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Abstract. Recent advances in communication and information technol-
ogy, such as the increasing accuracy of GPS technology and the minia-
turization of wireless communication devices pave the road for Location–
Based Services (LBS). To achieve high quality for such services, spatio–
temporal data mining techniques are needed. In this paper, we describe
experiences with spatio–temporal rule mining in a Danish data min-
ing company. First, a number of real world spatio–temporal data sets
are described, leading to a taxonomy of spatio–temporal data. Second,
the paper describes a general methodology that transforms the spatio–
temporal rule mining task to the traditional market basket analysis task
and applies it to the described data sets, enabling traditional association
rule mining methods to discover spatio–temporal rules for LBS. Finally,
unique issues in spatio–temporal rule mining are identified and discussed.

1 Introduction

Several trends in hardware technologies such as display devices and wireless com-
munication combine to enable the deployment of mobile, Location–based Ser-
vices (LBS). Perhaps most importantly, global positioning systems (GPS) are be-
coming increasingly available and accurate. In the coming years, we will witness
very large quantities of wirelessly Internet–worked objects that are location–
enabled and capable of movement to varying degrees. These objects include
consumers using GPRS and GPS enabled mobile–phone terminals and personal
digital assistants, tourists carrying on–line and position–aware cameras and wrist
watches, vehicles with computing and navigation equipment, etc.

These developments pave the way to a range of qualitatively new types of
Internet–based services [8]. These types of services, which either make little sense
or are of limited interest in the context of fixed–location, desktop computing,
include: traffic coordination and management, way–finding, location–aware ad-
vertising, integrated information services, e.g., tourist services.

A single generic scenario may be envisioned for these location–based services.
Moving service users disclose their positional information to services, which use
this and other information to provide specific functionality. To customize the
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interactions between the services and users, data mining techniques can be ap-
plied to discover interesting knowledge about the behaviour of users. For exam-
ple, groups of users can be identified exhibiting similar behaviour. These groups
can be characterized based on various attributes of the group members or the
requested services. Sequences of service requests can also be analyzed to dis-
cover regularities in such sequences. Later these regularities can be exploited to
make intelligent predictions about user’s future behaviour given the requests the
user made in the past. In addition, this knowledge can also be used for delayed
modification of the services, and for longer–term strategic decision making [9].

An intuitively easy to understand representation of this knowledge is in terms
of rules. A rule is an implication of the form A ⇒ B, where A and B are sets of
attributes. The idea of mining association rules and the subproblem of mining
frequent itemset was introduced by Agrawal et al. for the analysis of market
basket data [1]. Informally, the task of mining frequent itemsets can be defined
as finding all sets of items that co–occur in user purchases more than a user–
defined number of times. The number of times items in an itemset co-occur in
user purchases is defined to be the support of the itemset. Once the set of high–
support, so called frequent itemsets have been identified, the task of mining
association rules can be defined as finding disjoint subsets A and B of each
frequent itemset such that the conditional probability of items in B given the
items in A is higher than a user–defined threshold. The conditional probability
of B given A is referred to as the confidence of the rule A ⇒ B. Given that coffee
and cream are frequently purchased together, a high–confidence rule might be
that “60% of the people who buy coffee also buy cream.” Association rule mining
is an active research area. For a detailed review the reader is referred to [5].

Spatio–temporal (ST) rules can be either explicit or implicit. Explicit ST
rules have a pronounced ST component. Implicit ST rules encode dependen-
cies between entities that are defined by spatial (north–of, within, close–to,. . . )
and/or temporal (after, before, during,. . . ) predicates. An example of an explicit
ST rule is: “Businessmen drink coffee at noon in the pedestrian street district.”
An example of an implicit ST rule is: “Middle–aged single men often co–occur in
space and time with younger women.” In this paper, we describe our experiences
with ST rule mining in the Danish spatial data mining company, Geomatic.

The task of finding ST rules is challenging because of the high cardinality
of the two added dimensions: space and time. Additionally, straight-forward
application of association rule mining methods cannot always extract all the
interesting knowledge in ST data. For example, consider the previous implicit
ST rule example, which extracts knowledge about entities (people) with different
attributes (gender, age) that interact in space and time. Such interaction will not
be detected when association rule mining is applied in straight-forward manner.
This creates a need to explore the special properties of ST data in relation to
rule mining, which is the focus of this paper.

