseline Queries

Two baseline queries are executed; the unpartitioned query and the round robin query.
These queries form a performance baseline of the best and worst possible savings
and execution speeds. All other methods should be compared to the measurements
of these two queries.

Theunpartitionedquery applies a single TG on the entire request stream without
any partitioning. Since all requests are going to a single TG, all possible sharing
opportunities will be investigated. The unpartitioned approach will give the best
savings, but it will also take the longest time to execute because all burden will be
placed on a single node. The unpartitioned query is expressed in SCSQL as follows:

select tg(v, 4, 0.8, 600, 60)
from vector v, charstring file
where v = twinagg(streamfile(file), 60.0, 60.0)
and file in
{"L16.dat","L8.dat","L4.dat","L2.dat","L1.dat"};

The streamfile(file) function reads tuples that are stored infile , and
streams them out. Thetwinagg(inputstream, size, stride) function is
taking a stream as the first argument and emits a time window over the lastsize sec-
onds, everystride seconds. Hence, ifsize =stride , twinagg emits tumbling
(consecutive and non–overlapping) windows of the input stream. Thistwinagg()
makes sure thattg() always will get one minute worth of requests each time.
Hence, tg() will get called once per minute. If no requests have arrived dur-
ing a certain minute,twinagg() will emit an empty window for that minute.
tg(input window, K, min savings, wait time) performs the trip
grouping algorithm. The query is executing once per file in the collection of file-
names given on the last line of the query.

TheRound–Robinpartitioner will send the first request to one working SP. The
next request will be sent to another working SP, and so on. Each SP is given ex-
actly 1/n of the total load, so the load balance is perfect. Since the Round–Robin
partitioning scheme is perfectly load balanced, it will achieve the maximum possible
execution speed. On the other hand, an SP that is operating on a Round–Robin data
partition can be expected to give inferior savings since nearby requestsnot necessar-
ily go to the same SP. Thus, the Round–Robin partitioner is expected to achievethe
least savings. It is expressed in SCSQL as:



100 Highly Scalable Trip Grouping for Large–Scale CT Systems

select merge(b)
from bag of sp b, sp c, integer n, charstring file
where b = spv(select streamof(tg(twinagg(stract(c),

60.0, 60.0), 4, 0.8, 600)))
from integer i where i=iota(1,n))

and c = sp(winagg(streamfile(file),n,n),n,’rr’)
and n in {16,8,4,2}
and file in
{"L16.dat","L8.dat","L4.dat","L2.dat","L1.dat"};

In this query, the output ofstreamfile is passed intowinagg(input
stream, size, stride) , which is forming tumbling windows of sizen, n
being the number of subscribers to the Partition SPc . Each window is an ordered set
of tuples, so it is represented as a vector. The round robin functionrr , is applied once
per subscriber. For subscriberi, rr picks up thei-th element in the vector emitted
from winagg. TheSP(stream, nsubscribers, postfilter) is assign-
ing stream andpostfilter to a new SP, which should expectn subscribers.
Thus, a combination of awinagg on a stream and a vector dereference in the post-
filter function results in a round robin partitioner.

iota(m,n) generates all integers from m to n. Hence, the query in the call to
spv(bag of stream) , createsn duplicates of the query:
streamof(tg(twinagg(stract(c),60.0, 60.0), 4, 0.8, 600) ) ,
wherestract(sp) is extracting the stream from stream processsp . Each one of
these queries will be assigned to a stream process. Finally, the output of all the stream
processes in b will be merged. Refer to Figure 6.4 for a graphical representation of
the communication pattern: The partition is done at SPc , compute is performed by
the SPs inb, and the combination is done in themerge at top level.

6.4.3.2 Static, Point Quad Partitioning

Static point quad partitioning (SPQ) calculates from historical data the mediansof
each dimension of the trip requests. Each dimension of the four–dimensionaltrip
request data space split once along the median of each dimension. Figure 6.5(a)
shows the SPQ partitions for some data points in two dimensions. By splitting each
dimension once, SPQ partitions the four–dimensional trip request data space into 16
regions. One or more regions can be assigned to one SP, executing a TG for that
region. This SCSQL query executes SPQ:
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Figure 6.5: Illustrations of the Static Partitioning Methods.

select merge(b)
from bag of sp b, sp c, integer n, charstring file
where b = spv(select streamof(tg(twinagg(stract(c),

60.0, 60.0), 4, 0.8, 600)))
from integer i where i=iota(1,n))

and c = sp(streamfile(file),n,’pq’)
and n in {16,8,4,2}
and file in
{"L16.dat","L8.dat","L4.dat","L2.dat","L1.dat"};

The difference between this query and the Round Robin query above is only in
the call to the partitioning SPc . Instead of applying postfilter functionrr on a
window, the SPc is streaming the tuples directly to thepq postfilter. For each tuple,
pq decides to which subscriber it should go.

6.4.3.3 Static, KD Partitioning

Static KD partitioning (SKD) splits trip request data in a hierarchical fashion by
processing dimensions one after the other as follows. For a given dimension, it first
calculates thelocal median for that dimension, and then splits the local trip request
data for the dimension based on the median into approximately equal sized subsets.
Figure 6.5(b) shows the SKD partitions for some data points in two dimensions. The
data is first split around the median of the horizontal dimension, then the data ineach
of the so obtained partitions is further split around the local (horizontal) median of
each of the partitions. By splitting once per dimension, the KD also partitions the
four–dimensional trip request data space into 16 regions. The SCSQL query that
executes SKD differs from that of SPQ in that it applies another postfilter function
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at the partitioning SP, namelykd instead ofpq . Since the difference is so small, the
SCSQL query is omitted.

6.4.3.4 Adaptive, Point Quad Partitioning

In many applications, the distribution of the data changes over time, as it is the case
for trip requests. These changes can be minor or major changes. For example, during
the morning rush hours people want to move from their homes (residential district)
to their work (business and industrial districts). During the evening rush hours the
opposite is true. The trip requests that correspond to the morning rush hour move-
ments are likely to fall in different partitions than the trip requests that correspond to
the evening rush hour movements. Consequently, the “morning rush hour”partitions
will be densely populated in the morning hours, and the “evening rush hour” parti-
tions will be densely populated in the evening hours. Clearly, a static partitioning
method does not consider these changes in data distribution and is likely to result in
temporally unbalanced partitions.

The adaptive point quad partitioning (APQ) adjusts the boundaries of the parti-
tions periodically, based on statistics obtained from a recent history buffer of the trip
request stream, and distributes the newly arriving trip requests according the newly
adjusted partitions. Figure 6.6(a) shows two consecutive partitionings thatare con-
structed by the APQ partitioning for some data points in two dimensions. Hollow
dots represent data points that were present when the previous partitioning was con-
structed, but are not present or are not relevant for the construction of the current
partitioning. In contrast, solid rectangular markers represent data pointsthat were
not present when the previous partitioning was constructed, but are relevant for the
construction of the current partitioning. Solid and dashed lines represent current and
previous partition boundaries. The following SCSQL query executes APQ:

select merge(b)
from bag of sp b, sp c, integer n, charstring file
where b = spv(select streamof(tg(twinagg(stract(c),

60.0, 60.0), 4, 0.8, 600)))
from integer i where i=iota(1,n))

and c = sp(pqstat(streamfile(file),
600.0, 60.0, 10),n,’pq’)

and n in {16,8,4,2}
and file in
{"L16.dat","L8.dat","L4.dat","L2.dat","L1.dat"};

This query differs from the SPQ query in the call to the partitioning SPc . The
streamfile function is wrapped by pqstat(inputstream, size,
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Figure 6.6: Illustrations of the Dynamic Partitioning Methods.

stride, samplefreq) . This function emits the same stream as its input stream,
and maintains statistics in a main memory table of SCSQ. Everystride ×
samplefreq seconds,pqstat computes medians in each dimension oflo × ld
across the tuples seen in the lastsize seconds. These median values are then used
in the pq postfilter. This way, the partitioning decisions are always done on recent
data.

6.4.3.5 Adaptive, KD Partitioning

The adaptive KD partitioning (AKD) adjusts the boundaries of the partitions peri-
odically, based on statistics obtained from a recent history buffer of the trip request
stream. and distributes the newly arriving trip requests according the newlyadjusted
partitions. Figure 6.6(b) shows two consecutive partitionings that are constructed by
the AKD partitioning for some data points in two dimensions. The semantics of the
symbols used in the figure are the same as in the case of the APQ partitioning. How-
ever, Figure 6.6(b) depicts a situation that can happen in either one of the adaptive
spatial partitioning methods. Consider the data point inside the triangle. Since itwas
present when the previous partition was constructed it has been assigned to compute
node 2 for processing. According to the newly constructed partitions however, it
should be assigned to compute node 4. To avoid communication between compute
nodes, the following design choice is made: once a data point is assigned to apar-
tition (compute node), it is never reassigned to another partition, even if the newly
adjusted partitions would suggest this.

The SCSQL query that executes SKD differs from SPQ in that it applies an-
other statistics wrapper function and another postfilter function at the partitioning SP,
namelykdstat instead ofpqstat andkd instead ofpq . kdstat works analo-
gously topqstat with the difference that it maintains dynamical versions of local
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dimension splits of the kind that SKD has. Since the difference between this query
and the APQ query is so small, the SCSQL AKD query is omitted here.

6.5 Density–Based Spatial Stream Partitioning

The main objective of the four proposed partitioning methods is to load balancethe
parallel versions of the computationally intensive TG algorithm. The planes for sub-
dividing the space of requests is determined by the medians of request data. These
splitting planes potentially eliminate the discovery of good shares, when membersof
the good shares are distributed to different partitions. This naturally leadsto some
degradation in the overall grouping. The degradation is larger when the planes are
cutting through denser regions of the request space with many sharing opportunities,
than when the planes are cutting through sparser regions of the requestspace. Since
neither of the proposed partitioning methods consider other characteristicsof the dis-
tribution of the requests, the degradation of grouping quality due to boundary effects
is expected to be approximately the same for all four partitioning methods. However,
as Section 6.6 demonstrates, this degradation is rather small.

No matter how small the degradation is, simple spatial partitioning methods that
take into account the density of the data could reduce the degradation. Theobjec-
tive of such a density–based partitioning is to determine the positions of the splitting
planes so that they pass through regions where data is sparse. To achieve this, a simple
but effective clustering method [29] can be used to find local minima in the multi-
modal data distributions along each dimension, and place splitting planes at those
locations. Figure 6.7 shows the distributions for each dimension of the request data
during morning peak hours and off–peak hours. In the figure letters “f” and “t” stand
for “from” and “to”, respectively. Hence, fx and fy are request origin dimensions,
while tx and ty are request destination dimensions. During the morning peak hours,
there does not seem to be any regions where the request data is very sparse. However,
during off–peak hours, when people who are not working are most likely to be in one
of the larger shopping malls, the distributions of the destination dimensions (tx, ty)
are clearly multimodal. In this later situation, ensuring that splitting planes are cho-
sen correctly at local minima would minimize the boundary effects. However, since
most of the requests are during peak hours, the overall average grouping achieved by
the parallel TG algorithm would not be substantially improved.

Since the local minima are likely not to be at the median values of the dimensions,
there exists a trade–off between equal–sized partitions and partitions with minimal
boundary effects. A dual–objective partitioning that takes this trade–offinto con-
sideration could weigh the expected degradation against the imbalance between the
created partitions. Although the implementation of the density–based and the dual–
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Figure 6.7: Request Data Distributions Along Each Dimension.

objective spatial stream partitioning methods is straight–forward, it is left for future
research.

The proposed spatial stream partitioning methods are devised to scale the TGal-
gorithm to very large flows of requests. However, they can be considered as a general
approach to make computationally intensive spatial analysis tasks scalable through
parallelization. For example, the density–based and the dual–objective spatial stream
partitioning methods can be applied to speed up spatial clustering of streams, spatio–
temporal rule mining [30], or the processing of high–resolution image streams.

6.6 Experiments

The parallel implementations of the TG algorithm were tested on a cluster of IntelR©

PentiumR© 4 CPU 2.80GHz PCs. Each SP was executing on a separate PC to allow for
maximum parallelism. TCP/IP over Fast Ethernet was used to carry streams between
the nodes.

Trip request data was simulated using ST–ACTS, a spatio–temporal activity sim-
ulator [31]. Based on a number of real world data sources, ST–ACTS simulates
realistic trips of approximately 600,000 individuals in the city of Copenhagen,Den-
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load execution time (sec) savings

0.06125 28.8 0.325
0.125 120.1 0.388
0.25 702.9 0.445
0.5 16343.5 0.491

1 69771.6 0.530

Table 6.1: Performance of the Serial TG Algorithm.

mark. For the course of a workday, out of the approximately 1.55 million generated
trips, approximately 251,000 trips of at least 3–kilometer length were selectedand
considered as trip requests. To test the scalability of each of the parallel implemen-
tations using the four spatial stream partitioning methods, decreasing sized subsets
of the total load of 251,000 trip requests were constructed by only considering every
second, fourth, eighth and sixteenth trip request in the input stream. These subsets
are referred to as 1/2, 1/4, 1/8, 1/16 load, respectively.

To evaluate the effectiveness of the four spatial stream partitioning methods, for
the purposes of parallelization of the TG algorithm, two measures were used:(over-
all) execution time and average savings achieved by the grouping (also referred to
as the quality of the grouping or quality for short). The reported savings for each
vehicle–share are based on amortized costs, which has been shown to overestimate
the true cost of a vehicle–share that considers the optimal pick–up and drop–off
sequence of requests. Hence, the reported savings underestimate the true savings.
Nonetheless, the reported savings can be used as an unbiased measurefor the quality
of the grouping.

For each of the partitioning methods an extensive set of experiments were per-
formed for fixed algorithm parameters (K = 4, min saving = 0.2, and∆t = 10
minutes) under varying loads using degrees of parallelization. The adaptive parti-
tioning methods updated the partitions every 10 minutes based on the trip request
that arrived in the last 10 minutes.

6.6.1 Baseline Performance

To establish a point of reference for the performance measures the baseline queries
specified in Section 6.4.3.1 were executed. Table 6.1 shows the results for the un-
partitioned query. Savings obtained by the unpartitioned query (serial execution) are
consideredto be optimal, while running times areconsideredto be worst case perfor-
mance. Note that these measures are “optimal” and “worst case” with respect to the
TG algorithm. Moreover, as it is demonstrated in Section 6.3.3, due to the computa-
tional complexity of thevehicle–sharing problem, the calculation of a truly optimal
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grouping, even in the case of a few requests, is infeasible. Due to the large differ-
ence in scale between serial and parallel execution times, serial executiontimes are
not shown in subsequent figures. Savings achieved by the unpartitioned query (serial
execution) are also not shown in subsequent figures, but are used toreport relative
performance of the parallel executions in terms of savings / quality.

In comparison, the round robin query was executed to obtain optimal execution
times due to perfect load balancing and worst case savings due to the query indepen-
dent distribution of data between query processors. The results of these experiments
are shown in Figures 6.8 and 6.9 as RR, however it is emphasized that RR isnot one
of the proposed spatial stream partitioning methods, but isonlyused as a reference.

6.6.2 Absolute Performance of the Parallel TG Algorithms

Figures 6.8 and 6.9 show the absolute performance of the parallel TG algorithm for
varying load and degrees of parallelization using different spatial stream partitioning
methods. From Figure 6.8(a) it can be seen that the execution times of all of the
methods decrease as the parallelism is increased. Figure 6.8(a) also reveals that the
adaptive versions of the spatial partitioning methods adjust well to the changing spa-
tial distribution of the requests, resulting in more balanced partitions and ultimately
faster execution times when compared to their static version. The improvement in
execution time due to adaptive partitioning is most evident for the SPQ partitioning.
Figure 6.8(b) shows that while the execution time of the TG algorithms can be scaled,
the underlying algorithmic complexity of the TG algorithm executed on the compute
nodes does not change. The effect of the underlying algorithmic complexity is more
observable for spatial partitioning methods that construct less balanced partitionings,
in particular SPQ.

Figure 6.9(a) shows that in general the quality of the grouping decreases as the
degree of parallelization is increased. However in the case of non–spatial partitioning
(RR) this degradation is significant, while in the case of either one of the fourspatial
partitioning methods it is negligible. Figure 6.9(b) shows that as the load is increased
the grouping quality increases. This is due to the simple fact that the spatio–temporal
density of the trip requests increases. As a consequence, the likelihood that a request
becomes part of a “good” vehicle share increases. The almost negligibledifferences
between the qualities achieved by the four partitioning methods, as explained inSec-
tion 6.5, is due to the fact that since neither of the partitioning methods considerthe
data densities, but only the medians of the dimensions, the total degradation due to
boundary effects is approximately the same for the four partitioning methods.
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Figure 6.8: Execution Times for the Parallel TG Algorithm for Different Partitioning
Methods for Varying Parallelization and Load.
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Figure 6.10: Relative Performance for the Parallel TG Algorithm (Compared to RR
Partitioning) for Different Partitioning Methods for Varying Parallelization.

6.6.3 Relative Performance of the Parallel TG Algorithms

Figure 6.10 shows relative execution times of the parallel TG algorithms when com-
pared to the optimal execution time that is achieved by RR partitioning due to perfect
load balancing. With the exception of the SPQ partitioning all other partitioning
methods result in parallel execution times that are within the same order of magni-
tude as the optimal. There are potentially two sources for this slowdown: the cost of
partitioning and the extended execution times due to improper load balancing. Since
adaptive partitioning methods have to maintain a limited history of the stream and
periodically recompute partition boundaries based on this history, they do additional
work compared to their static counterparts. Yet, in Figure 6.10 execution times re-
sulting from adaptive partitioning are significantly lower than the execution times
achieved by static partitioning. Hence, it is clear that the additional time neededto
perform the spatially partitioned parallel queries can mainly be attributed to unbal-
anced partitions.

Finally, comparing the savings in Figure 6.9(b) to the savings in Table 6.1 reveals
that the grouping quality achieved by either one of the partitioning methods is within
the 95% of the optimal quality for the full load. Even if the load is decreased to 1/16
of the total load, all the spatial partitioning methods still achieve approximately 90%
of the maximum possible savings.
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The experiments can be summarized as follows. First, RR partitioning has per-
fect load balance and is a very simple partitioning method, hence it has the fastest
execution time. However, RR partitions the space badly and achieves a bad grouping
quality. Second, using a spatial partitioning method improves grouping quality.All
spatial partitioning methods achieve at least 95% of the maximum possible savings in
case of the full load. Third, the adaptive partitioning methods always execute faster
than their static equivalents. That is because the adaptive methods constantly adapt
the partitioning according to the last tuples observed, which will lead to better load
balance. At the same time, the savings are approximately the same for both the static
and dynamic partitionings. Adaptive partitioning is also preferred from an operation
point of view, since it does not need any prior knowledge about the datadistribution.
Finally, since all partitioning methods (except RR) achieve about the same savings,
the preferred method is the one with the fastest execution time of SPQ, SKD, APQ,
and AKD. Thus, AKD is the best partitioning method.

6.7 Conclusions and Future Work

The paper proposed highly scalable algorithms for trip grouping to facilitate large–
scale collective transportation systems. The algorithms are implemented using a par-
allel data stream management system, SCSQ. First, the basic trip grouping algorithm
is expressed as a continuous stream query in a data stream management system to
allow for a very large flow of requests. Second, following the divide–and–conquer
paradigm, four spatial stream partitioning methods are developed and implemented
to divide the input request stream into sub–streams. Third, using the infrastructure
of SCSQ and the partitioning methods, parallel implementations of the grouping al-
gorithm are executed in a parallel computing environment. Extensive experimen-
tal results show that the parallel implementation using simple, adaptive partitioning
methods can achieve speed–ups of several orders of magnitude withoutsignificantly
affecting the quality of the grouping. As discussed in Section 6.5, spatial partitioning
is not only appropriate for the given application, but it is applicable to parallelize
computationally expensive spatial analysis tasks. As it was demonstrated, SCSQ can
easily accommodate the parallel implementations of such tasks.

Future work will be along four paths. First, for the adaptive partitioning methods,
the effects of keeping a longer history versus sampling more frequently willbe in-
vestigated. Second, the density–based and dual–objective spatial stream partitioning
methods will be implemented and their effectiveness evaluated. Third, the proposed
partitioning methods, independent of the rate of flow, always construct afixed num-
ber of partitions. While not substantially, but as the number of partitions increases
the grouping quality decreases. Hence, an adaptive partitioning approach in which
the number of partitions is increased / decreased depending on the rate offlow will
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be devised and tested. Finally, to preserve clarity the paper presented thegeneric TG
algorithm in its simplest form. In particular, in the presented version all vehicles are
assumed to have the same passenger capacity and all requests have a common min-
imum savings parameter. Furthermore, in–route grouping, i.e., assigning requests
to already active but not fully–occupied vehicle–shares, is not handled by the simple
version of the TG algorithm. Future work will consider the implementation of a more
complex version of the TG algorithm that addresses the above issues.



