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ABSTRACT
The ability to predict when an individual mobile user will
leave his current location and where we will move next en-
ables a myriad of qualitatively different Location-Based Ser-
vices (LBSes) and applications. To this extent, the present
paper proposes a statistical method that explicitly performs
these related temporal and spatial prediction tasks in three
continuous, sequential phases. In the first phase, the method
continuously extracts grid-based staytime statistics from the
GPS coordinate stream of the location-aware mobile de-
vice of the user. In the second phase, from the grid-based
staytime statistics, the method periodically extracts and
manages regions that the user frequently visits. Finally,
in the third phase, from the stream of region-visits, the
method continuously estimates parameters for an inhomo-
geneous continuous-time Markov model and in a continuous
fashion predicts when the user will leave his current region
and where he will move next. Empirical evaluations, us-
ing a number of long, real world trajectories from the Geo-
Life data set, show that the proposed method outperforms
a state-of-the-art, rule-based trajectory predictor both in
terms of temporal and spatial prediction accuracy.

Categories and Subject Descriptors
H.2.8 [Database Applications]: [Data mining, Spatial
Databases and GIS]

General Terms
Algorithms
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1. INTRODUCTION
The movements of an individual contain a high degree of

regularity [3,13]. An individual regularly visits a small set of
location / regions and regularly moves between those loca-
tions. The movement regularities can be temporal, periodic
and sequential. With the increased availability and adop-
tion of mobile positioning, computing and communication
technologies, researchers have quickly identified the utility
in extracting these regularities and using them to predict
future movement of objects for a broad domain of appli-
cations including transport and mobility studies for urban
planning, mobile communication network optimization and
prefetching for Location Based Services.

Two popular extraction / prediction approaches emerged:
discrete-time Markov model based [1–3, 7] and sequential
rule / trajectory pattern based [4,5,8,11,14–18]. The meth-
ods can also be classified according to what movement in-
formation they use to model the movement of objects into
methods using a general model for all objects [3–5,7,8,11,14],
methods using a type-base model for similar (type of) ob-
jects [1, 18] and methods using a specific model for each in-
dividual object [2,16,17]. The methods can also be classified
according to their definition of Regions Of Interest (ROIs)
for prediction and consequently their spatial and tempo-
ral scale and granularity into methods using application-
specific ROIs (road segment, network cell, sensors, etc.) [1,
3, 5, 11, 16], density-based ROIs [2, 4, 8, 14, 17, 18] and grid-
based ROIs [4, 7, 11, 14]. Finally and most importantly, the
methods can also be classified according to their prediction
provision into methods that provide only sequential spatial
predictions (location of next ROI) [1–3,7,16,18] and methods
that provide spatio-temporal predictions [4, 5, 8, 11,14,17].

A major shortcoming of the methods that can provide
spatio-temporal predictions –which are all sequential rule /
trajectory pattern based– is that it is expensive and diffi-
cult to construct and combine individual prediction mod-
els with them that capture temporal and period regularities
at different scales. Therefore, the present paper proposes
the use of a dynamically weighted ensemble of Inhomoge-
neous Continuous-Time Markov (ICTM) models to simply
but effectively capture the temporal-, periodic- and sequen-
tial regularities in movements of an object to predict when
and where the object will move next.

The rest of this paper is organized as follows. Section 2
defines the prediction problems and gives preliminaries. Sec-
tion 3 details individual parts of the proposed ICTM-based
prediction model. Section 4 empirically evaluates and com-
pares the proposed method. Finally, Section 5 concludes.



2. DEFINITIONS AND PRELIMINARIES
The following section first, in Section 2.1, formalizes the

temporal and spatial mobility prediction tasks, then, in Sec-
tion 2.2 presents basic theory related to the ICTM model.

2.1 Definitions of Mobility Prediction Tasks
Let the time domain be denoted by T and be modeled as

the totally ordered set of non-negative natural numbers N+.
Let the trajectory of a moving object o in the 2-dimensional
(2D) space be modeled and defined as a sequence of tuples
S = 〈(l1, t1), . . . , (ln, tn)〉, where li ∈ R2 (i = 1, . . . , n) de-
scribe locations, and t1 < . . . < tn ∈ T are irregularly spaced
but temporally ordered time instances, i.e., gaps are allowed.

According to the typical linear movement model the con-
tinuous movement of the object is assumed to be linear and
at constant speed between two consecutive locations. As-
suming that the object’s position is sampled relatively fre-
quently with respect to the displacement, according to the
discretized movement model, the object is assumed to be at
location li during the period [ti, ti+1) (1 ≤ i < n).

Then, given the trajectory S = 〈(l1, t1), . . . , (ln, tn)〉 of an
object o, according to the discretized movement model the
staytime of o in any given region of space R ⊂ R2 is defined
as: tRst =

∑
1≤i<n:li∈R (ti+1 − ti).

LetR = {Ri, . . . , Rk} denote a set of spatially contiguous,
mutually exclusive regions of space, i.e., Ri, Rj ⊂ R2, Ri ∩
Rj = ∅, i, j ∈ {1, . . . , k}, i 6= j, such that:

(i) the regions are prevalent - the sum of the relative stay-
times of the object in the regions of R is above a
user-defined minimum relative prevalence parameter,

min rp, i.e.,
∑
Ri∈R t

Ri
st /t

R2

st ≥ min rp, and

(ii) the regions are maximally discriminative - the total
area of the regions in R is minimal.

