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ABSTRACT

City transportation is an increasing problem. Public tramntgtion is costeffective, but do
not provide doortodoor transportation; This makes the farenexpensive cabs attractive and
scarce. This paper proposes a location-based Cab-ShanvigeSECSS), which reduces cab
fare costs and effectively utilizes available cabs. The C&®ats cab requests from mobile
devices in the form of origin-destination pairs. Then itamatically groups closeby requests to
minimize the cost, utilize cab space, and service cab regjuea timely manner. Simulation-
based experiments show that the CSS can group cab requestsinthat effectively utilizes
resources and achieves significant savings, making cabglanew, promising mode of trans-
portation.
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INTRODUCTION

Transportation in larger cities, including parking, is arerincreasing problem that affects
the environment, the economy, and last but not least ous.lifeaffic jams and the hustle of
parking take up a significant portion of our daily lives andsamajor headaches. Solving the
problem by extending the road network is a costly and norablzasolution. A more feasible
solution to the problem is to reduce the number of cars onxistireg road network. To achieve
this, collective / public transportation tries to satidfetgeneral transportation needs of larger
groups in a cost—effective manner. While being cost—effecthe services offered by public
transportation often (1) do not meet the exact, door—torttansportation needs of individuals,
(2) require multiple transfers and detours that signifigaleingthen travel times, and (3) are
limited in off-peak hours. For these reasons, the far mopersive service offered by cabs /
taxis, which meet the exact transportation needs of indalgland also eliminates the problem
of parking, are in great demand. To better satisfy this dein#ns paper presents an LBS
that makes use of simple technologies and tools to offer acust+~ and resource—effective,
door—to—door transportation means, hantp—sharing

Collective transportation is not a new concept. It is encgedsand subsidized by transporta-
tion authorities all over the world. The optimization of leaitive transportation has also been
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considered. For an extensive list of research papers iratess, the reader is referred to [7].
Two papers, however, are worth highlighting. First, in [8here the idea of the present re-
search originates from, in an off—line fashion, long, shhate patterns are sought in historical
trajectories of moving objects to aid an intelligent rideatsng application. Second, in [1] an
almost “personalized” transportation system is propokatidlters the fixed—line buss service
to include variable itineraries and timetables. In comgmanj the herein proposed CSS treats
the optimization of collective transportation as a trulyilo@ process, and alters the inherently
routeless transportation service offered by cabs.

PROBLEM STATEMENT

Let R? denote the 2-dimensional Euclidean space, and let N* denote the totally ordered
time domain. Let? = {r,...,r,} be a set otab requestssuch that; = (¢,,[,, l4, t.), where

t. € T is therequest timef the cab request, € R? andl,; € R? are theorigin anddestination
locationsof the cab request, and > ¢, € T is theexpiration timeof the cab request, i.e., the
latest time by which the cab request must be serviced. A aglestr; =< t,,1,,1l4,t. > IS
valid attimet if t, <t <t.. LetAt =t,— t, be called thevait timeof the cab request. Let
a cab—shares C R be a subset of the cab requests. A cab—share is valid att tihadl cab
requests in s are valid at timeLet |s| denote the number of cab request in the cab—share. Let
d(ly, 1) be a distance measure between two locatipradl,. Letm(s,d(.,.)) be a method
that constructs a valid and optimal pick-up and drop-offusegte of requests for a cab—share
s and assigns a unique distance to this sequence baséd,on Let thesavingsp for a cab
request; € s bep(r;,s) = 1— %&V‘;‘ Then, thecab-sharing problens to find a disjoint
partitioning S = {s, W s, W ...} of R, such thatvs; € S, s; is valid, |s;| < K, and the
expression . o>, e, P(ri; s;) is maximized.

