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Energy-Efficient Uplink Multi-User MIMO
Guowang Miao ♭

Abstract—This paper addresses optimal energy-efficient design
for uplink (UL) MU-MIMO in a single cell environment. The
energy efficiency is measured by throughput per Joule, while
both RF transmission power and device electronic circuit power
are considered. We define the energy efficiency (EE) capacity for
UL MU-MIMO and study the power allocation that achieves this
capacity. First we assume all users consume a fixed amount of
circuit power and show that user antennas should be used only
when the corresponding spatial channels are sufficiently good
and using them improves the overall network EE. Mobile devices
may have improved circuit management capability and turn off
circuit operations when some antennas are not used to reduce
circuit power consumption. Therefore we further study energy-
efficient UL MU-MIMO with improved circuit management and
show that some antennas should not be used even when their
channel states are good because turning them on consumes too
much circuit power. Based on theoretical analysis, we further de-
velop low-complexity yet globally optimal energy-efficient power
allocation algorithms that converge to the optimum exponentially.
Simulation results are provided to demonstrate the significant
gain in network energy efficiency.

Index Terms– energy efficiency, multi-user MIMO, power
allocation, SDMA

I. INTRODUCTION

Energy efficiency is increasingly important for mobile de-
vices because battery technology has not kept up with the
growing demand of ubiquitous multimedia communications
[1], [2]. In addition to energy saving, energy-efficient com-
munications have the benefit of reducing interference to other
co-channel users as well as lessening environmental impacts,
e.g., heat dissipation and electronic pollution. Therefore, recent
research has focused on energy-efficient wireless communi-
cation techniques [3]–[9]. When the transmission bandwidth
approaches infinity, the minimum received signal energy per
bit for reliable communication over additive white Gaussian
noise (AWGN) channels approaches −1.59 dB [3]. For band-
limited transmission, the lowest order modulation should be
used [4]. The investigation in [3], [4] does not account for
additional circuit power that is consumed by electronic opera-
tions that can not be avoided. Considering the circuit power, the
approaches in [3], [4] are no longer optimal. Energy dissipation
of both transmitter circuits and radio-frequency (RF) output is
investigated in [10], where the modulation level is adapted
to minimize the energy consumption based on simulation
observations. In [6]–[9], [11], optimal energy-efficient orthog-
onal frequency-division multiple access (OFDMA) is designed
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to balance the circuit power consumption as well as the
transmission power consumption on all OFDM subchannels.
Furthermore, it is shown in [12], [13] that energy-efficient
power control in multi-cell networks improves not only energy
efficiency but also spectral efficiency uniformly for all users
because of the conservative nature of power optimization,
which reduces other-cell interference to improve the overall
network throughput.

On the other hand, multiple-input multiple-output (MIMO)
has been a key technology for wireless systems because of
its potential to achieve high capacity, increased diversity, and
interference suppression [14]. In a multi-user scenario, multi-
user multiple-input multiple-output (MU-MIMO) systems can
provide a substantial gain in networks by allowing multiple
users to communicate in the same frequency and time slots
[15], [16]. MU-MIMO takes the advantage of both high
capacity achieved with MIMO processing and the benefits of
space-division multiple access and has been accepted by major
wireless standards like IEEE 802.16m [17] and 3GPP Long
Term Evolution (LTE) [18]. Recently there has been some re-
search interest in energy-efficient communications for MIMO
systems [19]–[22]. For example, in [20], MIMO systems
based on Alamouti diversity schemes are studied to improve
the energy efficiency of sensor networks. A mechanism to
switch between MIMO with two transmitter antennas and
SIMO to conserve mobile terminals energy is proposed in
[19]. A low-complexity energy-efficient and reconfigurable
reduced dimension maximum likelihood MIMO detector is
proposed in [22]. However there is very limited research
studying energy-efficient MU-MIMO and its optimal power
allocation. The relationships between power allocated on each
antenna, channel states, antenna circuit power consumption,
and antennas that should be turned on, remain unclear for
energy-efficient MIMO and MU-MIMO communications. This
motivates the work in this paper.

In this paper, we address the energy-efficient design of up-
link (UL) MU-MIMO in a single cell environment. We account
for both circuit and transmission powers when designing power
allocation schemes and emphasize energy efficiency over peak
rates or throughput. The proposed scheme balances the energy
consumption of circuit operations and RF transmissions of
all users to achieve the maximum network energy efficiency,
which is defined as the number of bits transmitted per Joule
of energy across the whole network. We first assume that all
users consume a fixed amount of circuit power in addition
to the RF power and demonstrate the existence of a unique
globally optimal power allocation that achieves the energy ef-
ficiency capacity. We also provide a one-dimensional iterative
algorithm to obtain this optimum. In practice users may have
improved circuit management capability and turn off part of
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Fig. 1: System Diagram of a Multi-User System

the circuit operations when some antennas are not used to
reduce the circuit power consumption. Therefore we further
study energy-efficient UL MU-MIMO with improved circuit
management. We show that in this case, the problem is non-
concave and multiple local maximums may exist. However, we
will develop algorithms that converge to the global optimum.

The rest of the paper is organized as follows. In Section
II, we formulate the problem and define energy-efficient UL
MU-MIMO. In Section III and IV, we investigate optimal
conditions for energy-efficient transmission and develop an
algorithm to obtain the globally optimal solution. In Section
V, we study energy-efficient MU-MIMO with improved circuit
management. Simulation results are provided in Section VI
to demonstrate the performance improvement. Finally, we
conclude the paper in Section VII.

