

ROYAL INSTITUTE OF TECHNOLOGY

Scalable Selective Traffic Congestion Notification

Győző Gidófalvi

Division of Geoinformatics Deptartment of Urban Planning and Environment KTH Royal Institution of Technology, Sweden gyozo@kth.se

Outline

- Introduction
- Related work
- Method
 - Grid-based directional flow and mobility statistics
 - Directional congestion detection
 - Directional congestion notification
 - SQL-based implementation
- Empirical evaluations
 - Accuracy assessment
 - Scalability assessment
- Conclusion and future work

Introduction

Congestion is a serious problem

- Economic losses and quality of life degradation that result from increased and unpredictable travel times
- Increased level of carbon footprint that idling vehicles leave behind
- Increased number of traffic accidents that are direct results of stress and fatigue of drivers that are stuck in congestion

- Road network expansion is not a sustainable solution
- Instead, utilize increasingly available Floating Car Data (FCD) to: monitor → understand → control movement and congestion

Modern Traffic Prediction and Management System (TPMS)

- Motivated by:
 - Widespread adoption of online GPS-based on-board navigation systems and location-aware mobile devices
 - Movement of an individual contains a high degree of regularity
- Use vehicle movement data as follows:
 - Vehicles periodically send their location (and speed) to TPMS
 - TPMS extracts traffic / mobility patterns from the submitted information
 - TPMS uses traffic / mobility patterns + current / recent historical locations (and speeds) of the vehicles for:
 - Short-term traffic prediction and management:
 - Predict near-future locations of vehicles and near-future traffic conditions
 - Inform the relevant vehicles in case of an (actual / predicted) event
 - Suggest how and which vehicles to re-route in case of an event
 - Long-term traffic and transport planning

Approach, Unique Features, and Contributions

- Use a data-driven approach and a directional grid-based, timeinhomogeneous, Markov jump process model for the detection congestion and the selective dissemination of this congestion information to vehicles
- Unique features
 - Grid-based model: no need to road network information and can be easily scaled to any geographical level of detail
 - Markov jump process: direct estimation of future location, not prone to error propagation
 - Representation flow and movement direction on the grid
 - Novel congestion definition
 - Simple, scalable, portable SQL-based implementation
 - Relevant performance evaluations

Outline

- Introduction
- Related work
- Method
 - Grid-based directional flow and mobility statistics
 - Directional congestion detection
 - Directional congestion notification
 - SQL-based implementation
- Empirical evaluations
 - Accuracy assessment
 - Scalability assessment
- Conclusion and future work

Related Work: Trajectory Prediction

Prediction model

- Markov model
- Sequential rule / trajectory pattern
- Model basis / generality
 - General model for all objects
 - Type-base model for similar (type of) objects
 - Specific model for each individual object
- Definition of Regions Of Interest (ROI) for prediction
 - Application specific ROIs (road segments, network cells, sensors, etc.)
 - Density-based ROIs
 - Grid-based ROIs
- Prediction provision
 - Sequential spatial prediction (location of next ROI)
 - Spatio-temporal prediction
- Additional movement assumptions or models: YES / NO

Outline

- Introduction
- Related work
- Method
 - Grid-based directional flow and mobility statistics
 - Directional congestion detection
 - Directional congestion notification
 - SQL-based implementation
- Empirical evaluations
 - Accuracy assessment
 - Scalability assessment
- Conclusion and future work

Method Outline

- 1. <u>Map</u> the directional flow / movement of objects to the grid-based framework.
- 2. <u>Form tumbling windows over the mapped input stream and treat them as *temporal analysis windows*.</u>
- 3. <u>Extract</u> *Current Directional Flow Statistics (CDFS)* and *Current Directional Mobility Statistics (CDMS)* from the *Recent Trajectories (RT)* that are within the current tumbling / temporal analysis window.
- 4. <u>Incrementally summarize</u> the CDFS / CDMS into *Historical Directional Flow / Mobility Statistics (HDFS / HDMS)* for different *temporal domain projections*.
- 5. <u>Detect</u> a grid cell *g* to be congested from a particular direction *dir* if the current mean speed of vehicles that have entered the grid cell *g* from the direction *dir* is significantly and substantially below the normal according to the temporally relevant HDFS.
- 6. <u>Notify</u> an object *o* about a detected *directional congestion* (*g*, *dir*) if, based on HDMS and the current position and movement direction of *o*, the likelihood that *o* will enter the grid cell *g* from the direction *dir* during the *prediction horizon* is greater or equal than a user / system defined *minimum notification probability threshold min_prob*.