Chapter 7

Estimating the Capacity of the
Location–Based Advertising
Channel

Delivering “relevant” advertisements to consumers carrying mobile devices is re-
garded by many as one of the most promising mobile business opportunities. The
relevance of a mobile ad depends on at least two factors: (1) theproximity of the
mobile consumer to the product or service being advertised, and (2) the match be-
tween the product or service and theinterestof the mobile consumer. The interest
of the mobile consumer can be eitherexplicit (expressed by the mobile consumer)
or implicit (inferred from user characteristics). This paper tries to empirically esti-
mate the capacity of the mobile advertising channel, i.e., the number of relevant ads
that can be delivered to mobile consumers. The estimations are based on a simu-
lated mobile consumer population and simulated mobile ads. Both of the simulated
data sets are realistic and derived based on real world data sources about population
geo–demographics, businesses offering products or services, andrelated consumer
surveys. The estimations take into consideration both the proximity and interestre-
quirements of mobile ads, i.e., ads are only delivered to mobile consumers that are
close–by and are interested, where interest is either explicit or implicit. Results show
that the capacity of the Location–Based Advertising channel is rather large, which is
evidence for a strong business case, but it also indicates the need for user–control of
the received mobile ads.

113
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7.1 Introduction

Mobile or Location–Based Advertising (MA or LBA), i.e., sending electronicadver-
tisements to consumers carrying mobile devices, is considered by many as oneof the
most promising business opportunities amongst Location–Based Services (LBS) [62].
A recent mobile marketing survey suggests that about 7% of the mobile consumers
would be willing to receive promotional text messages “if they were relevant”[27].
According to other surveys, an even larger percentage of the mobile consumers are in-
terested if they are rewarded in some way [66]. In this paper, mobile ads are regarded
as a means of presenting relevant information to a recipient, be it a commercialoffer
on an item on sale, traffic information, or a piece of public information. To many
people, the world seems to be more and more difficult to guide oneself through, thus
the art of targeting information and services will prove to be of immense value.Only,
efficient business cases have so far been very few, in spite of the market’s expecta-
tions.

A broad range of aspects, or variables, determine the relevance and context of a
mobile ad: distance to the mobile user, explicit or implicit interest of the mobile user,
uniqueness (do not send ad twice within some interval), time and place of delivery,
etc. To this extent, this paper describes an LBA framework and an LBA database that
can be used for the management of mobile advertisements.

In lack of comprehensive, real data on the movements and behavior of thepopu-
lation, estimation or simulation is extremely useful, bringing the models to life with
real and well–documented consumption patterns. Using a simulated but realisticmo-
bile consumer population and a set of mobile ads, the LBA database is used to esti-
mate the capacity of the mobile advertising channel, i.e., the number of relevant ads
that can be delivered to mobile consumers. Apart from this use, the LBA database
and the estimates derived from it can also be used in mobile catchment area analysis
to estimate business exposure. Results show that the capacity of the LBA channel
is rather large (approx. 100 mobile ads per user within a single day), giving strong
support for a business case. The same results can also be viewed as alarming, and
indicate the need to incorporate user–control of the received mobile ads inthe LBA
framework, as suggested by the Mobile Marketing Association [73].

The remainder of this paper is organized as follows. Section 7.2 reviews related
work. Section 7.3 defines the estimation problem both in case of explicit and implicit
interest. Section 7.4 describes the simulated data sets and their derivations from
real–world data sources. Section 7.5 describes the method and technical foundations
for delivering mobile ads while taking into account both the advertisers’ andmobile
users’ interests. Section 7.6 proposes a revenue model for LBA. Section 7.7 describes
the experiments and discusses the estimates resulting from them. Finally, Section7.8
concludes and points to future research directions.
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7.2 Related Work

The estimations in this work are based on simulated movements of mobile users.
Movements of users are influenced by physical, social and geo–demographical as-
pects of mobility. To aid the development in mobile data management, a number of
moving object simulators have been proposed in the literature that model primarily
the physical aspects of mobility to various extents. Since most objects use a network
to get from one location to the other, a state–of–the–art framework for network–based
moving object simulation is presented in [8]. The behavior of a moving object inthis
framework is influenced by (1) the attributes of the object having a particular object
class, (2) the combined effects of the locations of other objects and the network ca-
pacity, and (3) the location of external objects that are independent of the network.
For a review of other moving object simulators the reader is referred to [31].

Moving object simulators generally neglect the social and geo–demographical as-
pects of mobility. These social and geo–demographical aspects of mobility introduce
patterns in the movement of users and give rise to a unique spatio–temporal (ST)
distribution of users. ST–ACTS is a Spatio–Temporal ACTivity Simulator that using
real–world data sources models some of these neglected aspects of mobility [31]. To
make the estimations in this work as realistic as possible, movements of mobile users
are obtained from ST–ACTS, which is further described in Section 7.4.4.

Database indices allow the effective management and retrieval of data in large
databases. Spatial and geographical databases manage information about spatial ob-
jects, i.e., objects that have physical properties such as location and extent. An R–tree
is a widely used index structure that allows the effective management and retrieval
of spatial objects [45]. An R–tree splits space with hierarchically nested, and pos-
sibly overlapping Minimum Bounding Rectangles (MBRs). Search algorithms that
test spatial relationships (for example; intersection, containment, nearest)between
spatial objects can effectively use the MBRs to decide whether or not objects in two
MBRs satisfy a specific spatial search criterion.

The location of a moving object changes over time. Thus, the path of a mov-
ing object is commonly described as a sequence of coordinate and timestamp pairs
and is referred to as the trajectory of the moving object. Moving objects databases
are databases that represent and manage changes related to the movement of ob-
jects. Spatio–temporal indices such as the Spatio–Temporal R–tree (STR–tree) and
Trajectory–Bundle tree (TB–tree) allow the effective management and retrieval of
information about moving objects [55]. An STR–tree organizes line segmentsof a
trajectory according to both their spatial properties and the trajectories theybelong to,
while a TB–tree only preserves trajectories. While these spatio–temporal indices are
designed to effectively manage trajectories, they are not available in commercially
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available Relational Database Management Systems (RDBMSs). Hence, theherein
presented method uses the widely available R–trees.

Time geography [46] is a conceptual basis / paradigm for human space–time be-
havior which considers (1) the indivisibility or corporeality of the human condition;
(2) that humans typically operate over finite intervals of space and time; (3) the natu-
ral laws and social conventions that partially constrain space–time behavior; and (4)
that humans are purposive. The movements of mobile users used in the estimations
are derived from ST–ACTS [31], which models some aspects of this paradigm.

Research has shown that LBSes have not yet been as widely used as expected [60].
In opposition to earlier forecasts and market expectations, technology has not been
ready until now. Furthermore, and no less important, is that the user and theuser
needs have not been fully understood. Recent research shows thatin order to suc-
ceed with location–based ads, content is imperative [61], as well as takingthe con-
sumers’ permission, acceptance and responsiveness into account is crucial [5, 50].
Being aware of this, the concept proposed in the present paper takes off from a point
where any user will benefit directly from the use of the system, thus leadingto an
increased opt–in readiness.

Ensuring full user responsiveness is by no means trivial; research indicates that
behavioral intention to use mobile commerce can be greater for mobile commerce–
nonusers than for users. Those most used to mobile commerce are not as prone to take
action on it. However, although this documents that the triggers of mobile commerce
acceptance is not yet fully understood [65], mobile users are found to be eager to
make use of their phones in new ways, and methodologies are proposed to model
user willingness [24, 66, 78]. In the present paper, by targeting content to the right
recipients, the setup is realistic and should be attractive for the typical future user.

Market research document a significant increase in sales to customers who were
exposed to mobile advertising compared to those who were not exposed [72]. In
other words, it works, if only the above mentioned issues are treated seriously. It is
the intention with the present paper to contribute in furthering the spread of LBSes.

7.3 Problem Statement

Let A = {a1, . . . an} be the set of ads. Each ada has a locationadloc(a) and is for
a certain productprod(a). Let U = {u1, . . . un} be the set of (moving) users. Each
useru has a locationuloc(u, t) depending on the timet, an explicit interest profile
expint(u) containing a set of products, and an implicit interest profileimpint(u),
containing a set of demographic variable values. Also assume a scoring function
score(u, a) that given a useru and an ada returns a value between 0 (no match) and
1 (perfect match) that predicts how interested useru is in productprod(a) based on
the values inimpint(u).
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referred entity conzoomR© variable categories

person

person count 1
age 9
education type 9
employment status type 12
employment branch type 12

housing unit

unit count 1
house type 6
house ownership type 4
house area 5

household

household count 1
family type 5
fortune 6
personal income 5

Table 7.1: Variables in conzoomR©.

Given a maximum distancemaxdistbetween user locations and ad locations, and
a timespanT = [tstart : tend], the explicit location–based ad delivery estimation
problem is to estimate how many times a useru has a locationuloc(u, t) within
maxdistfromadloc(a) for an ada in A and a timet in T whereprod(a) ∈ expint(u).

Given amaxdistbetween user locations and ad locations, aminscore, and a times-
panT = [tstart : tend], the implicit location–based ad delivery estimation problem
is to estimate how many times a useru has a locationuloc(u, t) within maxdistfrom
adloc(a) for an ada in A and a timet in T wherescore(u, a) ≥ minscore.

7.4 Data

The estimations stated in Section 7.3 are based on a number of real–world data
sources. The use of real–world data sources is important to derive realistic esti-
mates. While the data sources refer to the Danish market and population, similardata
sources are available for other major markets [18, 19]. The following subsections
describe in detail the data sources used to derive the estimates.

7.4.1 conzoomR© Demographic Data

conzoomR© is a commercial database product that contains fine–grained, geo–demo-
graphic information about Denmark’s population [28]. The variables thatdescribe the
statistical characteristics of the population can be divided into three groups: person,
housing unit, and household variables. These variables and the number of categories
for each are shown in Table 7.1.
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In Table 7.1, variables that have “type” in their names are categorical variables;
variables that have “count” in their name are counts of the correspondingentities
within a 100–meter grid cell; and finally, the rest of the variables are continuous
variables that have been categorized into categories that are meaningfulfor market
segmentation. Since, for example in the countryside, the number of persons, house-
holds or units could be very low in a 100–meter grid cell, grid cells are grouped
together into meaningful, large enough clusters to comply with social and ethical
norms and preserve the privacy of individuals. The basis for clustering is twofold:
geography and the publicly available one–to–one housing information. Theintuition
behind the basis is also twofold. First, people living in a given geographical region
(be that a state, a county, or a postal district) are similar in some sense; for example,
they might be more likely to have a certain political orientation than people living
in another geographical region. Second, people living in similar houses are likely to
be similar in other demographic variables; for example an established family with
a stable source of income is more likely to be able to buy a larger, more expensive
house than a person who just started his/her career.

As mentioned earlier, to preserve the privacy of individuals, the clustersare con-
strained to contain at least some fixed number of households. Statistics for the vari-
ables, depending on the sensitivity of the information contained in them, are obtained
from Statistics Denmark [85] for clusters constructed at an appropriate level of clus-
ter size constraint, for example 20, 50, 100, and 150 households per cluster. In case of
a continuous variable, for example age, counts of the corresponding entities (in this
case persons in the cluster) are obtained for the categories of the givenvariable. Due
to this constrained geo–clustering method, the conzoomR© clusters obtained comply
with the social and ethical norms and preserve the privacy of the individual, yet the
statistics obtained are accurate enough for effective market segmentation. This seg-
mentation results in a grouping of the Danish population into 29 conzoomR© types,
one of which is defined for each 100–meter grid cell. Cosmopolitan (type 3) isone
example of the 29 conzoomR© types. Comparing the demographics of type 3 to the
demographics of the rest of Denmark’s population gives the demographicprofile of
the type. This profile is partially shown in Figure 7.1. It roughly describes individu-
als that are more likely: to be middle aged (30–59 years old), to live in larger cities
in larger, multi–family houses that are either owned by them or are private rentals, to
be mostly couples with children, to have a medium to long higher education, to hold
higher level or top management positions in the financial or public sector, and to have
a better household economy (in terms of wealth and income) than the average Dane.

7.4.2 GallupPCR© Consumer Survey Data

GallupPCR© is a commercial database product and as the name suggests, it contains
detailed survey responses of consumers about their demographics; interests such as
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Figure 7.1: Partial Profile of conzoomR© Type 3.

culture, hobbies, and sports household consumptions, purchasing habits; transporta-
tion habits; views on various subjects; attitudes and exposure to various advertise-
ment media [26]. The questions in the surveys are yes/no questions. To measure the
magnitude of the consumer’s interest in a specific area, the original yes/noquestion
is re–phrased as categorical questions. For example the original yes/noquestion “Are
you interested in fashion?” is re–phrased to 5 yes/no questions using the following
answer possibilities: very, rather, somewhat, not very, or not interested.

7.4.3 bizmark
TM

Products and Services

bizmark
TM

is a commercial database product that contains detailed information about
Danish businesses both in the public and the private sector [28]. Some of the one–
to–one information that is available about businesses is their location, the number
of employees working in them, the physical size of the business facility, and the
international branch codes the businesses fall under. Using the hierarchy of inter-
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national branch codes 40 product and service categories were identified for which
related consumer surveys were also available. The product and service categories are
as follows: classical concert; pop/rock concert; discothèque; art exhibition; museum;
cinema; theater; pharmacy; bicycle / moped; car, stereo/HI–FI; CDs/DVDs; com-
puter/internet; new technologies/telecommunication; do–it–yourself; fashion; cos-
metics/skincare; glasses/contacts; hairdresser; jeweler/watches; interior design; travel;
pets, fast–food; and 14 brand specific supermarkets. Based on the international
branch codes a one–to–many relationship has been established between asubset of
the businesses in bizmark

TM
and the 40 product / service categories.

7.4.4 Simulating Mobile Users with ST–ACTS

ST–ACTS is a probabilistic, parameterizable, realistic Spatio–Temporal ACTivity
Simulator [31]. ST–ACTS is realistic in the sense that it is based on a number of
real–world data sources (among others, the data sources described above) and a set
of principals that try to model thesocial and some of thephysicalaspects of mo-
bility. The modelled principles that govern the social aspects of mobility are: (1)
People move from a given location to another location with anobjectiveof perform-
ing some activity at the latter location; (2) Not all are equally likely to perform a
given activity. The likelihood of performing an activity depends on theinterestof a
given person, which in turn depends on a number of demographic variables; (3) The
activities performed by a given person are highlycontext dependent. Some important
parts of context are: the current person location, the set of locations where a given
activity can be performed, the current time, and the recent history of activities of the
person; (4) The locations of facilities where a given activity can be performed, are
not randomly distributed, but areinfluencedby the locationsof other facilities and
the locationsof the users of those facilities.

The output of ST–ACTS is a population of simulated persons, each described
by a set of demographic variables and associated with a trajectory. The trajectories
are sequences of time–stamped activities performed at particular physicallocations,
i.e., coordinates. In addition to the four principles above, the simulated activities
also obey the following constraints. First, thetemporal activity constraint, which
states that certain activities are more likely to be performed during some periods than
others. Second, theactivity duration constraint, which states that not all activities
take the same amount of time. Third, themaximum distance constraint, which states
that for most activities there is a maximum distance a person is willing to travel.
Finally, the trajectories assume linear movement between two consecutive activities,
i.e. locations, but obey somephysical mobility constraints, namely, that it takes
time to move from one location to another. The time it takes to move from one
location to another is calculated based on the distance between the two locationsand
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Figure 7.2: Simplified, Extended ER Diagram of the LBA Database.

a realistic speed model that assigns lower speeds to shorter, and higher speeds (with
larger variance) to longer distances.

7.5 Method

The method presented here uses the Oracle RDBMS, and one of its extensions, Oracle
Spatial, which provides advanced spatial features to support high–endGIS and LBS
solutions [75].

7.5.1 LBA Relational Database

The objects or entities in the database are: simulated persons (or equivalently referred
to as mobile users), trajectory segments, businesses, products and services. A simpli-
fied extended Entity–Relation (ER) diagram of the database is shown in Figure 7.2.
In the extended ER diagram, square boxes represent entities, oval represent proper-
ties of entities, and diamonds represent relationships between entities. Underlined
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properties represent primary constraints. The arrows between entities encode con-
nectivity of relationships, i.e., and arrow represents “one” and no arrow represents
“many”. For example, the “belong to” relationship is a many–to–one relationship be-
tween trajectory segments and simulated persons, i.e. one trajectory segmentbelongs
to exactly one simulated person, but many trajectory segments can belong to one sim-
ulated person. Mobile ads are indirectly modelled by in the relational databasethe
many–to–many “offers” relationship between businesses and products or services.
Through this relationship, a mobile ad can be thought of as an entity having a unique
identifier composed of a unique combination ofbid and prodid , and having a
locationspecified by thepoint geometryof the business offering the advertisement.

As it was introduced earlier, in the implicit case, the interest of a mobile user
u and a mobile ada about a product or serviceprod(a) is not a Boolean function
or binary relation. Rather, it is a continuous function that given the demographic
characteristicimpint(u) of u, assigns a real valued interest scorescore(u, a), usually
from 0 (not interested) to 1 (very interested), forprod(a). In direct marketing this
function is termed a scoring function, which encodes a particular scoring model.
This real valued scoring function is untraditionally represented as a property of the
“interested in” relationship in the ER diagram.

7.5.2 Proximity Requirements on Mobile Ads

A mobile ada is likely to be considered relevant to a mobile useru only if at the
time of deliveryt, u is (or at some foreseeable future time point will be) within a
maximum distance,maxdist, to the origin of the mobile adadloc(a), i.e. the location
of the business. Using the spatial features of Oracle Spatial, this proximity criterion
between mobile ads and mobile users is tested as follows. The geometries of the busi-
nesses, equivalently mobile ads, are buffered to a maximum distance, and tested for
any spatial interaction with the geometries of the trajectory segments, by performing
a spatial join operation in the database. To make the join operation as fast as possible,
geometries are indexed using R–trees.

7.5.3 Interests Based on Demography

The relevance of a mobile ad for a particular product or service is naturally influenced
by the interest of the user for the given product or service. As described above, a sub-
set of the GallupPCR© consumer survey questions are related to products or services
that can be directly linked to businesses in bizmark

TM
, and measure the interests of

the consumer in the products or services.
Using the geo–demographic parts of the surveys, each survey subjectis assigned

to one of the 29 conzoomR© types. To derive a single indicator, an interest score, for
how interested a given conzoomR© type is in a given product or service, the answers
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Figure 7.3: Some Interest Scores for Products or Services for Different conzoomR©

Types.

to the questions processed as follows. First, the five possible answer choices are asso-
ciated with the following interest scores: very interested (1), rather interested (0.75),
somewhat interested (0.5), not very interested (0.25), and not interested (0). Second,
for a given conzoomR© type and product or service the interest scores assigned to in-
dividual answers are averaged. Finally, the mean interest scores fora given product
or service are scaled to the [0, 1]–interval amongst the 29 conzoomR© types. Fig-
ure 7.3 shows a sample of these interest scores for a subset of the conzoomR© types.
In Figure 7.3 it can be seen, that college students are most interested in fast food
and cosmetics / skincare products, and among the conzoomR© types listed, suburban
families are least likely to be interested in the same.

7.5.4 LBA – Implicit Interest Case

The interest score of a mobile useru in a particular product or service, which is
advertised by mobile ada, is implicitly encoded in the demographic characteristic,
impint(u, a), or historical behavior (reaction to previously received mobile ads) of
u. The latter encoding is commonly referred to as relevance feedback in the scoring
task in direct marketing, and while not considered in the current mobile advertising
database, it can be naturally incorporated. In direct marketing, the modelfor this in-
terest score is usually derived for one or many product(s) or service(s) of a particular
company through the process of data mining or machine learning. This model can be
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represented as acompany–specific interest score functionin the mobile advertising
database that for given user–demographics and historical user–behavior, see Section
7.5.8, assigns an interest score to the user. In the estimations however, these interest
score functions are not company– but rather only product– and service–specific. Fur-
thermore, due to their simplicity, they are implemented as table with the following
schema:interest score = 〈conzoom type, prodid, score 〉.

7.5.5 LBA – Explicit Interest Case

Mobile users can also explicitly state their interest in certain products and services.
In this case the “interested in” relationship is a binary relationship in the mobile
advertising database. To provide a realistic estimates, the explicit interests ofusers
are probabilistically simulated by randomly drawing a fixed number of productsfor
every mobile user according to the distribution of interest scores given theconzoomR©

type of the user.

7.5.6 Uniqueness and User–Defined Quantitative Constraints on Mobile
Ads

Receiving the same ad multiple times naturally decreases the relevance of the adas
the therein presented information is not new. Primary key constrains in RDBMSs
are an effective mechanism for guaranteeing that only unique combinationof mobile
users and mobile ads are considered for delivery. In the mobile marketing data-
base the delivered ads are stored in amobile ad delivery table with the fol-
lowing schema:〈pid, bid, prodid, delivery time 〉. Placing a primary
key constrain on the first three columns guarantees that a mobile ad is delivered at
most once to a mobile user. Recording thedelivery timeallows the control of the
re–delivery of mobile ads after a certain period of time has passed. For clarity, the
mobile ad delivery table is omitted from the ER diagram in Figure 7.2.

As the number of mobile ads increases, or the other constraints on the delivery
of mobile ads weaken, the number of mobile ads delivered to a mobile user will
naturally increase. After a certain number of ads have been delivered tothe user, any
additionally delivered ad, while maybe relevant, will likely be perceived as annoying.
Hence, the mobile user’s ability to limit the number of delivered ads is important.
This user–control can be effectively facilitated by the top–k query mechanism which
is provided in most RDBMSs.