II. ENERGY-EFFICIENT MU-MIMO

In this section, we introduce energy-efficient MU-MIMO.
Throughout the paper, matrices are shown with capital boldface
letters, vectors with lowercase boldface, and scalars with either
upper or lowercase letters without boldface.

Consider a MU-MIMO system, as illustrated in Fig. 1,
where one access point (AP) is serving K users that desire
best-effort data service, e.g. file transfer and email, and have no
data rate requirements. Both the AP and all users desire energy-
efficient communications. The AP has N antennas. User i has
ki antennas and

∑K
i=1 ki ≤ N . Assume block fading [23], that

is, the channel state remains constant during each data frame.
The channel state information (CSI) between the AP and users
is predetermined earlier through either training pilots as in a
time-division duplex system or a feedback channel as in a
frequency-division duplex system. Each user has its CSI while
the AP has CSI of all users. Signaling overhead and incomplete
channel state information will result in performance loss and
the study on its impact is beyond the scope of this paper. In a
flat-fading propagation environment, the received signal at the

AP is given by

y = H ·Q ·P · x+ n =
K∑
i=1

Hi ·Qi ·Pi · xi + n, (1)

where y = [y1, y2, ..., yN ]T . xi = [xi1, xi2, ..., xiki ]
T , consists

of transmitted signals of User i and E[|xij |2] = 1, where E
is the expectation. Here []T is the transpose of a vector. Pi =
diag{√pi1,

√
pi2, ...,

√
piki} is the power allocation matrix of

User i. Qi is the precoding matrix of User i. Hi is the N ×ki
channel matrix of User i and is assumed to have rank ki,
which is generally true in a rich-scattering environment. n is
the length-N noise vector, which is Gaussian distributed with
a zero mean and a covariance matrix σ2IN , where IN is the
identity matrix of size N .

x = [x1,x2, ...,xK ]T ,

P = diag{P1,P2, ...,PK},

Q = diag{Q1,Q2, ...,QK},

and
H = [H1,H2, ...,HK ].

With a linear detector, the decision vector for the transmitted
symbols is

x̂ = w · y = w ·H ·Q ·P · x+w · n. (2)

Using singular value decomposition (SVD),

Hi=Ui

[
Λi

0

]
VH

i = [U̇iÜi]

[
Λi

0

]
VH

i = U̇iΛiV
H
i , (3)

where Ui and Vi are N × N and ki × ki unitary matrices
and []H is the Hermitian transpose. U̇i consists of the first ki
columns of Ui.

Λi = diag{λi1, λi2, ..., λiki}

where λij ≥ 0.
With local channel knowledge Hi, User i sets the precoding

matrix Qi = Vi. Define

U = [U̇1, U̇2, ..., U̇K ]

and
Λ = diag{Λ1,Λ2, ...,ΛK}.

It is easy to see the decision vector at the AP is

x̂ = w ·U ·Λ ·P · x+w · n. (4)

There are many ways of designing the linear receiver w.
Since receiver design is not the focus of this paper, we use the
zero-forcing (ZF) receiver [24], i.e.,

w = (UHU)−1UH , (5)

in its simplicity. Note that the restriction on
∑K

i=1 ki ≤ N
is needed for the existence of the ZF receiver. The decision
vector is

x̂ = Λ ·P · x+ n̂, (6)
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where n̂ = (UHU)−1UH · n, which is also Gaussian dis-
tributed with a zero mean and a covariance matrix

E[n̂n̂H ] = σ2[
(
UHU

)−1
]H , (7)

with all elements in the diagonal being σ2.
From (6), the transmissions of different users are uncoupled.

The AP can detect each symbol independently and the achieved
signal-to-noise ratio (SNR) of all the symbols for User i is

ηi =

[
pi1λ

2
i1

σ2
,
pi2λ

2
i2

σ2
, ...,

pikiλ
2
iki

σ2

]T
. (8)

Given the transceiver structure and the channel state, each
user determines the optimal data rate and power on each
antenna. Define the data rate vector of User i to be, Ri =
[ri1, ri2, ..., riki ]. Correspondingly, the overall data rate is

Ri =

ki∑
k=1

rik. (9)

Define B as the system bandwidth. The achievable data rate
rik is determined by [25]

rik = B log2(1 +
ηik
Γ

), (10)

where ηik =
pikλ

2
ik

σ2 and Γ is the SNR gap that defines the
gap between the channel capacity and a practical coding and
modulation scheme, and other implementation factors. For
instance, for a coded quadrature amplitude modulation (QAM)
system, the gap is given by [25]

Γ = 10((9.8+γm−γc)/10), (11)

where γm is the system design margin and γc is the coding
gain in dB. The SNR gap may also capture other effects like
the several dBs performance loss because of using the simple
zero-forcing receiver. If Shannon capacity [26] is achieved,
Γ = 1. Define the overall transmission power of User i to be
PTi such that

PTi =

∑ki

k=1 pik
ζ

, (12)

where ζ ∈ [0, 1] is the power amplifier efficiency. We assume
all users are operating in the linear ranges of their power
amplifiers and do not assume power constraints for any user.
This is because energy-efficient communications are different
from spectral-efficient communications. With spectral-efficient
communications, users want to use as much power as possible
to achieve high throughput and it is necessary to consider
power constraints for power allocation [27]. But with energy
efficient communications, all users tend to use as little power as
possible. Therefore the chance that the power allocated exceeds
the amplifier linear range is very limited and there is no need
to consider power constraints particularly.