The set of regions R = {Ri, . . . , Rk} fulfilling these con-
ditions is termed as prevalent and maximally discriminative
regions. A member of this set Ri ∈ R is called a prevalent
and maximally discriminative region, or pmd-region.

Given the set of regions R, the object’s continuous move-
ment can be further approximated by the object’s region-
based trajectory as a sequence of tuples SR = 〈(R1, t

s
1, t

e
1), . . . ,

(Rm, t
s
m, t

e
m)〉, where Ri ∈ R (i = 1, . . . ,m) describe regions,

and ts1 < te1 < . . . < tsm < tem ∈ T are irregularly spaced but
temporally ordered time instances, i.e., gaps are allowed.

Given a time instance t ∈ T at which the object is in
one of the regions Rj ∈ R, let H(t) denote the object’s
region-based trajectory history up to time instance t, i.e.,
H(t) = 〈(R1, t

s
1, t

e
1), . . . , (Rj , t

s
j , ?), where tsi < tei < tsj ≤ t,

i = 1, . . . , j − 1. Furthermore, for the ease of exposition let
h(S) represent the head of an ordered tuple sequence S.

Then, the temporal mobility prediction task is informally
defined as upon the object’s arrival at a region Rj predicting
the time of stay at Rj . Formally:

Definition 1. Temporal Mobility Prediction: Given an ob-
ject o and its region-based trajectory history up to time in-
stance t, i.e.,H(t) such that h(H(t)) = (Rj , t

s
j = t, ?), a user-

defined minimum staytime likelihood threshold, min stl , and
a time-parameterized discrete random variable X(t) taking
on values from the set of regions R, predict the staytime, s∗,
or equivalently the departure time, t+ s∗, of o as:

s∗ = argmin
s

Pr(X(t+ s) = Rj |H(t)) ≤ min stl .

Subsequently, the spatial mobility prediction task is infor-
mally defined as upon the object’s arrival at a region Rj
predicting the next region that the object will enter after
leaving Rj . Formally:

Definition 2. Spatial Mobility Prediction: Given an ob-
ject o and its region-based trajectory history up to time in-
stance t, i.e., H(t) such that h(H(t)) = (Rj , t

s
j = t, ?), and

a time-parameterized discrete random variable X(t) taking
on values from the set of regions R predict the next region,
R∗j+1, that o will start moving to at the afore predicted de-
parture time, t+ s∗, as:

R∗j+1 = argmax
Rj+1∈{R−Rj}

Pr(X(t+ s∗) = Rj+1|H(t)).

2.2 ICTM Model Related Statistical Theory
Adapted from Chapters 4-6 of [12], the following subsec-

tions describe basic statistical theory that is relevant for the
proposed ICTM modeling and prediction.

2.2.1 Discrete-Time Markov Chain
A discrete-time, finite state stochastic process {Xn : n =

0, 1, 2, . . .} takes on a finite number of possible values, e.g.,
Xn ∈ {0, 1, 2, . . .}. If Xn = i, then the process is said to be
in state i at time instance n. Suppose that whenever the
state is i, there is a fixed probability Pij ≥ 0 that the next
state will be j. That is, suppose that:

Pr(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = Pij
(1)

for all states i0, . . . , in−1, i, j and all n ≥ 0. Such a stochas-
tic process is known as a discrete-time Markov chain. Alter-
natively, the distribution of any future state Xn+1 is condi-
tionally independent of the past states X0, . . . , Xn−1 given
the current state Xn,i.e.:

Pr(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0)

= Pr(Xn+1 = j|Xn = i) = Pij . (2)

This conditional independence is referred to as the Marko-
vian property or memorylessness. A Markov chain has mem-
ory m or order m if the future state depends on the past m
states only.

2.2.2 Exponential Distribution
A continuous random variable X is said to have an expo-

nential distribution with rate parameter λ > 0 if its proba-
bility density function (PDF) is f(x) = λe−λx when x ≥ 0
and f(x) = 0 otherwise, or, equivalently, its cumulative dis-
tribution function (CDF) is F (x) = Pr(X ≤ x) = 1 − e−λx
when x ≥ 0 and f(x) = 0 otherwise. The following are the
relevant properties of the exponential distribution:

1. The expectation or mean of an exponentially distributed
random variable X is 1/λ.

2. The exponentially distributed random variable X is
said to be without memory, or memoryless because
for all t, s ≥ 0: Pr(X > t+ s|X > t) = Pr(X > s).

3. The exponential distribution is the only distribution
that possesses the memoryless property.

2.2.3 Continuous-Time Markov Process
The continuous time analogue of a discrete time Markov

chain is a Continuous-Time Markov (CTM) process. Namely,
a continuous-time stochastic process {X(t) : t ≥ 0} takes on



values from set of possible values, e.g., Xn ∈ {0, 1, 2, . . .},
which in general is referred to the state space. The process
{X(t) : t ≥ 0} is a CTM process if for all s, t ≥ 0 and
nonnegative integers i, j, x(u), 0 ≤ u < t:

Pr(X(t+ s) = j|X(t) = i,X(u) = x(u), 0 ≤ u < t)

= Pr(X(t+ s) = j|X(t) = i). (3)

That is, a CTM process is a stochastic process that has
the Markovian property, i.e., the distribution of the future
state X(t+s) is conditionally independent of the past states
X(u), 0 ≤ u < t given the current state X(t). If the condi-
tional probability Pr(X(t+ s) = j|X(t) = i) is independent
of t, then the CTM process is said to have stationary /
homogeneous transition probabilities or it is said to be sta-
tionary / homogeneous. Inversely, if the conditional proba-
bility depends on t, then the CTM process is said to have
non-stationary / inhomogeneous transition probabilities or
it is said to be non-stationary / inhomogeneous. The latter
type of process is explicitly referred to as an Inhomogeneous
Continuous-Time Markov (ICTM) process. Analogous to
the discrete-time case, a CTM process has memory m or
order m if the future state depends on the past m unique
consecutive states only.

