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ABSTRACT
Emerging trends in urban mobility have accelerated the need
for effective traffic prediction and management systems. The
present paper proposes a novel approach to using continu-
ously streaming moving object trajectories for traffic predic-
tion and management. The approach continuously performs
three functions for streams of moving object positions in
road networks: 1) management of current evolving trajec-
tories, 2) incremental mining of closed frequent routes, and
3) prediction of near-future locations and densities based on
1) and 2). The approach is empirically evaluated on a large
real-world data set of moving object trajectories, originating
from a fleet of taxis, illustrating that detailed closed frequent
routes can be efficiently discovered and used for prediction.

Categories and Subject Descriptors
H.2.8 [Database Applications]: [Data mining, Spatial
Databases and GIS]

General Terms
Algorithms

Keywords
spatio-temporal data mining, mobility patterns, frequent
routes, traffic prediction

1. INTRODUCTION
The rapid growth of demand for transportation, and high

levels of car dependency caused by the urban sprawl, have
exceeded the slow increments in transportation infrastruc-
ture supply in many areas. Recently, the wide-spread adop-
tion of GPS-based on-board navigation systems and location-
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aware mobile devices have enabled a gamut of traffic predic-
tion and management systems to efficiently utilize existing
infrastructure and combat the ever increasing gap between
the rapid growth of vehicles and the slow increments in in-
frastructure development.

Consider the following scenario: There are vehicles travel-
ing between Uppsala and Stockholm (cities in Sweden), each
equipped with on-board GPS systems and map-matching
clients that can align the GPS location coordinates to an ap-
propriate position on a road segment in the road network.
Tuples consisting of the vehicle ID and the road segment
ID are constantly streamed to a central server, giving the
server the ability to track vehicle movements via trajecto-
ries that evolve with time. Assuming these capabilities, is
it then possible to predict where a given vehicle will be in
exactly 10 minutes from now? What is the estimated num-
ber of vehicles on each road segment in the network i.e. road
network density, in 10 minutes from now? In case of an ac-
cident at a junction in Knivsta (intermediate town), can we
compute the exact set of vehicles that will arrive here in
the next 10 minutes and notify only this set of vehicles, so
they can make alternate routing decisions to their respec-
tive destinations? Answering the aforementioned questions
with acceptable accuracy forms a solid foundation for more
effective urban traffic planning techniques.

The contributions of the paper are as follows. First, the
paper defines a formal framework for modeling, online min-
ing and prediction of road network based continuously evolv-
ing trajectories of moving objects (Sec. 3). Second, a novel
prediction model is proposed to predict the near-future lo-
cation of objects based on historical closed frequent routes.
Third, using the proposed model, continuous queries (CQs)
are formulated in a DSMS to calculate probabilistic future
locations and the resulting network density of moving ob-
jects [13] (Sec. 4). Finally, the paper empirically evaluates
and shows the effectiveness and feasibility of the approach
on a large real-world data set of moving objects (Sec. 5).

2. RELATED WORK
A lot of previous work has considered mining of frequent

routes from moving object trajectories. This line of work
can be broadly classified as road network based [1, 4] and
Euclidean space based [3, 9]. Overall, none of these ap-
proaches consider the online mining of closed frequent routes
in networks, which is a distinguishing feature of the present
paper. Much work has also been devoted to discovering



various other types of movement patterns besides frequent
routes, both for static and streaming data [2, 6]. The appli-
cation of mined movement patterns for traffic management
has also received much attention recently [5]. Several papers
suggest using historical frequent route information to pre-
dict near-future locations. Work in [12] assumes that final
destinations of all vehicles are known apriori. Approaches
in [10] cluster trajectories in a moving object database, form
higher granularity dense regions, and predict movement be-
tween these regions. In the area of network density predic-
tion [7, 13], statistical approaches based on short-term ob-
servations of traffic movement have mostly been employed.
The closest to the present proposal is the work in [11] in
which the proposed network mobility model consists of (i)
turning patterns/statistics at road junctions and (ii) mined
travel speeds on road segments. In comparison, the present
proposal uses both historical closed frequent routes and turn
statistics with speed profiles.