In addition to transmission power, mobile devices also
incur additional circuit power consumption owing to inevitable
electronic operations which are relatively independent of the
radio frequency (RF) transmission [10], [20]. Define the circuit

power of User i as PCi. The overall power consumption of
User i will then be

Pi = PCi + PTi. (13)

The AP also consumes electronic circuit energy to receive
and decode signals. Define the receiver circuit power as Pr.
Similar to the circuit power, Pr models the average energy
consumption of AP device electronics, such as mixers, filters,
and analog-to-digital converters. For readers not interested in
the receiver circuit power, they can assume Pr = 0. It is
desirable to maximize the amount of data sent with a given
amount of energy. The amount of energy △e consumed in a
small duration, △t, is

△e = △t

(
α
∑
i

Pi + βPr

)
,

where the weights α ∈ [0, 1] and β ∈ [0, 1] characterize the
priorities of transmitter and receiver power consumptions. For
example α = 1 and β = 0 indicate that the receiver power
consumption is not considered. The MU-MIMO system wants
to send a maximum amount of data by choosing the optimal
transmission power allocation to maximize∑

i Ri △ t

△e
, (14)

which is equivalent to maximizing

U(P) =

∑
i Ri

α
∑

i Pi + βPr
, (15)

U is the total number of bits sent per Joule of energy
consumption. U is called the energy efficiency of MU-MIMO.
The unit of the energy efficiency is bits per Joule, which
has been frequently used in literature for energy-efficient
communications [3], [4], [28]–[30]. At metric (15), the energy
used for sending each information bit is minimized. The energy
efficiency capacity of MU-MIMO is defined as

U∗ = max
P

∑
i Ri

α
∑

i(PTi + PCi) + βPr
, (16)

and the optimal energy-efficient power allocation achieving the
energy efficiency capacity is

P∗ = argmax
P

U = argmax
P

∑
i Ri

α
∑

i(PTi + PCi) + βPr
.

(17)
When K = 1, (16) and (17) give the energy efficiency capacity
and the optimal power allocation for a point-to-point MIMO
system. Therefore the results in this paper are also applicable
to MIMO systems.

III. PRINCIPLES OF ENERGY-EFFICIENT MU-MIMO
POWER ALLOCATION

In the following, we demonstrate that a unique globally
optimal power allocation always exists and gives the necessary
and sufficient conditions for a power allocation scheme to
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achieve the energy efficiency capacity. It is proved in Appendix
I that U has the following properties.

Lemma 1. U is strictly quasi-concave in P.

For a strictly quasi-concave function, if a local maximum
exists, it is also globally optimal [31]. Hence, a unique globally
optimal power allocation always exists and is summarized in
Theorem 1 according to the proof in Appendix I.

Theorem 1. There exists a unique globally optimal energy-
efficient power allocation P∗ that achieves the energy effi-
ciency capacity, where p∗ik is given by

p∗ik =

{
Bζ

αU∗ ln 2 −
Γσ2

λ2
ik

if Bζλ2
ik

αΓσ2 ln 2 > U∗,

0 otherwise,
(18)

Correspondingly, the energy efficiency capacity is

U∗ = U(P∗). (19)

Theorem 1 says that the the kth antenna of User i should
be used only when the corresponding spatial channel, charac-
terized by λ2

ik, is sufficiently good such that using it improves
the overall network energy efficiency. The power allocation
is indeed a weighted water-filling solution and different users
may have different water levels. The water level is determined
by the energy efficiency capacity. The relative difference
of power allocation of different users on different antennas
depends on the channel gains of those spatial channels.

Based on Theorem 1, we have the following basic properties
of power allocation.

Proposition 1. The energy efficiency capacity decreases
strictly, while the optimal allocated power on each spatial
channel, if nonzero, increases strictly with the circuit power
of any user.

Proof: Define P∗ to be the optimal power allocation
given a set of circuit power conditions {PCi}. The achieved
energy efficiency is U∗. Suppose any PCi decreases a certain
amount to PCi − ∆PC . With the same power allocation
P∗, the energy efficiency is higher than U∗. Hence the en-
ergy efficiency capacity increases. Therefore energy efficiency
capacity decreases strictly with circuit power. Furthermore,
according to (18), the optimal power on each spatial channel,
if nonzero, decreases strictly with energy efficiency capacity.
The proposition follows.

The main intuition behind Proposition 1 is that as circuit
power increases, higher power should be allocated to achieve
higher data rate such that each information bit can be trans-
mitted faster and less circuit energy is consumed. Similarly we
have Proposition 2.

Proposition 2. When receiving power is considered (β > 0),
the energy efficiency capacity decreases strictly, while the
optimal allocated power on each spatial channel, if nonzero,
increases strictly with the receiving power.

IV. A ONE-DIMENSIONAL LOW-COMPLEXITY
ALGORITHM

Theorem 1 provides the necessary and sufficient condition
for a power allocation to be the unique and globally optimum
one. However, it is difficult to directly solve the joint nonlinear
equations in Theorem 1. Therefore, we develop an iterative
method to search for the optimal P∗ based on the analysis of
the optimal power allocation in Theorem 1.