7.5.7 User–Defined ST Constraints on Mobile Ads

Time and location are important aspects of the context of mobile ads. Most users
would consider receiving a mobile ad as intrusive or disturbing when receiving it
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during work hours or after a certain time in the evening in their homes. Hence,
the mobile user’s ability to prevent the delivery of mobile ads in certain regionsof
space and time are important. While the user–control of spatio–temporal constraints
on mobile ads is not present in the mobile advertising database, the database can
be easily extended to accommodate for this feature as follows. Users can specify
mobile ad profilesby restricting certain spatial and / or temporal regions for mobile
ad delivery. Then, spatio–temporal joins between the mobile ad profiles andmobile
ads can be performed to further control the delivery of mobile ads.

7.5.8 Inferring Personal Interests and Relevance Based on Historical
User–Behavior

Geo–demographic variables can be used to predict the general interestsof an indi-
vidual user, as explained in Section 7.5.3. However, since an individualuser cannot
be perfectly characterized by a few geo–demographic variables, it is likely that the
predicted general interests differ slightly from the true,personal interestsof the indi-
vidual user. In the following, two methods are proposed to infer the personal interests
of individual users.

The first method uses the locations that an individual user visits to infer the user’s
personal interests. A subset of the locations a user visits are commercial innature,
i.e., are businesses that offer products or services. During the lifetime ofa user, the
frequencies of how often the user visits particular businesses or types of businesses
that offer particular products or services, can be recorded. Furthermore, periodical
patterns can also be easily detected in the sequence of visits. An example of such
a simple periodical pattern would be that a user visits a hairdresser approximately
every second month. Basing the delivery of mobile ads on the personal frequen-
cies of visited locations and periodic patterns ensures a closer match between the
mobile ad and the true personal interest of the mobile user. The storage, mainte-
nance, and derivation of the frequencies of visited locations and periodic patterns in
those visits can either be done on the server or the client side. For the server side
management, information about the frequencies of visits to particular types ofbusi-
nesses, offering specific products or services, are stored in a table with the following
schema:visit frequency = 〈pid, prodid, num visits 〉. Simple peri-
odic patterns are stored in a table with the following schema:pattern period
= 〈pid, prodid, last visit time, period 〉. To preserve clarity, these
two tables are omitted from the ER diagram in Figure 7.2. The same information
about personal interests can also be managed on the client side by a clientapplica-
tion. Such a client side application, based on the current location of the mobileuser,
would have to be able to infer the type of business (product or service) that the user
is currently visiting. This inference can either be aided by the server, or smart trans-
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mitters located at the businesses could communicate the required information to the
client application.

The second method uses the information about how an individual user hasreacted
to mobile ads received in the past. More specifically, assume that a mobile useru re-
ceived mobile ada at timet. If at any timet′ within a time periodδt after timet the
mobile useru visits the business that offered mobile ada, i.e.,uloc(u, t′) = adloc(a)
andt′ − t ≤ δt, it is considered as a strong indication of interest of the user towards
the mobile ad. Similarly, if the user does not visit the offering business within the
δt period, it is considered as a weak indication of the user’s indifference towards
the mobile ad. The two events mentioned above can thus be considered as positive
and negative feedback in an active control loop, respectively. The positive and neg-
ative feedback values can be quantified and summed over the lifetime of the user
for specific businesses or types of businesses, i.e., products or services. After the
control loop sum for a particular business or a product or service goes below a cer-
tain (user–defined) threshold, the business or product or service is “black–listed”
for the user, i.e., no more ads are delivered from the business or for theproduct
and service to the user. The information needed to manage the control loopsis al-
ready stored in the LBA database. In particular, the locations of users attime t are
stored in thetrajectory segment table, and the received ads are stored in the
mobile ad delivery table. Positive feedback conditions in the control loops
can be checked by joining the recently changed location of mobile user to the loca-
tions of the locations of mobile ads that have been delivered within the lastδt period.
Negative feedback conditions in the control loops are indicated by the ageing of de-
livered mobile ads, i.e. a tuple〈pid, bid, prodid, delivery time 〉 in the
mobile ad delivery table indicates a negative feedback condition for mobile
user with IDpid , for a particular business with IDbid , or product or service with
ID prodid if delivery time + δt is less than or equal to the current time. The
same information can also be stored and managed in a similar fashion on the client
side.

For both methods, both the server side and the client side approaches have advan-
tages and disadvantages. The server side approach requires that personal behavioral
data is stored on the server. This raises questions about scalability and privacy–
related issues. In comparison, the client side approach requires a clientapplication
that manages the personal behavioral data on the client device. The client side ap-
proach seems to be more scalable and privacy–protecting, but in the caseof loss or
theft of the device, issues regarding the misuse of the sensitive personal information
can arise.
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7.5.9 An Operational LBA Database

The so far presented LBA database was developed for simulation and estimation pur-
poses. As it is presented it can be commercially used as a tool to forecast LBA
exposure and penetration. However, the LBA database can easily be altered to sup-
port the online management of location–based advertising. In an online, operational
setting it is assumed that the mobile units of the mobile users periodically, but not
necessarily at regular time intervals, communicate their position to the server. In
such an operational setting the only necessary alteration to the LBA database is that
instead of storing the historical trajectories of mobile users, the current locations of
mobile users are stored. These locations can be represented as point geometries in the
LBA database. Spatial queries to determine proximity between locations of mobile
user and mobile ads can be implemented much in the same way using spatial joins.
To manage mobile ads, periodically, relevant mobile ads are selected and delivered
to mobile users who recently changed their location.

7.6 Proposal for a Revenue Model for LBA

A viable revenue model is a necessary prerequisite for successful, commercial LBA.
There are essentially three parties involved in LBA: 1) the advertiser, 2) the consumer
(mobile user), and 3) the LBA service provider or operator.

As in most other advertising media, and in LBA too, the advertiser pays for the
majority of cost of advertising. These costs are for paying the other two parties for
the participation in (consumer) and the facilitation of (operator) LBA. The incentive
in doing so is clear: to increase the revenue of the business doing the advertising.

Most people do not like advertising. Some advertisements, such as advertise-
ments on billboards, they cannot escape. Some they are willing to endure in return of
other services, for example newspapers and commercial TV. Finally, some, such as
direct mail or commercial fliers, they may choose to opt–out from. Since, according
to EU law, conducting LBA requires the informed consent of the consumer1 [15], the
need for a clear consumer incentive is eminent. One way to motivate the consumer
is to provide her/him with value–added services. One example of such a value added
service could be a recently proposed Location–Aware Mobile Messenger that facil-
itates user–friendly communication and coordination between users [15]. Another
possible value–added service can be the free delivery of non–commercial informa-
tion, such as for example information about traffic or weather. The consumer can
also be financially motivated through electronic coupons or reward programs.

1Directive on privacy and electronic communications (2002/58/EC, article13(1)) involves asking
the users’ permission to send unsolicited advertising messages via all electronic communications for
marketing purposes. Most countries outside of the EU also enforce similar legislative regulations.
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Figure 7.4: Number of Delivered Ads (Implicit Interest) to a Population of 1000
Mobile Users for Variousminscoreandmaxdist.

The operator charges the advertiser for the services provided. The cost for these
services can be determined based on 1) a flat rate per LBA campaign, 2) the number
of delivered mobile ads, 3) the weighted number of delivered mobile ads taking into
account the interests scores, or 4) the weighted number of delivered mobile ads taking
into account the reactions of the mobile users to the received mobile ads, i.e., strong
interest or indifference. An accounting module for either one of the service cost
schemes can easily be facilitated by the so far presented LBA database.

7.7 Experiments and Results

Two sets of experiments (implicit and explicit interest case) were performedto mea-
sure the capacity of the mobile advertising channel under variousmaxdistandmin-
scoresettings. The estimation are based on (1) 4,314 businesses in Copenhagen,
Denmark offering one or many of the 40 hand–selected products or services, (2) the
simulated movements of 1000 randomly selected simulated mobile users during the
course of seven days (on average 3,800 trajectory segments per day). Scores for im-
plicit interests were modelled as described above. To simulate explicit interests, 1
product or service of interest was assigned to every simulated mobile user, as de-
scribed above.

Figure 7.4(a) shows the number of delivered ads during the course of the first day
in the implicit case. As expected, the number of delivered mobile ads increases as
theminscoreis decreased or themaxdistis increased. The rather surprising, close to
linear relationship between the number of deliverable ads and the maximum distance
criteria is due to the following facts. Simulated mobile users move from one location
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Figure 7.5: Statistics About the Delivered Ads (Explicit Interest) for Variousmaxdist.

to another with the objective to perform an activity. These activities are tied toa sub-
set of the businesses that advertise. Hence, the businesses that advertise the products
or services often lie on the actual streets that the trajectories follow. If businesses
are assumed to be uniformly distributed on those streets, then the relationship isin-
deed expected to be linear, as the number of businesses “reachable” along a street
grows linearly withmaxdist. Another, rather interesting result is the sheer number
of mobile ads that can be delivered to a small set of 1000 users within a course of a
day. Even formaxdist = 500 meters (arguably a worthwhile detour for the mobile
user) andminscore= 0.9 (quite high match in direct marketing) the average number
of delivered ads to a user is about 100. This represents a huge marketing potential.

The same numbers are likely to be viewed as alarming by many mobile users. As
it is shown in Figure 7.4(b), even for rather high minimum interest scores for very
low maxdistranges the average number of ads delivered to a mobile user during the
course of the first day is in the range of 6 to 40. This is a rather large number of ads
to be received on a small, by many considered as extremely personal, mobile device.
Hence, to avoid bad reputation, businesses interested in employing or facilitating
mobile advertising should make great efforts to provide simple yet effectiveuser–
controls on the number of received mobile ads, as suggested in Sections 7.5.6 and
7.5.7.

Figure 7.5 shows some statistics about the number of delivered mobile ads in
the explicit interest case. Similar observations can be made about the relationship
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(b) Number of Reached Mobile Users Over Time.

Figure 7.6: Effects of the Uniqueness Constraint on the Number of Delivered Ads to
a Population of 1000 Mobile Users Over a Period of Seven Days for Variousmaxdist.

between themaxdistandminscoreparameters and the number of delivered mobile
ads as in the implicit case. However, it is surprising that even though everymobile
user is only interested in exactly 1 of the 40 products or services, due to thepresence
of a large number of businesses offering those products and services, the number of
deliverable ads is rather high even for small values ofmaxdist. It is also important to
note, that formaxdist < 100, over half of the mobile users do not receive any mobile
ads (middle graph). Hence the mobile users who are interested in getting gooddeals
on products or services of their interest, have to set theirmaxdistvalues appropriately
high.

Since most mobile users need to perform mandatory activities at specific loca-
tions, such as going to work or coming home daily, and since they tend to perform
their other activities either around, or along the way in–between, these specific loca-
tions, they tend to move around in approximately the same space from day to day.
Hence, because of the uniqueness constraints on mobile ads, for a fixedset of static
mobile ads, the number of deliverable mobile ads per day is expected to decrease
over time. This decrease is shown in Figure 7.6(a) for the implicit case for aninterest
score of 0.75 for variousmindist for a period of seven days. As it can be seen in
Figure 7.6(a), the rate of decrease is also decreasing with time. This is due tothe fact
that the number of infrequent and less regular (non–daily) destinations of an individ-
ual mobile user are limited, and over time are eventually visited by the mobile user,
at which time all the relevant mobile ads are delivered. Since the number of such
irregular destination are limited, and the number of unvisited ones are decreasing as
time progresses, the chance of a mobile user visiting an unvisited irregular destina-
tion is also decreasing with time. Consequently, the number of deliverable mobileads
per day also decreases with time. At the same time, because of the slight variation
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in day–to–day movements of mobile users, the penetration rates of LBA increase.
More specifically, in the explicit interest case, Figure 7.6(b) shows that the number
of reached users increases over time.

User–defined ST constraints on mobile ads are used to disallow the deliveryof
mobile ads at specific locations and/or times. To test the reduction in deliverable
mobile ads, in a set of experiments the delivery of mobile ads was not permitted
when mobile users were either at home or at work2. Somewhat counter intuitively,
no reduction in deliverable mobile ads was observed. This result can be explained by
the following two facts. First, in the LBA database movements of mobile users are
represented as continuous trajectories. Second, the set of mobile ads used in the esti-
mation were constant during the estimation period, i.e., all mobile ads were effective
during the course of the whole simulation. Hence, after mobile users left theirhome
for thefirst time, and travelled a short distance away from home, they received all the
relevant mobile ads, and similarly they received all the relevant mobile ads asthey
for the first time approached their work place. The effects of user–defined ST con-
straints on mobile ads would be more observable in LBA environments where mobile
ads are dynamic and have short lifetimes. For example a cinema, after realizing that
over 90% of the seats are empty 30 minutes prior to the movie, might want to run a
“50% off” LBA campaign for 30 minutes only. Such dynamic mobile ads with short
lifetimes will be filtered out by user–defined ST constraints, if applicable. Extensions
to the LBA database to handle such dynamic LBA conditions are trivial and are left
for future work.

In summary, the experiments show that the capacity of the location–based ad-
vertising channel is very high indeed, even for relatively small settings for minimum
distance, and relatively specific interest settings. This is good news for LBA adver-
tisers, as they can expect to reach a large set of potential customers.

7.8 Conclusions and Future Work

The aim of this paper was to investigate the capacity of the Location–Based Adver-
tising (LBA) channel. The paper proposed two types of LBA models (implicit vs.
explicit interest) and described a relational database for the effective management of
both types of LBA. Using a number of real–world data sources and simulatedbut
realistic movement data of mobile users, the paper gave estimates on the number of
deliverable mobile ads in both the implicit and the explicit interest cases. Experi-
mental results show that the capacity of the LBA channel is rather large implying a
huge marketing potential. At the same time, the potentially large number of mobile
ads could be alarming to mobile users, hence the paper warns businesses interested

2Home and work places for mobile users have been identified by slightly altering the output of
ST–ACTS.
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in LBA to provide the mobile users with adequate means to control the number of
delivered ads and the time and place of delivery.

Future work is planned along two paths. First, while the presented LBA frame-
work considers LBA both from the mobile users’ and advertisers’ perspective, the
provided estimates are valid only if mobile users are willing to accept unlimited mo-
bile ads at all times and places. Incorporating user–defined constraints on mobile
ads, as described in Sections 7.5.6 and 7.5.7, will provide better estimates on the true
audience size of LBA. Second, in the implicit interest case, the relevance of a mobile
ad is estimated using a simple scoring model which is based on a consumer segmen-
tation that divides users into 29 different consumer groups. However,as it is pointed
out in Section 7.5.8, in real life, no two users’ interests areexactlythe same, hence
a given mobile ad does not have the same relevance to them. Hence, altering the
scoring model to include the personal interests of the individual mobile user, which
are derived from historical behavior of the mobile user – such as the typebusinesses
the user has previously visited or the user’s reactions to previously received mobile
ads – will allow targeting the individual mobile user with even morerelevantand
personalizedmobile ads. Since, in the current simulation of mobile user movements,
the possible influence of mobile ads on the future movements of mobile users is not
accounted for, the evaluation of the effects of personal interest scoring are left for
future research.



Chapter 8

Privacy–Preserving Data Mining
on Moving Object Trajectories

The popularity of embedded positioning technologies in mobile devices and the de-
velopment of mobile communication technology have paved the way for powerful
Location–Based Services (LBS). To make LBSes useful and user–friendly, heavy
use is made of context information, including patterns in user location data which are
extracted by data mining methods. However, there is a potential conflict of interest:
the data mining methods want as precise data as possible, while the users wantto
protect their privacy by not disclosing their exact movements. This paperaims to
resolve this conflict by proposing a general framework that allows userlocation data
to be anonymized, thus preserving privacy, while still allowing interesting patterns
to be discovered. The framework allows users to specify individual desired levels
of privacy that the data collection and mining system will then meet. A privacy–
preserving method is proposed for a core data mining task offinding dense spatio–
temporal regions. An extensive set of experiments evaluate the method, comparing it
to its non–privacy–preserving equivalent. The experiments show that the framework
still allows most patterns to be found, even when privacy is preserved.

8.1 Introduction

The efficient management of moving object databases has gained much interest in
recent years due to the development of mobile communication and positioning tech-
nologies. A typical way of representing moving objects is to use the trajectories.
Much work has focused on the topics of indexing, query processing and data mining
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of moving object trajectories, but little attention has been paid to the preservation
of privacy in this setting. In many applications such as intelligent transport systems
(ITS) and fleet management, floating car data (FCD), i.e., tracked vehicle locations,
are collected, and used for mining traffic patterns. For instance, mining vehicle tra-
jectories in urban transportation networks over time can easily identify denseareas
(roads, junctions, etc.), and use this for predicting traffic congestion. By data min-
ing the periodic movement patterns (objects follow similar routes at similar times)
for individual drivers, personalized, context–aware services canbe delivered. How-
ever, exposing location/trajectory data of moving objects to application servers can
cause threats to thelocation privacyof individual users. For example, a service
provider with access to trajectory data can study a user’s personal habits. It is not
enough to keep the user ID secret, since common locations such as the home and
office address can be found by correlating historical trajectories, followed by cross–
referencing these locations with, e.g., Yellow Pages, to reveal user identity. Privacy–
preserving data mining of moving object trajectories has not been addressed in the
literature. The challenge of obtaining detailed, accurate patterns from anonymized
location and trajectory data is the motivation for this paper.

This paper makes a number of novel contributions that together constitutes an ef-
fective method for trajectory data collection and mining that preserves userlocation
privacy. First, the paper proposes a novelanonymization modelfor preservation of
location privacy on moving object trajectories. Here, the users specify their require-
ments of location privacy, based on the notions ofanonymization rectanglesandlo-
cation probabilities, intuitively saying how precisely they want to be located in which
areas. Second, the paper shows acommon problemwith existing methods based on
the notion ofk–anonymity. This problem allows an adversary to infer a commonly oc-
curring location of a user, e.g., the home address, by correlating several observations.
Third, the paper presents an effectivegrid–based frameworkfor data collection and
mining over the anonymized trajectory data. The framework is based on the notions
of anonymization gridsandanonymization partitioningswhich allow effective man-
agement of both the user–specified location privacy requirements and theanonymized
trajectory data. Along with the framework, threepoliciesfor constructinganonymiza-
tion rectangles, calledcommon regular partitioning, individual regular partitioning,
and individual irregular partitioningare presented. These policies avoid the prob-
lems in existing methods. Fourth, the paper presents aclient–server architecturefor
an efficient implementation of the system. A distinguishing feature of the architec-
ture is that anonymization is performed solely on the client, thus removing the need
for trusted middleware. Fifth, the paper presents techniques for solving abasic tra-
jectory data mining operation, namelyfinding dense spatio–temporal areas. In an
extended technical report [36], the same framework and techniques are also evalu-
ated on a more complex data mining operation, namelyfinding frequent routes. The
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techniques are based on probabilistic counting. Finally,extensive experimentswith a
prototype implementation show the effectiveness of the approach, by comparing the
presented solutions to their non–privacy–preserving equivalents. The experiments
show that the framework still allows most patterns to be found, even when privacy is
preserved. In summary, this paper it believed to be the first to consider thetopic of
data mining on anonymized trajectory data.

Privacy protection in databases has been a core area in the database research
community and many related topics have appeared in the literature, such as access
control, inference control and statistical databases. To protect the privacy of LBSes
users, three existing solutions [43, 44, 74] propose to use a trusted middleware (an
anonymizer) that maintains location updates and queries between the LBS users and
LBS server. Each time a query request is sent from a LBS user, the anonymizer, in
the spirit ofk–anonymity[89], encloses the query location in a “cloaking” rectangle
that includes both the query location and the locations ofk−1 other users, and sends
the query to the LBS server with the cloaking rectangle. The LBS server returns a
superset of the results and the final results are filtered by the anonymizerand sent
back to each LBS user.

This method for anonymizing locations and trajectories has several problems.
First, it requires trusted middleware. Second, while [74] provides an effective so-
lution for finding locations of the otherk − 1 users in the presence of such trusted
middleware, a solution to the same task in an environment that contains only un-
trusted components is unknown and likely to be computationally prohibitive. Third,
the notion of location privacy that is guaranteed byk–anonymitymay not be satisfac-
tory in the case where a large number of moving objects stay in a small area where
users do not want to be observed (such as a red light district). This problem can be
eliminated by requiring cloaking rectangles to have a minimum area [74]. Fourth,
the cloaking rectangles calculated for the same user for the same location at different
times depends on locations of the otherk − 1 users, and hence may vary in extent
and location. This, in a sensenon–deterministicor probabilisticnature of cloaking
rectangles sacrifices location privacy, as demonstrated later. Finally, traditional min-
ing methods cannot be easily and effectively adapted to the anonymized location or
trajectory.

As a result, the present paper does not considerk–anonymityand doesnot as-
sume the existence of trusted middleware for providing thek–anonymityrectangles.
Instead, it focuses on novel ways to conceal the actual moving object trajectories
while still allow the data mining algorithms on the LBS server to extract detailed,
accurate traffic patterns and rules from the anonymized trajectory data. Note that the
proposed solution doesnot even aimto providek–anonymity. The reason is that for
some applications, e.g., traffic services in remote areas, even a rather smallk will
cause the reported rectangles to become extremely large, and thus worthless for the
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purpose of mining. Instead, the proposed solution performs aspatial anonymization
that meets the user’s requirements for location privacy.