Grid-based Directional Flow and Mobility Statistics

- Directional flow and movement: grid cell and its immediate 8 neighbors
- Directional flow statistics for a grid celldirection combination (g, dir):
 - # of objects in (g, dir)
 - Average speed of objects in (g, dir)
 - Standard deviation of speeds of objects in (g, dir)
- Directional mobility statistics for a pair of not necessarily neighboring source and destination grid cell-direction combinations (gs, dirs) and (gd, dird):
 - # of objects that move from (gs, dirs) to (gd, dird)
 - # of objects that move from (gs, dirs) to any directional grid cell

Directional Congestion Detection

• Define a grid cell-direction combination (g, dir) as a directional congestion based on the current $(\dot{n}, \dot{\mu}, \dot{\sigma})$ and historical $(\bar{n}, \bar{\mu}, \bar{\sigma})$ directional flow statistics if the following four criteria are satisfied:

- 1. Sample size criterion: $\dot{n} \ge min_veh$
- 2. Sample dispersion criterion: $\dot{\sigma}/\dot{\mu} < max_{-}cv$
- 3. Statistical power criterion: $(\dot{\mu} \bar{\mu})/(\bar{\sigma}/\sqrt{\dot{n}}) < max_z$
- 4. Speed difference criterion: $(\dot{\mu} \bar{\mu})/\bar{\mu} < max_{relspddiff}$

Directional Congestion Notification

- Notify an object that has currently entered grid cell g_s from direction dir_s about a direction congestion (g_d, dir_d) according to one of two criteria:
- Mobility Statistics Criterion (MSC):

$$P((g_d, dir_d)|(g_s, dir_s)) = \frac{n_{(g_s, dir_s) \to (g_d, dir_d)}}{n_{(g_s, dir_s) \to (\cdot, \cdot)}} \ge min_prob$$

Linear Movement Criterion (LMC):

$$\cos(\alpha) \ge \min_{-} \cos \wedge dist(g_s, g_d) \le \max_{-} r$$

SQL: Schema

• Five database tables:

RT = <	<u>oid</u> , <u>seqnr</u> ,	dgid, spd>
CDFS =	<dgid, nr,<="" td=""><td><pre>mu, sig, nr_suc></pre></td></dgid,>	<pre>mu, sig, nr_suc></pre>
CDMS =	< <u>dst_</u> dgid,	<pre>src_dgid, nr_src2dst></pre>
HDFS =	<dgid, nr,<="" td=""><td>mu, sig, nr_suc></td></dgid,>	mu, sig, nr_suc>
HDMS =	<dst_dgid,< td=""><td><pre>src_dgid, nr_src2dst></pre></td></dst_dgid,<>	<pre>src_dgid, nr_src2dst></pre>

- Directional grid ID dgid columns contain an integer concatenation of grid coordinates and direction (gx, gy, dir)
- seqnr column in RT records the position of the dgid in a partial trajectory of an object; seqnr = 1 denotes most recent / current
- Underline denotes DB indexes

SQL: Calculation of CDFS and CDMS

${\bf SQL} \ {\bf 1} \ {\rm FUNCTION} \ {\rm calc_CDFS}()$

1 SELECT dgid, count(*) AS nr, avg(spd) AS mu, 2 COALESCE(stddev(spd),0) AS sig

- 3 FROM RT
- 4 GROUP BY dgid;

SQL 2 FUNCTION calc_CDMS()

SQL: Incremental Calculation of HDFS and HDMS

Incrementally update **SQL 3** FUNCTION ud_HDFS() previously observed UPDATE HDFS AS gh 1 HDFS based on non-SET nr = (c.nr+gh.nr), 2 overlapping subset / mu = (c.nr*c.mu+gh.nr*gh.mu)/(c.nr + gh.nr), 3 tumbling window sig = sqrt((gh.nr * gh.sig² + c.nr * c.sig²) / 4 (gh.nr + c.nr) +5 statistics 6 (gh.nr * c.nr * (gh.sig - c.sig)^2) / Insert new / not-yet-7 $(gh.nr + c.nr)^2),$ observed statistics 8 nr_suc = (c.nr_suc+gh.nr_suc) FROM CDFS AS c 9 Analogous 10 WHERE gh.dgid = c.dgid; calculations for HDMS 11 INSERT INTO HDFS (dgid, nr, mu, sig, nr_suc) 12 SELECT c.gid, c.dir, c.nr, c.mu, c.sig 13 FROM CDFS AS c 14 LEFT JOIN HDFS AS gh 15 ON (gh.dgid = c.dgid) 16 WHERE gh.dgid IS NULL; ____ No previous HDFS