Let Ti, referred to as the holding time, denote the amount
of time that a CTM process stays in state i before making
a transition to some other state. Due to the Markovian
property, assuming the process has entered state i at some
time, say, time 0, the probability that the process will remain
in state i for at least s more time units given that the process
has already been in state i up to the current time t > 0 is just
the unconditional probability that the process will remain in
state i for at least s time units. That is:

Pr(Ti > t+ s|Ti > t) = Pr(Ti > s) (4)

for all s, t ≥ 0. Hence, Ti must be memoryless and must thus
be exponentially distributed. This gives rise to an alterna-
tive definition of a CTM process, i.e., a stochastic process
is a CTM process if and only if the holding times in each
state are exponentially distributed with some mean.

3. METHOD
The proposed method essentially can be divided into two

sequentially dependent parts: the preprocessing part, where
the trajectory is transformed (Sections 3.1-3.4), and the pre-
diction part, where the model parameters are estimated from
historical part of the transformed trajectory and the model
is applied to the most recent part of the transformed trajec-
tory (Section 3.5).

3.1 Grid-Aggregation of Mobility Statistics
In order to deal with the noise in GPS measurements and

make online processing efficient, the proposed method em-
ploys the simple but effective grid-based spatial aggrega-
tion of temporal mobility statistics as follows. Let G de-
note a uniform grid and g1, g2, . . . its grid cells that have
side length glen and that uniformly partition the 2D Eu-
clidean space. Given G, the proposed method uses straight
forward coordinate arithmetic to map the individual loca-
tions of the object’s trajectory S = 〈(l1, t1), . . . , (ln, tn)〉 to
a grid-based trajectory SG = 〈(g1, t1), . . . , (gn, tn)〉 and in-
crementally maintains for every grid cell gi ∈ G the staytime
of the object in gi, which, according to the discretized move-
ment model, is defined as: tgist =

∑
1≤j<n:gj=gi (tj+1 − tj).

3.2 Grid-based Detection of pmd-regions
A pmd-region can span several spatially contiguous grid

cells. After observing that, like many other natural geospa-
tial processes [10, 13], the staytimes of individual objects in
grid cells also exhibit the powerlaw distribution, for which
the elements in the“head”part of the distribution tend to be
qualitatively different and have distinct semantic meaning,
the proposed method iteratively, always starting with the
grid cell with the highest staytime g∗ among the so far not
yet grouped grid cells, grows and extracts groups of con-
tiguous dense grid cells (i.e., tgist > tst) within the maxR-
neighborhood of the current g∗ until the prevalence of the
so extracted pmd-regions reaches the min rp-requirement.

3.3 Tracking the Evolution of pmd-regions
The method presented in Section 3.2, at a given time, de-

rives pmd-regions based on the grid-based temporal mobility
statistics (Section 3.1). However, as the object continues to
move, the grid-based statistics naturally change over time
and consequently the pmd-regions also evolve over time. In
particular, pmd-regions can shift in space, grow or shrink in
size, disappear (become non-pmd), reappear (become pmd
again), or emerge (become pmd for the first time). Although
the method in Section 3.2 can be used to extract pmd-
regions periodically, due to this evolution, it is not guar-
anteed that the same pmd-regions will be detected in two
consecutive executions of the method. Thus, to perform
the prediction tasks effectively based on relevant staytime
information about pmd-regions and transition information
between pmd-regions, it is essential to correctly track and
maintain the evolution of the pmd-regions as they are dis-
covered periodically by the pmd-region detection method.
The proposed method for the correct tracking and mainte-
nance of pmd-regions is as follows:

1. Detect the current pmd-regions.

2. Spatially intersect the pmd-regions that have been dis-
covered at any time in the past with the currently de-
tected pmd-regions.

3. For each current pmd-region that intersects with a
previously detected pmd-region assign the same ID to
the newly detected pmd-region as the ID of the inter-
secting previously detected pmd-region. Update the
spatial information associated with the pmd-region ID
with the spatial information of the currently detected
pmd-region.

4. For any remaining currently detected pmd-region that
does not intersect with any previous pmd-region, as-
sign a new unique pmd-region ID that is one higher
than the currently highest pmd-region ID.

To facilitate this tracking / maintenance of pmd-regions,
pmd-region IDs and spatial information about pmd-regions
in terms of constituent grid cells are stored in a relational
format in the table reg: <reg_ID, grid_ID>.