Define pik(µ) =
[
µ− Γσ2

λ2
ik

]+
, where [x]+ = max(x, 0),

and the corresponding power allocation matrix to be P(µ).
Clearly when µ = Bζ

αU∗ ln 2 , P(µ) = P∗. Define

f(µ) = U(P(µ)) (20)

and it is easy to see that the optimal µ∗ that maximizes f(µ)
equals Bζ

αU∗ ln 2 . Therefore we only need to find µ∗ such that

µ∗ = argmax
µ

f(µ). (21)

As shown in Appendix II, when f(µ) > 0, f(µ) is strictly
quasi-concave in µ. Hence a unique globally optimal µ∗ exists
such that for any µ < µ∗, f ′(µ) > 0, and for any µ > µ∗,
f ′(µ) < 0. Assume µ1 ≤ µ∗ ≤ µ2. To determine µ∗, let µ̂ =
µ1+µ2

2 . If f ′(µ)|µ̂ = 0, µ∗ is found. If f ′(µ)|µ̂ < 0, then µ1 <
µ∗ < µ̂ and replace µ2 with µ̂; otherwise, replace µ1 with µ̂.
This iteration continues until µ2 − µ1 is sufficiently small to
meet the convergence requirement. This energy-efficient MU-
MIMO power allocation (EMMPA) algorithm is summarized
in Table I.

Algorithm Energy-Efficient MU-MIMO Power Allocation
1. µ1 ← mini,j

Γσ2

λ2
ij

(∗ µ∗ is above mini,j
Γσ2

λ2
ij

; otherwise pik = 0 for all i, k ∗)
2. α← a value above 1, e.g. 10; µ2 ←µ1 ∗ α
3. while f ′(µ2) > 0
4. do µ1 ←µ2, µ2 ←µ2 ∗ α
5. while no convergence

(∗ search the optimum iteratively ∗)
6. do µ←µ2+µ1

2 ;
7. if f ′(µ) > 0
8. then µ1 ← µ;
9. else µ2 ← µ

10. return µ and pik ←
[
µ− Γσ2

λ2
ik

]+
.

TABLE I: Energy-Efficient MU-MIMO Power Allocation

The global convergence to the optimal allocation of EMMPA
is guaranteed by the strict quasi-concavity of f(µ) [32] and
the convergence rate in Proposition 3 can be easily proven.

Proposition 3. EMMPA converges to the globally optimal µ∗.
Any µ, which satisfies |µ − µ∗| ≤ ϵ, can be found within at
most ⌈log2(

(α−1)µ∗

ϵ − 1)⌉ iterations.

The EMMPA algorithm should be implemented at the AP.
Each user needs to report its circuit power to the AP before the
communications. This is a one-time report and the signaling

4



overhead is negligible. After running EMMPA, the AP only
needs to broadcast µ∗ and all users can determine their optimal
power allocations according to (18).

V. ENERGY-EFFICIENT MU-MIMO WITH IMPROVED
CIRCUIT MANAGEMENT

In the above we have assumed User i consumes a fixed
amount of circuit power, PCi , regardless of how many anten-
nas are used. However, according to Theorem 1, the power
allocated on some antennas may be zero. User i can turn off
these antennas to reduce circuit energy consumption. With the
improved circuit management, circuit power is a function of
the set of antennas that are turned on, e.g., a function of the
number of antennas turned on. In the following, for notation
simplicity, assign the circuit power of User i to PCi(k

o
i ),

where koi is the number of antennas that have positive power
allocation. PCi(k

o
i ) is increasing in koi . Please note the result

in this section also applies in generic cases such that PCi is
a function of the set of antennas that are turned on. A simple
example is

PCi(k
o
i ) = koi Pα + I(koi )Pβ , (22)

where Pα is the extra antenna-related circuit power consump-
tion when one more antenna is turned on and Pβ is the power
consumption of circuit components that are independent of the
number of antennas turned on. When koi = 0, the user can be
turned off completely to avoid any circuit power consumption
and PCi(0) = 0. The indicator function I(A) is defined as

I(A) =

{
1 if A > 0,
0 otherwise. (23)

In this scenario, the energy efficiency capacity is given by

U∗ = max
P

Ũ(P) = max
P

∑
i Ri

α
∑

i(PTi + PCi(koi )) + βPr
,

(24)
and the optimal energy-efficient power allocation achieving the
energy efficiency capacity is

P∗=argmax
P

Ũ(P)=argmax
P

∑
i Ri

α
∑

i(PTi+PCi(koi ))+βPr
,

(25)
where koi =

∑
k I(pik).

A. Principles of Energy-Efficient Power Allocation
With improved circuit management, the energy efficiency

function Ũ is no longer continuous or quasi-concave in P.
Theorem 1 is not appropriate in characterizing the globally
optimal power allocation. Observe Antenna j of User i and
define it to be Antenna (i, j). Assume the power on all other
antennas have been optimally allocated and define P

(o)
ij (pij)

to be the power allocation that equals the optimal power
allocation except that the power on Antenna (i, j) is pij .
Antenna (i, j) may have two states, on or off. If it is on, the
energy efficiency is

Ũ
(
P

(o)
ij (pij)

)
=

Ro
ij +B log2

(
1 +

pijλ
2
ij

Γσ2

)
P o
ij + pij

α
ζ + PCi(koi )

, (26)

where Ro
ij =

∑
{u,k:u̸=i,k ̸=j}

B log2

(
1 +

p∗ukλ
2
uk

Γσ2

)
and P o

ij =

α
∑
u̸=i

PCi(k
o
u) + βPr +

α

ζ

∑
{u,k:u̸=i,k ̸=j}

p∗uk. Similar to the

proof in Appendix 1, Ũ is also strictly quasi-concave in pij .
Hence there is a unique pij that maximizes Ũ if pij > 0,
i.e., Antenna (i, j) should be turned on. In the following we
study the condition that Antenna (i, j) should be turned on.
The partial derivative of Ũ with respect to pij is