CAB-SHARING SERVICE

The Cab-Sharing Service (CSS) is depicted in Figure 1. Befang tise CSS, a user signs up
with the CSS and creates a prepaid user account to pay forrieeseA registered user sends
a cab request in the form of an
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Sharing Service sends the two address lines to a Geocodmig&eavhich validates them and
returns the exact coordinates for them. Then these origindastination coordinates, along
with a user identifier are sent to a Cab—Sharing Engine. The &aring Engine then, in an
online fashion, automatically groups “closeby” requests a cab—share to minimize the total
transportation cost, thereby providing significant sasitgthe users of the service. Once a
cab—share is constructed, the cost of the share is dedudtedtfie account of every partic-
ipant of the cab—share. Then, after receiving the inforomatibout the cab—share, the CSS
forwards the information to the Cab—Scheduling / Cab—Routingite, which assigns cabs
to cab—shares so that cab space is utilized and cab requestsraiced in a timely manner.
Finally, the CSS sends an SMS to the user about the cab fateasweost and schedule of the
fare. A web—demo of the CSS is availablewtvw.cs.aau.dk/"gyg/CSS/

GROUPING OF CAB REQUESTS

Cab requests can be viewed as data points in spatio—tempaia.sPartitioning. data points
into k£ groups based on pairwise similarity of the data points atingrto a distance measure is
referred to as the clustering problem, an extensively reked problem of computer science.
Clustering is known to be NP-hard[2]. However, there are alvemof efficient bottom-up and
top-down methods that approximate the optimal solutiomiwiti constant factor in terms of a
clustering criterion, which is expressed in terms of theéasise measure.

Hence it is only natural to approach the cab-sharing prolalem clustering problem and adopt
efficient approximations to the task at hand. For these aqpadion algorithms to converge

to a local optima, an appropriate distance meffic.) between two cab requests and/or cab—
shares needs to be devised. E@r.) to be a metric for any three cab requests or cab—shares
i, 7, k is has to satisfy the following four conditiondy.,.) > 0 (non-negativity),d(i,i) = 0
(identity),d(z, j) = d(j,1) (symmetry), andi(i, j) + d(j, k) > d(i, k) (triangular inequality).

While a clustering approach may find a near-optimal cab-sbawolution, it has several draw-
backs. Since a cab request is only valid during a specific itnt@eval, the set of valid cab re-
guest that can be considered for clustering is changingtower While a hard time-constraint
can be incorporated into a distance measure, the measurowshtisfy the triangular inequal-
ity requirement. An alternative approach could at everetstept retrieve the set of valid cab
requests, and perform a partitioning-based clustering®@sét according to some distance met-
ric. However, since at any time instancthe number of valid cab requestsand the number
of possiblek-sized valid cab—shares are comparable, an iterativeipantig-based clustering
approach would entaid (n?) distance calculations per iteration at every time instanceking

it infeasible in practice.

Since a cab request has a request timg and an expiration time, it is natural to view it as

a part of a data stream. When finding cab—shares in such a stwaropposite approaches
are obvious. In the first approach, referred to asléizg approach, the grouping of requests
is delayed as long as possible to find cab—shares with highlergs. In the second approach,
referred to as theagerapproach, request are grouped into cab—shares as earlgsblpdo
deliver a timely service. Next, the lazy version of a gredaytom-up grouping of cab requests
is described. For ease of presentation, the described iggpugethod instead of maximizing
savings, solves the equivalent problem of minimizing tttalel cost; it is shown in Figure 2.
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At any timet, valid cab requests can be divided
into two sets:R,, the set of valid requests that
expire at time steg, and R, the rest of the
valid requests that expire some time aftéime
3). Given two cab requests andr;, let

e(ri,r;) = m({r;,r;},d(.,.)) —m{r},d(.,.))
o m({r:}.d(..)

be the fractional extra costof including 7,
in r;’s cab fare. Using the pairwise frac-
tional extra costs, the fractional extra cost of
a cab share w.r.t. r; is estimated ag(s) =
>_r,es €(ri,7;), and the average savings for a
cab request; € s is estimated ag(r;,s) =

(15) endfor 1 — 22 Furthermore, let! be the cab re-
guest that has thi-th lowest fractional extra
Figure 2 — Lazy version of a greedy, cost w.r.t. r;. In line 4, these fractional extra
bottom-up grouping of cab requests costs are calculated between cab requesks.in
and{R, U R,} and for allr; € R, these frac-
tional extra costs are stored in a 2-dimensional aifaguch that&[i, k] = e(r;, rF), i.e., Eis
is sorted increasingly in row major order. Then, using ohly lowestK entries for each cab
request inZ, in an iterative fashion the currently best (lowest amerizost / highest savings)
cab—share is found (lines 7-9) and request in it are removed from casitibn (line 12) by
settingE[r;,.] and E[., ;] to some large value for all; € s. This process continues until the
currently best savings, ... is less tharmin _saving , at which point all the remaining cab
request inR, are assigned to their own “cab—share” resulting in no saviagthem (line 14).