3.4 From grid- to region-based trajectory
In order to predict the departure time from or staytime

at pmd-regions and the transitions between them, relevant
staytime information about pmd-regions and transition in-
formation between pmd-regions needs to be gathered. To
achieve this the grid-based trajectory SG = 〈(g1, t1), . . . ,
(gn, tn)〉 needs to be transformed into a region-based tra-
jectory SR = 〈(R1, t

a
1 , t

d
1), . . . , (Rm, t

a
m, t

d
m)〉, i.e., for each
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Figure 1: Observed, sampled and theoretical CDFs
of an object’s staytime in its top two pmd-regions.

pmd-region Ri that the object enters and later on leaves, an
arrival time , tam, and a departure time , tdm, needs to cap-
tured and stored. As signal failure can cause a decrease in
positioning accuracy, during an actual visit to a pmd-region,
the object’s position may inaccurately indicate the presence
of the object in a cell outside of the pmd-region for a brief
period. Such interruptions of visits must be filtered out to
accurately capture the arrival time and departure time for
each pmd-region visit. To do this, based on the grid-based
trajectory the events of valid arrival and valid departure are
defined as follows:

Definition 3. Valid Arrival (Departure): Given an object
o’s grid-based trajectory SG = 〈(g1, t1), . . . , (gn, tn)〉, a set
of pmd-regions R = {R1, . . . , Rk}, and a minimum stay-
time threshold min tst (maximum interruption time thresh-
old max t int), o is defined to arrive at (depart from) a pmd-
region Rj ∈ R at time instance ti if for the consecutive sub-
sequence SGv = 〈(gi−1, ti−1), (gi, ti), . . . , (gi+m, ti+m)〉 v SG

it is true that for all grid cells gl, (gl, tl) ∈ SGv s.t. i ≤ l ≤
i+m the grid cell gl ⊆ Rj (gl 6⊂ Rj), gi−1 6⊂ Rj (gi−1 ⊆ Rj),
and

∑
i≤l<i+m (tl+1 − tl) ≥ min tst (≥ max t int).

Given the two definitions, using a finite set of tempo-
rary variables, arrival and departure times are easily iden-
tified from the grid-based trajectory stream in a continu-
ous fashion. This information and the transitions between
two consecutive regions in the so-transformed region-based
trajectory stream are stored in the table reg_vis_trans:

<reg_id, arr_time, dep_time, prv_reg, nxt_reg, date,

day_of_week, isweekend>.

3.5 Prediction Method
The proposed methods to predict the departure time and

the next region is facilitated by modeling the object’s pmd-
region visit and transition sequence as an ICTM process.

3.5.1 Applicability of the ICTM Model
For this modeling approach to be appropriate, according

to the alternative definition of a CTM process, the hold-
ing time (staytime), in each state (pmd-region) has to be
exponentially distributed. Figure 1 verifies the correctness
of this assumption. Figure 1 compares the observed cumu-
lative distribution functions (CDFs) of staytimes in the top
two pmd-regions of an object to 1) the CDFs of (theoretical)
exponentially distributions that have the same mean values
as the respective observations and 2) the average CDFs of
k = 100 sets of samples that are randomly drawn from the
respective theoretical distributions and have the same sam-
ple size as the respective observations. Observed and sam-
pled CDFs are calculated via the Kaplan-Meier estimate [9].

Upper and lower confidence bounds (UCB, LCB) are calcu-
lated at α = 0.05 for 95% confidence levels using Green-
wood’s formula [6]. As Figure 1 shows the observed CDFs
for most of the staytime values fall between the 95% confi-
dence interval of the averaged sampled distribution, which
is what one would expect in 95% of the cases for samples
drawn from the respective theoretical distributions. There-
fore, the proposed modeling aproach is appropriate.

However, staytimes in- and transitions between pmd-regi-
ons are inhomogeneous. First, they are temporally inho-
mogeneous, i.e., Pr(X(t + s) = j|X(t) = i) depends on t.
Second, because human activity and hence movement is gov-
erned by periodic natural events (changes of days, seasons,
etc.) and because time is thus referenced using a multi-level
periodic reference system (60 minutes in one hour, 24 hours
in one day, etc.), the transition probabilities are likely to
be periodically inhomogeneous. Finally, last but not least,
sequential regularities in staytimes at- and/or transitions be-
tween pmd-regions are likely to exist, making the transition
probabilities sequentially inhomogeneous. For example the
semantic location sequence daycare→work→daycare may
be frequently observed in the pmd-region visit- and tran-
sition sequence, while the sequence home→work→daycare
might not be observed as frequently. Thus, the conditional
probability that the next region will be daycare given that
the previous region has been daycare and the current region
is work is higher than the same probability given that the
previous region is home and the current region is work. An
approach to estimate the temporally-, periodically- and se-
quentially inhomogeneous transition probabilities of an
ICTM model is present in Section 3.5.2.

3.5.2 Prediction Using the ICTM Model
Combining the theories presented in Section 2.2, the ob-

ject’s visits to and transitions between pmd-regions is mod-
eled by a CTM process {X(t), t ≥ 0} as follows. Let the
state space S of the process be the incrementally labeled set
of pmd-regions R. Similar to the Pij transition probabilities
for the discrete-time analogue, the transition rate qij from
state i, i ∈ S to state i, i ∈ S, j 6= i is defined as the num-
ber of times the process transitions from state i to j during
the unit time interval. For each state i associate for each
other state j a random alarm clock aij that has an alarm
time that is exponentially distributed with rate parameter
qij . Assume that as soon as the process enters a state i
the set of alarm clocks that are associated with state i, i.e.,
{aij , j ∈ S, j 6= i}, are activated. The process remains in
state i until one of the alarm clocks goes off, at which time
the process transitions to the state that is associated with
the first alarm clock then went off. It can be shown that the
time until first alarm clock goes off in state i, i.e., the holding
time in state i, is exponentially distributed with rate param-
eter vi =

∑
j∈S,j 6=i qij , where qij = 0 if the process cannot

enter state j from state i. When the process leaves state i it
transitions to state j with probability pij = qij/vi, where pij
is the transition probability of the embedded discrete-time
Markov chain from state i to j. It can be shown that the
above described stochastic process is a CTM process.

