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ABSTRACT

Ride–sharing is a resource efficient mode of personal transportation. While the perceived ben-
efits of ride–sharing include reduced travel times, transportation costs, congestion, and carbon
emissions, its wide–spread adoption is hindered by a number of barriers. These include the
scheduling and coordination of routes, safety risks, social discomfort in sharing private spaces,
and an imbalance of costs and benefits among parties. To this extent, this paper describes im-
plementation details of a system for ride–sharing that eliminates these barriers, in particular the
one relating to social aspects, by utilizing the concepts of social networks and social interest
groups. Realistic, city–wide simulations show that the proposed social ride–sharing system is
viable and effective.
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INTRODUCTION

Transportation–related problems, like congestion, parking, and pollution, are increasing in most
cities. The magnitude of these problems and the potential for improvements via ride–sharing
has been recognized by both industry [6] and academia [7]. To ease the problems, ride–sharing
or carpooling has also been encouraged in metropolitan areas by public policies such as the
establishment of exclusive lanes, parking places, and reduced road tolls for carpools. Despite
the potential for improvements and the public policies, ride–sharing is not widely adopted by
the public. The major barriers that hinder wide–spread adoption has been identified as: the
lack of effective mechanisms for scheduling and coordinating ride–shares, safety risks, so-
cial discomfort in sharing private spaces, and/or an imbalance of costs and benefits among
parties [8]. Current commercial products/system for ride–sharing (nuRide, Carpoolworld, lift-
Share, eRideShare) allow users to post and search trips, and manually construct/negotiate regu-
lar ride–shares. Trust is commonly managed through a self–regulatory user–rating mechanism.
In comparison, this paper describes a ride–sharing system that 1) by using mobile communica-
tion, computing, and positioning technologies allows instant ride–sharing, and 2) by exploiting
the exponentially growing popularity of social networking and the voluntary sharing of per-
sonal information online eliminates the social barrier to ride–sharing and the tedious task of
manual ride-share scheduling and coordination. An extensive set of experiments on realisti-
cally simulated transport and social data evaluates the transport effectiveness of the proposed
system and shows it to be a viable solution to our increasing transportation problems.
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Figure 1 – The SRSS Process, Components and Mobile Application.

AN INSTANT SOCIAL RIDE–SHARING SERVICE

The Social Ride–Sharing Service / System (SRSS), as depicted in Figure 1(a), is primarily ac-
cessible to the users via a mobile phone through a mobile application, but limited functionality
can also be provided via an SMS interface. After logging in, a user can submit a ride offer
or a ride request. As shown in Figure 1(b), both an offer and a request specifies 1) a ride/trip
origin and a destination location, 2) a maximum wait time, max wt, until the user is willing to
wait for a ride–share, and 3) the number of seats offered or requested, respectively. In addition,
an offer also specifies 1) a maximum detour, max det, that user is willing to make to facili-
tate ride–sharing, and 2) whether or not the user is willing to participate as a passenger in a
ride–share without his/her vehicle. A location can be specified by entering a new or selecting
a previously entered/visited address/location, or by using the current location of the user, if a
GPS unit is available. In the absence of a GPS unit, an offer is valid until either the maximum
wait time has passed or all of the offered seats have been filled. If a GPS unit is available,
the “origin” of the offer is constantly updated according to the current position, and the offer
remains open/active as long as the vehicle has seats available and is more than a minimum dis-
tance away from its destination. A request is valid until it is assigned to a ride–share, or it is
implicitly or explicitly deleted by the user. As described in the next section, the matching of
offers and requests is automatically performed by the system, taking into account the spatial
and temporal constraints (max det, max wt) of offers and requests, the vehicle capacities, and
the social connections between the users. Once a set of offers1 and requests are matched, i.e.,
grouped into a ride–share, as shown in Figure 1(c), through the mobile application the SRSS de-
livers scheduling and social information to the participants in the form of distances, estimated
arrival times, maps, and user profiles. Due to the inherent, community–based nature of the
proposed SRSS, currently, only a demo version of the SRSS mobile application exists, which
shows a subset of the functionality of the application for a fixed input. It can be downloaded
from: http://www.motoros.hu/SRSS/.