Spatio–temporal data mining is an on–going topic in the database community.
Approaches have appeared for finding dense areas of moving objects[47,59,90] and
extracting spatio–temporal rules and patterns [30, 95]. The present paper is focused
on discovering areas with potential traffic jams and roads that are frequently used
by drivers. Two very related papers [47, 59] study the querying of spatio–temporal
regions with a high concentration of moving objects. The first paper [47] divides
the data space into a uniform grid so that the density query is simplified as reporting
cells that satisfy the density conditions. This solution provides fast answers, but can
lead toanswer loss(as termed in the second paper [59]), such as regions that cover
boundaries of several cells with a high density of objects (but each individual cell
does not contain enough number of objects to be dense). The second paper [59]
provides a new definition of density query that eliminates answer loss and proposes
a two–phase filter–and–refinement algorithm for computing the density queries. A
method to provide approximate answers todistinct spatio–temporal aggregation is
proposed in [90], where aggregation is grid–based, and the distinct criterion is time–
and space–effectively solved by combining a spatio–temporal index (aRB–tree) and
sketches.

A lot of recent research work has focused on techniques for privacy–preserving
data mining [4]. This topic has appeared due to the advances in data collectionand
dissemination technologies which force existing data mining algorithms to be re-
considered from the point of view of privacy preservation. Various papers have re-
cently addressed privacy–preserving data mining. Important techniques include per-
turbation, condensation, and data hiding with conceptual reconstruction.Paper [96]
presents a good review of these techniques. The techniques proposedin this pa-
per follow the spirit of a common strategy used for privacy–preserving data mining,
namelygeneralization.

The rest of this paper is organized as follows. Section 8.2 discusses anonymiza-
tion models of trajectory data. Section 8.3 presents the grid–based framework, while
Section 8.4 presents an empirical evaluation. Finally, Section 8.5 concludes and
points out future directions for research.

8.2 Spatio–Temporal Anonymization

For the simplicity of the discussion, assume that the time domainT is totally or-
dered and use the non–negative numbers as the time domain. Let the trajectory of
a moving object in 2–dimensional (2D) space be described by a sequenceof tuples
S = 〈(loc1, t1), . . . , (locn, tn)〉 whereloci ∈ R

2 (i = 1, . . . , n) describe locations,
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and t1 < t2 < . . . < tn ∈ T are irregularly spaced but temporally ordered time
instances, i.e., gaps are allowed.

The trajectory is anonymized by reducing the spatio–temporal resolution of the
2D space. One basic method is to enclose the trajectory into one or more space–
time rectangles, denoted as ananonymization rectangles. A formal definition is as
follows:

Definition 7 Given an area sizeareasize ∈ R
+ and a probability threshold

maxLocProb ∈ [0; 1], an anonymization rectangle satisfying (areasize,
maxLocProb) for a moving objecto is a three–tuple(R, ts, te), wherets < te ∈ T

are two time instances, andR is a 2D rectangle such that the maximum probability
that can beinferred abouto being in any subregionA of sizeareasize in R during
the period[ts, te] is at mostmaxLocProb .

Definition 8 Given an area sizeareasize ∈ R
+, this maximum probability that

can beinferred about the whereabouts of objecto insideR is called as thelocation
probability of R and is denoted asR.LocProb.

Privacy preservation in spatio–temporal data sets is challenging becausespatio–
temporal data sets are so rich in correlations, allowing many “privacy attack” strate-
gies that are difficult to counteract and sometimes even to anticipate. The proposed
method is believed to protect against a few obvious threats, namely, 1) detection
of frequent private/personal/individual locations due to self–correlations in historical
spatio–temporal (trajectory) data sets, 2) detection of the current positiondue to phys-
ical mobility constraints on objects (maximum speed, road network, spatio–temporal
restrictions in general).

In the definitionsinferred is emphasized, because the straight–forward, uniform
spatio–temporal probability distribution for the location of an objecto does not hold
for any rectangleR ∈ R

+. By relating external spatial and/or temporal data sources,
which put limitations on the possible locations ofo, more specific distributions can
be derived that sacrifice the privacy ofo. This is illustrated in Figure 8.1, where
anonymization rectangleR of o is composed of 4 unit–area cells (c1, c2, c4, c5). Not
combining any external data sources,R.LocProb = 1/4. Knowing that cellsc1 and
c4 are covered by water,R.LocProb = 1/2. Finally, knowing about the location
and opening hours of the Nature Resort Park in cellc2 and the current time (8am),
R.LocProb = 1. Clearly, relating more and more spatio–temporal, external data
sources toR raises the location probability of it, and guarantees less privacy foro.
One natural way to guarantee a location probability of at mostmaxLocProb , is
to spatially, or temporally, extendR to Rextended, such thatRextended.LocProb ≤
maxLocProb . Section 8.3.2 describes how to do this in practice.
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Figure 8.1: Location Privacy.

If the currently known spatio–temporal probability distribution for the locationof
an objecto is denoted asPDo, then any kind of “extra” external spatio–temporal in-
formation can be modelled as a functionF (PDo) that returns a new spatio–temporal
probability distributionPD ′

o. If the location probability ofo at certain locations is
then over the thresholdmaxLocProb with the new distribution, there is a problem
that needs to be handled somehow, most often by enlarging the area partitions.

Intuitively, the whole trajectory of a moving object can be enclosed into a sin-
gle rectangle so that the anonymity of the trajectory is preserved. However, as the
trajectories are often very long, the rectangles can be very big so that it becomes
impossible for the data mining algorithms to return any useful results. The proposed
method provides ananonymized formatof the trajectory by cutting a long trajectory
into pieces and enclosing each piece in an anonymization rectangle. This format can
give opportunities for doing data mining without sacrificing location privacy.

8.2.1 Practical “Cut–Enclose” Implementation

The “cut–enclose” procedure splits the whole trajectory of a moving objecto into a
set of polylines which correspond to a set of time periods{[t1, t2], [t2, t3], [t3, t4], . . . ,
[tk−1, tk]}, such that at any time instanceti ∈ {t2, t3, . . . , tk−1} o’s trajectory crosses
an edge between two neighboring anonymization rectanglesRi and Ri+1. Since
around this instanceti, o is more likely to be close to the edge betweenRi andRi+1,
Ri+1.LocProb will temporarily be higher, which might sacrifice the location privacy
of o. More specifically, from the times spent in the previous anonymization rectan-
gles, their sizes, and relative locations to each other, a malicious server can easily
maintain a linear movement model ofo. Using this movement model, wheno sends
the anonymization rectangleRi+1, the malicious server candeducea possible loca-
tion rangeR∗ of o, such thatR∗.LocProb > maxLocProb . To avoid this situation
and preserve the location privacy ofo, a time delay factor δ[i,i+1] for delaying the
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Figure 8.2: Time Delay Factor.

sending of the anonymous rectangleRi+1 after leavingRi is introduced. The factor
δ[i,i+1] can be calculated as follows. Objecto can maintain the same linear move-
ment model about its own movement as the malicious server can. Hence, at any
time instancet∗ > ti, having enteredRi+1, o can calculateR∗ andR∗.LocProb.
As time progresses, the size ofR∗ is monotonically increasing andR∗.LocProb is
monotonically decreasing. Hence, at some time pointts > ti, when the associated
R∗.LocProb ≤ maxLocProb it is safefor o to sendRi+1 to the server. The time
delay factor is thenδ[i,i+1] = ts − ti.

Most moving objects are confined to road networks. In the presence of road
networks, more sophisticated movement models are possible. Actual values for the
time delay factor have been investigated for a number of network–based movement
models on real–world data sets in [14], but this work had a different aim, namely to
aid tracking.

8.2.2 Problems with Existing Methods

To construct an anonymization rectangle for a given piece of trajectory,one naive
method is to randomly choose a location in the vicinity of the trajectory and use this
location as the center to build the anonymization rectangle based on a pre–defined
size. Another method, motivated from the discussion oflocation k–anonymityin the
literature [43, 44, 74], is to build the anonymization rectangle that enclose thispiece
with trajectory pieces ofk − 1 other moving objects.

However, these two methods can lead to an undesiredloss of location privacy.
Sensitive locations that need to be kept private, or trajectory pieces thatlead to these,
are often re–visited by the objects many times, at a similar time of day. For example,
objects (users), in the evening hours return to theirhomeusing the same path (trajec-
tory piece). If on different occasions the anonymization rectangles forthis trajectory
piece are constructed in anon–deterministicway, the location of the trajectory piece
can be narrowed down to the intersection of these anonymization rectangles. This
leads to an undesirable loss of privacy. In the example on Figure 8.3, object o returns
to its homeb using the same trajectory piece[a, b] on three different occasion at the
same time of the day. On the three occasions, three anonymization rectanglesRA,
RB, andRC are constructed, such that they contain both the trajectory piece[a, b]
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Figure 8.3: Overlapping Area.

and the locationb. Based on the multiple visits, the location of[a, b] can be narrowed
down to the small overlapping area of the anonymization rectangles.

The next section presents a grid–based solution and several methods for con-
structing anonymization rectangles in adeterministicway on this grid, thereby avoid-
ing the privacy loss described above. The grid–based framework alsoallows for an
efficient implementation of the “cut–enclose” procedure described in Section 8.2.1.

8.3 A Grid–Based Solution

A basic method to anonymize location is to reduce the spatial resolution. Thus, in-
stead of randomly constructing the anonymization rectangles or building the rectan-
gles based on trajectories of other moving objects, the anonymization rectangles for
all moving objects is built based on a single, pre–defined 2D grid. The following
subsections discuss the solution in detail.

8.3.1 Grid–Based Anonymization

Denote the whole 2D Euclidean space asR
2 and proceed to define an anonymization

grid and anonymization partitioning as follows.

Definition 8.3.1 An anonymization grid (briefly, a grid)G is a uniform grid ofR2

with a pre–definedO ∈ R
2 as the starting point and a side lengthl. An anonymiza-

tion partitioning (briefly, a partitioning) is a set of pairwise disjoint sets of grid cells
covering all ofG.

As illustrated in Figure 8.4(a), given a starting pointO ∈ R
2, the anonymiza-

tion grid (briefly, the grid)Guniformly divides the whole space into square–shaped
grid cells, each of which has side lengthl. Each grid cell has an ID value, such as
c1, c2, · · · in Figure 8.4(a). Apartition of a partitioning that is defined on the grid is
a set of grid cells.
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Figure 8.4: Grid–Based Anonymization of Trajectories.

Next, several methods for constructinganonymization partitionings based on
the anonymization grid are developed. All of the partitionings are constructed deter-
ministically, thereby avoiding the privacy loss due to overlapping partitions.

Common Regular Partitioning (CRP): The simplest method is to define a single,
regular partitioning that is used by all the objects. A partitioning is calledregular if
all the partitions are rectangles with side lengthsix × l andiy × l, whereix andiy
are integers.

Such a regular partitioning can be seen as a coarser grid on the 2D space. As
illustrated in Figure 8.4(a), given the grid (the grid of thin lines), the partitioning
(the grid of thick lines) is defined by an originO and ix = 3, iy = 3. In the ex-
ample the grid cellsc1, c2, c3 belong to the partitionp1. With the grid and parti-
tioning, a moving object trajectory can be transformed to a set of non–overlapping
anonymization rectangles to preserve anonymity. For instance, given the trajectory
〈(a, t1), (b, t2), · · · , (h, t7)〉 in Figure 8.4(b), a grid on the 2D space is built and the
partitioning on the grid is made. The partitions are denoted asp1, · · · , p6 in the fig-
ure and they are non–overlapping rectangles. As described in Section 8.2.1, given the
time delay factorδ, the whole trajectory is cut into several pieces witht4−t3 = δ and
t6 − t5 = δ. Then, the whole trajectory is transformed into a list of anonymization
rectangles〈(p4, t1, t3), (p5, t4, t5), (p2, t6, t7)〉.

The above described partitioning guarantees the same minimal level of privacy for
all users in any region of the space. This method of partitioning is termed Common
Regular Partitioning (CRP).

Fundamental spatio–temporal data mining tasks, like finding dense spatio–tempo-
ral regions, are based on simple counts or identities of the users that are present in a
given spatio–temporal region. Since in the CRP model all users report thesame set of
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grid cells for the same location, the spatio–temporal granularity of any patternfound
is lower bounded by the size of a partition. In the example in Figure 8.4(b), thesize
of the common partition is 9 grid cells, hence the smallest dense ST–region that can
be found will be 9 grid cells.

Individual Regular Partitioning (IRP): Not all objects require the same level of lo-
cation privacy. This requirement of individual objects can easily be accommodated in
the anonymization grid–based framework. Objects requiring higher levels of privacy
construct and use a regular partitioning with larger partitions, while objects requiring
lower levels of privacy define and use a regular partitioning with smaller partitions.
This method of partitioning is termed Individual Regular Partitioning (IRP).

Besides being more flexible in terms of the objects’ privacy requirements, theIRP
method allows the discovery of patterns of spatio–temporal granularity that isequal
to the size of a single grid cell (if enough data is present).

Individual Irregular Partitioning (IIP): Objects may have different location pri-
vacy requirements in different regions of space. For example, most objects (users)
desire a higher level of location privacy when being athomeor thework placethan
when being in transition or when being in other general areas of the city. This re-
quirement of individual objects can again be easily accommodated in the proposed
anonymization–grid–based framework. Objects can be allowed to individually de-
fine privacy levels for regions in space that reflect their needs. The definition of these
regions can be either manual, or can be aided by discovering frequent (presumably
sensitive) locations of individual objects. Since the selection or discovery of these
sensitive locations can be accomplished on the client side, it can be kept private. This
method of partitioning is termed as Individual Irregular Partitioning (IIP).

The IIP method also allows the discovery of patterns of spatio–temporal granu-
larity that is equal to the size of a single grid cell. The additional ability to define
spatially varying privacy levels not only adds more privacy control, butit is also ex-
pected to allow the discovery of more patterns with finer spatio–temporal granularity.
This is due to the fact that most objects are expected to require higher levelsof loca-
tion privacy in relatively small subregions. The more detailed patterns are expected
to be more useful for ITS applications.

With the proposed grid–based framework, the knowledge one can infer about the
whereabouts of a user does not depend on the number of samples collected. The
certainty of the inference only depends on the amount of external spatio–temporal
information available for the anonymous rectangle.

8.3.2 System Architecture

The grid–based solution is implemented based on a client/server architecture.As
illustrated in Figure 8.5, the server side has three components, theanonymity com-
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Figure 8.5: System Architecture.

ponentwhich defines one or more grids and communicates them to the client, the
storage componentwhich collects the anonymization rectangles sent from the clients
and stores the data on disk, and thedata mining componentwhich discovers certain
patterns and rules either directly from the incoming data stream or from the historical
data retrieved from the storage component.

The clients are responsible for accepting an anonymization grid and developing
a partitioning based on the grid. In practice, the partitioning will be made in one of
two ways: a) the user selects among a small number of pre–computed partitionings
to find one that meets their privacy requirements, or b) the partitioning is computed
by a dedicated program on the

client, based on user input about privacy requirements. Both a) and b)take avail-
able background knowledge into account. The framework can also handle the pres-
ence of road networks. If road networks are dense compared to the partition size,
the framework can be used without modification. If not, the partitions have to be
enlarged so that each partition contains enough road to get a location probability that
is comparable to those of the other partitions.

These client– and grid–specific partitionings are stored on the clients and only
anonymization rectangles (in the form of sets of grid cells), which are computedat
the clients, are transmitted to the server. It is assumed that the client has a fair amount
of storage and CPU power, but not more than what can be found in most currently
available smartphones or PDAs.

Saving a partitioning at the client side does not take much space. For a regular
partitioning, where partitions form a regular grid, it is enough to store the starting
point and the side length of the partitioning. Finding the partition that corresponds
to a location is a matter of simple arithmetic. For a non–regular partitioning, where
partitions do not form a regular grid, i.e., are of different size and/or shape, partitions
can be kept in an R–tree. Finding the partition that corresponds to a locationcan be
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done by issuing a stabbing query on the R–tree for the location. The communication
cost between the clients and the server is very low since the grids can be described
with the starting point and side lengthl of the grid, and the anonymization rectangles
only involves a few data fields (i.e., coordinates of the client’s current partition and
the time instances).

The clients always send their current anonymization rectangle, i.e., partition, to
the server. When the anonymized data is transmitted to the server, it is stored itin
two places. To be able to perform data mining on historical data, the data is first
stored in a time–interval R–tree (TIR–tree in Figure 8.5) on disk. The TIR–tree is a
1–dimensional R–tree that indexes the data on the time intervals. To be able to per-
form online data mining on the current data, the data is also stored in acache, with a
FIFO replacement policy as follows. According to the size of the cache, when a new
anonymization rectangle of a moving object arrives, either the previous anonymiza-
tion rectangle of this moving object (if in the cache) or the oldest data in the cache is
deleted.

The system architecture in Figure 8.5 supports data mining on both historical
trajectories and recent data. Each anonymization grid in the anonymity component
corresponds to an in–memory instance of the same grid in the data mining compo-
nent. For instance, the anonymization gridG in Figure 8.5 corresponds to the data
mining gridG’ (it is assumed that the data mining component has enough memory
to storeG’ ). Based on this architecture, in the following, algorithms for discovering
dense ST–areason the anonymized trajectory data is presented.

8.3.3 Finding Dense Spatio–Temporal Areas

Discovering dense areas is one of the most common topics for spatial and spatio–
temporal data mining. Existing research work has explored density clustering [20],
spatio–temporal dense area discovery [95], and density queries [59]. For dense area
discovery on the anonymized trajectory data, the most basic operation is to find those
grid cells that contain a large amount of moving objects during specified time inter-
vals. In the anonymized format, objects are present in a grid cell with someprob-
ability only. Hence, atime interval probabilistically dense spatio–temporal area
query, or dense ST–area queryfor short is proposed, which can be seen as a basic,
atomic operation for advanced dense area mining algorithms over the anonymization
grid. Such advanced and complex data mining algorithms can be made by assembling
this operations with other basic query types.

Specifically, suppose a moving objecto corresponds to a partitionP on a given
anonymization gridG, a partition cellp ∈ P containso’s trajectory during time
interval [ts, te], andp includes grid cellsc1, c2, . . . , ck. p is used as the anonymiza-
tion rectangle foro’s trajectory and each grid cellci ∈ p has the location proba-
bility co

i .LocProb = 1/k for o at any time instance during[ts, te]. Let Oci be the
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set of moving objects whose anonymization rectangles include the grid cellci in at
least one time instance during the time interval[ts, te]. Thenci.count = |Oci | and
ci.prob =

∑

o∈Oci co
i .LocProb/|Oci |. Intuitively, ci.count is themaximumnum-

ber of objects thatcan be insideci during [ts, te], while ci.prob is theaveragelo-
cation probability of the objects that can be insideci during [ts, te]. Consequently,
ci.prob×ci.count is theexpectednumber of objects insideci during[ts, te]. Further-
more, thepattern certaintyci.cert =

∏

o∈Oci co
i .LocProb is defined as the probabil-

ity of actuallyhavingci.count number of moving objects inside ofci during[ts, te].
A grid cell ci is said to beprobabilistically denseduring [ts, te] if ci.count ≥

min count andci.prob ≥ min prob , for some given threshold valuesmin count
andmin prob . Thus, thedense ST–area queryis formulated as follows:

Definition 8.3.2 A dense ST–area queryQ = ([ts, te], min count , min prob )
retrieves all the grid cells whose correspondingcount andprob values during[ts, te]
are greater than or equal tomin count andmin prob , respectively.

To process a dense ST–area query, the first step is to compute thecount andprob
values for each grid cellci for the specified time interval[ts, te]. Based on the system
architecture in Figure 8.5, a range query over the TIR–tree needs to be issued to find
all the anonymization rectangles whose time periods have intersections with[ts, te].
Results of the range query are used to fill in thecount andprob values for each cell
ci of the data mining gridG’ . Then the set of dense ST–grid cells is:

D = {ci : ci.count ≥ min count ∧ ci.prob ≥ min prob }

During the query time interval[ts, te] a moving object can leave and later reenter a
given grid cellci. To avoid counting such an object multiple times forci, a hash array
of object IDs is maintained and values forci.count and ci.prob are only updated
when an object ID is encountered forci for the first time. If only approximate counts
are considered, these can be more effectively obtained using the methodsfrom [90].

As it will be seen in Section 8.4, the cut–off criteria for dense areas presented
above is in some cases not strict enough, thus generating too many dense areas (false
positives). To remedy this, the alternativesteepest slopecut–off criteria is introduced,
which is calculated by first sorting the expected counts for dense areas passing the
first criteria in descending order, finding the deltas between any two consecutive val-
ues, and making the cut–off where the (negative) delta is the smallest, i.e., where the
“slope” is steepest.

The above method is simple to implement but can not discover all the dense areas
that have the size of a single grid cell. As illustrated in Figure 8.6(a), grid cells
c1, c2, c3, c4 have several moving objects (big dots in the figure) and the threshold
min count = 4. None of the four cells are reported as dense since thecountvalue
of each is less than 4.
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(a) Loss of Result. (b) Using the Second
Grid.

Figure 8.6: Multi–Grid to Overcome Answer Loss.