The contributions of the paper are as follows. First, a number of real world
ST data sets are described, and a taxonomy for ST data is derived. Second,
having the taxonomy, the described data sets, and and the desirable LBSes
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in mind, a general methodology is devised that projects the ST rule mining
task to traditional market basket analysis. The proposed method can in many
cases efficiently eliminate the above mentioned explosion of the search space,
and allows for the discovery of both implicit and explicit ST rules. Third, the
projection method is applied to a number of different type of ST data such that
traditional association rule mining methods are able to find ST rules which are
useful for LBSes. Fourth, as a natural extension to the proposed method, spatio–
temporally restricted mining is described, which in some cases allows for further
quantitative and qualitative mining improvements. Finally, a number of issues in
ST rule mining are identified, which point to possible future research directions.

Despite the abundance of ST data, the number of algorithms that mine such
data is small. Since the pioneering work of [2], association rule mining methods
were extended to the spatial [3,4,6,11], and later to the temporal dimension [12].
Other than in [13,15], there has been no attempts to handle the combination of
the two dimensions. In [15] an efficient depth–first search style algorithm is given
to discover ST sequential patterns in weather data. The method does not fully
explore the spatial dimension as no spatial component is present in the rules, and
no general spatial predicate defines the dependencies between the entities. In [13],
a bottom–up, level–wise, and a faster top–down mining algorithm is presented
to discover ST periodic patterns in ST trajectories. While the technique can
naturally be applied to discover ST event sequences, the patterns found are only
within a single event sequence.

The remainder of the paper is organized as follows. Section 2 introduces
a number of real world ST data sets, along with a taxonomy of ST data. In
Section 3, a general methodology is introduced that projects the ST rule mining
task to the traditional market basket analysis or frequent itemset mining task.
The proposed problem projection method is also applied to the example data
sets such that traditional association rule mining methods are able to discover
ST rules for LBSes. Finally, Sections 4 and 5 identify unique issues in ST rule
mining, conclude, and point to future work.

2 Spatio–temporal Data

Data is obtained by measuring some attributes of an entity/phenomena. When
these attributes depend on the place and time the measurements are taken,
we refer to it as ST data. Hence such ST measurements not only include the
measured attribute values about the entity or phenomena, but also two special
attribute values: a location value, where the measurement was taken, and a time
value, when the measurement was taken. Disregarding these attributes, the non–
ST rule “Businessmen drink coffee” would result in annoying advertisements sent
to businessmen who are in the middle of an important meeting.

Examples of ST Data Sets. The first ST data set comes from the “Space,
Time, and Man” (STM) project [14]—a multi–disciplinary project at Aalborg
University. In the STM project activities of thousands of individuals are con-
tinuously registered through GPS–enabled mobile phones, referred to as mobile
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terminals. These mobile terminals, integrated with various GIS services, are used
to determine close–by services such as shops. Based on this information in cer-
tain time intervals the individual is prompted to select from the set of available
services, which s/he currently might be using. Upon this selection, answers to
subsequent questions can provide a more detailed information about the nature
of the used service. Some of the attributes collected include: location and time
attributes, demographic user attributes, and attributes about the services used.
This data set will be referred to as STM in the following.

The second ST data set is a result of a project carried out by the Greater
Copenhagen Development Council (Hovedstadens Udviklings R̊ad (HUR)). The
HUR project involves a number of city busses each equipped with a GPS receiver,
a laptop, and infrared sensors for counting the passengers getting on and off at
each bus stop. While the busses are running, their GPS positions are continuously
sampled to obtain detailed location information. The next big project of HUR
will be to employ chip cards as payment for the travel. Each passenger must
have an individual chip card that is read when getting on and off the bus. In
this way an individual payment dependent on the person and the length of
the travel can be obtained. The data recorded from the chip cards can provide
valuable passenger information. When analyzed, the data can reveal general
travel patterns that can be used for suggesting new and better bus routes. The
chip cards also reveal individual travel patterns which can be used to provide a
customized LBS that suggests which bus to take, taking capacities and correct
delays into account. In the following, the datasets from the first and second
projects of HUR will be referred to as HUR1 and HUR2, respectively.

The third ST data set is the publicly available INFATI data set [7], which
comes from the intelligent speed adaptation (INtelligent FArtTIlpasning (IN-
FATI)) project conducted by the Traffic Research Group at Aalborg University.
This data set records cars moving around in the road network of Aalborg, Den-
mark over a period of several months. During this period, periodically the lo-
cation and speeds of the cars are sampled and matched to corresponding speed
limits. This data set is interesting, as it captures the movement of private cars
on a day–to–day basis, i.e., the daily activity patterns of the drivers. Additional
information about the project can be found in [10]. This data set will be referred
to as INFATI in the following.