2015-11-03

SQL: Calculation of Directionally Congested Cells

SQL 4 FUNCTION CongCell(min_veh, max_cv, max_z, max_relspddiff)

1	SELECT c.dgid AS dgid
2	FROM HDFS AS gh, CDFS AS c
3	WHERE gh.dgid = c.dgid
4	AND c.nr >= min_veh
5	AND c.sig / c.mu < max_cv
6	AND (c.mu - gh.mu) / (gh.sig / sqrt(c.nr)) < max_z
7	AND (c.mu - gh.mu) / gh.mu < max_relspddiff;

Directional congestion criteria (4-7)

SQL: Calculation of Directional Congestion Notifications

SQL 5 FUNCTION CongNotif(min_veh, max_cv, max_z, max_relspddiff, min_notif_prob)

```
CTE for P((g_d, dir_d)|(g_s, dir_s))
```

1	WITH cond_prob AS	
2	(SELECT m.src_dgid, m.dst_dgid,	
3	m.nr_src2dst::float / f.nr_suc AS cond_p	
4	FROM HDMS m, HDFS f	
5	WHERE m.src_dgid = f.dgid)	
6	SELECT t.oid, c.dgid AS con_dgid	
7	FROM cond_prob AS gcp, RT AS t,	
8	CongCell(min_veh, max_cv,	
9	<pre>max_z,max_relspddiff) AS c</pre>	
10	WHERE $t.seqnr = 1$	
11	AND gcp.src_dgid = t.dgid	
12	AND gcp.dst_dgid = c.dgid	
13	AND gcp.cond_p >= min_prob;	

Object is currently located (10) in a source dgid (11) from which the conditional probability (13) of a directionally congested (12) dgid is larger or equal than the threshold

Temporal Domain Projections

- To capture temporal regularities in flows and movements the proposed method extracts HDFS and HDMS for different values of day-of-week and hour-of-day temporal domain projections
- Clients calculate dow and how projections of their status reports
- The HDFS and HDMS tables store the domain projected aggregates using the value -1 to denote the "any" value
- Detection and notification queries combine a disjunction of conditions using the relevant domain projected information in their decision criteria
 - <u>Detection</u> if the statistical power criterion and the speed difference criterion are satisfied either based on the <u>dow</u>-projected, the <u>hod</u>-projected or the global statistics
 - Notification if the likelihood of encountering a congestion is above the threshold using either the dow-projected, the hod-projected or the global statistics

Generality of the Model and the Method

- Directional grid IDs can be replaced with adjacent road segments
- Gapless / spatially contiguous trajectories are not required but provide more robust statistics
- Congestion model can be replaced as needed
- Selective dissemination system has other applications, e.g., LBA

Outline

- Introduction
- Related work
- Method
 - Grid-based directional flow and mobility statistics
 - Directional congestion detection
 - Directional congestion notification
 - SQL-based implementation
- Empirical evaluations
 - Accuracy assessment
 - Scalability assessment
- Conclusion and future work

Empirical Evaluations: Environment + Data

- <u>Environment</u>: 64bit Ubuntu 14.04 LTS with PostgreSQL 9.3.9 on a PC with Intel Core i7-5600U @ 2.60GHz × 4 CPU, 16GB main memory and 512GB SSD
- <u>Data set</u>: 6 day sample of 11K taxis in Wuhan, China (85M records)
 - Outlier removal
 - 18km x 18km city center
 - Sampling gaps of more the 120 seconds delimit trips
 - Linear interpolation of trips between samples
 - Eliminate short trips (less than 300 seconds / 10 100m-grids)
 - → 2 million trips that have an average length of 1268 seconds and 82 grid cells;
 - ~185M status reports