To overcome such loss of results, the server provide several anonymization grids
with different starting points (and perhaps side length values) and distribute these
grids to the moving objects so that there are in equal amount of moving objects that
build their partitioning based on each of the anonymization grids. ThisMulti–Grid
approach can capture the answer loss that occurs with a single grid. As shown in Fig-
ure 8.6(b), the dense junction area of the four cells can be captured by the dark cell
belonging to another grid. ThisMulti–Grid extension of the anonymization frame-
work is left for future work.

The time interval dense ST–area query can be seen as an atomic operation over
the anonymized trajectory data. Advanced and complex data mining functions can
be made by assembling this operations with other basic query types.

8.4 Evaluation

To evaluate dense ST–area query algorithms, Brinkhoff’s network–based generator
of moving objects [8] is used to generate trajectories on the Oldenburg network. 600
to 3000 trajectories are generated for the time period from0 to 100 and sampled at
every time unit. To capture the real world time span between two consecutive time
instances, for all the trajectories, the average distance between every two subsequent
reported locations is calculated. The average distance is234.96m, which is about
14 seconds travel time for a60km/hour moving object. Thus, the actual time span
between two consecutive time instances is about14 seconds. The default time span
for all the queries are50 time instances.

To implement the grid–based solution, the anonymization grid is generated based
on the minimum bounding rectangle (MBR) of the Oldenburg network. A randomly–
chosen anonymization partitioning based on the grid is assigned to each generated
trajectory .



8.4 Evaluation 147

The default grid is a40× 40 partitioning on the MBR of the Oldenburg network.
Based on the Oldenburg network data, the size of each grid cell is589m × 672.9m.
In the experiments, the grid partitioning is also tuned from20 × 20 to 50 × 50 to
observe the performance. The three policies are applied on the trajectories with the
anonymization grid. To implement the CRP policy, two fixed partitionings are made,
where each user has2 × 2 or 4 × 4 grid cells. In the IRP policy, every user partition
contains at most4×4 grid cells. In the IIP policy, each moving object is set to use the
anonymization partition (each partition contains at most4 × 4 grid cells) that covers
the start location of the moving object. After the object is out of this partition, it uses
the lowest level of privacy so that each partition equals to a grid cell.

The experiments focus on evaluating the accuracy of the algorithms, i.e., the
amount of false positives and false negatives. A false negative, is the error of not
finding a pattern that does exist in the data. A false positive, is the error offinding a
“pattern” that does not exist in the data. To compare the algorithms, the algorithms
are also applied on an ideal case, where the partitioning of every user equals the
anonymization grid, and use the results of this case as the evaluation target. Suppose
the actual amount of dense grid cells isD, the number of false positivesP and false
negativesN are collected for every algorithm and the ratio between these values and
D are reported, called thefalse positive rate(FPR) andfalse negative rate(FNR), re-
spectively. The choice of these measures over the precision and recallmeasures used
in information retrieval is because of conceptual simplicity. In the present case differ-
ent kinds of errors are related to the same reference set (D), whereas in information
retrieval the same set of correctly retrieved patterns are related to the setof all true
patterns (recall) and to the set of retrieved patterns (precision). Hence, more accurate
results are characterized by lower error rates rather than by higher recall and preci-
sion. However, it holds that Recall=1-FNR and Precision=(1-FNR)/(1-FNR+FPR).

In the experiments, thecountandprobvalues are tuned to observe the amount of
false positives and false negatives. Experiments have also been conducted to test the
effect of grid size, time span and amount of trajectories on the accuracy.As seen in
Figure 8.7(a) to Figure 8.7(e), there are very few false negatives andthe amount of
false positives grows in certain cases. In particular, based on Figure 8.7(a), with the
growth ofcountvalues, more false positives appear. With the experiment on theprob
value (Figure 8.7(b)), it is possible to reach an optimal situation by tuning thisprob
value for each policy. For instance, the IRP policy has fewer false positives when
prob= 0.1 and so has IIP whenprob= 0.3. An observation from Figure 8.7(c) is that
the amount of false positives grows with the grid size. The explanation for this is as
follows. As the grid becomes denser, there are fewer really dense grid cells, but the
amount of dense cells found through the three policies does not decrease very much,
so the reported ratio value becomes larger. Figure 8.7(d) and Figure 8.7(e) show that
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(a) Effect of Count. (b) Effect of Prob.

(c) Effect of Grid Size. (d) Effect of Time Span.

(e) Effect of Trajectory Amount. (f) Effect of Count with Steepest Cut–Off.

(g) Effect of Prob with Steepest Slope Cut–Off
Criteria.

(h) Optimized Results of Different Policies.

Figure 8.7: Experiments on Dense ST–area Query.
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the increase of the time span and the amount of trajectories reduces the amount of
false positives for all the policies.

To test how the steepest slope cut–off criteria influences the algorithms, thecount
andprobvalues are tuned to observe the amount of false positives and false negatives
on the different policies. As illustrated in Figure 8.7(f) and Figure 8.7(g),the cut–off
criteria decreases the amount of false positives but, compared to the same settings in
Figure 8.7(a) and Figure 8.7(b), brings more false negatives. Thus, considering all
the parameters for the three policies, the following are therecommendationsettings
for the dense ST–area query:

The IIP is the most effective policy for doing dense ST–area query with privacy
protection. The second and third best choice is the CRP policy with2×2 partitioning
and the IRP policy. For all the policies, certain optimal situation on the amount
of false positives and false negatives can be reached by tuning the prob value. To
increase the time span and amount of trajectories will improve the performance of
all approaches.

Based on therecommendation, an experiment is conducted to compare the dif-
ferent policies with their optimal settings. In this experiment, the amount of trajec-
tories is increased to1000 and optimalprob values are used for each policy. Fig-
ure 8.7(h) presents the results. The CRP policy with each partition containing2 × 2
cells and the IIP policy shows the most promising performance. These two policies
guarantee a precision level that makes them useful for most applications.

8.5 Conclusions and Future Work

Motivated by the possible loss of location privacy for LBS users, this paper proposed
a general grid–based framework that allowed user location data to be anonymized.
Thus, privacy is preserved, but interesting patterns could still be discovered. The
framework allowed users to specify individual desired levels of privacy and devel-
oped three policies for implementing that. Privacy–preserving methods werepro-
posed for a core data mining task, namelyfinding dense spatio–temporal regions. An
extensive set of experiments evaluated the methods and showed that the framework
still allowed most patterns to be found, even when privacy was preserved.

Future work will be along three paths. First, theMulti–Grid approach will be fur-
ther investigated as it offers a direction for getting more detailed data mining results
without violating the privacy. Second, in addition to the CRP, IRP and IIP policies,
it is possible to develop more policies for creating anonymization rectangles suitable
for different real world situations. Third, since the grid–based solutioncan be seen as
a simple and general framework for privacy preserving data mining on moving object
trajectories, hance the framework is planned to be extended to support more kinds of
spatio–temporal data mining algorithms.





Chapter 9

Privacy–Preserving Trajectory
Collection

Context awareness is one of the most important features of user–friendly Location–
Based Services (LBS). To support context awareness in LBSes, real location data of
mobile users has to be collected so that spatio–temporal patterns can be extracted by
data mining methods. This brings a new conflict of interest: the data mining meth-
ods want precise location data, while the mobile users want to protect their privacy
by not disclosing their exact movements (trajectories). To resolve the conflict, the
paper first formally defines novel location privacy requirements. Then, it presents
a system for privacy–preserving trajectory collection that meet these requirements.
The system is composed of an untrusted server and clients communicating in a P2P
network. Location data is anonymized in the system using data cloaking and data
swapping techniques. The proposed system is empirically evaluated on realistic sim-
ulated movement data and is found to be effective under reasonable conditions and
privacy/anonymity settings.

9.1 Introduction

The convergence among mobile services and positioning technologies paves the way
for a range of new, innovative services, which are commonly referredto as Location–
Based Services (LBSes). Emergence of LBSes creates a demand for novel data man-
agement technologies to efficiently support new data types, operations, and work-
loads. Context awareness, as one of the most important features of LBSes, is inte-
grated in mobile devices so that these devices have information about the circum-
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stances under which they operate and can react accordingly. To support context
awareness in LBSes, real location data of mobile users has to be collected so that
spatio–temporal patterns can be extracted by data mining methods. This bringsa
new conflict of interest: the data mining methods want precise location data, while
the mobile users want to protect their privacy by not disclosing their exactmove-
ments. The following example describes the problem scenario.

A large shopping center wants to do data mining on the activities of customers in
business hours. One type of customer activity is where and when customers were in
the shopping center. To collect the activity information, it is assumed that a position-
ing system such as GPS, radiolocationing, or RFID detects the locations of the cus-
tomers’ mobile phones. Customers locations are recorded in the phones andsent to
a central server. The central server then collects and analyzes the customers’ spatio–
temporal location data. However, it is a violation of privacy foranyone, including
the server, to know exactly when and where an individual customer was.Thus, a so-
lution that can collect the activity information from mobile phones without exposing
the privacy of users is desirable.

Movements of mobile users are often modelled as trajectories in 2D space. Data
mining on the trajectory data has many applications, not only in LBSes, but alsoin
telematics and Intelligent Transportation System (ITS). Methods have beenproposed
to extract patterns, such as dense regions [47, 59] and frequent routes [32] from the
trajectory data. An existing solution for protecting the location and trajectory data
in LBSes is to anonymize the users’ location data by decreasing the spatio–temporal
resolution of the locations. After this “anonymization” step, the exact locationdata
becomes a set of spatio–temporal rectangles. Although such ambiguity protects the
mobile users’ privacy, it also reduces the accuracy of the data mining results.

Motivated by these observations, this paper defines new privacy requirements for
location/trajectory data and presents a system for collecting mobile users’ trajectory
data in a privacy–preserving manner. Compared to existing solutions, the proposed
system does not require trusted components, yet it protects the privacyof mobile users
and preserves the accuracy of data mining by keeping the spatio–temporaldata in-
tact. The proposed solution assumes that clients on mobile phones can communicate
through a wireless P2P network. The process of trajectory collection is divided in five
stages as follows. First, in theclient registrationstage, a group ofk clients obtains
permission and parameters from the server for executing thetrajectory sampling and
anonymization–, the trajectory exchange–, and thedata reportingstages in a multi-
threaded fashion. In thetrajectory sampling and anonymizationstage, clients record
their private trajectories and generate a set ofk “cloaking” trajectories to anonymize
their actual trajectory. In thetrajectory exchangestage, clients exchange sets ofk
partial trajectory pieces with other clients in the P2P network. Finally, in thedata
reportingstage, clients send anonymous partial trajectory pieces to the server. In the
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meanwhile, in thedata summarizationstage, the server continuously listens to data
reports from clients, assembles the trajectory pieces and filters out the “cloaked” tra-
jectories. An extensive experimental evaluation, based on realistic simulatedtrajec-
tory data, shows that the proposed approach is effective under reasonable conditions
and privacy/anonymity settings.

The contributions of this paper are believed to be as follows. First, the paper
adapts and combines previous general privacy definitions to derive privacy defini-
tions of various strengths for location data. More specifically, the paper definesk–
anonymity, α–diversity, requiring spatial diversity, andk–α–anonymityfor location
data. Second, the paper proposes a complete system, including algorithms and imple-
mentation details, for thelosslesscollection ofexacttrajectories of moving objects.
The proposed system does not require trusted components, yet it guarantees at least
k–anonymityin all parts of the collection process. The proposed system isscalable
as the process of anonymization is performed in a distributed fashion by clients inter-
acting via a P2P network. The security of the proposed system is evaluatedand the
system is found to be robust against a wide variety of attacks by malicious clients or
a malicious server (if it is hacked). In particular, the system is shown to guarantee the
anonymity of the client data on both the client and the server side and any time during
transmission in the air. Finally, the paper demonstrates through an extensiveempiri-
cal evaluation that the proposed system is effective under reasonableconditions and
privacy/anonymity settings.

The rest of this paper is organized as follows. Section 9.2 explores related work.
Section 9.3 discusses the basic concepts relating to location privacy. Section 9.4 de-
scribes the proposed solution in detail, while Section 9.5 analyzes the privacy guaran-
tee of the solution. Section 9.6 presents the empirical evaluation. Finally, Section 9.7
concludes and points out future directions for research.

9.2 Related Work

The topic of privacy preserving data mining [4] has appeared due to the concern of
protecting privacy in the data collection and dissemination steps of data mining pro-
cess. The database and data mining research communities have been very active in the
discussion of privacy–preserving data mining. Important techniques include pertur-
bation, condensation, and data hiding with conceptual reconstruction. The paper [96]
presents a good review of these techniques. The techniques behind the proposed so-
lution follow the spirit of two common strategies used for privacy–preserving data
mining, namely datacloakingand dataswapping.

Several papers [12, 43, 44, 74] have addressed the topic of privacy–preserving
location–based services. These papers assume an architecture wherea piece of trusted
middleware, often termed ananonymizer, exists between mobile users and LBS
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servers. Based on the query requests from mobile users, the anonymizer constructs
anonymity rectangles that include the locations ofk users and sends a query to the
LBS server with this rectangle as the location. The LBS server returns a superset
of the results and final results are filtered by the anonymizer and sent back to each
LBS user. Compared to these papers, the architecture proposed in this paper does not
require a piece of trusted middleware. In fact, the anonymization process isdone at
the client side through the P2P network.

The proposed solution is focused on the data modification of the collected user
data. In the existing papers, the data modification techniques used in the anonymizer
are based on the ideas of aggregation and perturbation. In particular, papers [43, 44]
extend thek–anonymity model [89] in relational databases to aggregate the locations
of k mobile users so that the location of an individual user is not distinguishable.The
adaptive location anonymizer discussed in [74] uses a grid–based pyramid structure
to put the exact location of mobile users into cloaking rectangles made of grid cells.
Paper [12] suggests a data model to augment uncertainty to location data, and propose
imprecise queries that hide the location of the query issuer and yield probabilistic
results. Compared to these existing techniques, the architecture in this paperdoes not
use an anonymizer but distributes the anonymization step to client–side computation
and communication. In previous work [35], a grid–based framework forprivacy–
preserving data collection is proposed. This framework protects the privacy of mobile
users but also blurs the exact collected spatio–temporal locations which influences
the accuracy of data mining results. To keep the quality of the collected data without
violating the privacy, this paper proposes a novel data modification approach based on
the idea ofswapping[96]. Similar to the architecture described in [13], the present
solution assumes the existence of a P2P network. As it will be shown later, the
technique behind the present solution, compared to the aggregation and perturbation
techniques, does not introduce any ambiguity into the location data, which ultimately
guarantees the precision and quality of the data mining results.

9.3 Preliminaries

For the simplicity of the discussion, assume that the time domainT is totally ordered
and use the non–negative numbers as the time domain. Denote each moving object as
adata item. A data item is modelled as a two tupledi = (id, S) whereid is the iden-
tity attribute value of the data item andS is the trajectory ofdi. It is modelled as a se-
quence of tuplesS = 〈(loc1, t1), . . . , (locn, tn)〉 whereloci ∈ R

2 (i = 1, . . . , n) are
locations, andt1 < t2 < . . . < tn ∈ T are (possibly irregularly spaced) temporally
ordered time instances. Next, atrajectory pieceis defined as a subset of a trajectory
ordered on the time domain. For instance,S1 = 〈(loc1, t1), (loc2, t2), . . . , (lock, tk)〉
andS2 = 〈(lock+1, tk+1), (lock+2, tk+2), . . . , (locn, tn)〉 are two trajectory pieces
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of S = 〈(loc1, t1), . . . , (locn, tn)〉. For a given data itemdi = (id, S), bothdi1 =
(id, S1) anddi2 = (id, S2) (with di1.id = di2.id = di.id) can represent part of the
trajectory ofdi. di1 anddi2 are calledpartial data items, or itemsfor short.

A simple way of protecting trajectories of mobile users is to hide the identity of
users in the data items. Specifically, given a data item(id, S), by hiding the identity
(e.g., encoding theid value), it is impossible to deduce the mobile user from theid
value. However, an adversary can still study if a given data item corresponds to a
specific user by cross–referencing from other public information about the user (e.g.,
work address, home address, etc.). If a trajectoryS covers many relevant addresses
of a user, it is possible that the data item(id, S) describes the trajectory of this user.

As described in related works, a dominant technique for protecting the spatial
and spatio–temporal locations of users is to keep each user’s locations anonymous
among a set of other users. This so–calledk–anonymitytechnique is also applicable
to protect the trajectories (and, trajectory pieces) of mobile users. The following
defines thek–anonymity of data items.

Definition 9 (k–anonymity of data items) For a set of moving objectsMO =
{o1, . . . , om} and a set of data itemsDI = {(id1, S1), . . . , (idn, Sn)}, m ≤ n where
id1, . . . , idn are encoded identity values andS1, . . . , Sn are trajectory pieces, the
moving objects and the data items are said to preservek–anonymityif both of the
following conditions are true:

1. For any objecto, there are at leastk data items(id′1, S
′
1), . . . , (id′k, S

′
k) that

correspond to this object with equal probability.

2. For any data item(id, S), there are at leastk objectso′1, . . . , o
′
k that correspond

to the data item with equal probability.

Thek–anonymity of data itemspreserves the anonymity when an adversary matches
trajectories to specific moving objects. However, in an extreme case, when the tra-
jectories of moving objects are almost identical (e.g., cars moving on the same roads
in the road network), the spatial and spatio–temporal privacy of these objects is still
exposed as the possible locations of each object can be narrowed downto the com-
mon parts of the trajectories. To improve the protection of the trajectories of moving
objects, as in the general privacy protection framework [69], it is necessary to re-
quire that these trajectories possess a certain spatial diversity. Hence,the definition
of α–diversityis introduced in the following.

Definition 10 (α–diversity of data items) For a set of data itemsDI = {(id1, S1), . . . ,
(idn, Sn)} whereid1 6= id2 6= . . . 6= idn, a given thresholdα, these data items pre-
serveα–diversityif AREA(MBR({S1, . . . , Sn})) ≥ α, whereMBRis the minimum
bounding rectangle ofS1, . . . , Sn andAREAreturns the area size of an MBR.
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Next, combining the definitions ofk–anonymityandα–diversity, a more strict
setting to protect the privacy the data items is presented, namely thek–α–anonymity.

Definition 11 (k–α–anonymity of data items) For a set of moving objectsMO =
{o1, . . . , om} and a set of data itemsDI = {(id1, S1), . . . , (idn, Sn)}, k ≤ m ≤ n
that preservek–anonymity, and a threshold valueα, the moving objects and data
items satisfyk–α–anonymityif the following condition is true. For anyk data items
(id′1, S

′
1), . . . , (id

′
k, S

′
k) ∈ DI, these data items preserveα–diversity.

Thek–α–anonymityis a more restrictive requirement to preserve the privacy of
moving object trajectories. In particular, given anα value, it is not guaranteed that
thek–α–anonymitycan be achieved by the sets ofk–anonymousmoving objects and
data items. For example, consider a group ofk drivers living in the same suburb area
and working in the city center. The set ofk drivers and their corresponding set of
trajectories isk–anonymous. However, since it is very likely that the trajectories of
these drivers are quite alike, the MBR of these trajectories is likely to have anarea
that is smaller than any reasonable value forα. Hence, the set of drivers and their
corresponding set of trajectories do not satisfyk–α–anonymityfor any reasonable
value ofα. The diversity of spatial and spatio–temporal locations is decided by the
mobile users.

The aim of the herein proposed data collection solution is to preserve anonymity
of data items (or partial data items) in any set of data being stored, transmitted or
collected in the system. As described later, the solution preservesk–anonymityin
all sections of the system and achievesα–diversityor k–α–anonymityin the parts
that are more vulnerable to privacy threats. In the following details of the proposed
solution are described.

9.4 Solution

The proposed solution is for a scenario in which users have mobile phonesequipped
with a positioning device and these mobile phones can communicate with each other
through a P2P network. Such a scenario is very reasonable in real–world applications
that are fuelled by technical advances such as the development of smartphones with
embedded GPS devices and the widespread availability of WiFi and Bluetooth,and
the scalability and robustness of the P2P application design paradigm. Assuming that
the solution aims to preservek–anonymity, α–diversityandk–α–anonymity(with k
andα as concrete values) in all aspects of trajectory data collection, the following
subsections describe the architecture of the proposed system and its detailed privacy
preserving procedures.
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9.4.1 System Architecture

The proposed system involves a server side application installed at a central server
and a client side application that is installed at each mobile phone. Each client has a
profile that keeps its settings on the client side application. The client side application
can connect to the central server through a mobile connection protocol such as SMS,
MMS or GPRS. Each client side application is also able to communicate with other
client applications through a wireless P2P network such as WiFi or Bluetooth. Each
client side application is called aclient and the server side application is called the
server. Theserverincludes two processes,serverregandserversum, which are kept
running during the whole lifetime of theserver. Theclient, once activated, starts a
single process, namelyclient proc. The top–level algorithm ofclient proc is listed
below.