∂Ũ

∂pij
=

f(pij)

(1 +
pijλ2

ij

Γσ2 )(αζ pij + P o
ij + PCi(koi ))

2
, (27)

where f(pij) =
B
ln 2

λ2
ij

Γσ2 (
α
ζ pij + P o

ij + PCi(k
o
i )) − α

ζ R
o
ij(1 +

pijλ
2
ij

Γσ2 )−B α
ζ (1+

pijλ
2
ij

Γσ2 ) log2(1+
pijλ

2
ij

Γσ2 ). Because Ũ is strictly

quasi-concave, if there exists a pij > 0 such that ∂Ũ
∂pij

= 0, it
is unique. This further indicates that if pij > 0, there is only
one pij such that f(pij) = 0. In Appendix III, we prove that
only when

λ2
ij

σ2
>

Ro
ijαΓ ln 2

(P o
ij + PCi(koi ))Bζ

, (28)

where koi is the number of antennas when Antenna (i, j) is
turned on, will there exist a pij > 0 such that f(pij) = 0.
This is also the condition for Antenna (i, j) to be turned on.

Readily, by setting ∂Ũ
∂pij

to be zero, we have the following
necessary condition of globally optimal energy-efficient power
allocation.

Theorem 2. With improved circuit management, the optimal
energy-efficient power allocation P∗ achieving the energy
efficiency capacity satisfies, for antennas that are turned on,

p∗ij =
Bζ

αU∗ ln 2
− Γσ2

λ2
ij

(29)

and these antennas have channel conditions

λ2
ij

σ2Γ
>

Ro
ijα ln 2

(P o
ij + PCi(koi ))Bζ

, (30)

where koi is the number of antennas of User i when Antenna
(i, j) is turned on. Correspondingly, the energy efficiency
capacity is

U∗ = Ũ(P∗). (31)

According to Theorem 2, whether or not Antenna (i, j)

should be turned on is determined by multiple factors.
λ2
ij

σ2Γ
characterizes the channel condition of Antenna (i, j) and deter-
mines the effective receiver SNR once the power is allocated.
If it is above the threshold

Ro
ijα ln 2

(P o
ij+PCi(ko

i ))Bζ , Antenna (i, j)

should be used since using it improves the overall network
energy efficiency. The threshold decreases with the power
amplifier efficiency, ζ, indicating that with improved power
amplifier efficiency, worse channel conditions can be used
for data transmission on Antenna (i, j) to achieve energy

5



efficiency capacity. The threshold is also determined by the
states of all other antennas. The energy efficiency achieved
by all other antennas is

Ro
ij

P o
ij+PCi(ko

i )
assuming Antenna (i, j)

has an infinite small amount of power allocated. The threshold
increases with

Ro
ij

P o
ij+PCi(ko

i )
, which indicates that if the energy

efficiency achieved by all other antennas increases, the channel
state for Antenna (i, j) should also be better such that turning
it on improves the overall network energy efficiency.

Similar to the proof of Proposition 1, we have the following
property of energy-efficient MU-MIMO with improved circuit
power management.

Proposition 4. With improved circuit management, the energy
efficiency capacity decreases strictly and the optimal allocated
power on each spatial channel, if nonzero, increases strictly
with the circuit power of any antenna that is on. If receiving
power is considered (β > 0), the energy efficiency capacity
decreases strictly while the optimal allocated power on each
spatial channel, if nonzero, increases strictly with the receiving
power.

B. Algorithm Development
Different from Theorem 1, Theorem 2 only gives the neces-

sary conditions of globally optimal energy efficient power al-
location. With improved circuit power management, there may
be multiple power allocation schemes that satisfy Theorem 2
because there may be multiple local maximums of the energy
efficiency function Ũ . An example is given in Fig. 2, where
we assume one user with two antennas is communicating to
the AP, i.e., a MIMO system. The circuit power of the user
is assumed to be PC1 = ko1 + I(ko1). Observing Fig. 2, Ũ
has three local maximums, each of which satisfies Theorem
2. When both antennas are turned on, there is a unique power
allocation that maximizes Ũ . When the state of one antenna
switches from on to off, i.e., p11 or p12 goes to zero, the energy
efficiency Ũ increases abruptly because of the reduction of
circuit power. In this case, we need to compare the three local
maximums to determine the energy efficiency capacity and
the optimal power allocation. Therefore, to find the optimal
power allocation, we can use EMMPA in Table I to determine
the corresponding optimal power allocation and the maximum
energy efficiency achieved when Antenna (1, 1) is on, (1, 2)
is on, or both are on. The antenna configuration and power
allocation that achieve the highest energy efficiency is the
optimal one.

1) An Exhaustive Search Algorithm: For a generic case,
define the antenna configuration to be a binary vector, c, of
length

∑
i ki, in which 1 indicates the corresponding antenna

is on and 0 otherwise. Given a certain antenna configuration,
the circuit power of all users is determined and the power
allocation is the same as that in Section III. So EMMPA can be
used to determine the corresponding optimal power allocation
for that antenna configuration. Therefore we need to determine
the globally optimal antenna configuration and use EMMPA to
find the corresponding power allocation. One simple approach
is that we can exhaustively search all antenna configurations
and use EMMPA to determine the maximum energy efficiency

achieved for each configuration. The antennas configuration
and corresponding power allocation that achieves the highest
energy efficiency is the globally optimal one. We call this
the exhaustive search power allocation (ESPA) algorithm and
summarize it in Table II.