GROUPING TRIPS INTO RIDE–SHARES

The SRSS groups trips into ride–shares according to two objectives: 1) to minimize the extent
of the “detour” that offering parties must make in order to serve requests, and 2) to maximize

1A ride–share can contain more than one offer if at most one of the offering users requires to be a driver.
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the amount of social connections amongst participants of ride–shares. Minimizing detours and
maximizing social connections in ride–shares is expected to increase the social comfort level
and trust among ride-share participants, ultimately leading to increased user acceptance and
adoption of ride–sharing. The following subsections give details about two measures that need
to be simultaneously optimized to achieve the two objectives, a greedy method that performs
the optimization, and four modes of operation.

Detour Measure Between an Offer and a Request

To meet the first objective, as in [4], a simple application–specific detour measure is devised
between an offer o and a request r. As shown in Figure 2(a), first, the displacement from the
origin location / current position of o to the origin location of r and the similar displacement for
the destination locations are broken into perpendicular detour offset components (relative to o).
Then, the detour measure for o and r is calculated as the fraction of the weighted average of
the perpendicular detour offset components and the shared distance. Weights are adjusted such
that the detour measure favors requests that can be more naturally accommodated by an offer,
i.e., parallel offsets are weighted more. Unlike the measure in [4], the detour measure allows
the identification of sharing possibilities, in which the request can be accommodated in the
middle part of an offer. The detour measure is implemented in the SRSS as an SQL function.

Social Connection Between Two Users

To meet the second objective, as illustrated in Figure 1, the SRSS assumes the existence of an
online social network data source in which users link to each other and possibly interest groups.
In such a network, the number of relatively short paths between two users indicates the strength
of the social connection, ssc, between the two users. In the example in Figure 2(b), Joe and
Greg are strongly connected, while Joe and Victor are weakly connected. Given that the offer
and the requests 1 and 2 in Figure 2(a), belong to users Joe, Victor, and Greg, respectively, the
SRSS is more likely to group Joe and Greg in a ride–share, giving Joe and Greg a lot to talk
about. In the SRSS the mutual friendship relation is stored in a database table F = 〈pid,fid〉.
The social connections and associated ssc–values between users are stored in a database table
P and are pre–calculated using the following simple SQL statement2:

SELECT f1.pid pid1, f2.pid pid2, count(*) ssc FROM F f1, F f2
WHERE f1.fid = f2.fid GROUP BY f1.pid, f2.pid

2P also includes the direct paths between users, which are stored in F. To emphasize the importance of such
direct paths, such paths are appropriately weighted higher when calculating the strength of social connections.
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Calculation of a Set of Candidate Matches

To simultaneously minimize the detours and maximize social connections, the two measures
are combined into a single match score, ms . To obtain ms , first, both the ssc–values be-
tween users and the detour–values between offers and requests are scaled to the [0, 1]–interval.
Then, ms(o, r, u1, u2), for offer o and request r, for respective users u1 and u2, is calculated as
wd∗detour [0,1](o, r)+ws/ssc[0,1](u1, u2), where wd and ws weigh the relative importance of the
detour vs the social connection strength in the match score. Given a maximum detour threshold,
max det3, the SRSS calculates a set of candidate matches for a set of active offers and valid
requests using a single SQL statement as follows:

SELECT o.pid, o.rid, r.pid, r.rid, ms(o.rid, r.rid, o.pid, r.pid) ms
FROM ActiveOffer o, ValidRequest r, P
WHERE o.pid = P.pid1 AND r.pid = P.pid2 AND o.seats >= r.seats
AND detour(o.rid,r.rid) <= max_det

Calculation of a Ride–Share Assignment

In a set of candidate matches an offer can be matched with more requests than it can accommo-
date. At the same time, some requests can potentially be accommodated by only one or a few
offers. Given the match scores that are associated with candidate matches, finding an “optimal”
assignment of requests to offers, one that has minimal score and ensures that as many requests
as possible are accommodated, is not trivial. The following paragraphs formalize the problem
and give details of a greedy method that effectively finds a “near–optimal” assignment.