Consequently, according to the properties of the exponen-
tial distribution, given that at the current time t the process
is in state i, the probability that the process will remain in
state i during the interval (t, t+ s] is:

Pr(X(t+ s) = j|X(t) = i) = e−vis (5)



Given the user-defined minimum staytime likelihood thresh-
old min stl and that the object is in pmd-region Ri ∈ R at
time t the object’s departure time (t+ s∗) from pmd-region
Ri to some other pmd-region Rj ∈ R, Rj 6= Ri is predicted
by equating the expression in Equation 5 to min stl and
solving for s as follows:

s∗ = s =
ln(min stl)

−vi
(6)

Independently of when the process makes the transition
from state i, the probability that the process will transition
from state i to state j, i.e., the transitions probability of
the embedded discrete-time Markov chain, is pij = qij/vi.
Therefore, the next pmd-region is predicted to be the pmd-
region R∗ that has the maximum transition probability from
pmd-region Ri, i.e:

R∗ = argmax
j∈{S−i}

pij (7)

Provided the information stored in the reg_vis_trans ta-
ble, given that the current pmd-region of the object is R_c

the transition rates to all other states are calculated by the
following SQL query:

SELECT r.nxt_reg AS R_j, sum(*)/t.durr AS q_cj

FROM reg_vis_trans AS r,

(SELECT sum(dep_time-arr_time) AS durr

WHERE reg_id = R_c) AS t

WHERE r.reg_id = R_c;

As the object moves between the pmd-regions the entries
in the table reg_vis_trans increase. Consequently, the ev-
idence for the calculation of transition rates increases and
changes. However, as the change is likely to degrease over
time, the departure time and next pmd-region predictions
from any given pmd-region are likely to become determin-
istic over time. This is because according to the above pre-
sented transition rate estimations, the modeled continuous-
time Markov process is assumed to have homogeneous tran-
sitions rates. As it is argued in Section 3.5.1, this assump-
tion clearly does not hold in the case of the modeled pmd-
region visit- and transition sequence. However, given the
additional information that the object has arrived at the
current pmd-region R_c at time t_a on date d_a and that
the previous pmd-regions visited by the object was R_p the
temporal-, periodic- and sequential inhomogeneity of the
transitions rates can be modeled by generally imposing ad-
ditional sequential (spatial) and temporal constraints on the
SQL query used in the estimations as follows:

TI-Q: Temporally Inhomogeneous Transition Rates

SELECT r.nxt_reg AS R_j, sum(*)/t.durr AS q_cj

FROM reg_vis_trans AS r,

(SELECT sum(dep_time-arr_time) AS durr

WHERE reg_id = R_c) AS t

WHERE r.reg_id = R_c

AND t_a BETWEEN r.arr_time AND r.dep_time;

PI-Q: Periodically Inhomogeneous Transition Rates

SELECT r.nxt_reg AS R_j, sum(*)/t.durr AS q_cj

FROM reg_vis_trans AS r,

(SELECT sum(dep_time-arr_time) AS durr

WHERE reg_id = R_c) AS t

WHERE r.reg_id = R_c

AND dow(d_a) = r.day_of_week;

SI-Q: Sequentially Inhomogeneous Transition Rates

SELECT r.nxt_reg AS R_j, sum(*)/t.durr AS q_cj

FROM reg_vis_trans AS r,

(SELECT sum(dep_time-arr_time) AS durr

WHERE reg_id = R_c) AS t

WHERE r.reg_id = R_c

AND R_p = r.prv_reg;

3.5.3 Weighted Ensemble of ICTM Models
It is clear that each of the queries presented in Section 3.5.2

constructs an evidence set E for the calculation of the tran-
sition rates. Based on a single evidence set E, one can
construct an ICTM model M and perform departure time
and next pmd-region predictions as it is described in Sec-
tion 3.5.2.

It is likely that different, mutually-dependent aspects of
inhomogeneity of the process have difference importance in
the overall behavior of the process. Hence, the proposed
method combines the predictions of a weighted ensemble
of ICTM models M1, . . . ,Md as follows. For brevity, let
PrM(i(s)|i) denote the probability according to model M
that the process will remain in the current state i within the
next s time units. Similarly, let PrM(j|i) denote the proba-
bility according to modelM that the process will transition
from the current state i to the next state j. Then, the
departure time prediction based on an ensemble of mod-
els M1, . . . ,Md associated with weights w1, . . . , wd is per-
formed by solving the following equation:

s∗ = argmin
s

∑d
k=1 wk ∗ PrMk (i(s)|i)∑d

k=1 wk
≤ min stl . (8)

The solution for Equation 8 is obtained by performing a bi-
nary search in the possible range of s, i.e., [mindk=1(s∗Mk

),

maxdk=1(s∗Mk
)], where s∗Mk

represents the solution to Equa-
tion 6 by modelMk, and testing for the equality condition.

Similarly, the next state prediction based on an ensemble
of models M1, . . . ,Md associated with weights w1, . . . , wd
is performed by solving the following equation:

R∗ = argmax
j∈{S−i}

∑d
k=1 wk ∗ PrMk (j|i)∑d

k=1 wk
. (9)

3.5.4 Model Weights in the Ensemble
Individual models in an ensemble capture different aspects

of the inhomogeneity of transition rates. Individual model
weights indicate the relative importance of each of the mod-
els and the corresponding inhomogeneity aspects. Model
weights can be set in a static fashion based on intuition or
expert knowledge or based on a parameter optimization pro-
cedure on the basis of a general training set of several users.
However, the relative importance of the models and the cor-
responding inhomogeneity aspects are expected to vary from
individual to individual as well as over time. To capture this
variation the calculation of dynamic weights is proposed.