Algorithm Exhaustive search power allocation
1. Umax ← 0; P∗ ← 0;
2. for all antenna configurations
3. Calculate the circuit power for each user;
4. Use EMMPA to find the optimal µ, power alloca-

tion P, and the EE U ;
5. if U > Umax and all antennas turned on have

positive power allocation
6. c ← current antenna configuration;
7. µ∗ = µ, Umax ← U , and P∗ ← P;
8. return c, µ∗, P∗, and Umax.
TABLE II: ESPA for MU-MIMO with Improved Circuit Man-
agement

The complexity of ESPA grows exponentially with the total
number of antennas of all users and based on Proposition 3, it
can be easily shown that the convergence rate is characterized
by Proposition 5.

Proposition 5. ESPA converges to the globally optimal power
allocation. The optimal antenna configuration, as well as the

power allocation for antennas turned on, pik =
[
µ− Γσ2

λ2
ik

]+
,

where µ satisfies
∣∣∣µ− Bζ

αU∗

∣∣∣ ≤ ϵ, can be found within at most⌈
log2(

(α−1)µ∗

ϵ − 1)
⌉
(2

∑
i ki − 1) iterations.

2) A Quadratic-Complexity Algorithm: For a small number
of users and antennas, ESPA is effective in finding the globally
optimal solution. When there are many users in the system
and each has many antennas, ESPA has high complexity. In
the following, we further develop a low-complexity algorithm.
This algorithm consists of two steps. In the first step, the linear-
complexity EMMPA is used to filter out antennas that are a
subset of antennas that should be turned off in the globally
optimal antenna configuration. These antennas are turned off
because of their poor channel conditions. In the second step,
the remaining antennas are examined and some may be turned
off to achieve higher energy efficiency because they consume
relatively large amounts of circuit power. We will show that
while the proposed algorithm has quadratic complexity, it is
also globally optimal.

In the first step, assume all antennas are turned on and
the circuit power, PCi(k

o
i ), of all users can be determined.

According to Theorem 1, antennas with channel conditions
Bζλ2

ik

αΓσ2 ln 2 ≤ U∗ will have zero power allocation and we define
these antennas by set S(1). If any antenna is turned off, the
circuit power of the corresponding user is reduced. According
to Proposition 1, the optimal power allocated on each spatial
channel, if nonzero, will be reduced. Therefore, any antenna
in S(1) will not be allocated positive power if any antenna
is turned off. This indicates that S(1) belongs to the set of
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antennas that should be turned off in the globally optimal
antenna configuration. S(1) can be determined by EMMPA.
In the second round, we turn off all antennas in S(1) and
calculate the circuit power, PCi(k

o
i ), of all users. Then we

use EMMPA again to determine S(2), the set of antennas that
should be turned off in this round. Similarly S(2) also belongs
to the set of antennas that should be turned off in the globally
optimal antenna configuration. In addition, S(2) is a super set
of S(1). We iterate this process until reaching a round when
all antennas turned on have positive power allocation. This
Iterative EMMPA algorithm is summarized in Table III, whose
property is given in Proposition 6 based on the above analysis.

Algorithm Iterative EMMPA
1. Let S(0) be an empty set.
2. Assume all antennas are turned on and calculate the

circuit power, PCi(k
o
i ), of all users.

3. Use EMMPA to determine S(1) and the corresponding
optimal µ∗ and P∗. m← 1.

4. while S(m) differs from S(m−1)

5. do Turn off all antennas in S(m) and calculate the
circuit power, PCi(k

o
i ), of all users.

6. m← m+ 1.
7. Use EMMPA to determine S(m) and the corre-

sponding optimal µ∗ and P∗.
8. return S(m), µ∗, and P∗.

TABLE III: Iterative EMMPA

Proposition 6. The output of the iterative EMMPA algorithm,
S(m), is a subset of antennas that should be turned off in the
globally optimal antenna configuration. S(m) can be found
within at most

∑
i ki − 1 rounds.

We can look at the iterative EMMPA algorithm from another
perspective. In each round, some additional antennas are turned
off to achieve higher energy efficiency. Therefore, U∗ increases

in each round. More antennas may be turned off in each round
because although in the first several rounds, their channel
conditions may not fulfill Bζλ2

ik

αΓσ2 ln 2 ≤ U∗, they fulfill this
condition in a later round owing to the increase of U∗. Finally,
only the antennas with the best channel conditions are kept on
for data transmission.

The iterative EMMPA algorithm finds a subset of antennas
that should be turned off in the globally optimal antenna
configuration. However some more antennas may still need
to be turned off to achieve the energy efficiency capacity.
An example has been given in Fig. 2. In this example, both
antennas have good channel states and the iterative EMMPA
algorithm determines that both antennas should be turned
on. However, turning both antennas on may not be globally
optimal because one of them may consume too much circuit
power. Therefore, the remaining antennas that are kept on by
the iterative EMMPA algorithm should be further examined.