3. PRELIMINARIES AND DEFINITIONS
Road Network Based Routes of Moving Objects: Let
O = {o1, . . . , oM} be a set of moving objects. Let the time
domain be denoted by T and be modeled as the totally or-
dered set of natural numbers N0. Following [1], let the road
network be modeled in terms of a set of base points, B ⊂ R2,
a set of line segments, LS ⊂ B2, and connections, C ⊂ B.
Then, the continuous movement of an object on the road
network is described with a (road network based) trajectory,
tro = (ts, s), where ts denotes the starting time of the tra-
jectory and s = 〈(ls1,∆t1), . . . , (lsm,∆tm)〉 is a temporally
annotated sequence, i.e., a sequence of pairs of traversed seg-
ments, lsi ∈ LS , and associated traversal times, ∆ti.

Trip Trajectories of Moving Objects: Extended stops
in movement naturally subdivide the trajectory tro of an ob-
ject o ∈ O into a sequence of trip trajectories 〈tro[1], .., tro[t]〉.
A trip trajectory tro[i] is modeled in the same way as an
object trajectory. Figure 1(a) shows an object’s trip trajec-
tories on a street grid. A connection is referenced by the
concatenation of its coordinates, and a directed segment is
referenced by the concatenation of the references of its start-
ing and the ending base points, e.g., the directed segment
from A to B is referenced as 1323. The paths along solid
black arrows show 2 trip trajectories, tro[1] and tro[2], of
an object’s; path along dashed gray arrows represent unob-
served trip trajectories. Using the referencing system, the
first trip trajectory, tro[1], is represented by the pair (0,
〈(1323, 2), (2322, 1), (2232, 1), (3242, 1), (4241, 2)〉).
Continuously Evolving Trajectories: As an object o ∈
O moves, its trip trajectory tro[t] is evolving, i.e., it is con-
tinuously extended at the end of the sequence by appending
the segment that o has most recently traversed. A sin-
gle extension of tro[t] is referred to as a trajectory piece
and the i-th trajectory piece is denoted and modeled as
tpo

i [t] = (tsi, (lsi,∆ti)). tpo
i [t] is implicitly associated with

an arrival time, t arr = tsi + ∆ti. A sequence of trajectory
pieces 〈tpo

i [t], . . . tpo
k[t]〉 of a trip trajectory tro[t] of object o

for trip t forms a contiguous trip sub-trajectory of object o
for trip t if ∀j such that i ≤ j < k, tsj + ∆tj = tsj+1.

Route Mining: The frequent route mining task can be
formulated similar to that of the simplified sequential pat-
tern mining task as follows. Let O = {o1, . . . , oM} denote
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Figure 1: Moving object trajectories.

a set of objects and let TR = {tr1, . . . , trT } denote the set
of their trip trajectories in which tr i represents a particu-
lar trip trajectory troj [t] of object oj ∈ O for trip t. A
route r (a temporally annotated sequence) is a Contiguous
Frequent Route (CFR) iff r is contiguously supported by at
least min sup trajectories. A trajectory tr i = (tsi, si) ∈ TR
contiguously supports r, iff there exist a contiguous index
sequence 1 ≤ i1 < . . . < il ≤ m such that ij+1 − ij = 1 ∀j
where 1 ≤ j < l and ls ′j = lsij ∀j where 1 ≤ j ≤ l. A route
rc is a Closed Contiguous Frequent Route (CCFR) iff rc is a
CFR and there exists no extended CFR, re, such that rc is
a proper subsequence of re, and the support of rc is equal to
the support of re. The temporal annotation of the route is
defined to be a sequence aggregate (e.g., arithmetic average)
of the traversal times of the corresponding segment of the
trajectories that support the route. Then the Closed Con-
tiguous Frequent Route Mining problem is defined as: Given
a set of objects O, a set of their trip trajectories TR, and
a minimum support threshold value min sup, find the set
of CCFRs in TR. The application-relevant route contiguity
and closedness constraints ensure that CCFRs (i) are an op-
timal, lossless compression of all routes and (ii) contain no
gaps and thus can be effectively used for prediction.

Route Based Prediction: Using the extracted CCFRs,
the Moving Object Location Prediction task is defined as:
Given a road network (B,LS , C), a set of CCFRs, and
the contiguous trip sub-trajectory 〈tpo

i [t], . . . tpo
k[t]〉 of ob-

ject o ∈ O for its current trip t up to the current time tc, for
all segments, lsi ∈ LS , calculate the probability, Pr(lsoi |tp),
that o will be located on lsi at the prediction time tp ≥ tc.