Raw sample vs. interpolated trips

Empirical Evaluations: Setup

- Accuracy + scalability assessments
- Temporal data alignments: hod (for accuracy) vs fixed (for scalability)
- Robustness of results: n-fold cross-validation
- Four notification systems:
 - 1. a system using hod-projected HDMS (DMSChod)
 - 2. a system using global HDMS (DMSCglobal)
 - 3. a system using non-directional, hod-projected HDMS (NDMSChod)
 - 4. a system using the LMC for notifications (LMC)
- Default parameters:
 - prediction horizon: $\Delta t_{pred} = 60$ seconds
 - minimum number of current status reports: min_veh = 2
 - maximum sample dispersion: max_cv = 0.5
 - maximum negative z-score: $max_z = -1.65$ (significance level of $\alpha = 0.05$)
 - maximum negative relative speed difference: max_relspddiff = -0.5
 - minimum notification probability threshold: *min_prob* = 0.06

Empirical Evaluations: Framework + Measures

- Detected congestions are treated as ground truth: their spatiotemporal distribution and clustering are reasonable [Gid15]
- Modified binary assessment framework:
 - Baseline *B* for notifications: objects that can reach a congestion within the prediction horizon ==> TN = B TP FP FN
 - Detections and notifications at different prediction times are unique
- Accuracy measures:
 - TPR = TP/(TP + FN) [sensitivity]
 - FPR = FP/(FP + TN) [1-specificity]
 - Cohen's kappa coefficient: discount for classification agreement due to chance
 - AUC (Area Under the [ROC] Curve): probability the a classifier assigns a higher positive-class probability to a randomly chosen positive case than a randomly chosen negative case
- Scalability measures: time and storage (# of DB rows) that the computation phases use

Accuracy Assessment

ROYAL INSTITUTE OF TECHNOLOGY

Figure 1: ROC (Fig. 1(a)) and Cohen's kappa coefficient (Fig. 1(b)) for varying min_prob / min_cos values for four notification systems. TPR (Fig. 1(c)) and FPR (Fig. 1(d)) for varying min_prob values for five $DMSC_{global}$ -systems with different prediction horizon and temporal analysis window.

- Sensitivity to notification criteria thresholds
 - AUC of HDMS-based models (0.9799-0.9831) >> AUC of *LMC* (0.6907)
 - LMC: 41K FP to 55K objects about approx. 20 congestions
 - AUC(DMSChod) = AUC(DMSCglobal)
- Sensitivity to prediction horizon length
 - While "shorter" mobility patterns cover most positive cases, "longer" patterns are spatially more specific
 - <u>Similar results for sensitivity to spatio-</u> temporal resolution: length of trajectories linearly increases with the resolution (1/glen)

Variability of HDMS

Figure 2: Spatial distribution of status reports and directional and temporal variability of HDMS.

- Coefficient of variation $CV = \sigma / \mu$ of
 - Directional hod-projected mobility statistics: CVdir_hod(g)
 - Directionally-conditioned hod-projected mobility statistics: CVdircond_hod(g)
- CVdir_hod(g) > CVdircond_hod(g): directional aspects of the patterns capture most of the variability

Scalability Assessment

Figure 3: Execution time and space usage of different phases of the congestion detection and notification tasks in the $DMSC_{global}$ system for varying number of vehicles and values of prediction horizon / temporal analysis window size.

 All stages of processing an average temporal analysis window scale in the worst case linearly with the load

Discounting the dominating load time, given a 60-second realtime processing limit, the system can mange approximately 60/10.5* 0.2K = 1.14M objects

Linear behavior with prediction horizon length and resolution

Outline

- Introduction
- Related work
- Method
 - Grid-based directional flow and mobility statistics
 - Directional congestion detection
 - Directional congestion notification
 - SQL-based implementation
- Empirical evaluations
 - Accuracy assessment
 - Scalability assessment
- Conclusion and future work

Conclusions and Future Work

- Conclusions
 - Data-driven approach and a directional grid-based, time-inhomogeneous, Markov jump process model for the detection of and selective dissemination of traffic congestion information
 - Superior prediction accuracy
 - Model captures the topology of the road network and the movement on it
 - Highly scalable, simple, portable, SQL-based implementation
- Future work
 - Performance evaluations of road network based adaptation
 - Implementation and evaluation using main-memory and stream based Big Data processing frameworks

Thank you for your attention!

Q/A?