Finally, the last example data set comes from the Danish Meteorology Insti-
tute (DMI) and records at fixed time intervals atmospheric measurements like
temperature, humidity, and pressure for Denmark for 5 km grid cells. This data
set is unique in that unlike the other datasets it does not capture ST character-
istics of moving objects, but nonetheless is ST. This data set will be referred to
as DMI in the following.

A Taxonomy of ST Data. Data mining in the ST domain is yet largely
unexplored. There does not even exist any generally accepted taxonomy of ST
data. To analyze such data it is important to establish a taxonomy.

Perhaps the most important criterion for this categorization is whether the
measured entities are mobile or immobile. The ST data in the DMI data set is
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immobile in the sense that the temperature or the amount of sunshine does not
move from one location to the other, but rather, as a continuous phenomenon,
changes its attribute value over time at a given location. On the other hand, the
observed entities in the other four datasets are rather mobile.

Another important criterion for categorization is whether the attribute values
of the measured entities are static or dynamic. There are many examples of
static attributes values but perhaps one that all entities possess is a unique
identifier. Dynamic attributes values change over time. This change can be slow
and gradual, like in the case of the age of an observed entity, or swift and abrupt,
like in the case of an activity performed by the observed entity, which starts at
a particular time and last for a well-specified time interval only.

3 Spatio–temporal Baskets

Following the methodology of market basket analysis, to extract ST rules for a
given data set, one needs to define ST items and baskets. This task is important,
since any possible knowledge that one can extract using association rule mining
methods will be about the possible dependencies of the items within the baskets.

Mobile Entities with Static and Dynamic Attributes. Consider the STM
data; it is mobile in nature and has several static and dynamic attributes. Base
data contains the identity and some demographic attributes of the user, and the
activity performed by user at a particular location and time. Further attributes
of the locations where the activity is performed are also available. By applying
association rule mining on this base data one can find possible dependencies
between the activities of the users, the demographics of the users, the char-
acteristics of the locations there the activities are performed, and the location
and time of the activities. Since the location and time attributes are items in
the baskets one may find {Strøget,noon,businessman,café} as a frequent itemset
and from it the association rule {Strøget,noon,businessman} ⇒ {café}. Strøget
being a famous pedestrian street district in central Copenhagen in Denmark,
this rule clearly has both a spatial and temporal component and can be used to
advertise special deals of a café shop on Strøget to businessmen who are in the
area around noon.

In the INFATI data set, a record in the base data contains a location, a time,
a driver identifier, and the current speed of the car along with the maximum al-
lowed speed at the particular location. The possible knowledge one can discover
by applying association rule mining on the base data is where and when drivers
or a particular driver occur(s) and/or speed(s) frequently. However, one may in
a sense pivot this table of base data records such that each new row represents
an ST region and records the car identifiers that happen to be in that region.
Applying association rule mining on these ST baskets one may find which cars
co–occur frequently in space and time. Such knowledge can be used to aid in-
telligent rideshare services. It can also be valuable information for constructing
traffic flow models and for discovering travel patterns. While the possible knowl-
edge discovered may be valuable for certain applications, the extracted rules are
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not clearly ST, i.e.: there is no explicit ST component in them. In fact the same
set of cars may frequently co–occur at several ST regions which may be scattered
in space and time. Nonetheless, it can be argued that since the “co–occurrence”
between the items in the ST baskets is actually an ST predicate in itself, the
extracted rules are implicitly ST.

An alternative to this approach might be to restrict the mining of the ST
baskets to larger ST regions. While this may seem useless at first, since the
baskets themselves already define more fine–grained ST regions, it has several
advantages. First, it allows the attachment of an explicit ST component to each
extracted rule. Second, it enhances the quality of the extracted rules. Finally,
it significantly speeds up the mining process, as no two itemsets from different
regions are combined and tried as a candidate. Figure 1 shows the process of
pivoting of some example records abstracted from the INFATI data set. Figure
2 shows the process and results of spatio–temporally restricted and unrestricted
mining of the ST baskets. In this example the shown frequent itemsets are based
on an absolute minimum support of 2 in both cases, however in the restricted
case specifying a relative minimum support would yield more meaningful results.
Naturally the adjective “relative” refers to the number of baskets in each of the
ST regions. Figure 2 also shows the above mentioned qualitative differences in
the result obtained from spatio–temporally restricted vs. unrestricted mining.
While the frequent co–occurrence of cars A and B, and cars A and C are detected
by unrestricted mining, the information that cars A and B are approximately
equally likely to co-occur in area A1 in the morning as in the afternoon, and
that cars A and C only co–occur in area A1 in the morning is missed.