Aggregating the location predictions, the Road Network
Density Prediction task is defined as: Given a road network
(B,LS , C), a set of CCFRs, and the contiguous trip sub-
trajectories of a set of object O up to the current time tc,
for all segments lsi ∈ LS calculate the expected number of
objects, E (lsi|tp) =

∑
o∈O Pr(lsoi |tp), that will be located

on lsi at the prediction time tp ≥ tc.
The set-based tasks of CCFR mining, moving object loca-

tion prediction, and road network density prediction are nat-
urally extended to a continuous stream of timestamped trip
trajectory pieces of objects by adopting the commonly used
temporal sliding window model SW = (twsize , twstride , twlag).
Detailed definitions are omitted due to space limitations.

4. CCFR-BASED PREDICTION MODEL
The following section describes the proposed prediction

model based on past CCFRs with a running example.
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Figure 2: Complete prefix tree with highlighted an-
chor and other overlapping segments. For qv =
{2333,3334}, there is a total overlap in the high-
lighted branches except the last highlighted branch
which has only the anc = 3334.

Running Example Listing 1 shows 7 sample trajectories,
which are traced by a number of objects (shown in parenthe-
sis) that are moving on the sample grid road network intro-
duced in Section 3. In addition to the referencing convention
of directed segments introduced in Section 3 (Figure 1), at
the end of each trip trajectory a segment ID of -1 is used to
denote a special virtual segment that is used to signal the
end of the trip.

T1 1222 2223 2333 3334 3444 −1 (20)
T2 1222 2223 2333 3334 −1 (5 )
T3 1222 2223 2333 3334 3435 −1 (5 )
T4 2122 2223 2333 3334 3435 −1 (15)
T5 1424 2423 2333 3332 3242 −1 (10)
T6 2524 2423 2333 3334 −1 (5 )
T7 2524 2423 2333 3332 3231 −1 (20)

Listing 1: Sample trajectories on road network.

CCFR Mining CCFR mining works by growing CCFRs
(or patterns) in a depth-first fashion. The direct check of
pattern extensions is adopted in the present CCFR mining
method. Mining the sample trajectories with min sup set
to 10% generates (i) CCFR and (ii) all possible turning pat-
terns at road junctions, termed as turn statistics, as is shown
in Listing 2.

P1 {2524 ,2423 ,2333 ,3334} (5 )
P2 {2524 ,2423 ,2333 ,3332 ,3231} (20)
P3 . . .

Listing 2: Sample CCFRs.

Closed Frequent Pattern Tree Creation The mined
CCFRs are stored in a prefix tree similar to an FP-tree [8]
consisting of a prefix tree τc and a header table Hc (which
acts as an index into the prefix tree). Patterns are read in
one at a time and inserted into a prefix tree to enable quick
retrieval of CCFRs/patterns similar to [14]. Figure 2 shows
the complete prefix tree τc (without all turn statistics) after
inserting all example CCFRs.

CCFR-Based Prediction The proposed prediction model
is based on the notion of a query vector, qv , a sequence of
road segments that a vehicle has traversed, e.g. {2333,3334},

Table 1: Probabilities calculated from CCFRs.
Rule Calculation Prob Left
{2333, 3334} -> 3435 1.0 * (20/50) 0.4 0.6

Table 2: Probabilities from turn statistics.
Rule Calculation Prob Left
{2333, 3334} -> 3444 0.6 * (10/50) 0.12 0.48

and the anchor, anc, the last, most recently traversed seg-
ment in qv , i.e. 3334 in the example. Then, the prediction
algorithm is composed of four core tasks:

Task 1 : Finding the probability distribution for the possible
next segments given a query vector (qv). For this a “best
match”to the query is sought. The“best”choice is computed
using a cost model that either favors partial matches close to
or far away from anc in qv . If there is no CCFR that matches
qv at least partially, matching falls back on turn statistics.
Note here that by storing all occurring segment pairs, the
turn statistics are always found to be the best match (thus
simplifying the prediction procedure). Highlighted segments
in Figure 2 show total matches with qv = 2333 , 3334 , except
a partial match in the last highlighted branch.

Task 2 : In order to estimate probabilities for Task 1, sup-
port values are calculated, which is a non-trivial task when
dealing with only closed patterns. While storing all fre-
quent patterns would considerably simplify the task of sup-
port calculation, it would require a lot more storage space.
From the set of “best” match branches, all child nodes be-
low anc are considered. Rules of the form sseq(qv) → s,
where s denotes child node extensions and sseq denotes a
subsequence, for different values of s and a best match of
a subsequence of qv , are formed. Probability is then com-
puted as: P (s|sseq(qv)) = sup(sseq(qv) + s)/sup(sseq(qv)).
Table 1 shows the probabilities and the remaining probabil-
ity mass that is calculated for each unique child node below
anc, i.e., 3435. The remaining probability mass of 0.6 is then
distributed using turn statistics, shown in Table 2.