In the second step, we determine which remaining antennas
should be turned off. Define S

(0)
to be the set of the remaining

antennas and U (0) to be the highest energy efficiency achieved
when all the remaining antennas are turned on. Define U

(0)
i,j to

be the highest energy efficiency achieved when only Antenna
(i, j) in S

(0)
is turned off. If turning off any antenna in S

(0)

will not improve the energy efficiency, i.e.,

max
(i,j)∈S

(0)
U

(0)
i,j ≤ U (0), (32)

no antennas in S
(0)

should be turned off and the selection
process is done. Otherwise, we turn off the antenna that results
in the highest energy efficiency, i.e., Antenna (k, l), where

(k, l) = arg max
(i,j)∈S

(0)
U

(0)
i,j . (33)

Then a higher energy efficiency U
(0)
k,l is achieved. In the second

round, let U (1) = U
(0)
k,l . Define the set of remaining antennas

that are still on to be S
(1)

. The above selection process can be
repeated until in round m, no antennas should be turned off,
i.e.,

max
(i,j)∈S

(m)
U

(m)
i,j ≤ U (m). (34)

Note that m is always smaller than the number of antennas
in S

(0)
because in each round, one antenna will be turned off

and finally, at least one antenna in S
(0)

must be kept on to
achieve non-zero energy efficiency.

The whole algorithm for energy-efficient MU-MIMO with
improved circuit management is named improved EMMPA and
summarized in Table IV. The global optimality of improved
EMMPA is verified later in Section VI.

The complexity of the improved EMMPA grows quadrat-
ically with the total number of antennas on the user side
and based on Proposition 3, it can be easily shown that the
convergence rate is characterized by Proposition 7.

Proposition 7. The output of the improved EMMPA is obtained

7



Algorithm Improved EMMPA
1. Use iterative EMMPA to determine S

(0)
and U (0).

2. m← 0 and Umax ← 0.
3. repeat
4. for Antenna (i, j) in S

(m)

5. do Turn on only antennas in S
(m)

excluding
(i, j) and calculate circuit power of all users.

6. Use EMMPA to determine U
(m)
i,j and the

corresponding µ and P.
7. if U

(m)
i,j > Umax

8. then Umax ← U
(m)
i,j and (k, l) ← (i, j).

µ∗ ←µ, P∗ ←P.
9. if Umax > U (m)

10. then S
(m+1) ←S

(m)
excluding (k, l)

11. U (m+1)←Umax.
12. m ←m+ 1;
13. until Umax ≤ U (m−1).
14. return S

(m−1)
, µ∗, and P∗.

TABLE IV: Improved EMMPA

within at most⌈
log2(

(α− 1)µ∗

ϵ
− 1)

⌉
1

2
(
∑
i

ki − 1)
∑
i

ki

iterations.

Similar to EMMPA, the algorithms proposed in this section
should also be implemented at the AP. The AP needs to
broadcast both the antenna configuration and the µ∗ and all
users can determine their optimal power allocations according
to (29).

VI. SIMULATION RESULTS FOR ENERGY-EFFICIENT
MU-MIMO

The proposed energy-efficient MU-MIMO can be applied
in different types of wireless networks to improve the network
energy efficiency. In this section, we provide simulation results
for a single-cell cellular network to demonstrate the perfor-
mance of energy-efficient MU-MIMO. System parameters are
listed in Table V. In each trial, users are dropped uniformly
within 250 meters from the AP. The performance below is the
average over all trials.

A. Performance of Energy-Efficient MU-MIMO without Im-
proved Circuit Management

First we consider the case that no circuit management is
used and each user consumes a fixed amount, PCi = 100 mW,
of circuit power. Fig. 3 gives the average energy efficiency
capacity when there are two users in the network and each
user has 1, 2, 3, or 4 antennas. The average energy efficiency
capacity is an average of multiple user droppings and channel
realizations. The number of AP antennas is varied to observe
its impact on energy efficiency capacity. Here we assume the
same Pr regardless of the number of AP antennas so that

only the impact of receiver diversity on the system energy
efficiency can be observed. On the other hand, Fig. 4 compares
the average energy efficiency capacity when the AP has 64
antennas. We can see that without circuit management, more
users and more antennas always help improve the energy
efficiency capacity of MU-MIMO. Fig. 5 compares the energy
efficiency of EMMPA and that of the fixed power allocation
(FPA). With the fixed power allocation, each user employs a
fixed amount of transmission power, given by the value in the
x axis, and allocates it equally on all spatial channels. Two
scenarios are considered. In one scenario, there are four users
in the network, each with two antennas, and the AP has eight
antennas. In the second scenario, there is only one user with
four antennas in the network and the AP has eight antennas.
As shown in Fig. 5, significant gain in energy efficiency can be
observed by using EMMPA. The gain is even larger when there
are multiple users because EMMPA effectively exploits multi-
user diversity in the network to improve energy efficiency.
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Fig. 3: Relationship between energy efficiency capacity, trans-
mitter antennas, and receive antennas.

B. Performance of Energy-Efficient MU-MIMO with Improved
Circuit Management

In the following, we consider energy-efficient MU-MIMO
with improved circuit management and assume PCi(k

o
i ) =

Pαk
o
i + PβI(k

o
i ) mW for all users.

First we verify the global optimality of improved EMMPA.
Assume Pβ = 20 mW and Pα is varied to observe the impact
of circuit power consumption of individual antennas on the
suboptimality gap of improved EMMPA and iterative EMMPA
algorithms. Fig. 6 gives the normalized energy efficiency of
improved and iterative EMMPA when the AP has 16 antennas
and each user has 4 antennas. The average energy efficiency
achieved by improved and iterative EMMPA is normalized by
that of ESPA, which is globally optimal. From Fig. 6, improved
EMMPA performs exactly the same as ESPA. In addition to
the same average energy efficiency, improved EMMPA always
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Fig. 5: Comparison between EMMPA and Fixed Power Al-
location (Scenario 1: N = 8, K = 4, ki = 2; Scenario 2:
N = 8, K = 1, ki = 4).

obtains the same instantaneous power allocation and energy
efficiency as ESPA according to our observation of simulation
results. Therefore, improved EMMPA is also globally optimal.
When Pα is small, iterative EMMPA performs very closely to
the global optimum because channel state is the main factor
that determines which antennas should be turned on. When
Pα is larger, the impact of individual antenna circuit power
consumption grows and since iterative EMMPA does not
consider this impact, it has larger performance loss. Therefore
improved EMMPA is needed to take this impact into account
to achieve the globally optimal performance.