(1) procedureclient proc (server, phone no, k, α, λ, L)
(2) (Ts, τ, τmax) ← register(server, phone no, k)
(3) id1, id2, . . . , idk ←genhashID(phone no, k)
(4) while now() ∈ [Ts, Ts + τ)
(5) DB ←sampleanonymize({id1, . . . , idk}, k, α, λ)
(6) exchange(k,DB ,TRUE )
(7) told ← past time(DB)
(8) if (size of(DB) ≥ L) ∪ (now() − told ≥ τmax)
(9) report(server,DB)
(10) if size of(DB) ≤ k × num of peers(k)
(11) exchange(k,DB ,FALSE )
(12) else: report(server,DB)
(13) return Qdp

Among the parameters ofclient proc, server andphone no specify the server ad-
dress and the client’s phone number, andk, α, λ, L are kept in the client’s profile. The
valuesk, α specify the user’s requirement onk–α–anonymity. λ andL are described
in the following. In the pseudo code ofclient proc, the variableDB is a database of
all trajectory pieces in the current instance ofclient proc.

With the three processes,serverreg, serversumandclient proc, the whole sys-
tem can be summarized into five stages, namely: 1)client registration, 2) trajectory
sampling and anonymization, 3) trajectory exchange, 4) data reporting, and 5)data
summarization. As depicted in Figure 9.1, at stage 1, a client A sends a registration
request to the server (line 2 ofclient proc). The server process (serverreg) accepts
the request and assigns the time and period that the client should start and continue
other steps ofclient proc. Upon receiving the approval from the server, client A
starts stage 2. At this stage, client A generates a set ofk different ID values (line 3 of
client proc). One of these ID values is selected as the ID of the actual trajectory and



158 Privacy–Preserving Trajectory Collection

Client C

5. Data Summarization

1. Client Registration

Server
2. Trajectory Sampling

and Anonymization

3. Trajectory Exchange

Client A
Request

Approval

Server Side Client Side

Client B

4. Data Reporting

Figure 9.1: System Architecture.

the others are used as the ID values of synthetic trajectories (explained later). The
synthetic trajectories with these ID values are called thecloaking trajectory data.
Client A begins to record its trajectory data and generate the cloaking trajectory data
(line 5 of client proc). The parameterλ of client proc specifies the time interval for
cutting the collected trajectory and the cloaking data into trajectory pieces. Thepa-
rameterC is used in thetrajectory sampling and anonymizationstage to specify how
the synthetic trajectories should be generated. Then, at stage 3, throughthe P2P net-
work, client A communicates with clients B and C to exchange the anonymized data
(line 6 of client proc). The trajectory sampling and anonymizationand trajectory
exchangesteps are kept running until the period specified by the server is reached
(the while–loop ofclient proc). At stage 4, when aclient has reached its storage
limit (specified by the parameterL of theclient proc) or if it has a very “old” piece
of trajectory data, this client reports its data to the server (line 9 ofclient proc). The
stage ofdata reportingalso happens when clients are at the end of the activation pe-
riod (lines 10–12 ofclient proc). In Figure 9.1, clients A, B choose to transmit their
collected data to other peers in the P2P network (line 11 ofclient proc) and client C
sends its the data to the server (line 12 ofclient proc). Finally, at stage 5, the server
processserversumsummarizes the data from the clients, filters out the synthetic tra-
jectory data and computes the real trajectory data. The next subsections describes
details of these stages.
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Figure 9.2: Client Registration.

9.4.2 Client Registration

Each client must start with theclient registrationstep. At this step, the functionregis-
ter(server, phone no, k) sends a registration request message to theserver, together
with its phone number and thek value.

At the server side, when the processserverreg receives a request message, it
saves the request in a FIFO buffer. This process also maintains the maximalk value
of all these requests, denoted askmax. When the FIFO buffer haskmax elements, the
serverregprocess sends out messages to each of the firstkmax registration requests,
removes all elements from the buffer, and setskmax = 0. As illustrated in Figure 9.2,
each of the clientsA1, . . . , An sends a message withphone no, k. When the amount
of tuples in the buffer is equal tokmax, i.e., m = max(k1, k2, . . . , km), the server
sends approval messages to thesem mobile phones. An example approval message
can beTs, τ, τmax whereTs denotes the time that the client should continue with
other steps ofclient proc, τ describes how long each client should keep running these
steps, andτmax specifies a time period that will be used in theclient proc to start the
data reportingstage. In reality, the value ofτ reflects the average time period that a
client is active, e.g., the average time span that customers spend at a shopping center.
Without loss of generalityτ is a static threshold value stored at the server. However, it
is possible to implementτ as a dynamic value. For instance, each client can send the
registration request message with an anticipated active time period. Then the server
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can organizek clients into a group if they have similar active time periods and use
the maximal of these time periods asτ for clients of this group.

9.4.3 Trajectory Sampling and Anonymization

At this stage, a set ofk different ID values are generated at the client. To ensure that
the k values are unique among the other ID values generated at different instances
of the clients, in the functiongenhashID (line 3 of client proc), the Secure Hash
Algorithm (SHA) [88] is used to generate the ID values. The input to the SHA
function is a combination of the phone numberphone no and the current timestamp.
If the input values are unique, based on the properties of the SHA functions, the
generated hash values are also unique among all instances of the clients. Although
recent research [99] has found an attack in which two separate messages could be
found that deliver the same SHA–1 hash using269 operations, stronger versions of
SHA, such as SHA–256 and SHA–512, can be used to further improve thesecurity
of the hash function.

Take client A in Figure 9.1 as an example. Suppose thesek ID values generated
at client A areid1, id2, . . . , idk. Client A randomly decides one of thesek values as
the ID value of the collected trajectory. In thesampleanonymizefunction started at
the trajectory sampling and anonymizationstage (line 5 ofclient proc), without loss
of generality,id1 is used for the collected trajectory, denoted byS1, and the other ID
values are used for the synthetic trajectoriesS2, . . . , Sk. This function collects the
trajectory of the client and adds synthetic trajectories for anonymizing the collected
data. The pseudo code is listed in the following.

(1) proceduresampleanonymize({id1, . . . , idk}, k, α, λ, C)
(2) S1 ←sampletrajectory()
(3) S2, . . . , Sk ← gen trajectory(k, α, C)
(4) at everyλ interval:
(5) for eachSi, i = 1, . . . , k
(6) S′

i ←get piece(Si, now() − λ, now())
(7) n1 ← 2z; n2, . . . , nk ← 2z + 1 : z ∈ Z

+

(8) add(id1, S
′
1), . . . , (idk, S

′
k) to DB

(9) return DB

In this algorithm, while the trajectory dataS1 is being sampled by thesampletrajectory
function (line 2), client A also generatesn−1 synthetic trajectoriesS2, . . . , Sk (func-
tion gen trajectory in line 3). Thesampletrajectory function collects the actual lo-
cations at every unit time instance. Then, at every time intervalλ, client A applies
theget piecefunction on the trajectoriesS1, . . . , Sk and gets the trajectories pieces
for time [now() − λ, now()). The intervalλ is one or more time units and function
now() gives the current unit time instance.
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Figure 9.3: Theget pieceFunction.

As illustrated in Figure 9.3, theget piecefunction cuts the pieces during time
interval[now()−λ, now()) on each of the three trajectoriesS1, S2, S3. The trajectory
pieces between(p1, q1), (p2, q2), (p3, q3) are denoted byS′

1, S′
2, S′

3. Tuples(id1, S
′
1),

(id2, S
′
2), (id3, S

′
3) are added toDB (line 8). The tuple(id1, S

′
1), whereid1 is the ID

value of the actual trajectoryS1 andS′
1 is obtained fromS1, is called thereal data

item. The other data items(id2, S
′
2), . . . , (idk, S

′
k), are calledcloaking data items.

To distinguish the real data item among all the data items, the client generates
an even number of copies of the real data item and an odd numbers of copies of the
cloaking items. The idea of having copy amounts of the data items with different
parity is to hide the real data items in exchanges between clients, but to be able to
identify them at the server. Specifically, given an instance ofk data items, one with
an even andk − 1 with an odd number of copies, it is impossible for a client holding
some, but not necessarily all, copies of a data item to decide whether the dataitem
is real or cloaked. Accordingly, on line 7, one even (n1) andk − 1 odd(n2, . . . , nk)
copy amounts are calculated; each valueni determines the number of copies of a data
item (idi, S

′
i). Finally, copies of the data items(id1, S

′
1), . . . , (idk, S

′
k) are added to

the trajectory databaseDB (line 8).
In thegen trajectory function, synthetic trajectoriesS2, . . . , Sk are generated in

two steps, i.e., generating locations at the current time instance and generating lo-
cations at the next time instance. Suppose the collected location inS1 at the first
time instance is(x1, y1) in the 2D space. As illustrated in Figure 9.4(a), two line–
sweeping processes are running at both the X and Y axes. Each process randomly
chooses an X or Y value outside the interval[x1 − √

α, x1 +
√

α] on the X axis
or [y1 − √

α, y1 +
√

α] on the Y axis. The intersection of the two sweeping lines,
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Figure 9.4: Generating the First Locations.

(x2, y2) is the location of the first synthetic trajectoryS2 at the first time instance.
First, locations of the other synthetic trajectories are generated in the same way. As
illustrated in Figure 9.4(b),(x3, y3) is the first location ofS3 wherex3 is outside the
interval [x1 −

√
α, x1 +

√
α] ∪ [x2 −

√
α, x2 +

√
α] on X axis andy3 is outside the

interval[y1−
√

α, y1+
√

α]∪ [y2−
√

α, y2+
√

α] on y axis. Based on the description,
the following Lemma 1 holds for the first set of generated locations.

Lemma 1 If (x1, y1) is the actual location and(x2, y2), . . . , (xk, yk) are generated in
the described way then: ∀(xi, yi), (xj , yj), i, j = 1, . . . , k, i 6= j :
AREA(MBR((xi, yi), (xj , yj))) > α.

The next locations ofS2, . . . , Sk are generated in the following way. When the
next location(x′

1, y
′
1) of the actual trajectoryS1 is sampled, two line sweeping pro-

cesses on the X and Y axes are started to generate the next locations ofS2, . . . , Sk.
As illustrated in Figure 9.5, to generate the next location ofS2, the sweeping lines
start fromx2 andy2 on the X and Y axes and find valuesx′

2, y
′
2 on the two axes

that are outside the intervals[x′
1 − √

α, x′
1 +

√
α] and [y′1 − √

α, y′1 +
√

α]. The
selectedx′

2 andy′2 values are kept as close tox2 andy2 as possible, i.e.,|x′
2 − x2| ≤

ξx × |x′
1 − x1|, |y′2 − y2| ≤ ξy × |y′1 − y1|. The valuesξx, ξy are tuned incrementally

to decide thex′
2 andy′2 values. The rationale of this incremental process is to keep

the speed vector of the generated trajectory as similar to the actual speed aspossi-
ble. The next locations(x′

3, y
′
3), . . . , (x

′
k, y

′
k) of S3, . . . , Sk are generated in the same

way. Similar to the first locations of the trajectories, the synthetic next locationshold
for the following Lemma 2.



9.4 Solution 163

����
����
����
����

����
����
����
����

1

(x  , y  )2 2
(x’ , y’ )22

(x  , y  )3 3

(x  , y  )1 1

(x’ , y’ )33

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

y

(x’ , y’ )

x

1

Figure 9.5: Generating the Next Locations of Synthetic Trajectories.

Lemma 2 Assume the second locations(x′
1, y

′
1), . . . , (x

′
k, y

′
k) of each trajectory

S1, . . . , Sk where(x′
1, y

′
1) is the actual location and(x′

2, y
′
2), . . . , (x

′
k, y

′
k) are gen-

erated in the described way, then:∀(x′
i, y

′
i), (x

′
j , y

′
j), i, j = 1, . . . , k, i 6= j such that:

AREA(MBR((x′
i, y

′
i), (x

′
j , y

′
j))) > α.

Following the same way, subsequent locations of the synthetic trajectories are gen-
erated. Based on Lemma 2, the area size of the MBR on every two locations of
trajectoriesS1, . . . , Sk at the same time instance is greater thanα. With Lemmas 1
and 2, the area size of the MBR on all the trajectoriesS1, . . . , Sk is greater thanα.
When the functionget pieceexecutes on the trajectoriesS1, . . . , Sk, the collected
trajectories piecesS′

1, . . . , S
′
2 satisfy the following lemma.

Lemma 3 Assume the data items(id1, S
′
1), . . . , (idk, S

′
k) are generated by function

get piece, then the area sizes for all of the MBRs of the trajectory piecesS′
1, . . . , S

′
k

is greater thanα and for any two trajectory piecesS′
i, S

′
j , i, j = 1, . . . , k, i 6= j, the

area size AREA(MBR(S′
i, S

′
j)) > α.

Based on Lemma 3, when the data items are added to the trajectory databaseDB, the
MBR of all the trajectory pieces has an area size bigger thanα. Since there are at
leastk data items in theDB and these data items havek different ID values, all the
data items atDB preservek–anonymityas well asα–diversitywhen a new group of
data items are added toDB.
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Figure 9.6: Trajectory DatabaseDB with Collected / Generated Items.

An example trajectory databaseDB is illustrated in Figure 9.6. Each tuple in
DB records the ID value, the partial data item (trajectory piece), and the amount of
copies of this item. Figure 9.6 shows the state ofDB for a client that since theclient
registrationstep has, in sixtrajectory sampling and anonymizationsteps, added six
sets ofk data items (with 2 and 3 copies) to itsDB. The most recently added data
items are(id1, S

6
1), (id2, S

6
2), . . . , (idk, S

6
k). Figure 9.6 shows only a logical view of

DB, in reality, the items inDB are stored in two priority queues to support efficient
trajectory exchange, (described in detail in Section 9.4.4).

9.4.4 Trajectory Exchange

When the trajectory sampling and anonymization step has been started and the tra-
jectory databaseDB has more thank data items, theclient proc process begins the
trajectory exchangestep to exchange its trajectory data inDB with other peers in the
P2P network. Theexchangefunction is activated in two cases. The first is when a
client is in the stage of exchanging data with other peers (line 6 ofclient proc). In
this case, the exchange is mutual, i.e., both ends send and receive data. The second
is when a client has reached the end of the periodτ specified by the server (line 2 of
client proc). As seen in lines 10–11 ofclient proc, when at leastk peers are avail-
able for accepting trajectory data (found through the functionnumof peers(k)), the
client pushes all the trajectory data to these peers and does not accept any data sent
from other peers. During the execution ofexchange, the current client finds other
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clients running the same function and exchanges the trajectory data from its database
DB. The parameterstateof function exchangespecifies whether the current client
wants mutual data exchange (state = TRUE ) or to only push data to other peers
(state = FALSE ). The pseudo code ofexchangeis listed bellow.

(1) procedureexchange(k,DB , state)
(2) p1, . . . , pm ←find peers(k)
(3) for eachpi, i = 1, . . . , m
(4) DB in,DBout ← ∅
(5) t ←get state(pi)
(6) if t = TRUE

(7) DBout ←pick items(k,DB)
(8) DB←DB\DBout

(9) send(pi,DBout)
(10) if state = TRUE

(11) get(pi,DB in) // DB in : {di′1, . . . , di′ki
}

(12) else:get(pi,DB in)
(13) DB← DB ∪ DB in

(14) return

The algorithm first searches for peers from the P2P network (line 2). Then, the
client starts a while–loop to communicate with each of the peers (lines 3–14). When
a peerpi is connected, the algorithm first readspi’s state (line 5), i.e., whetherpi

wants mutual exchange or only wants to push its data to other peers. Ifpi wants
mutual exchange, the current client selectsk items fromDB, puts the items into a set
DBout, and uses functionsend to send the data to peerpi (lines 7–9). If the current
client wants mutual exchange, the functionget is called to accept data frompi (sent
by thesend function atpi) to a local setDB in (lines 10–12). Ifpi only wants to
push its data to the current client, the functionget is also called to accept the data to
DB in (line 13). Finally, the data items inDBout are removed fromDB (line 8) and
the fresh items frompi are read intoDB (line 14).

The functionfind peers(k) finds nearby mobile clients in the P2P network that
have at leastk clients in their respective vicinities. To protect a client from sending
too much data to a single and perhaps malicious peer, the function uses a small FIFO
buffer that keeps a list of the recently–contacted peers and avoids sending too much
data to these peers.

The functionpick items is used for pickingk partial data items from the tra-
jectory database. It works as follows. First, it picks two collected/generated items.
Then, it picksk − 2 items that were received in previous exchanges. To ensure that
there are always at least two collected/generated items to pick from, when thenumber
of such items is very small, extra copies of them are generated without alteringthe
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Figure 9.7: State ofDB After Several Exchanges.

parities, i.e., always an even number of extra copies are generated. If there are not
enough previously exchanged items to pick from, the function picks the remaining
items from the collected/generated items. All of the items are picked in order of age
and number of copies, i.e. the oldest item with the most number of copies first; ties
are broken at random. All of the picked items have different ID values. When an
item is picked, the corresponding copy amount of the item is reduced in the trajec-
tory databaseDB. For each item inDB, if the copy amount is reduced to 0, the item
is erased fromDB.

A concrete example of the item selection is shown in Figure 9.7. Since the six
initial trajectory sampling and anonymizationsteps, the client has performed several
exchange steps in which it receivedm data items with IDsidk+1′ , . . . , idk+m′ , and
sent all copies of some of its collected/generated items, f.ex.,(id1, S

1
1), shown in

shaded cells. According to “the oldest with the most copies” selection criteria, the
pick items function picks two collected/generated items(id2, S

2
2), (idk, S

3
k) and two

previously exchanged items(idk+1′ , S
1
k+1′), (idk+2′ , S

3
k+2′) for exchange. The copy

amounts of the selected items are only updated after the items have been successfully
exchanged.

The above selection can be easily accommodated by storing the collected/generat-
ed and previously exchanged items in two priority queuesPQcg andPQex , respec-
tively. Items are prioritized according to their age and copy amount (oldestwith most
copies first) in their respective queues. The queues support the following four oper-
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ations: insert, delete, increase/decreasethe priority of an element, andpeekat the
top k elements. Using a Fibonacci heap implementation, most of the operation can
be supported in amortized constant time (deletions are still O(log n)) [16]. Using the
queue operations, thepick items function can be implemented as follows.Peekat
the top 2 elements ofPQcg , and the topk − 2 elements ofPQex ; consider the items
in these elements for exchange. After a successful exchange of the items, depending
on the copy amount of the exchanged items prior to the exchange, eitherdecreasethe
priority of an element based on the updated copy amount, ordeletethe item from the
queue if the last copy has been exchanged.

A number of aspects of the selection process performed by thepick items func-
tion is important to emphasize. First, the items picked by thepick items function
havek different ID values and the MBR of at least two items has an area size larger
thanα. Hence, the items picked for exchange satisfyk–α–anonymity.Second, the
selected collected/generated items are the oldest amongst all such items and corre-
spond to trajectory pieces from the past. Hence, the trajectory pieces described by
these items are spatially disconnected from the location where the exchange istaking
place, which prevents a malicious client from making inferences based on such a con-
nection. Third, the selection process ensures that the oldest items are exchanged first
and that the distribution of the number of remaining items for different IDs is asclose
to uniform as possible. These latter aspects are important for reaching / maintaining
anonymity state, which is defined next.

When theexchangeprocess has been started for a while, and the client has re-
ceived data items form ≫ k ID values from other clients, identification of the actual
trajectory of the client becomes less trivial. Nonetheless, if the entireDB was re-
ported to the server, the server, based on the number of data items for each ID, could
with high probability associate a set ofk IDs with the client. Later, during thedata
summarizationstage, the server could identify the actual trajectory of the client by fil-
tering out synthetic trajectories. To study when a part ofDB is k–anonymoustowards
the server, theanonymity stateof a subset of data items is defined as follows.

Definition 12 (Anonymity state) A given subsetS of the data at a clientc is in
anonymity stateif there are at leastk − 1 IDs from other clients and the distribu-
tion of the number of partial data items for the different IDs is statistically equalto
the uniform distribution according to the Kolmogorov–Smirnov One–Sample testfor
a given critical valueαKS

1.

1The Kolmogorov–Smirnov One–Sample (KS–1) test is a goodness–of–fit test between an empirical
distributione and a known distributionu [71]. According to the KS–1 test the null hypothesis,e not
being significantly different fromu, can be rejected at a confidence levelp = 0.05 if the maximum
absolute difference between the cumulative distribution ofe andu is larger than a critical valueαKS =

1.36/
√

n for a sample size ofn > 35.
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The subsetS in practice contains collected/generated items ranging from the oldest
until the most recent collected/generated item that can be included while still main-
taining anonymity state. The exchanged items in the subsetS span a time period that
includes the time period that is spanned by the collected/generated items in the sub-
set. The largest possible subset of the data in anonymity state is called themaximal
anonymity set. In Figure 9.7, items in cells with think borders comprise the maximal
anonymity set .

Given the way items are picked for exchange, the way FIFO buffers areem-
ployed at each client to avoid sending data too many times to the same client, and
the likelihood of re–encountering the same client, the likelihood of receiving several
data items for the same ID is very low. Hence, for practical purposes, the entire
trajectory databaseDB of client c is in anonymity state if it contains at leastk − 1
items from other clients, and it contains on average at most one data item for each
of c’s IDs. To achieve anonymity state, a client has to exchange most of its col-
lected/generated data items. There areni ∈ {2z, 2z + 1} : z ∈ Z

+ copies ofk data
items collected/generated per sampling (λ) period. Since in one exchange process,
with the exception of the initial conditions, two of these items are selected for ex-
change,⌈k × ni/2⌉ exchanges are necessary to send all of the client’s own data to
peers. Assume that the client’s entireDB was in anonymity state at timeta, and no
data exchange occurred up to timetnow = ta+n∗λ. Then, the client needs to partici-
pate in at least⌈n×k×ni/2⌉ exchanges during the period[ta+n×λ, ta+(n+1)×λ)
for its entireDB to be in anonymity state again. Assuming the number of possible
exchanges a client can perform is uniform over time, a client is said tomaintain
anonymity state if it participates, on average, in at least⌈k × ni/2⌉ exchanges per
sampling period. In a concrete example, if the client collects/generates 2 and3 copies
of k = 5 items per sampling period, the client maintains anonymity state if it partici-
pates, on average, in at least⌈5 × 3/2⌉ = 8 exchanges per sampling period.

