
Alright! That’s it! 
I am goin’ HOME!

I learned that such an 
algorithm has 
many uses in 

moving object DB 
management,

Location-Based 
Services, and

Location-Based
Advertising. AMM, I MMMM 

EHMM MMM, SQL 
AHMM, LBS, 
MMMMMM

CARPOOLING…?

We all learned 
something today,…
I learned that Cartman is 
not such a d____s after 

all, and can create 
something simple, 

effective, and useful.

Project, find, delete, 
project, find, delete,...  

until I find:
3 patterns in the sample 

trajectory DB,
AND

in a real-world dataset with 1.8 
million records, 28 (at least 200 

long) patterns that were 
supported at least by 4 

trajectories, which belonged to 
at least 2 users.  

support in predecessor DB

support in item-projected DB

Unnecessary items

INSERT INTO FT_i (item, count)
SELECT item, count(*) count
FROM T_i GROUP BY item
HAVING COUNT(DISTINCT oid) >= n

DELETE FROM TF
WHERE TF.item IN
(SELECT F.item FROM F, FT_i
WHERE F.item = FT_i.item
AND F.count = FT_i.count)

SQL statements to delete unnecessary items 

STEP 5:
Delete unnecessary 

items from 
predecessor DB!

An item that has the same 
support in the projected DB 
as in the predecessor DB, 
can be deleted from the 

later.

Performance 
results for 

varying 
MinSupp

My experiments show, that:
1. the SQL implementation of my 

algorithm is effective
2. my algorithm behaves as expected 

when I vary its parameters

Performance 
results for 

varying 
MinLength

INSERT INTO T_i (oid, tid, item)
SELECT t1.oid, t1.tid, t1.item FROM TF t1, TF t2
WHERE t1.oid = t2.oid 
and t1.tid = t2.tid and t2.item = i

SQL statement to construct item-projected DB

support in predecessor DB

support in item-projected DB

projecting item

single most frequent itemset in item-projected DB

INSERT INTO FT_i (item, count) SELECT item, COUNT(*) 
FROM T_i GROUP BY item
HAVING COUNT(DISTINCT oid) >= n

SELECT item FROM FT_i
WHERE count =(SELECT MAX(count) FROM FT_i)

SQL statements to find the single most frequent itemset

STEP 3 & 4:
Project DB and find the

single most frequent itemset!

DEF: An item-projected DB, T_i, 
contains all the items from the 
transactions containing item i.

There is a single most frequent 
itemset in any T_i, and its items all 

have maximal support in T_i.  

INSERT INTO TF (tid, oid, item)
SELECT tid, oid, item
FROM TFV
WHERE tid IN

(SELECT tid
FROM TFV
GROUP BY tid
HAVING COUNT(item) >= MinLength)

STEP 2:
Filter short 

transactions!

DEF: A transaction is short if 
the number of items in it >= 
MinLength (for example 4)

Short Transactions

SQL statement to filter short transactions 

STEP 1:
Filter infrequent items!

DEF: An item (ST-region) is frequent 
if the number of transactions 
(trips) that contain that item 
>= MinSupp (for example 4), 

and the number of unique objects 
associated with those transactions

>= n (for example 2).

INSERT INTO F (item, count)
SELECT item, count(*) FROM T
GROUP BY item
HAVING COUNT(DISTINCT oid) >= n
AND COUNT(*) >= MinSupp

CREATE VIEW TFV AS
SELECT T.oid, T.tid, T.item
FROM T, F
WHERE T.item = F.item

Infrequent Items

SQL statements to filter infrequent items 

Frequent itemset mining, but for carpooling...
• a frequent itemset is only interesting if it is part of trips 
of multiple (say n) cars
• a frequent itemset is only interesting if it is long
• subsets of frequent itemsets are only interesting if they 
are part of more trips than the superset
• interesting frequent itemsets may be part of a relatively 
few trips, and in that case traditional FIM algorithms run 
slow

• How do I modify a traditional FIM algorithm 
to do all this efficiently?
• Wait! All the data is already in my database 
in a relational format T = <tid, oid, item>, 
where the columns contain trip-, object-, and 
spatio-temporal region identifiers.
• So…, how do I write this algorithm in my 
favourite language, SQL?

If I place for each trip, 
the unique spatio-
temporal region 

identifiers inside a 
basket, I can analyze the 

set of baskets using a 
Frequent Itemset 

Mining (FIM) algorithm 
[AGR94].

Frequent itemsets will 
represent frequent 

trajectories. 
Look at my sample trajectory database!
• For clarity the time-of-day domain is 
projected down to the 2D image.
• Lines represent trips performed by a 
single object.
• The number of time the trip was 
performed is represented by the width of 
the line (also written in parenthesis in the 
legend).

To find patterns I need to:
1. identify trips

• a trip ends when the total 
displacement in the last k
GPS readings is less than δ

2. capture periodicity of patterns
• Map date-time domain to 

time-of-day domain
3. eliminate the problem of noisy 

GPS readings
• Substitute readings with 

spatio-temporal regions

Identification of trips

Capturing the periodicity of patterns

Eliminating the 
problem of noisy 
GPS readings

But why do I even bother? 
What is in it for me?

If I knew the patterns..., I could:
1. aid the management, storage, 

and retrieval of trajectories
2. improve tracking of moving 

objects 
3. provide customized Location-

Based Services (LBS) and 
Location-Based Advertising 
(LBA)

If the patterns were long and shared by 
multiple users / objects, maybe I 
could get them to carpool, and reduce 
traffic!

Arrrrgggg, all this spatio-
temporal data from 
moving objects!! What to 
do?! What to do…?! 

People are predictable 
animals…

How can I extract the 
regularities / patterns in 
the trajectories?
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