The Ride–Share Assignment Problem: Let G be an undirected bipartite graph G = (O,R,E),
where O and R are vertices and represent offers and request, respectively. E is a set of edges,
each of which has a weight, e.w, the match score, and connects a vertex o ∈ O with a vertex
r ∈ R, indicating that o can accommodate r. G is a set of candidate matches. To represent
capacity constraints, each vertex in o ∈ O and r ∈ R also has an associated measure, o.s and
r.s, the number of seats that are offered or requested, respectively. Then, an assignment A is
a subset of the edges in E, i.e., A ⊆ E. Request r is said to be assigned to offer o according
to A, if there exists an edge e ∈ A such that e = (o, r). A is valid if 1) any request r ∈ R is
assigned to at most one offer o ∈ O, and 2) for any offer o ∈ O the sum of the requested seats
of the requests that are assigned to o is less than or equal to the seats offered by o. The cover
of an assignment A is the number of requests that are assigned in it, i.e. |A|. The weight of an
assignment A is the sum of the weights of the edges in A, i.e.

∑
e∈A e.w. Then, the Ride–Share

Assignment (R-SA) Problem is to find a maximum–cover minimum–weight assignment A∗ ∈ E
for G4.

There are a number of candidate methods that could give potential solutions to the R-SA prob-
lem. First, as proposed in [5], the trip grouping algorithm could be used to calculate a minimum
weight assignment, but this algorithm would fail to maximize the cover. Second, since the R-
SA problem calls for multi–objective or Pareto optimization, which is related the “skyline”
query in the database literature [1], one could view the solution to the R-SA problem as a sky-
line query of two objective functions cover(G,A) → R and weight(G,A) → R over the space
of assignments AG, i.e., the objective space. However, since the objective space is potentially
large and is not enumerated, such an approach is likely to be infeasible. Finally, a simplified

3For clarity, a common max det value is used, but user–defined threshold values are trivial to implement.
4Given a problem instance there can be many solutions that achieve the same cover and weight.
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version of the problem, in which the second condition of assignment validity is not required,
is known as the weighted bipartite matching problem [2]. The necessary modifications to a
bipartite matching based solution are unknown and likely to be complex.

Instead, to solve the R-SA problem, a simple but effective, greedy method is devised that start-
ing from an initially empty partial assignment A′, at every iteration selects and adds a new
edge e to A′ such that e minimizes a single, local objective function assign scoreG,A′(e) → R.
To treat the multi–objective nature of the R-SA problem, the single, local objective function
assign scoreG,A′(·) is constructed as a weighted sum of the partial derivative of weight(G,A) →
R and a derived function demandG,A′(o) → R, which is inversely proportional to the partial
derivative of cover(G,A) → R. Figure 3 lists the pseudo code of the greedy assignment

(1) procedure greedyAssign (G = (O, R,E))
(2) A ← ∅
(3) foreach ei ∈ E ei.w[0,1] = ei.w/ maxe∈E e.w

(4) while (|O| > 0 and |R| > 0)
(5) foreach oj ∈ O

(6) oj .d =
∑

rk∈R:∃ei=(oj ,rk)∈E rk.s/oj .s

(7) foreach oj ∈ O oj .d[0,1] = oj .d/ maxo∈O o.d

(8) foreach ei = (oj , rk) ∈ E

(9) ei.as = wc ∗ oj .d[0,1] + ww ∗ ei.w[0,1]

(10) i∗ = argmini ei.as

(11) A ← A ∪ ei∗

(12) G ← updateG (G, ei∗)
(13) return A

Figure 3 – Greedy Assignment Algorithm.

algorithm and shows how the single, lo-
cal objective function is calculated and
used in the optimization. After initializ-
ing an empty assignment A (line 2), the
weights are scaled to the [0, 1]–interval
(line 3). Then, while there are offers and
requests (line 4), lines 5 through 12 are
iterated. On lines 5, 6, and (7), for each
offer oj ∈ O a (scaled) demand mea-
sure, oj.d, is calculated as the fraction
of the number of seats requested (from
oj) and the number of seats offered (by
oj). Then, on lines 8 and 9, for each edge
ei ∈ E an assign score, ei.as , is calcu-
lated as a weighted sum of the scaled de-
mand measure and weight. Then, on

lines 10 and 11, edge ei∗ with the lowest assign score is greedily selected and added to A. Fi-
nally, on line 12, G is accordingly updated to reflect the new addition to the assignment. The
proposed greedy method is implemented in the SRSS as a small set of simple SQL statements.

