
Alright! That’s it!
I am goin’ HOME!

I learned that such an
algorithm has
many uses in

moving object DB
management,

Location-Based
Services, and

Location-Based
Advertising. AMM, I MMMM

EHMM MMM, SQL
AHMM, LBS,
MMMMMM

CARPOOLING…?

We all learned
something today,…
I learned that Cartman is
not such a d____s after

all, and can create
something simple,

effective, and useful.

Project, find, delete,
project, find, delete,...

until I find:
3 patterns in the sample

trajectory DB,
AND

in a real-world dataset with 1.8
million records, 28 (at least 200

long) patterns that were
supported at least by 4

trajectories, which belonged to
at least 2 users.

support in predecessor DB

support in item-projected DB

Unnecessary items

INSERT INTO FT_i (item, count)
SELECT item, count(*) count
FROM T_i GROUP BY item
HAVING COUNT(DISTINCT oid) >= n

DELETE FROM TF
WHERE TF.item IN
(SELECT F.item FROM F, FT_i
WHERE F.item = FT_i.item
AND F.count = FT_i.count)

SQL statements to delete unnecessary items

STEP 5:
Delete unnecessary

items from
predecessor DB!

An item that has the same
support in the projected DB
as in the predecessor DB,
can be deleted from the

later.

Performance
results for

varying
MinSupp

My experiments show, that:
1. the SQL implementation of my

algorithm is effective
2. my algorithm behaves as expected

when I vary its parameters

Performance
results for

varying
MinLength

INSERT INTO T_i (oid, tid, item)
SELECT t1.oid, t1.tid, t1.item FROM TF t1, TF t2
WHERE t1.oid = t2.oid
and t1.tid = t2.tid and t2.item = i

SQL statement to construct item-projected DB

support in predecessor DB

support in item-projected DB

projecting item

single most frequent itemset in item-projected DB

INSERT INTO FT_i (item, count) SELECT item, COUNT(*)
FROM T_i GROUP BY item
HAVING COUNT(DISTINCT oid) >= n

SELECT item FROM FT_i
WHERE count =(SELECT MAX(count) FROM FT_i)

SQL statements to find the single most frequent itemset

STEP 3 & 4:
Project DB and find the

single most frequent itemset!

DEF: An item-projected DB, T_i,
contains all the items from the
transactions containing item i.

There is a single most frequent
itemset in any T_i, and its items all

have maximal support in T_i.

INSERT INTO TF (tid, oid, item)
SELECT tid, oid, item
FROM TFV
WHERE tid IN

(SELECT tid
FROM TFV
GROUP BY tid
HAVING COUNT(item) >= MinLength)

STEP 2:
Filter short

transactions!

DEF: A transaction is short if
the number of items in it >=
MinLength (for example 4)

Short Transactions

SQL statement to filter short transactions

STEP 1:
Filter infrequent items!

DEF: An item (ST-region) is frequent
if the number of transactions
(trips) that contain that item
>= MinSupp (for example 4),

and the number of unique objects
associated with those transactions

>= n (for example 2).

INSERT INTO F (item, count)
SELECT item, count(*) FROM T
GROUP BY item
HAVING COUNT(DISTINCT oid) >= n
AND COUNT(*) >= MinSupp

CREATE VIEW TFV AS
SELECT T.oid, T.tid, T.item
FROM T, F
WHERE T.item = F.item

Infrequent Items

SQL statements to filter infrequent items

Frequent itemset mining, but for carpooling...
• a frequent itemset is only interesting if it is part of trips
of multiple (say n) cars
• a frequent itemset is only interesting if it is long
• subsets of frequent itemsets are only interesting if they
are part of more trips than the superset
• interesting frequent itemsets may be part of a relatively
few trips, and in that case traditional FIM algorithms run
slow

• How do I modify a traditional FIM algorithm
to do all this efficiently?
• Wait! All the data is already in my database
in a relational format T = <tid, oid, item>,
where the columns contain trip-, object-, and
spatio-temporal region identifiers.
• So…, how do I write this algorithm in my
favourite language, SQL?

If I place for each trip,
the unique spatio-
temporal region

identifiers inside a
basket, I can analyze the

set of baskets using a
Frequent Itemset

Mining (FIM) algorithm
[AGR94].

Frequent itemsets will
represent frequent

trajectories.
Look at my sample trajectory database!
• For clarity the time-of-day domain is
projected down to the 2D image.
• Lines represent trips performed by a
single object.
• The number of time the trip was
performed is represented by the width of
the line (also written in parenthesis in the
legend).

To find patterns I need to:
1. identify trips

• a trip ends when the total
displacement in the last k
GPS readings is less than δ

2. capture periodicity of patterns
• Map date-time domain to

time-of-day domain
3. eliminate the problem of noisy

GPS readings
• Substitute readings with

spatio-temporal regions

Identification of trips

Capturing the periodicity of patterns

Eliminating the
problem of noisy
GPS readings

But why do I even bother?
What is in it for me?

If I knew the patterns..., I could:
1. aid the management, storage,

and retrieval of trajectories
2. improve tracking of moving

objects
3. provide customized Location-

Based Services (LBS) and
Location-Based Advertising
(LBA)

If the patterns were long and shared by
multiple users / objects, maybe I
could get them to carpool, and reduce
traffic!

Arrrrgggg, all this spatio-
temporal data from
moving objects!! What to
do?! What to do…?!

People are predictable
animals…

How can I extract the
regularities / patterns in
the trajectories?

Mining Long Sharable Patterns in Trajectories of Moving Objects
Győző Gidofalvi and Torben Bach Pedersen