A SIMPLE SQL IMPLEMENTATION

The grouping method for parametemax k andmin _saving can be easily implemented in
a few SQL statements as described bellow. First, after ghogpvalid requests are stored in a
tableR q = (rid,tr,te,xo,yo,xd,yd ), whererid is a unique identifier for the request,
tr andte are request and expiration times, grd,yo ) and(xd,yd ) are origin and destina-
tion coordinates. Then, using a temporal predicate, exgprequests are selected frétg and
stored in a tablé&k x with the same schema. Finally, a distance functéxi,y1,x2,y2)

is defined between two 2D coordinates. Then, the fractioxted €ost functiore for the origin
and destination coordinates of the requestandrj can be defined in SQL-99 [5] as follows.

CREATE FUNCTION e(rixo FLOAT, riyo FLOAT, rixd FLOAT, riyd F LOAT,
rxo FLOAT, rjyo FLOAT, rixd FLOAT, rjyd FLOAT)
RETURNS FLOAT
BEGIN
DECLARE ri_dist, ed FLOAT
SET ri_dist = d(rixo, riyo, rixd, riyd)
SET ed = d(rjxo, rjyo, rixo, riyo) + d(rjxd, rjyd, rixd, riyd)
RETURN (ed / ri_dist)
END



Step 1. Calculating Fractional Extra Costs

After creating a tabl&€ = (ri,rj,e ) to store the fractional extra costs, the fractional extra
costs between the requestsin R x andrj in R.g can be calculated in SQL—99 as follows.

INSERT INTO E (ri, 1j, €)
SELECT x.rid ri, g.rid rj,
e(x.xo,x.yo,x.xd,x.yd,q.x0,q.yo,q.xd,q.yd)
FROM R_x x, R_q ¢
WHERE x.rid <> q.rid
AND e(x.xo,x.yo,x.xd,x.yd,q.x0,q.yo0,q.xd,q.yd) <= 1

The first condition in theVHERElause excludes the fractional extra costriof with itself,
which is 0 by definition. The reason for doing so is to avoicdddy identifyingri on its
own as the currently best (lowest amortized cost = 0 / higbagings = 1) “cab—share” in the
processing steps to follow. The second condition inWIdERElause is a pruning heuristic
that excludesri ,rj ) request combinations frofe where the fractional extra cost exceeds 1,
in which case neithati nor any cab—share containing can benefit from including .

Step 2: Calculating Amortized Costs

Relational Database Management Systems (RDBMSsedoeiented and the inherently declar-
ative SQL language does not provide adequate support t@meit operations asequences
e.g., cumulative sum. Procedural language constructalloat iteration over the elements of a
sequence do exist in SQL, but are implemented less effigigddnce, programmers normally
revert to other procedural languages to perform such apest Nevertheless, the calcula-
tion of cumulative sum can be implemented in SQL in a dedlagdashion using a self—join.
Hence, after creating a tabde = (ri,rj,ae,k ), the summations on line 7 and 8 of the
grouping method in Figure 2, i.e. the amortized costs canabmulated in a single SQL—-99
statement as follows.