As it is described Sections3.5.2 and 3.5.3, the transition
rates of an ICTM model M are estimated on the basis of
a query condition QC and a resulting evidence set EQC .
In case of the TI-Q, PI-Q, and SI-Q queries for the query
parameters time of arrival t_a, date of arrival d_a, and pre-
vious pmd-regions visited R_p, these query conditions are

• t_a BETWEEN r.arr_time AND r.dep_time,

• dow(d_a) = r.day_of_week, and



• R_p = r.prv_reg

and capture the temporal-, periodic- and sequential inhomo-
geneity of the transitions rates, respectively. Each of these
query conditions puts a constraint on the evidence set in
either the projected temporal- or the discretized spatial di-
mensions each with finite domain size. Intuitively, the rela-
tive importance of a modelM with query condition QC over
a finite-domain dimension D and evidence set EQC should
be directly proportional to the relative size of the evidence
set, |EQC |/|E∅|, and should be inversely proportional to the
relative expected domain selectivity of the query condition,
SD(QC )/SD(∅), where ∅ represents the empty constraint
and SD(.) returns the size of its argument w.r.t. the do-
main D. Since for query TI-Q the size of a time instance
t a is not well defined w.r.t. to the projected temporal di-
mension, SD(t a) is approximated with the average length
of the projected time intervals that overlap with t a, i.e.,
SD(t a) =

∑
e∈EQC |e.dep time− e.arr time|/|EQC |. Con-

sequently, the weights of a model M with query condition
QC over a finite-domain dimension D and evidence set EQC

is calculated as:

wM =
|EQC |
|E∅|

× SD(∅)
SD(QC )

. (10)

The SQL queries to calculate the weights of models from
relevant evidence sets are straight forward and therefore are
omitted to preserve clarity and save space.

4. EMPIRICAL EVALUATION
The following section describes the process and results of

the experimental evaluation of the proposed mobility pre-
diction method.

4.1 Test Environments
To realize the evaluations the proposed method has been

implemented in Java both as a desktop and a mobile appli-
cation. The prediction performance experiments have been
conducted in the desktop environment on a PC with In-
tel core i7 2630QM processor with 8 GB of main memory
running a 64-bit Windows 7 OS. The execution time and
resource consumption experiments have been conducted in
the mobile environment on a HTC G7 smartphone with 1
GHz CPU, 512M memory and Android 2.3.7 OS.

4.2 CPU and Battery Consumption
The prototype mobile application can in an online fash-

ion collect and project GPS coordinates onto the grid using
14% of the CPU when the average sampling frequency is 4.7
seconds. One run of pmd-region detection and and tracking,
which is executed infrequently, e.g., daily, takes on average
4.8 seconds and one prediction, which is executed on aver-
age 5-10 times daily, takes on average 1.4 seconds. After
running the prototype mobile application for 1 hour 15 min-
utes, the total battery consumption is 214431µAh, so the
transient battery consumption is 47µAh/sec. This is really
low battery consumption, with one 1300mAh battery can
enable this application to run 7.68 hours. Since the overall
resource consumption is dominated by the location sampling
and grid-projection, the prototype application is likely to
be able to run up to 10-12 times longer than 7.68 hours if
the sampling frequency is set to one minute, which arguably
will not significantly affect the predictive performance of the

application. Overall, the execution time and resource con-
sumption experiments show that proposed method can be
executed on a conventional smartphone meeting real-time
application requirements while using minimal resources.

4.3 Real Word Data Set
The trajectory data set used in the experiments is a sub-

set of the GeoLife dataset [15]. It is a GPS trajectory data
set that has been collected in GeoLife project by Microsoft
Research Asia. It contains the GPS trajectories of 178 users
sampled between the period April 2007 and August 2009. A
GPS trajectory in the data set is represented by a sequence
of time-stamped points of geographical coordinates (longi-
tude, latitude, height) an additional information about the
movement (speed and heading direction). These trajectories
were recorded by different GPS loggers or GPS-phones us-
ing a variety of sampling rates. 95% of the trajectories are
sampled frequently, i.e., every 2-5 seconds or 5-10 meters.
The data set records a broad range of users’ outdoor move-
ments, including not only life routines like go home and go
to work but also some entertainment and sports activities,
such as shopping, dining, hiking, and cycling. Because the
sampling rate and period are not constant for all users and
because some user trajectories contain siggnificant sampling
gaps, the trajectories of the top users with the higest avarage
sampling rate, longest continuous sampling period, and least
amount of sampling gaps were selected for the exeriments.
The number of samples and the number of observation days
in the individual trajectories of the selected users ranges be-
tween approximatelly 210000 and 640000 samples and be-
tween 19 and 61 observation days.

4.4 Prediction Performance Measures
Given an object’s observed region-based trajectory, SR =
〈(R1, t

s
1, t

e
1), . . . , (Rm, t

s
m, t

e
m)〉, and the region-based trajec-

tory SR∗ = 〈(R∗1, ts∗1 , te∗1 ), . . . , (R∗m, t
s∗
m , t

e∗
m )〉 that is pre-

dicted by a modelM, for the two prediction tasks five eval-
uation criteria are defined as follows:

• Absolute Temporal Prediction Error (ATPE) is
equal to

∑
1≤i≤m abs(te∗i − tei )/m.