Similar pivoting techniques based on other attributes can also reveal interest-
ing information. Consider the data set in HUR2 and the task of finding frequently
traveled routes originating from a given ST region. In the HUR2 data set a record
is generated every time a user starts and finishes using a transportation service.
This record contains the identifier of the user, the transportation line used, and
the location and time of the usage. For simplicity assume that a trip is defined
to last at most 2 hours. As a first step of the mining, one can retrieve all the

Location Time CarID
1 07:30 A
1 07:30 B
2 07:31 A
2 07:31 B
2 07:31 C
3 07:32 A
3 07:32 C
3 16:20 A
3 16:20 B
2 16:21 A
2 16:21 B
1 16:22 A
1 16:22 B

Location Time CarIDs
1 07:30 A,B
2 07:31 A,B,C
3 07:32 A,C
3 16:20 A,B
2 16:21 A.B
1 16:22 A,B

Base Data Records from INFATI

Spatio-temporal Baskets

Pivoting

Fig. 1. Process of pivoting to obtain ST
baskets from INFATI base data

Location Time CarIDs
1 07:30 A,B
2 07:31 A,B,C
3 07:32 A,C
3 16:20 A,B
2 16:21 A.B
1 16:22 A,B

Spatio-temporal region 1:
Area = A1 Period = 07:30-07:40

Spatio-temporal region 2:
Area = A1 Period = 16:20-16:30

Spatio-temporal Baskets

Spatio-temporally
Unrestricted Mining

Spatio-temporally
Restricted Mining

Itemset Support
{A} 6
{B} 5
{C} 2

{A,B} 5
{A,C} 2

Area Period Itemset Support
A1 7:30-7:40 {A} 3
A1 7:30-7:40 {B} 2
A1 7:30-7:40 {C} 2
A1 7:30-7:40 {A,B} 2
A1 7:30-7:40 {A,C} 2
A1 16:20-16:30 {A} 3
A1 16:20-16:30 {B} 3
A1 16:20-16:30 {A,B} 3

Fig. 2. Process and results of spatio–
temporally restricted vs. unrestricted min-
ing of ST baskets
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records that fall within the ST region of the origin. Following, one can retrieve
all the records within 2 hours of the users that belonged to the first set. By piv-
oting on the user–identifiers, one can derive ST baskets that contain locations
where the user generated a record by making use of a transportation service.
Applying association rule mining to the so–derived ST baskets one may find
frequently traveled routes originating from a specific ST region. The pivoting
process for obtaining such ST baskets and the results of mining such baskets is
illustrated in a simple example in the light bordered box of Figure 3. Naturally,
the frequent itemset mining is only applied to the ”Unique Locations” column
of the ST baskets. As before the minimum support is set to 2. Considering the
spatial relation between the locations one might consider altering the bus routes
to better meet customer needs. For example, if locations A and C are close by on
the road network, but no bus line exists with a suitable schedule between A and
C, then in light of the evidence, i.e., support of A,B,C is 2, such a line can be
added. Note that while the discovered frequent location sets do not encode any
temporal relation between the locations, one can achieve this by simply placing
ST regions into the ST baskets as items. The pivoting process and the results
of mining are shown in the dark bordered box of Figure 3. The discovered ST
itemsets can help in adjusting timetables of busses to best meet customer needs.

Immobile Entities with Static and Dynamic Attributes. So far the ex-
amples considered datasets that are mobile and have either static, dynamic, or
both types of attribute values. Now consider an immobile ST data with mostly
dynamic attribute values, as the DMI data set. The base data can be viewed
as transactions in a relational table with a timestamp, a location identifier and
some atmospheric measurements like temperature, humidity, and pressure. Con-
sidering the geographical locations A, B, C, and D depicted in Figure 4, we might
be interested in trends like, when the temperature in regions A and B is high
and the pressure in regions A and C is low, then at the same time the humidity
in region D is medium. By applying something similar to the pivoting techniques
above, we can extract such information as follows. For each record concatenate
the location identifiers with the atmospheric measurements. Then, for each dis-