INSERT INTO AE (ri, rj, ae, k)

SELECT a.ri, a.rj, (SUM(b.e)+1)/(COUNT(*)+1) ae, COUNT(* )+1 k
FROM E a, E b

WHERE a.ri = b.ri AND a.e >= b.e

GROUP BY au.ri, a.rj

HAVING COUNT(*)+1 <= max_k

The WHEREIlause for everyri ,rj ) combination from the tabla assigns aetof (ri ,rj )
combinations from the table, such thati ’s match in the two tables and the fractional extra
costs valuesq) in tableb are less than or equal to the values in tadleThe latter condition
in a sense imposes amder on theset The aggregation for each sut ,rj ) combination
(set) is achieved through t@ROUP B¥lause. The corresponding aggregatesandk are
calculated by the two expressions in tBELECTstatement, wherae is the amortized cost
of the best cab—share of sikehat contains requests andrj . Finally, theHAVINGclause
excludes cab—shares larger than simex k from further consideration. Note that, while the
calculations of sequence—oriented cumulative aggregatesxample amortized cosaé) are
simple to express in SQL, the computation performed is notregh. While the computational
complexity of sequence—oriented cumulative aggregatéxig, for a sequence of length,
the complexity of the above method based on self-join3(is?). Nevertheless, the self—join
based simple SQL implementation can process in real-tinte 1f0,000 requests per day.
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Step 3: Selecting the Best Cab—share

After creating a tablecS = (sid,rid ) to store the cab—shares, one can select the savings,
b_savings , the sizeb k, and, conditioned on thein _savings parameter, store the re-
guests of the currently best cab—share (with 1B)#n two SQL-99 statements as follows.

SELECT ri, (1-ae), k INTO b_rid, b_savings, b_k

FROM AE ORDER BY ae LIMIT 1

INSERT INTO CS (sid, rid)

SELECT s sid, b _rid rid FROM AE

UNION

SELECT s sid, rj rid FROM AE WHERE k <= b_k AND ri = b_rid

Step 4: Pruning the Search Space

Since a cab request can only be part of a single cab—shale, ¢trrent best cab—share meets
the minimum saving requirement, and is adde®€® the requests in it have to be discarded
from further considerations for finding cab—shares in therfu This can be achieved by delet-

ing tuples from thec table that refer to the requests in question. The SQL—-98ratatt for this

is as follows.

DELETE FROM E
WHERE ri IN (SELECT rid FROM CS WHERE sid = s)
OR r1j IN (SELECT rid FROM CS WHERE sid = s)

Periodic, Iterative Scheduling of Cab Requests

All cab requests iR x are grouped in an iterative fashion by executing steps 2ugirg}
until (1) there are no more cab—shares that meet the mininaymgs requirement, or (2) all
requests iR x has been assigned to some cab—share. The loop iteratingythtbese steps
is placed in a stored procedure. Using the automatic tastdsitimg facilities of the operating
systemgcron in Linux or Task Scheduler in Windows, this stored procedure is executed
periodically. Keeping the period of the executions of theresl procedure short (frequency of
executions high) has several advantages. First, the stioetperiod, the longer requests can be
delayed until theyhave to begrouped into cab-shares, giving the requests more oppbesin
to end up in a good cab—share. In effect, the set of expiriggests is composed of requests
that will expire before the next scheduled execution of tioeesl procedure. Second, smaller
sets of expiring requests means small@ndAE tables, which are cheaper to maintain during
the iterations of a single execution of the stored procedure

EXPERIMENTS

To test the proposed methods, cab request data was simuisitegl ST-ACTS, a spatio—
temporal activity simulator [4]. Based on a number of realldidiata sources, ST-ACTS sim-
ulates realistic trips of approximately 600,000 indivitiua the city of Copenhagen, Denmark.
For the course of a workday, out of the approximately 1.53ionilgenerated trips, approxi-
mately 251,000 trips of at least 3—kilometer length wereaeld and considered as potential
cab requests. Experiments were performed for various maxiweb—share sizds < |2, 8],
wait timesAt € [1,20], and cab request densities, i.e., various—sized, randbsesiof the
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Figure 3 — Performance evaluations for varying number of calrequests.

set of potential cab requests. Figures [3(a), 3(b)], in Whie units on the x scale is 10,000
cab requests, show some of the results for parameter seifing 4, min _saving = 0.3, and
At = 15 minutes (common for all cab requests).