• Relative Temporal Prediction Error (RTPE) is

equal to
∑

1≤i≤m abs(
te∗i −t

e
i

tei−t
s
i

)/m.

• Overall Spatial Prediction Accuracy (OSPA) is
equal to

∑
1≤i≤m I (R∗i = Ri)/m, where I () is the Bool-

ean indicator function that returns 1 if its argument
evaluates to TRUE and returns 0 otherwise.

• True Spatial Prediction Confidence (TSPC) is
equal to

∑
1≤i≤m:I (R∗i =Ri)

PrM(X(tsi ) = Ri|H(tsi )).

• False Spatial Prediction “Confusion” (FSPC) is
equal to

∑
1≤i≤m:I (R∗i 6=Ri)

PrM(X(tsi ) = Ri|H(tsi )).

The meaning, possible ranges, and desired values for the
measures ATPE, RTPE and OSPA are self-evident from the
definitions. The measures TSPC and FSPC try to evaluate
the probabilistic predictions of the model in a cost-sensitive
setting where correct predictions with higher confidence are
valued higher than correct predictions with lower confidence
(higher TSPC is better) and where incorrect predictions
with lower confusion are valued higher than incorrect pre-
dictions with higher confusion (lower FSPC is better).



4.5 Rule-Based Baseline Prediction Method
As Section 1 states, no previously proposed method was

designed to perform the same mobility prediction tasks, in
particular the temporal mobility prediction task, under the
given application setting. Thus, to form a baseline for com-
parison, a representative, state-of-the-art, rule-based trajec-
tory mining and prediction method [5] has been modified
and applied to the given application setting as follows.

The object’s observed region-based trajectory SR = 〈e1, . . . ,
em〉, where ei = (Ri, t

s
i , t

e
i ), 1 ≤ i ≤ n, is partitioned into a

set of m′ = bm/nc, n-long, consecutive, overlapping subse-
quences using a sliding window over SR. The so obtained set
of subsequences is DSR = {〈e1, . . . , en〉, 〈e2, . . . , en+1〉, . . . ,
〈en(m′−1)+1, . . . , enm′〉}. Using the pmd-region visit stay-
times, i.e., (tei − tsi ), as temporal annotations, the mining
algorithm in [5] is applied in an offline fashion to extract all
(min supp = 0) Closed Contiguous Temporally Annotated
Pattern Sequences (CCTAPSes) from DSR, where the tem-
poral annotation ∆ti of a pattern element pei = (Ri,∆ti),
1 ≤ i ≤ l ≤ n in the CCTAPS, ps = 〈(R1,∆t1), . . . , (Rl,∆tl)〉,
is the average staytime at the pmd-region Ri among the
set of sequences in DSR in which the the pmd-region Ri is
immediately preceded by the consecutive sequence of pmd-
regions 〈R1, . . . , Ri−1〉.

Subsequently, in the prediction phase, the extracted CC-
TAPSes are inserted in a Frequent Pattern tree (FP-tree),
i.e., a prefix tree that is augmented with a header table
and vertical links through identical pmd-regions. Then, for
all sequences si = 〈(R1, t

s
1, t

e
1), . . . , (Rn, t

s
n, t

e
n)〉 ∈ DSR the

subsequence of the first n − 1 elements of the sequence si
is matched against the CCTAPSes in the FP-tree. Subse-
quently, the longest matching branch 〈(R1,∆t1), . . . ,
(Rn−1,∆tn−1)〉 and its children (Rj ,∆tj), 1 ≤ j ≤ k in
the FP-tree are used to predict the departure time and the
next region as follows. The departure time from pmd-region
Rn−1 is predicted as tsn−1 + ∆tn−1. The next pmd-region
is predicted as the pmd-region of the child of the matched
branch that has the highest support amongst the children.
Note that due to the unique application of the rule-based
trajectory mining and prediction, the subsequence of the
first n − 1 elements of the sequence si can always be fully
matched to a unique path in the FR-tree that starts from
the root node and the matched path always has at least one
child. Indeed, the baseline predictor is presented all the data
before it has to make any predictions. The effects of this
“batch learning” advantage are considered in the prediction
performance evaluations.

4.6 Prediction Performance Results
The prediction performance of the proposed method has

been evaluated for a number of different second-order ICTM
models each capturing in different ways, different aspects
of the inhomogeneity of the transitions rates using differ-
ent temporal domain projections. In particular, three single
ICTM models Mtod , Mdow and Mww have been evaluated
based on the time-of-day, day-of-week and workday-weekend
temporal domain projections, respectively. In addition, the
single ICTM models have been combined into two weighted
ensemble ICTM models: Msta and Mdyn . In the case of
Msta model the weights of the submodels in the ensemble
are statically set to the same constant value c. In the case of
Mdynthey are set dynamically according to Equation 10 in
Section 3.5.4. Finally, noting the“batch learning”advantage
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Figure 2: Absolute 2(a) and relative 2(b) tempo-
ral prediction errors of different prediction models
for varying min stl values in comparison rule-based
baseline predictor’s performance (ATPE(Mrule) =
82 minutes and RTPE(Mrule) = 0.57).

of the rule-based baseline predictor in Section 4.5, a dynamic
ensemble model,Mbat that exploits the same advantage, has
also been evaluated and compared to the rule-based baseline
predictor Mrule . For all the experiments equally affecting
the prediction performance of all models, including the base-
line, the preprocessing parameters of the proposed method
have been set as follows: glen = 50 meters, maxR = 150
meters, min rp = 0.8 and min tst = max tint = 30 sec-
onds. The effects of these preprocessing parameters on the
prediction performance are investigated in Section 4.6.3.