Base Data Records from HUR2
User Location Time Line ON/OFF

X A 08:00 7 ON
X B 08:15 7 OFF
X B 08:20 14 ON
X C 08:25 14 OFF
Y A 08:00 7 ON
Y B 08:15 7 OFF
Y D 08:18 18 ON
Y E 08:25 18 OFF
Z A 08:00 7 ON
Z B 08:15 7 OFF
Z B 08:20 14 ON
Z C 08:25 14 OFF

Pivoting

User Locations Unique Locations
X A,B,B,C A,B,C
Y A,B,D,E A,B,D,E
Z A,B,B,C A,B,C

Spatio-temporal Baskets

Frequent Itemset
Mining

Itemset Support
{A} 3
{B} 3
{C} 2

{A,B} 3
{A,C} 2

{A,B,C} 2

Pivoting

User Spatio-temporal Regions
X A_0800, B_0815, B_0820, C_0825
Y A_0800, B_0815, D_0818, E_0825
Z A_0800, B_0815, B_0820, C_0825

Spatio-temporal Baskets

Frequent
Itemset
Mining

Itemset Support
{A_0800} 3
{B_0815} 3
{C_0825} 3

{A_0800,B_0815} 3
{A_0800,C_0825} 2

{A_0800,B_0815,C_0825} 2

Fig. 3. ST baskets and frequent itemset
mining for HUR2

Location Time T H P
A 08:00 lo hi hi
B 08:00 lo hi hi
C 08:00 hi me me
D 08:00 me me me
A 09:00 me hi me
B 09:00 hi lo lo
C 09:00 lo lo me
D 09:00 lo hi hi
A 10:00 lo hi hi
B 10:00 hi lo lo
C 10:00 hi hi me
D 10:00 lo hi hi

Time Spatial Measurements
08:00 ATlo,AHhi,APhi,BTlo,BHhi,BPhi,CThi,CHme,CPme,DTme,DHme,DPme
09:00 ATme,AThi,APme,BThi,BHlo,BPlo,CTlo,CHlo,CPme,DTlo,DHhi,DPhi
10:00 ATlo,AHhi,APhi,BThi,BHlo,BPlo,CThi,CHhi,CPme,DTlo,DHhi,DPhi

Pivoting

Base Data Records from DMI

Spatio-temporalBaskets
Frequent Itemset Mining

Geographical Locations

A

DC

B

Longest Frequent Itemset (out of 157)
{BThi,BHlo,BPlo,CPme,DTlo,DHhi,DPhi}

Fig. 4. ST baskets and frequent itemset
mining of DMI
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tinct time interval when measurements are taken, put all concatenated values,
each of which is composed of a location identifier and an atmospheric measure-
ment, into a single, long ST basket. By performing association mining on the
derived ST baskets one can obtain the desired knowledge.

As an illustrative example, depicted in Figure 4, consider the four neighbor-
ing cells A, B, C, and D and the corresponding measurements of temperature
(T), humidity (H), and pressure (P) at three different times. Items in the ST
baskets are derived by concatenating a location identifier followed by an at-
tribute symbol and an attribute value. Hence, the item ‘ATlo‘ in the ST basket
at time ‘08:00’ encodes the fact that at ‘08:00’ at location ‘A’ the temperature
(‘T’) was low (‘lo’). Notice that the extracted knowledge refers to specific loca-
tions. If one is interested in obtaining knowledge about the inter–dependencies
of these attributes relative (in space) to one another, for each base data record
at each distinct time interval when measurements are taken, an ST basket can
be constructed that encodes measurements from neighboring cells only. So, for
example considering the immediate 8 neighbors of a cell and assuming three
different attributes the number of items in each basket is 3 + 8 × 3 = 27. Con-
sidering a five–by–five relative neighborhood centered around a cell the number
of items in each basket is 75, and the number of possible itemsets, given three
possible attribute values for each of the attributes is 375 ≈ 6.1× 1034. To reduce
complexity, top–down and bottom–up mining can occur at different spatial and
temporal granularities.