Figure 3(a) shows (1) the fraction of unshared cab requasts(2) the average savings fdt
fares and for theshared fares only As the density of cab requests increases, and hence the
likelihood of two individuals wanting to travel around thanse time from approximately the
same origin location to approximately the same destindtoation increases, the number of
cab—shares, meeting the required minimum savings alseases. Consequently, the fraction
of unshared requests decreases to a point where only aboat 2% cab requests cannot be
combined into cab—shares that meet the required minimumg=avSimilarly, as the density of
the cab requests increases, the average savings for faceimaleases up to a point where the
average savings per fareg)is6 + 0.11 considering all the fares, and(is8 + 0.06 considering
shared fares only. In other words, the CSS is able to group exgeests in a way such that
the cost of 97.5% of the cab fares can be reduced by two thirdserage. Figure 3(b) shows
how well cab space is utilized. As the density of cab requiesteases, the average number
of passengers per cab also increases up to a point wheredragawnumber of passengers per
cab is3.89 4+ 0.49 considering all the fares, and3®)4 + 0.27 considering shared fares only.

Due to space limitations, the detailed results of the expents showing the effects of parame-
tersAt andK are omitted, but they can be summarized as follows. Xhexperiments confirm
that due to the linear relationship betwe&hand the resulting spatio—temporal densityalid
cab requests, there exists a correspondence between theralsalts and the omitted results,
i.e., since the spatio—temporal density of valid cab regues 15,000 requests witht = 15
minutes are about the same as for 30,000 requests/with 7.5 minutes, the average savings
and cab utilization are approximately the same in both cadesK experiments confirm that
under a fixed cab request density, both the savings and daatiins saturate. In the case of
30,000 requests fak € [2, 8], the average savings for shares gradually increases(fréifiio
0.79 and the average number of passengers for shares graduaépses from t0 6.1.

The savings come at the expense of some delay in the CSS wheimgndée end-to—end
transportation needs of its users. There are three souscdki$ delay. First, thgrouping
time i.e., the time that a user has to wait until his/her requisstggouped into a cab—share,
which is upper bounded by theait timeparameter of the requests. Second,glokup time
i.e., the extra time a user has to wait because some of the wi@bers of the cab—share
need to be picked up before him/her. Finally, #eiditional travel timei.e., the extra time
the cab—fare takes due to the increased length of the sharedfghe cab—fare. Because no
realistic simulation of the transportation phase of the C&S performed, the delay incurred
due to the latter two sources has been evaluated in termsrafdigtances relative to the length
of the original requests. Due to the close to constant re$oitvarious cab request densities,
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the measurements on the delay due to the above three soarces ¢independently from the
cab request density) summarized as follows. The averageig time is11.7 minutes with

a standard deviation &f.9 minutes. The average pickup time is equivalent@d’ 4+ 13.5%

of the length of the original request. Given the averagetlenfrequests of.95 kilometers,
and assuming an average transportation speed of 40 km/& aityhthe average pickup time is
approximately).8+1.1 minutes. The average additional travel time is equivalentt+10.1%

of the length of the original request, or is approximately+ 0.9 minutes. Hence in total, the
approximate additional service delay an average CSS userierpes compared to using a
conventional cab service is approximatédy1 + 7.9 minutes, arguably a small price to pay for
the savings.

CONCLUSION AND FUTURE WORK

Motivated by the need for a novel transportation altermatihat is convenient, yet affordable,
this paper proposes a new LBS, namely a Cab—Sharing Service.(G5&chieve the desired

reduction in transportation cost, the paper proposes algmg®uping algorithm, along with a

simple but effective SQL implementation, that optimallpgps “close by” requests into cab—
shares. Experiments on simulated, but realistic cab reglaéa show that in exchange of a
short (5—15 minute) wait time, the CSS can group togetherestgun a way that effectively

utilizes resources and provides significant savings to slee. u

Future work is planned along several directions. Firsgesihis natural to view the incoming
requests as a data stream, the CSS is being implemented wmsingraemory Data Stream
Management System (DSMS) [6]. Second, the cab—sharingegmmols a hard optimization
problem, hence investigating new heuristics for it is pkchnThird, while the proposed greedy
method is computationally efficient, a number of improvetada it are possible, for example
to use spatial indices to prune the search space of possiehare candidates. Finally, while
not considered here, the optimization of the Cab—ScheduRapting Engine through spatio—
temporal cab request demand prediction is planned.
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