Based on the above discussion, anonymity state may not be achieved if the client
does not have a good amount of data exchange with peers. The empiricalstudy in
Section 9.6 investigates under what conditions and privacy settings the amount of
data exchanges performed by clients is sufficient for clients to reach andmaintain
anonymity state.

9.4.5 Data Reporting

Thedata reportingstep is activated in two cases. First, when theclient proc process
is in the periodτ , and the size of the trajectory databaseDB is close to the storage
limit or the DB has partial data items that are too old (line 8 ofclient proc). Second,
when a client has reached the end of the periodτ , in which case the client can either
send out its data via exchange processes to other peers in the P2P network or continue
with thedata reportingstep.
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The report function is started at thedata reportingstep. If thereport function
is invoked in the first case, it sends all of the data items obtained from other peers
to the server and keeps the other data items. If thereport function is invoked in the
second case, it sends the maximal anonymity set to the server and erases rest of the
(collected/generated) data items at the client.

By erasing some of the most recently collected/generated data items, the recent
pieces of a trajectory are lost. To reduce the extent of this loss before it occurs, the
client can dynamically, depending on the current time and the end of the period τ , in
thetrajectory exchangestep increase the number of collected/generated data items in
the set ofk items that are selected for exchange. The empirical evaluations in Sec-
tion 9.6 show that, even without clients performing the above outlined loss reduction
strategy, the loss is negligible. Ultimately, the loss can also be entirely eliminated,
if the client at the end of the periodτ saves the remaining collected/generated items
and restarts theclient proc at theclients registrationstage. Since the saved items
are the oldest items amongst the newly collected/generated data items, they will be
selected first by thepick items function in future exchanges. Hence, the probability
that the client re–reports items for one or more of its previous IDs in the nextdata
reporting stage, thereby sacrificing its privacy towards the server, isvery low. To
completely eliminate the above probability the client can optionally flag the saved
items and ensure that no flagged items are reported to the server. This flagging tech-
nique effectively trades a slim probability for the loss of privacy againsta negligible
loss in the trajectory.

In the very unlikely event when a clientc is not able to perform a single ex-
change within theτ period, and hence has an empty maximal anonymity set, the
entire trajectory of a client is erased and not reported to the server. Even in this case
thek–anonymityof the otherk − 1 clients started at the same time asc will not be
changed. Specifically, if there is only one client that reports data and the otherk − 1
clients erase their collected/generated data, the server still does not knowwho this
trajectory refers to among thek clients.

9.4.6 Data Summarization

Thedata summarizationstep starts theserversumprocess. This process keeps run-
ning to collect data from clients and summarizes the data into trajectories. Specif-
ically, when the server receives data from clients, theserversumprocess maintains
a temporary tablethat arranges the received partial data items into groups based on
the ID values of the items. As illustrated in Figure 9.8, thetemporary tableputs all
partial data items with the same ID values under the same row .

Theserversumprocess also records the timestamps when the first data item of
each column is received (t1, t2, t3, . . . in Figure 9.8. These timestamps are used to
determine when the items under each ID value have been fully received. Specifically,
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Figure 9.8: Data Summarization.

suppose the first data item of a column in the summarization table is received at time
t1. Then theserversumprocesses waits for a2τmax time period to wait for the rest
of the data items of the same ID value to be sent from the clients. Since data items
older thanτmax at every client are required to be sent to the server, all the data items
of the column should have been received after a2τmax time period sincet1. After
this period, theserversumprocess checks the amounts of copies of the data items in
each group. If the parities of the amounts in a group are odd, the group is removed as
it represents cloaking data items. If the parities in the group are even, the trajectory
pieces in this group are merged into a whole trajectory based on the timestamps of
the trajectory pieces. Finally, as illustrated in Figure 9.8, the actual trajectories are
recorded in asummary tableand saved at the server database.

It is possible that not all copies of a data item are reported to the server. For
example the missing copies could be part of the loss described in Section 9.4.5.The
copies could also be missing because a malicious client deliberately deleted or altered
the copies. In these cases, checking the parity of the amount of copies ofa single data
item alone would be misleading. Hence, instead of performing parity checks of copy
amounts of individual data items, a check for the majority parity of copy amounts
within a group is performed.
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9.4.7 Neighborhood Detection in P2P Networks

The functionfind peers(k), on line 2 of theexchangefunction, finds nearby mobile
clients in the P2P network that have at leastk clients in their respective vicinities. It
is executed in order to ensure that exchanges satisfy the second condition of thek–
anonymitydefinition (Definition 9). In a trusted P2P environment, where clients can
be trusted, thefind peers(k)–query can be answered in a straight forward fashion, i.e.,
the client asks its neighbors about their neighbors and decides based onthe answers.
In an untrusted P2P environment, where potentially malicious clients might try to lie
about their neighbors, answers from individual peers can still be verified based on
the totality of the answers as follows. First, the acquiring clientci asks its neighbors
Cn = {cl, . . . , cm} for their neighbors’ IDsIn = {Il, . . . , Im}. Then, clientci

summarizes the ID sets,In, and retains the IDs,Iv, that are present in more than
min verif cnt number of ID sets. Assuming that there are at mostmin verif cnt −
1 malicious andcooperatingclients among the clientsCn, theverifiable IDs of an
ID setIj ∈ In areIj ∩ Iv. Consequently, a clientcj ∈ Cn is part of the answer set
to theverified findpeers(k)–query if |Ij ∩ Iv| ≥ k. Naturally, if there is very little
overlap between thetrue ID sets, i.e., the size ofIv is very small, then this verification
method will reject answers from non–malicious clients and thereby limit the number
of possible exchanges. However, the fraction of thetrue answers that are rejected by
the proposed verification method turns out to be very small in practice, as is shown
by the experiments in Section 9.6.

9.5 Discussion

The proposed solution aims to collect trajectory data while keeping each mobile
user’s trajectory anonymous among other trajectories. The anonymity settings are
kept in the privacy profile of each client. Due to the big variety of privacythreats, the
possible privacy risks are generalized into three categories: privacyrisk at the server
side, the client side, and in the air. In the following each of these risks is discussed.

9.5.1 Privacy at the Server

In the server side application, in accordance with each set ofkmax mobile users
(kmax is the maximalk value sent by all these users) that start data collection at
the same time, there will be the same or less amount of trajectories returned by the
data summarizationstep. Since the ID values are generated at the client side, it is
impossible to link a moving object with a specific trajectory. Thus, the requirement
of k–anonymityof the clients is preserved at the server side.
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9.5.2 Privacy at Clients

Each client, after starting thetrajectory sampling and anonymizationand thetrajec-
tory exchangesteps, has at leastk (k is defined by its own privacy profile) groups of
data items with different ID values. After a client has achievedanonymity state, the
data items at this client satisfyk–anonymity. Based on Lemma 3, the area size of the
MBR of all the data items inDB can always be kept overα. Thus, the data items at
the client also satisfyα–diversity.

9.5.3 Privacy in the Air

Data is transmitted in the air in two cases. The first is when the data is exchanged
between peers in the P2P network. As described in thetrajectory exchangestep,
each client sendsk data items with different ID values and the area size is kept over
α. Thus, the data transmitted between peers preservesk–α–anonymity. The second
case happens when a client reports the data to the server. Based on the description of
Section 9.4.5, this client sends either only the exchanged data from other peers or the
maximal anonymity set to the server. Thus, the data in the air satisfiesk–anonymity
andα–diversityin this case.

The proposed solution for trajectory collection preserves thek–anonymityin all as-
pects of the data collection process. The solution does not change the actual trajec-
tory data, but usescloaking data itemsto preserve the anonymity, the accuracy of the
original data is guaranteed. Since the server can have more safety protections such as
firewalls and many other softwares to safeguard the data, the clients and thedata be-
ing transmitted are more fragile under various forms of privacy threats. The proposed
solution have further anonymity protection, such asα–diversityandk–α–anonymity,
at the clients and the data in the air. To summarize, the proposed solution preserves
the accuracy of the collected data and achieves anonymity requirements by taking the
advantage of the P2P network to swap and anonymize the data at the clients.

9.6 Empirical Evaluation

The effectiveness of the proposed privacy preserving trajectory collection method
was empirically evaluated for a simulated shopping mall environment. A grid–based
shopping movement simulator was developed to generate realistic movements of
clients in a 177,200m2 large shopping mall with 16 shops. In the simulation, clients
move from a 5×5–meter grid cell to a neighboring grid cell at a speed of 1 m/sec. A
simulation step is 5 seconds long, i.e., a client can only move at most one grid cellin
one simulation step. The movements of clients are random, but obey the following
rules:
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Figure 9.9: Layout of the Shopping Mall with a Sample Shopping Trajectory.

1. A client never crosses a wall.
2. A client at each step picks a random direction obeying rule 1) and preferring

a direction that was the same as its previous direction of movement. This
preference is defined by aheading factor parameter which for higher values
makes clients move more in a straight line. This parameter is different for the
corridor environment and the shop environment, in order to simulate transition
like movement between shops and browsing like movement within shops.

3. A client never visits a shop twice.
4. A client becomes idle with probabilitybrowsing prob inside shops, this essen-

tially slows down the average speed of the client inside a shop.
5. A client, obeying rule 3), is drawn with a certain strength into a shop as it

passes the door of the shop, the strength of this drawing force is controlled by
a parameterentrance factor .

The layout of the shopping mall used in the simulations and a two hour long
sample trajectory of a simulated client is shown in Figure 9.9. In the example shown
and in all of the simulations theheadingf actor was twice as large in the corridor
environment than in the shop environment, and thebrowsingprob parameter was set
to 0.25, resulting in an average speed during browsing that is1/4 of the normal
walking speed.

The effectiveness of the proposed method was evaluated using four measures: 1)
the fraction of clients that reached anonymity state at some point during the simula-
tion period, 2) the fraction of collected/generated data items that are held by clients
responsible for collection/generating them, 3) the number of exchanges performed
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by clients per sampling (λ) period, and 4) the ages of the oldest collected/generated
data items that are held by clients responsible for collection/generating them. Three
groups of 20–minute long simulations were performed varying the number of clients
m, the anonymity parameterk, and the communication ranger in the P2P network.
The sampling period in all of the experiments was fixed atλ = 60 seconds, during
which each client collected/generatedn ∈ {2, 3} copies ofk data items. During
an exchange a client, if possible, sent2 of its oldest collected/generated data items
andk − 2 of its previously received data items. In all the experiments, each client’s
FIFO buffer for recording recently–contacted peers was 10 elements long. The re-
sults of the three groups of experiments are shown in Figures 9.10, 9.11, and 9.12,
respectively.

Figures 9.10(a)–9.10(c) show the four effectiveness measures foranonymity pa-
rameterk = 5 and communication ranger = 10 meters, for varying number of
clients. As the number of clients increases, i.e., the spatial density of clients in-
creases, the average number of exchanges an average client can perform during a
sampling (λ) period also increases, see Figure 9.10(b). Given the particular settings
for k andn, the average number of exchanges a client needs to perform per sampling
period to reach (maintain) anonymity state is about 7.5 (5), which is achieved by
most clients in the case of 2,000 clients. Under these conditions, most of the clients
successfully have managed to exchange most of their old collected/generated data
items and only hold own data items that have been collected/generated in the last few
sampling periods, see Figure 9.10(c). The same results, viewed at a system level, are
shown in Figure 9.10(a), where it can be seen that as the number of clients, i.e., the
spatial density of the clients increases, the fraction of clients that reach, and with a
sufficiently high likelihood, maintain anonymity state during the simulation period
also increases. Similarly, due to the increasing number of exchanges, an increasing
fraction of the total amount of colected/generated data items have been passed onto
other clients and consequently a decreasing fraction of the data items is present in the
system in a less anonymized state, held by the producing client.

Figures 9.11(a)–9.11(c) show the four effectiveness measures foranonymity pa-
rameterk = 5 andm = 1, 000 clients for varying communication ranger. The
results are similar to the previous results. That is, as the communication range is
increased, the number of exchanges increases (Figure 9.11(b)), theages of the oldest
data items held by the producing clients decreases (Figure 9.11(c)), the fraction of the
clients that reach (maintain) anonymity state increases, and the fraction of thetotal
data items that is in a less anonymized state decreases (Figure 9.11(a)). It isimportant
to note that the effects of the communication range parameter are more pronounced
due to the quadratic relationship between the communication range and the number
of exchanges (Figure 9.11(b)).
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Figure 9.10: Efficiency Evaluation for Varying Number of Clients.
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Figure 9.11: Efficiency Evaluation for Varying Communication Ranger.
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Figure 9.12: Efficiency Evaluation for Varyingk–Anonymity.

Figures 9.12(a)–9.12(c) show the four effectiveness measures forcommunication
ranger = 5 meters andm = 2, 000 clients for varying anonymity parameter values
r. Increasing values for anonymity parameter valuek results in decreasing number
of possibilities for exchange and increasing amount of colected/generated data items
to be exchanged. Hence the total effect of these changes affect the effectiveness
measures in an inverse manner to the effects of the parametersm andr.
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Figure 9.13: Fraction offind peers(k) Answers that are Verifiable for Varying Values
of k andmin verif cnt .

In all of the so far presented experimental results, thefind peers(k)–queries were
executed assuming that there are no malicious clients. As proposed in Section9.4.7,
with a rather simple method the answers to thefind peers(k)–queries can easily
be verified by the clients even in case of multiple and potentially cooperating ma-
licious clients. To determine the effectiveness of the proposed verificationmethod,
500 uniform random points were generated in the unit square, representing locations
of clients, and the true versus verifiable answer sets tofind peers(k)–queries have
been compared for all the points for varyingk andmin verif cnt parameters and a
fixed communication range ofr = 0.1. To eliminate the effects of randomness, the
measurements are based on 100 independent test runs. The results of these exper-
iments are shown in Figure 9.13. The trends in the results are as expected, i.e., as
the values of thek andmin verif cnt parameters increase the fraction of answers
that are verifiable using the proposed method decreases. However, it isinteresting to
see that for rather high values ofk andmin verif cnt the fraction is relatively high.
In particular, assuming there is at most one malicious client near the client issuing
thefind peers(k)–query, the client can verify over 90% of the answers even in the
case of largek parameter values. Consequently, using the proposed verification me-
thod, even in an untrusted environment clients can perform most of the exchanges
and hence reach and maintain anonymity state.

In summary, the experimental results show that the proposed privacy preserving
trajectory collection method is effective, i.e., under reasonable conditions (m, r) and
for anonymity parameter values (k), clients are able to perform exchanges frequently
enough, so that within a short period of time (1 - 5 minutes) most clients are in
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anonymity state and only a small fraction of the data items is in a less anonymized
state, held by the producing client.

9.7 Conclusions and Future Work

The paper considered the problem of collecting trajectories of moving objects in a
privacy–preserving manner. As a premiss for studying the problem, the paper first
adapted and combined previously proposed general data privacy definitions to derive
definitions for location privacy. The derived location privacy definitions in increas-
ing strength are:k–anonymity, α–diversity(requiring spatial diversity), andk–α–
anonymityof location data. To solve the problem, the paper proposed a complete
system for thelossless, privacy–preserving collection ofexacttrajectories of moving
objects. The proposed system is based on a client–server architecture and the collec-
tion process can be summarized into five stages, namely: 1)client registration, 2) tra-
jectory sampling and anonymization, 3) trajectory exchange, 4) data reporting, and
5) data summarization. The proposed system does not require trusted components,
yet it guarantees at leastk–anonymityin all stages of the collection process. The
proposed system isscalableas the process of anonymization is performed in a dis-
tributed fashion by clients interacting via an assumed wireless P2P network. Finally,
through an extensive empirical evaluation, the paper demonstrated that theproposed
system is effective under reasonable conditions and privacy/anonymitysettings.

Future work will be along four paths. First, different kinds of system architec-
tures will be considered. For example, as is common in wireless P2P network re-
search [100], the addition of hotspots to the P2P network will be considered. These
hotspots will further reduce the chance of isolated clients and could potentially be
used to distribute theclient registrationanddata summarizationstages. Second, fu-
ture work will consider the implementation of a full system and the large–scale real–
world deployment of the system. Third, satisfying thek–anonymityof exchanges
even in the presence of malicious clients is essential to the proposed system. Initial
experiments indicate that the proposed method to verifyfind peers(k)–query results
in a P2P network is effective. Nonetheless, it is only one possible solution toan-
swer the query in a P2P network with malicious clients. Future work will consider
other methods that guarantee even higher accuracy or security. Finally,a theoretical
line of work will consider 1) proving the robustness of the system, and 2) finding a
theoretical model of the system performance in relation to privacy protection.





Chapter 10

Summary

Several hardware trends in mobile technology, in particular the increasingavailability
and accuracy of mobile position technologies, pave the road for LBSes. Innovative
LBSes integrate knowledge about the mobile user into the service. Much knowledge
can be gained about users by analyzing the location data of users. To thisextent,
this thesis 1) devised effective spatio–temporal data mining methods for the desired
analysis, 2) demonstrated the usefulness of the spatio–temporal data mining methods
in promising LBS examples, and 3) devised privacy–preserving systems for trajectory
collection and analysis.

10.1 Summary of Conclusions

The conclusions from Chapters 2 to 9 are the following. Chapter 2 proposed pivoting
as a general methodology to extend a popular data mining method, namely rule min-
ing. By considering a number of different types of data sources, the chapter derived
a taxonomy of spatio–temporal data and investigated the types of knowledge that can
be extracted using the extended spatio–temporal rule mining method.

Chapter 4 used pivoting to extend a frequent itemset mining method to find long
sharable routes in trajectories. Considering different modelling options for trajec-
tories led to the development of two variants of the method that can analyze large
amounts of trajectories. High–level SQL–based implementations are described, and
extensive experiments on both real–life- and large–scale synthetic data show the ef-
fectiveness of the method and its variants. The knowledge that the method and its
variants can discover are believed to be useful for traffic planning andoptimization
and LBSes in the transportation domain.

Since real–world data sets about large populations of moving objects are difficult
to obtain, to aid the development in spatio–temporal data management and analysis,
Chapter 3 developed ST–ACTS, a Spatio–Temporal ACTivity Simulator. By using a
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number of real–world data sources and intuitive principles, ST–ACTS models some
of the so far neglected social and geo–demographical aspects of mobility.Experi-
mental results showed that ST–ACTS is able to effectively generate realisticspatio–
temporal activities of a large population.

Some LBSes only make sense or are most effective if spatio–temporally closeby
service requests are served in a group. Chapter 5 presented one example of such an
LBS, namely a cab–sharing service. To provide an effective service the chapter pro-
posed an algorithm for grouping closeby cab requests into a cab–shareto minimize
the total transportation cost, or equivalently maximize the savings. The algorithm
was expressed as a sequence of simple SQL statements. Experiments basedon sim-
ulated request data demonstrated that the proposed algorithm can effectively group
together requests and thereby achieve significant savings.

In Chapter 6, the grouping algorithm was suggested as a generic building block
to optimize large–scale collective transportation systems. To scale the algorithmto a
large request stream, it was expressed as a continuous query in a Data Stream Man-
agement System (DSMS), the problem was sub–divided through static andadaptive
spatial stream partitioning methods, and the computation was parallelized using the
partitioning methods and the facilities of the DSMS. Experimental results showed
that using the adaptive partitioning methods, the parallel implementations execute
several orders of magnitude faster, yet achieve almost the same quality ofgrouping
as their serial equivalent.

Location–Based Advertising (LBA), i.e., deliveringrelevantcommercial infor-
mation to mobile consumers, is regarded by many as one of the most lucrative busi-
ness opportunities in LBSes. In order to give an indicator for the magnitudeof this
opportunity, in Chapter 7 an LBA framework and database was developedand used
to estimate the capacity of the LBA channel. The proposed framework modelsrele-
vanceas a function of theproximityof the consumer to the service/product and the
interestof the consumer. Two interest cases were considered:explicit and implicit.
The chapter outlined several data mining techniques to infer the latter implicit inter-
est. Experimental results showed that the channel capacity is indeed extremely large,
which not only supports a business case, but also indicates the necessityof adequate
user controls.

Whenever data about users is collected and analyzed, privacy naturally becomes
a concern. To eliminate this concern, Chapter 8 proposed a grid–based framework to
anonymize, collect, and analyze location data. Since the proposed anonymization is
through spatio–temporal generalization, i.e., the locations of users can be narrowed
down to sub–regions with a certain probability only, the analysis results are also
probabilistic. To demonstrate the analysis component of the framework, the core
data mining task offinding dense spatio–temporal regionswas implemented. Experi-
mental evaluations compared the results of the privacy–preserving mining method to
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its non–privacy–preserving equivalent, and found that the privacy–preserving mining
method can find most of the patterns.