While in the above examples the type of ST data that was analyzed and
the type of ST knowledge that was extracted is quite different the underlying
problem transformation method—referred to as pivoting—is the same. In gen-
eral, one is given base records with two sets of attributes A and B, which are
selected by a data mining expert and can contain either spatial, temporal and/or
ordinary attributes. Pivoting is then performed by grouping all the base records
based on the A–attribute values and assigning the B–attribute values of base
records in the same group to a single basket. Bellow, attributes in A are referred
to as pivoting attributes or predicates, and attributes in B are referred to as
pivoted attributes or items. Depending on the type of the pivoting attributes
and the type of the pivoted attributes the obtained baskets can be either or-
dinary, spatial, temporal, or ST baskets. Table 1 shows the different types of
baskets as a function of the different types of predicates used to construct the
baskets and the different types of items placed in the baskets. The symbols s, t,
st, i, and b in the table are used to abbreviate the terms ‘spatial’, ‘temporal’,
‘spatio–temporal’, ‘items’, and ‘baskets’ respectively.

In the “co-occurrence” mining task, which was earlier illustrated on the IN-
FATI data, the concept of restricted mining is introduced. This restriction is
possible due to a side effect of the pivoting technique. When a particular basket
is constructed, the basket is assigned the value of the pivoting attribute as an
implicit label. When this implicit basket label contains a spatial, temporal, or
ST component, restricting the mining to a particular spatial, temporal, or ST
subregion becomes a natural possibility. It is clear that not all basket types can
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Table 1. Types of baskets as a function of
predicate type and item type

pred/item type s–i t–i st–i ordinary–i
s–predicate s–b st–b s–b
t–predicate st–b t–b t–b
st–predicate st–b st–b st–b st–b

other–predicate s–b t–b st–b ordinary–b

Table 2. Possible mining types of dif-
ferent types of baskets

basket/mining type s–r t–r st–r unr
s–basket X X
t–basket X X
st–basket X X X X

other–basket X

be mined using spatial, temporal, or ST restrictions. Table 2 shows for each bas-
ket type the type of restrictions for mining that are possible. The symbols s, t,
st, r, and unr in the table are used to abbreviate the terms ‘spatial’, ‘temporal’,
‘spatio–temporal’, ‘restricted’, and ‘unrestricted’ respectively.

4 Issues in Spatio–temporal Rule Mining

The proposed pivoting method naturally brings up questions about feasibility
and efficiency. In cases where the pivoted attributes include spatial and/or tem-
poral components, the number of items in the baskets is expected to be large.
Thus, the number and length of frequent itemsets or rules is expected to grow.
Bottom–up, level–wise algorithms are expected to suffer from excessive candi-
date generation, thus top–down mining methods seem more feasible. Further-
more, due to the presence of very long patterns, the extraction of all frequent
patterns has limited use for analysis. In such cases closed or maximal frequent
itemsets can be mined.

Useful patterns for LBSes are expected to be present only in ST subregions,
hence spatio–temporally restricted rule mining will not only make the proposed
method computationally more feasible, but will also increase the quality of the
result. Finding and merging patterns in close–by ST subregions is also expected
to improve efficiency of the proposed method and the quality of results.

Placing concatenated location and time attribute values about individual
entities as items into an ST basket allows traditional association rule mining
methods to extract ST rules that represent ST event sequences. ST event se-
quences can have numerous applications, for example an intelligent ridesharing
application, which finds common routes for a set of commuters and suggests
rideshare possibilities to them. Such an application poses a new requirement on
the discovered itemsets, namely, they primarily need to be “long” rather than
frequent (only a few people will share a given ride, but preferably for a long dis-
tance). This has the following implications and consequences. First, all subsets
of frequent and long itemsets are also frequent, but not necessarily long and of
interest. Second, due to the low support requirement a traditional association
rule mining algorithm, disregarding the length requirement, would explore an
excessive number of itemsets, which are frequent but can never be part of a
long and frequent itemset. Hence, simply filtering out “short” itemsets after the
mining process is inefficient and infeasible. New mining methods are needed that
efficiently use the length criterion during the mining process.
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5 Conclusion and Future Work

Motivated by the need for ST rule mining methods, this paper established a tax-
onomy for ST data. A general problem transformation method was introduced,
called pivoting, which when applied to ST datasets allows traditional association
rule mining methods to discover ST rules. Pivoting was applied to a number of
ST datasets allowing the extraction of both explicit and implicit ST rules useful
for LBSes. Finally, some unique issues in ST rule mining were identified, pointing
out possible research directions.

In future work, we will devise and empirically evaluate algorithms for both
general and spatio–temporally restricted mining, and more specialized types of
mining such as the ridesharing suggestions. Especially, algorithms that take ad-
vantage of the above–mentioned “long rather than frequent” property of
rideshare rules will be interesting to explore.
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