Task 3 : The query vector qv is extended by a predicted
segment and weighted with the probability of the segment,
then the prediction is repeated recursively (for each pos-
sible next segment). At the time horizon, the probabil-
ity mass is assigned to the anchor of the extended query.
This yields a probability distribution over the segments, de-
scribing where the object could be at the time horizon. In
the example, an initial call to the prediction algorithm is:
predict({2333 , 3334}, 2 .0 , 1 .0 ), which implies that a mov-
ing object with initial probability mass of 1.0 has traced a
path containing 2333 and 3334. At current time tc, it is lo-
cated at the end of the anchor segment 3334 and a location
prediction is required on time tc + 2.0 time units. The loca-
tion probabilities for the possible next segments 3435, 3444,
and −3334 at recursion depth 1 are calculated to be 0.40,
0.12, 0.48, respectively.

Task 4 : The probability distribution over segments at the
time horizon is aggregated over all objects in order to ob-
tain a density estimate of both moving and parked moving
objects on the road network.

5. EXPERIMENTS
The proposed method is evaluated on a one day long sam-

ple of the near real-time stream of raw GPS positions of 1500
taxis and 400 trucks moving on the streets of Stockholm [15].
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Figure 3: 0/1 discrete and continuous prediction ac-
curacy for individual moving objects averaged over
windows for fixed values of tm wsize = 3600 seconds
(1 hour), tm wstride = 1800 seconds (30 minutes), and
min sup = 1%.

In the sample, vehicle positions are read approximately once
every minute. The status information and spatio-temporal
analysis of individual trajectories is used to identify approx-
imately 17, 000 trips. To adapt the raw GPS data set to
the proposed framework, road network based trajectories are
constructed using a subset of the Stockholm road network
(approx. 6, 000 directional segments with an average seg-
ment length of 55 meters and degree of connectivity of 2.3).
Three groups of experiments evaluated (i) the throughput
and execution time of CCFR steam mining, (ii) the scalabil-
ity of the CCFR mining method, and (iii) the CCFR-based
prediction accuracy.

In the first set of experiments, for low support thresholds
(1-2%), fixed mining window stride (twstride) and increasing
mining window size, a large increase in the number of mined
CCFRs was noted while execution time was still in real-time
processing limits, i.e. runtime < twstride .

The second set of experiments measure the scalability of
the CCFR mining method w.r.t the input size. Increasingly
large volumes of simultaneously moving object trajectories
are simulated by fixing the mining window stride twstride to
a 24hr period and increasing the mining window size twsize .
The execution time for nearly 17K input trajectories mined
at a minimum support of 0.1% is approximately 40 seconds
with approximately 25K CCFRs mined.

In order to measure the accuracy of the CCFR-based pre-
diction approach experiments were carried out to measure
the effect of gradually incrementing either the time horizon
for location prediction, i.e., δt = tp − tc , while keeping the
minimum support threshold min sup fixed and vice versa.
Discrete (0/1) accuracy implies an exact match between pre-
dicted and actual road segment while continuous accuracy
reflects a value for partial probabilities too. Figure 3 shows a
gradual decline in accuracy as δt and min sup are increased
one at a time. The proposed approach outperforms the“turn
statistics only” approach and its additional utility becomes
increasingly pronounced as he time horizon is increased.

6. CONCLUSIONS AND FUTURE WORK
The present paper proposed a novel approach to using

continuously streaming moving object trajectories for traf-
fic prediction and management. Founded on realistic real-
world application requirements, the paper proposes concrete
methods, data structures, and a prototype implementation
in a DSMS for managing, mining, and predicting the in-

crementally evolving trajectories of moving objects in road
networks. The approach is empirically evaluated on a large
real-world data set of moving object trajectories, originating
from a fleet of taxis, illustrating that detailed CCFRs can
be efficiently discovered and used for prediction.

Future work is planned along several directions. Firstly,
the per-object based parallelization and distributed process-
ing of online CCFR-based prediction will be explored. Sec-
ond, the aggregated matching of groups of similar trajec-
tories against groups of similar CCFRs will be explored.
Third, the use and benefits of more sophisticated cost mod-
els, e.g., based on the discriminative power of segments or
CCFRs, in the CCFR based prediction model will be ex-
plored. Finally, the aggregation of CCFRs from different
historical mining windows will be explored.
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