Four Modes of Operation

Depending on when requests are assigned to offers and when offers depart, the SRSS has four
possible modes of operations. First, requests can be assigned to offers that have not yet de-
parted, i.e., are stationary, or to offers that have already departed, i.e., are mobile. Obeying the
wait time constraint, offers can depart, in an eager fashion, immediately after the first assign-
ment, or can wait, in a lazy fashion, for more assignments. The advantages and disadvantages
of the modes of assignment and modes of departures are listed in the table below:

Mode Advantages Disadvantages
Stationary no GPS or online routing is needed; ride–

share information is available prior to de-
parture → less distraction to the driver

misses possible ride–share opportunities
after departure → less effective

Mobile allows for more ride–sharing → more ef-
fective

information relating to ride–shares can dis-
tract the driver

Eager shorter offer and request wait times shorter ride–share opportunities→ less ef-
fective

Lazy longer ride–share opportunities → more
effective

longer offer and request wait times
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GENERATION OF SIMULATED DATA SETS

Since real–world, related / interlinked, large–scale transport and social data sets are not avail-
able, in an attempt to evaluate the effectiveness and feasibility of the proposed SRSS, simu-
lated data sets are derived and used. Realistic, city–wide transportation data is derived from
a Spatio–Temporal ACTivity Simulator (ST–ACTS) [3] for a population of prospective users.
Using ST–ACTS, its underlying real–world data sources, and a simple assumption about how
people build social connections in the real world, a social network of the prospective user popu-
lation is also derived. Finally, using realistic assumptions about how users adopt new services,
a subset of the prospective users is selected as SRSS users. The following paragraphs give
details about how the three simulated data sets are derived, respectively.

Transportation Data Set: The transportation data set is derived from ST–ACTS [3]. ST–ACTS
is a probabilistic, parameterizable, realistic spatio–temporal activity simulator. ST–ACTS is re-
alistic in the sense, that it is based on a number of real–world (geo–demographic, transportation,
business, consumer survey) data sources and a set of principles that model the social and some
of the physical aspects of mobility. The output of ST–ACTS is a population of simulated per-
sons, each uniquely identified by an ID, pid, described by a set of geo–demographic variables
and associated with a sequence of time–stamped activities performed at particular physical lo-
cations, i.e., coordinates. Treating the coordinates that are associated with two consecutive
activities of a simulated person as the origin and destination locations of a trip, realistic trips
of approximately 590,000 individuals in the city of Copenhagen, Denmark is simulated for the
course of a workday. Since a short trip to a local coffee shop does not represent a great op-
portunity for ride–sharing, only trips that are longer than 1 km are retained as candidates for
ride–sharing. The resulting data set is considered as the transportation data set and represents
the transportation needs of a prospective user population. The transportation data set contains
1.74 million trips of approximately 548,000 prospective users. The length of an average trip is
2.9± 1.8 km and an average prospective user performs 3.2± 1.6 trips during the day.

Social Network Data Set: A social network of the prospective user population is derived based
on a simple assumption about how people build real–world social connections: People tend to
make social connections with other people that they frequently interact with in physical space.
More specifically, for a given prospective user u, based on the location of the home and work
place of u, and the (1 out of 29) geo–demographic group that u belongs, three types of friends
are selected: home, work, interest. The selection of the home and work friends is spatially
constrained, i.e, the home (work) locations of home (work) friends are required to be within
500 (250) meters of each other. The selection of interest friends is constrained by the geo–
demographic groups of the prospective users, i.e., two interest friends must belong to the same
geo–demographic group. Using the constraints, for each prospective user approximately 12.5
friends are selected for each type of friend5, resulting in a social network data set that contains
approximately 11 million mutual connections between the prospective users.

SRSS Users Data Set: The two main forces that drive the adoption process of the proposed
SRSS is the “herd mentality” of users and the service utility that users foresee from joining
the service. These forces are materialized in the simulation as follows. First, according to the
herd mentality the more invitations a given prospective user receives from his/her friends, the
more likely he/she will join the SRSS. Second, the more a given prospective user travels and the

5Since friendship is mutual, to get a close to even distribution of the number of friends that prospective users
have, the number (and the identities) of already selected friends of a prospective user are maintained during the
selection. Candidate friends with a lower number of friends are prioritized in the selection.
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Figure 4 – Experimental Results for Varying Parameter Settings and Number of Users.