4.6.1 Evaluation of Temporal Prediction Error
The absolute (ATPE) and the relative (RTPE) temporal

prediction errors of the different models for varying min stl
values are shown on Figures 2(a) and 2(b), respectively. The
measurements represent the uniform average of the tempo-
ral prediction errors of a given model for the 10 selected
users. Almost all the models achieve optimal temporal pre-
diction accuracy at min stl = 0.4, which is expected accord-
ing to Equation 6. Considering only the single ICTM mod-
els, the Mww model based on the workday-weekend tempo-
ral domain projection achieves the best results in the ab-
solute and relative sense, i.e., ATPE(Mww ) = 86 minutes
and RTPE(Mww ) = 0.65. The results also show that the
single ICTM models cannot be effectively combined into an
ensemble using the static weighting scheme to decrease the
prediction error. In comparison, the ensemble based on the
dynamic weighting scheme, Mdyn , can successfully benefit
from the specialization of its submodels and archive optimal
results at ATPE(Mdyn) = 64 and RTPE(Mdyn) = 0.53. Fi-
nally, when presented with the “batch learning” advantage,
the Mbat model can improve on the prediction error of the
Mdyn model on average by 31% and achive optimal results
at ATPE(Mbat) = 45 and RTPE(Mbat) = 0.37, which are
superior to the results of the rule-based baseline predictor
at ATPE(Mrule) = 82 and RTPE(Mrule) = 0.57.

4.6.2 Evaluation of Spatial Prediction Performance
Table 1 shows the spatial prediction performance of the

different models and the rule-based baseline predictor in
terms of OSAP, TSPC, and FSPC measures. Observations
that are similar the observations in Section 4.6.1 can be
made about the spatial prediction performance of the mod-
els w.r.t. one another. In particular, only the ensemble
models employing the dynamic weighting scheme can suc-
cessfully utilize the specializations of their submodels and
deliver an overall spatial prediction accuracy that is compa-



Table 1: Spatial prediction performance of different
prediction models.

Model OSPA TSPC FSPC

Mtod 0.42 0.41 0.21
Mdow 0.25 0.52 0.19
Mww 0.42 0.42 0.17
Msta 0.36 0.39 0.16
Mdyn 0.59 0.763 0.13
Mbat 0.67 0.79 0.12
Mrule 0.62 0.68 0.19

rable or superior to the performance of the rule-based base-
line predictor, i.e., OSPA(Mdyn) = 0.59 < OSPA(Mrule)
= 0.62 < OSPA(Mbat) = 0.67. The TSPC and FSPC mea-
sures show that predictions of an ensemble model employing
the dynamic weighting scheme are also more preferable in a
cost-sensitive setting.

4.6.3 Effects of Preprocessing Parameters
Due to space limitations the results of the experiments in-

vestigating the effects of the parameters of the preprocessing
steps of the proposed method are summarized as follows.

The grid cell size, glen ∈ [25, 100] meters does not signifi-
cantly change the number, location and size of the extracted
pmd-regions and hence has negligible effects on the overall
prediction performance. The minimum relative prevalence
parameter, min rp ∈ [0.7, 0.9], does not significantly effect
the locations and size of the extracted pmd-regions. Merely,
an additional 1-2 new pmd-regions are extracted compared
to the average number of pmd-regions of 7.8 pmd-regions
per user at min rp = 0.7. For min rp > 0.9 the number
of additional pmd-regions increases drastically. However,
the newly extracted pmd-regions likely represent transition
points or traffic jams during trips as they collocate with tran-
sit stops and intersections and have short staytimes; such
pmd-regions are regarded as noise in the given context. The
min tst and max tint thresholds used in the pmd-region
arrival and departure validation, respectively, have a pro-
found effect on the prediction performance. The threshold
min tst can be effectively used to filter out visits to any pmd-
region that has been extracted for high values of min rp
thereby improving the prediction accuracy and certainty.
The max tint threshold can be used to make sure that a sin-
gle visit to a pmd-region is not split into several consecutive
visits due to noise in GPS measurements, thereby providing
more accurate temporal prediction results. To ensure opti-
mal prediction results, the value max tint is determined as
the smallest value for which during the conversion from the
object’s grid-based trajectory to it’s region-based trajectory
no consecutive visits to the same pmd-region are generated.

5. CONCLUSION AND FUTURE WORK
The paper proposed the use of a dynamically weighted

ensemble of ICTM models to simply but effectively capture
the temporal-, periodic- and sequential regularities in move-
ments of an object to predict when and where the object
will move next. The empirical evaluations show that pro-
posed method has a prediction performance that is superior
to the state-of-the-art rule-based predictor. In particular,
since the effects of the “batch learning” advantage are ex-
pected fade as the length of the region-based trajectory of

an object increases over time, the prediction performance
of the dynamically weighted ensemble of ICTM models is
expected to be able to predict (1) the departure time on av-
erage to be within 45 minutes of the actual departure time
and (2) the next region correctly in 67% of the cases.

Future work is considered along to main directions. First,
other statistical based, dynamical weighting schemes will be
investigated. Second, because the movements of an individ-
ual are largely influenced by the movements of other indi-
viduals via social relations, future research will investigate
how the ICTM model can be adapted to perform predictions
for a group of socially related individuals.
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