To entirely eliminate the uncertainty in the mining results, Chapter 9 presented
a system for the privacy–preserving collection ofexacttrajectories. The system is
composed of an untrusted server and clients communication via a P2P network. Lo-
cation data is anonymized by the clients through data cloaking and data swapping
techniques. Experimental results based on simulated movements of mobile users
demonstrated that the proposed system is effective under reasonable conditions and
anonymity/privacy settings.

In summary, Chapters 2 through 9 demonstrated that common data mining meth-
ods can be effectively extended to the spatio–temporal domain. The usefulness of the
knowledge that the extended data mining methods can extract was demonstrated in
two promising LBSes: cab/ride–sharing service and location–based advertising. Fi-
nally, to eliminate privacy concerns, systems were proposed for the privacy–preserving
collection and analysis of location data. Thus, the thesis has shown that common
data mining methods can be effectively extended to the spatio–temporal domain to
discover useful knowledge for LBSes in a privacy–preserving manner.

10.2 Summary of Research Directions

Several directions for future work remain. As Chapter 2 demonstrated, pivoting is a
general methodology that can extend rule mining methods to discover usefulspatio–
temporal rules. Spatio–temporally restricted rule mining was proposed to speed up
the mining process by processing meaningful spatio–temporal subregionsin isola-
tion. Devising an automatic or semi–automatic system to determine these subregions
is believed to be an interesting research direction.

As Chapter 4 demonstrated, spatio–temporal generalization is an effectiveme-
thod to discretize the spatio–temporal domain. Frequent itemset mining methods can
effectively discover patterns in sets of generalized spatio–temporal items.Such a
methodology however does have some shortcomings. First, closeby locationmea-
surements may fall in neighboring, butdifferentspatio–temporal regions. This re-
duces the support of some patterns and potentially eliminate their discovery. As
suggested in Chapter 4, road network based spatio–temporal generalizations is one
approach to overcome this problem. In situations where the movements of objects is
not confined to a road network, future work could consider the multi–grid approach,
outlined in Chapter 8, as a way of reducing or eliminating the pattern support loss.
Second, frequent itemset mining methods treat two spatio–temporally generalized
items irrespective of their spatio–temporal proximity. As a consequence, mining re-
sults will likely contain several spatio–temporally very similar patterns, which could
be represented by a single pattern. While post–analysis can aggregate thesimilar pat-
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terns, it is not an optimal approach as considering spatio–temporal item–proximity
during the mining can speed up the mining process and eliminate some of the pat-
tern support loss. Hence, devising effective frequent itemset mining methods that
consider spatio–temporal item–proximity is believed to be an interesting future re-
search direction. Mining based on dimensional hierarchies could be helpful to deter-
mine spatio–temporal item–proximity. The hybrid method to discover long, sharable
routes in trajectories was demonstrated to be an effective trajectory analysis tool.
However, as it was demonstrated on simple examples, due to the hybrid modelling
of trajectories the method might not discover all patterns, or due to the approximated
trajectories might discover false patterns. Evaluating the accuracy of the hybrid me-
thod is considered to be a valuable extension to the results of Chapter 4.

The simulator in Chapter 3 models only some of the physical aspects of mobil-
ity. Integrating the output of ST–ACTS as an input to a sophisticated network–based
moving object simulator is believed to yield synthetic data sets that could aid the de-
velopment in telematics, intelligent transportation systems, and location–based ser-
vices. Furthermore, the modelling capabilities of ST–ACTS can be extended togen-
erate even more realistic activities of users. Some possible extensions are as follows.
First, given the available real–world data sets, ST–ACTS models activities in terms of
daily activity probabilities and spatio–temporal activity constraints. While this mod-
elling approach allows ST–ACTS to generate data with spatio–temporal activitydis-
tributions that correspond to the probabilities and obey the constraints, the generated
activity sequences only exhibit limited temporal regularities. Extending ST–ACTS
to model such temporalsequentialregularities, for example through hidden Markov
models or sequential patterns, is believed to be a useful extension to ST–ACTS. Sec-
ond, since daily activity probabilities are derived for conzoomR© types, i.e., groups
of simulated persons, personal preferences are not modelled. Since data mining can
be applied to personalize LBSes, modelling personal preferences is believed to be a
useful extension to ST–ACTS.

Chapters 5 and 6 considered the vehicle–sharing problem and proposed a generic
trip grouping algorithm and implementations that can be applied to optimize col-
lective, door–to–door transportation systems. The proposed trip grouping algorithm
uses a number of heuristic and approximation to derive near–optimal solutions to
the vehicle–sharing problem. Devising new heuristic–based algorithms or applying
common optimization methods (clustering, genetic algorithms) to derive even closer
to optimal solutions is believed to be an interesting direction for research. Mainly to
preserve clarity, the proposed trip grouping algorithm was presented in itssimplest
form, however the following improvements could be considered in a more complex
version. First, the current equal–share cost model could be altered to take into ac-
count the costs of the shared trip parts versus the costs of “detours”. Second, the
basic algorithm could be altered to accommodate for individually defined passenger
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capacities of vehicles and minimum savings of requests. Third, the basic algorithm
could be altered to handle in–route grouping, i.e., assigning requests to already active
but not fully–occupied vehicle–shares. Finally, the grouping algorithm when applied
to facilitate a real–world application should perform the optimizations based on road
network distances.

In Chapter 6, parallelization through spatial partitioning of the request stream was
an effective method to scale the computationally intensive trip grouping algorithm.
In general, parallelization through spatial partitioning of streams, especiallythrough
density–based spatial partitioning, is believed to be an effective method to scale up
computationally demanding spatial analysis tasks. Hence, implementing density–
based spatial partitioning methods and testing their effectiveness is believedto be a
interesting future research direction.

The LBA framework and database, proposed in Chapter 7, models implicit rel-
evance through a simple scoring model which is based on a consumer segmentation
that divides users into 29 different consumer groups. However, in real life, no two
users’ interests areexactlythe same. Hence, altering the scoring model to include
thepersonal interestsof the individual mobile user, which are derived from his/her
historical behavior, would allow targeting the individual user with even morerelevant
andpersonalizedmobile ads. As outlined in the chapter, such personal interests can
easily be captured by analyzing for example the type of businesses the user has previ-
ously visited or the user’s reactions to previously received mobile ads. Toevaluate the
effects of personal interest scoring, the simulations of mobile user movements have to
model personal interests and the possible influence of mobile ads on the future move-
ments of mobile users. Hence, a full, bi–directional integration of ST–ACTS and the
LBA framework is believed to be a fruitful research direction. Such an integration
would allow to evaluate the accuracy of several different scoring models.

Chapter 8 proposed a grid–based framework to anonymize, collect, and analyze
location data. The framework can be extended in a number of ways. First, addi-
tional grid–based anonymization policies can be devised. Second, the datamining
component of the framework can be extended to include other, more complexdata
mining tasks. Finally, the multi–grid approach outlined in the chapter would have the
following advantages. First, it would reduce or eliminate the boundary effects due to
spatio–temporal generalization. Second, it would increase the spatio–temporal res-
olution of patterns while guaranteeing the same privacy to the users as the current
single–grid based anonymization framework. Extending the framework in any of the
above ways are believed to be interesting future research directions.

While Chapter 9 proposed a complete system for the privacy–preservingcollec-
tion of exacttrajectories, several future directions remain. First, different kinds of
system architectures could be considered, for example a P2P network withhotspots.
Second, the implementation and the large–scale real–world deployment of a full sys-
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tem could be considered. Third, devising effective methods for neighborhood de-
tection in untrusted P2P network could be considered. Finally, the proposed system
could be theoretically evaluated from the point of view of robustness and system
performance in relation to privacy protection.

Based on the findings of and the topics investigated by the thesis, the following
are high–level ideas for future research directions. Spatio–temporal generalization
is an effective way to discretize the spatio–temporal domain, which in turn canbe
analyzed by common data mining techniques. A major drawback of the approach
is the pattern support loss due to boundary effects. Addressing this shortcoming of
the approach, through for example a multi–grid approach, or multi–level miningof
dimensional hierarchies, are believed to be two promising future researchdirections.

The thesis mainly considered the extension of frequent itemset mining and rule
mining methods to the spatio–temporal domain. Future research could considerex-
tending clustering, another core data mining method, to the spatio–temporal domain.
The clustering of trajectories, or, in relation to LBA, the clustering of activityse-
quences, could be considered. While spatio–temporal generalization could be applied
prior to clustering, the so generalized trajectories / activity sequences have at least one
unique characteristic: they are not of equal length. Two possible approaches to nor-
malize such sequences are via Hidden Markov Models (HMM) and frequent itemset
mining. In the HMM approach, an HMM could be constructed for every sequence,
and using a meaningful distance metric between two HMMs, the HMMs could be
clustered. In the frequent itemset mining approach, patterns could be minedamong
sequences. Then, using the patterns as positive / negative indicators,sequences could
be mapped to a high–dimensional feature space for clustering. Using eitherone of
the normalization approaches prior to clustering are believed to be interestingfuture
directions.

While spatio–temporal activity sequences of mobile users contain mobility pat-
terns that can be analyzed by some of the methods proposed in this thesis, they also
containconsumerandsocialpatterns. Methods to extract these latter patterns could
consider the following. First, while a particular activity performed by a mobile user
in Copenhagen, such as “bar–hopping” can be tied to a specific location inspace, per-
forming such an activity describes a consumer / social behavior that is independent of
where the activity is performed, i.e., a person doing the same in Aalborg is similarto
the person in Copenhagen. Hence, the analysis ofsemanticlocations, i.e., places, are
believed to be an interesting direction for future research. Second, whilethe things
we do certainly define to some degree who we are,whomwe do those things with
are equally influential. Analyzing the interactions between mobile users in relation
to the activities or places could not only have several interesting applications in so-
cial LBSes, but could provide valuable knowledge to social sciences, and hence it is
believed to be an extremely interesting future research direction.



Bibliography

[1] R. Agrawal, T. Imilienski, and A. Swami. Mining Association Rules between
Sets of Items in Large Databases. InProc. of the International Conference on
Management of Data, SIGMOD, pp. 207–216, SIGMOD Record 22(2), 1993.

[2] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In
Proc. of the 20th International Conference on Very Large Data Bases,VLDB,
pp. 487–499, Morgan Kaufmann, 1994.

[3] R. Agrawal and R. Srikant. Mining Sequential Patterns. InProc. of the 11th
International Conference on Data Engineering, ICDE, pp. 3–14, IEEE Com-
puter Society, 1995.

[4] R. Agrawal and R. Srikant. Privacy–Preserving Data Mining. InProc. of the
International Conference on Management of Data, SIGMOD, pp. 439–450,
SIGMOD Record 29(2), 2000.

[5] S. J. Barnes and E. Scornavacca. Mobile Marketing: The Role of Permis-
sion and Acceptance.International Journal of Mobile Communications, IJMC,
2(2):128-139, Inderscience Publishers, 2004

[6] J. L. Bentley. Multidimensional Binary Search Trees Used for Associative
Searching.Communications of the ACM, 18(9):509–517, ACM, 1975.

[7] J. L. Bentley and M. I. Shamos. Divide–and–Conquer in Multidimensional
Space. InProc. of the 8th Annual ACM Symposium on Theory of Computing,
ACM–STOC, pp. 220–230, ACM, 1976.

[8] T. Brinkhoff. A Framework for Generating Network–Based MovingObjects.
Geoinformatica, 6(2):153–180, Springer, 2002.

[9] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A Maximal Frequent Item-
set Algorithm for Transactional Databases. InProc. of the 17th International
Conference on Data Engineering, ICDE, pp. 443-452, IEEE Computer Soci-
ety, 2001.

187



188 BIBLIOGRAPHY

[10] CARLOS Ride–Sharing System:http://www.carlos.ch/ (last accessed
20/11/2007)

[11] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, et al. Scalable Dis-
tributed Stream Processing. InProc. of the 1st Biennial Conference on Inno-
vative Data Systems Research, CIDR, Online Proceedings, 2003.

[12] R. Cheng, Y. Zhang, E. Bertino, and S. Prabhakar. Preserving User Location
Privacy in Mobile Data Management Infrastructures. InProc. of the 6th Work-
shop on Privacy Enhancing Technologies, PET, volume 4258/2006 of Lecture
Notes in Computer Science, Springer, 2006.

[13] C. -Y. Chow, M. F. Mokbel, and X. Liu. A Peer–to–Peer Spatial Cloaking
Algorithm for Anonymous Location–based Services. InProc. of the 14th ACM
International Symposium on Geographic Information Systems, ACM–GIS, pp.
171–178, ACM, 2006.

[14] A. Civilis, C. S. Jensen, and S. Pakalnis. Techniques for Efficient Road–
Network–Based Tracking of Moving Objects.IEEE Transactions on Knowl-
edge and Data Engineering, TKDE, 17(5):698–712, IEEE Educational Activ-
ities Department, 2005.

[15] E. B. Cleff and G. Gid́ofalvi. Legal Aspects of a Location–Based Mobile Ad-
vertising Platform. To appear in theInternational Journal of Intellectual Prop-
erty Management, IJIPM, 18 pages, 2008.

[16] T. H. Cormen, et. al.Introduction to Algorithms.(2nd Ed.). MIT Press and
McGraw–Hill, 2001.

[17] T. G. Crainic, F. Malucelli, and M. Nonato. Flexible Many–to–Few + Few–to–
Many = An Almost Personalized Transit System. InProc. of the 4th Triennial
Symposium on Transportation Aanlysis, TRISTAN, pp. 435–440, 2001.

[18] ESRI Business Analyst: http://www.esri.com/businessanalyst/

(last accessed 20/11/2007)

[19] Experian:http://www.experiangroup.com/ (last accessed 20/11/2007)

[20] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A Density–Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise. InProc. of
the 2nd International Conference on Knowledge Discovery and Data Mining,
KDD, pp. 226–231, AAAI Press, 1996.



BIBLIOGRAPHY 189

[21] M. Ester, H.-P. Kriegel, and J. Sander. Spatial Data Mining: A Database Ap-
proach. InProc. of the 5th International Symposium on Spatial Databases,
SSD, pp. 47–66, Springer, 1997.

[22] M. Ester, A. Frommelt, H.-P. Kriegel, and J. Sander. Algorithms for Charac-
terization and Trend Detection in Spatial Databases. InProc. of the 4th In-
ternational Conference on Knowledge Discovery and Data Mining, KDD, pp.
44–50, AAAI Press, 1998.

[23] R. Finkel and J.L. Bentley. Quad Trees: A Data Structure for Retrieval on
Composite Keys.Acta Informatica, 4(1):1–9, Springer, 1974.

[24] P. Fox, D. Rezania, J. Wareham, and E. Christiaanse. Will Mobiles Dream of
Electric Sheep? Expectations of the New Generation of Mobile Users: Misfits
with Practice and Research. InProc. of the 2006 International Conference on
Mobile Business, ICMB, p. 44, IEEE Computer Society, 2006.

[25] G. A. Frank and D. F. Stanat. Parallel Architecture for k–d Trees. Technical
report, North Carolina University at Chapel Hill Dept. of Computer Science,
May 1988.

[26] The Gallup Organization: http://www.gallup.com/ (last accessed
20/11/2007)

[27] J. M. Gartenberg, C. Matiesanu, and N. Scevak. US Mobile Marketing Fore-
cast, 2006 to 2011, Vision Report, JupiterResearch, USA, October 2006.

[28] Geomatic ApS – Center for Geoinformatik:http://www.geomatic.dk/

(last accessed 20/11/2007)

[29] M. Gebski and R. K. Wong. A New Approach for Cluster Detection for Large
Datasets with High Dimensionality. InProc. of the 7th International Confer-
ence on Data Warehousing and Knowledge Discovery, DaWaK, volume 3589
of Lecture Notes in computer Science, pp. 498–508, Springer, 2005.
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Summary in Danish

Danish Title: Spatio–Temporal Vidensopdagelse i Lokationsbaserede Services
De s̊akaldte Lokationsbaserede Services (LBS) vinder frem overalt, hjulpet af

massive landvindinger inden for kommunikations– og informationsteknologi, såsom
den voksende udbredelse af og præcision i GPS–enheder og udviklingen af mindre
og mindre enheder til trådløs kommunikation. Innovative LBS’er integrerer viden
om brugerne i de udbudte services. En sådan viden kan udledes ved at analysere
oplysninger om hvor brugerne befinder sig. De data som anvendes, har to dimen-
sioner,stedog tid, som begge er genstand for analyse.

Målsætningen for denne afhandling er tredelt: For det første at overføre udbredte
vidensopdagelse–metoder til det spatio–temporale domæne. For det andetat demon-
strere anvendeligheden og nytteværdien af disse metoder og den deraf afledte vi-
den for to lovende LBS–eksempler. For det tredje at eliminere frygten forat afsløre
personfølsomme oplysninger via spatio–temporal vidensopdagelse – det kan undg̊as
igennem systemer som netop sikrer og beskytter privatsfæren omkring brugerne i
dataindsamling og vidensopdagelse–delen.

Kapitel 2 introducerer en general metode, pivottering, som overføreren bredt an-
erkendt og anvendt vidensopdagelse–metode, regelopdagelse, til det spatio–temporale
domæne. Med afsæt i en karakteristik af en vifte af reelle, konkrete datakilder
udleder kapitel 2 desuden en taksonomi for spatio–temporale data, og eksempler
på nytteværdien og anvendeligheden af disse regler gives. I kapitel 4 anvendes den
spatio–temporale variant med henblik på at finde mønstre af lange, fælles rejseruter
for objekter i bevægelse. Evalueringer af empiriske data viser at metoderne imple-
menteret via højniveau SQL udgør effektive værktøjer til en analyse af lange, fælles
rejsemønstre.

Virklige rejsedatasæt for en større population af objekter som rejser inden for et
afgrænset geografisk område, er vanskeligt tilgængelige. Til at kompensere herfor
redegør kapitel 3 for udviklingen af en Spatio–Temporal ACTivity Simulator(ST–
ACTS). ST–ACTS inddrager en mængde reelle geostatistiske datakilder og intuitive
principper for rumlige sammenhænge for effektivt at generere realistiske spatio–
temporale aktivitetsmønstre for mobile brugere.
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Kapitel 5 foresl̊ar en konkret LBS til transportsektoren, nemlig taxideling. En
effektiv løsning bygger p̊a en unik spatio–temporal grupperingsalgoritme som imple-
menteres som en sekvens af SQL–sætninger. Kapitel 6 identificerer en skalerings-
flaskehals for denne algoritme. For at eliminere denne flaskehals omformesgrupper-
ingsalgoritmen s̊adan at den udtrykkes som en kontinuert strøm af forespørgsler til et
system som specifikt håndterer datastrømme. Enkle og dog effektive spatio–temporal
partitioneringsmetoder angives, som parallelliserer de nødvendige strømmeaf bereg-
ninger. Eksperimentelle resultater viser at parallellisering igennem adaptivparti-
tionering fører til massive tidsbesparelser uden væsentlig påvirkning af kvaliteten
af grupperingen (af de rejsende objekter). Spatio–temporal datastrøm–partitionering
forventes at udgøre en effektiv platform til skalering af beregningsintensive spatiale
forespørgsler og analyser på datastrømme.

Lokationsbaseret Reklamering (Location–Based Advertising, LBA), distribution
af relevant kommerciel information til mobile forbrugere, betragtes som en af de
mest lovende forretningsmuligheder blandt LBS’er. I såhenseende beskriver kapitel
7 en udviklingsramme for en LBA platform og en LBA–database som kan bygges
til at støtte og drifte h̊andteringen af mobile (lokationsbaseret) reklamer. Igennem
en simuleret, men realistisk population af mobile forbrugere og et univers afmobile
reklamer bruges LBA–databasen til at estimere kapaciteten af og dermed potentialet
i den mobile reklame som distributionskanal. Estimaterne er lovende for formulerin-
gen af en stærk forretningsplan, men afdækker samtidig nødvendighedenaf at kunne
håndtere brugerspecifikke profiler, ønsker og hensyn.

Så snart data om brugere indsamles og analyseres, bliver beskyttelse afperson-
følsomme oplysninger en nødvendighed. En tilgang til at imødekomme dette præsen-
teres i kapitel 8 – en cellebaseret aggregering sikrer, at stedfæstelsen af brugerne
anonymiseres via spatio–temporal generalisering; dernæst formuleres et system til
indsamling af og vidensopdagelse på anonyme, stedbestemte data. Eksperimentelle
resultater viser, at beskyttelsen af brugernes privatsfære ikke forhindrer, at nyttige
mønstre kan identificeres der – selv om de hviler på sandsynlighedsmodeller – vil
være tilstrækkelig præcise til mange LBS’er.

Med henblik p̊a at eliminere enhver usikkerhed om de igennem vidensopdagelse
udledte resultater opstilles i kapitel 9 en tilgang til indsamling af eksakte rejsemønstre
for objekter i bevægelse der bevarer brugernes privatsfære og anonymitet. Den fore-
slåede tilgang inddrager ingen betroede komponenter, og anonymisering foretages
af klienterne i et P2P–netværk via datageneralisering og dataombytning. Realistiske
simuleringer viser, at inden for rimelige rammer og med en beskyttelse af privats-
færen og anonymitet viser systemet sig at være effektivt.