more friends he/she has, who have already joined the SRSS, the more likely he/she will find the
service useful. Accordingly, given the transportation and social network data sets, the joining /
adoption process is simulated iteratively according to six steps as follows. In Step 1, to assess
travel needs of users, for each prospective user u ∈ Up, a service utility, u.su, is calculated,
which is linearly proportional to the number of, and the sum of the length of, the trips that u
performs. In Step 2, as a seed, the first SRSS user u1, with the highest travel needs / service
utility, i.e., u1 = argmaxu∈Up

u.su, is selected. In Step 3, simulating the invitation process, the
pids of u1’s friends are recorded. In Step 4, for each so far invited user u ∈ Ui ⊆ Up (currently
the friends of u1 only) a join score, u.js , is calculated, which is linearly proportional to u.su
and the number of invitations that u has received so far. In Step 5, the next SRSS user, un is
selected as the invited user u ∈ Ui with the highest u.js , i.e., un = argmaxu∈Ui

u.js . Finally,
in Step 6, the friends of un get invited6. Subsequent SRSS users are selected from the invited
users by iterating Steps 4 through 6. The resulting SRSS users data set contains 60,000 users:
60% of which are offering, and 40% of which are requesting rides.

EVALUATION OF TRANSPORT EFFECTIVENESS AND FEASIBILITY

Using the simulated data sets, for each mode of operation a set of experiments were conducted
to measure the transport effectiveness and feasibility of the proposed SRSS. Transport effective-
ness for varying number of users and under various parameter settings (max det and max wt)
are evaluated according to three measures: resource–effectiveness, time–effectiveness, and re-
liability. These measures give answers to the following three groups of questions, respectively:
“What is the Average Vehicle Occupancy (AVO)? How many vehicle–kilometers are saved?
What is the average amount of detour in ride–shares?”, “How long must a user wait for a ride–
share on average?”, and “With what probability can a request be served?”

The four sets of experiments verified the transport effectiveness related advantages and dis-
advantages of the four modes of operation. In particular, stationary assignment consistently
resulted in lower resource–effectiveness, longer wait times, and lower reliability than its mo-
bile alternative. Similarly, eager departure consistently resulted in moderately lower resource–
effectiveness, substantially shorter wait times, and moderately lower reliability than its lazy
alternative. Due to space constraints, Figure 4 only presents detailed results for the arguably
most effective mode of operation: mobile assignment with eager departure. The trends in the
transport effectiveness measures w.r.t. the number of users are clear: as the number of users
increases, the number of social connections between users increases, which allows more ride–

6To avoid reinvitation (and duplicate users) only the friends of un get invited who are not already SRSS users.
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share opportunities and more effective transport. At a reasonable level of participation, 60,000
users, i.e., 10% of the population: the AVO–level is raised from 1 to 1.61; users wait 2.4 min-
utes for a ride–share; offers have to make a detour that is 8% of the shared distance; and 91% of
the requests can be served. The corresponding savings, during the course of a single workday
in Copenhagen, are very substantial, amounting to 32% of the normal transport cost, specif-
ically 176,000 vehicle–kilometers, 14,000 liters of fuel, and 32.7 tonnes of CO2–emissions.
This makes the proposed SRSS clearly viable and effective.

CONCLUSIONS AND FUTURE WORK

The paper described a Social Ride–Sharing System / Service (SRSS), which reduces 1) the
burden of manual scheduling and coordination of trips, and 2) the safety risks and social dis-
comfort that is commonly associated with ride–sharing. To achieve these improvements the
SRSS automatically groups ride offers and requests into ride–shares according to two objec-
tives: 1) to minimize ride–share detours, and 2) to maximize the amount of social connections
amongst participants of ride–shares. A mobile application that places the SRSS at the fingertips
of mobile users (anyplace and anytime) was also developed and illustrated. Realistic simula-
tions for a large European city showed that the proposed SRSS is highly viable and effective,
resulting in very large savings of approximately one third of the original transport costs. As
service adoption grows even further, the number of possible user connections will grow even
more, leading to even higher savings. On top of this, the novel consideration of the social as-
pects not only leads to increased service adoption, but more significantly makes ride–sharing
much more enjoyable and potentially rewarding, both in a personal and a business related sense.

Future work is planned along several directions. First, efficient implementations of a road
network distance based detour measure will be investigated. Second, similarly to previous
research [5], using a data stream management system, a highly scalable parallel implementa-
tion of the SRSS will be devised. Finally, alternative system architecture possibilities will be
considered. In particular, the possibility of distributing much of the matching task among the
computationally powerful mobile devices will be explored.
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