Fig. 7 compares the average computing time of improved
EMMPA, iterative EMMPA, and ESPA with the same simula-

tion setting as that in Fig. 6. When K increases, the computing
time of ESPA grows exponentially, more than ten times when
K is increased by one. On the other hand, the computing
time of iterative and improved EMMPA grows very slightly.
The individual antenna circuit power consumption Pα has
impact on the computing time of improved EMMPA because
it determines on average how many additional rounds in the
second step are needed to identify antennas that should be
turned off because of high antenna circuit power consumption.

Fig. 8 gives the average energy efficiency capacity when
the AP has 16 antennas while each user has two antennas.
The number of users is varied from one to eight. Pβ = 20
mW and Pα is varied to observe the impact of antenna circuit
power on energy efficiency capacity. From Fig. 8 we can see
more users always help improve the network energy efficiency
because of increased multi-user diversity. Fig. 9 illustrates
the average energy efficiency capacity when the AP has 16
antennas and two users are accessing the AP. The number of
antennas of each user is varied from one to eight and Pβ = 20
mW. We can see that when individual antennas consume a
small amount of circuit power, i.e., Pα is small, more antennas
always improve the network energy efficiency. However when
individual antennas consume too much circuit power and Pα is
large, e.g., Pα = 40 dBm, more antennas do not help improve
the network energy efficiency because most antennas should
be turned off in this case to reduce circuit power consumption.
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Fig. 6: Suboptimality gap of improved EMMPA and iterative
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Fig. 10 compares the average energy efficiency of im-
proved EMMPA, iterative EMMPA, and FPA in the same
two scenarios as in Fig. 5. We can see iterative EMMPA
achieves very close performance to that of improved EMMPA.
This indicates that with PCi(k

o
i ) = 20koi + 40I(koi ), the

impact of circuit power consumed by different antennas on
energy efficient MU-MIMO is negligible and the channel
states mainly determine which antennas should be turned on.
However, when the amount of circuit power consumed by each
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antenna increases, the impact would grow and the performance
difference between improved EMMPA and iterative EMMPA
may not be negligible, as shown in Fig. 6. Compared to FPA,
significant gain of energy efficiency can be observed. For
example, in scenario 1, more than 100% gain can be observed,
indicating half energy is needed to transmit the same amount
of information bits using energy-efficient MU-MIMO.

VII. CONCLUSION

In this paper, we have investigated the optimal energy-
efficient MU-MIMO. Both electronic circuit and RF trans-
mission power consumptions have been considered. We have

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of User Antennas

E
ne

rg
y 

E
ffi

ci
en

cy
 C

ap
ac

ity
 (

kb
its

/J
ou

le
)

 

 

Pα=10 dBm

Pα=20 dBm

Pα=30 dBm

Pα=40 dBm

Fig. 9: Relationship between energy efficiency capacity and
user antennas (N = 16 and K = 2).

TABLE V: Simulation Parameters
Carrier frequency 1.5 GHz
System bandwidth 10 kHz

Thermal noise power, No -141 dBW/MHz
User antenna height 1.6 m
BS antenna height 40 m

Environment Macro cell in urban area
Receiver power, Pr 1000 mW
Propagation Model Okumura-Hata model

Shadowing 10 dB lognormal
Fading Rayleigh flat fading

Power amplifier efficiency, ζ 0.5
SNR gap, Γ 0 dB

α 1
β 1

first analyzed an MU-MIMO system based on distributed SVD
decomposition of the channels of all users and derived the
achieved SNR conditions for all users. Then we have proposed
the concept of energy-efficient MU-MIMO and defined the
energy efficiency capacity for MU-MIMO. We have demon-
strated the existence of a uniquely globally optimal power
allocation that could achieve this energy efficiency capacity.
The optimal power allocation is shown to be a dynamic
water-filling approach where the water level is determined
by the energy efficiency capacity. A one-dimensional low-
complexity algorithm has been developed to obtain the globally
optimal power allocation and this algorithm converges to the
global optimum at an exponential speed. Furthermore, we have
studied energy-efficient MU-MIMO with improved circuit
management where users can choose to turn off electronic
circuit operations when some antennas are not used. Our result
showed that some antennas should not be used even when they
have good channel states because turning them on consumes
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Fig. 10: Comparison between Improved EMMPA, Iterative
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too much circuit power. We have developed globally optimal
algorithms to determine the set of antennas that should be kept
on and the corresponding power allocation. Comprehensive
simulation results have been provided to demonstrate the algo-
rithm performance and the significant gain in energy efficiency
for a cellular network.

This paper has focused on narrow-band flat-fading channels.
However, the solutions, especially the methodology, can be
easily adapted in broadband channels. For example, in LTE,
MU-MIMO can be applied in each resource block (RB) to
multiplex the transmission of multiple users in the network
[33]. Here each RB has a small number of, e.g. 12, adjacent
subcarriers and therefore experiences flat fading. We can apply
the proposed power allocations schemes in each RB to improve
the network energy efficiency. Some improvements may be
needed. For example, as the data transmission of a user may
occur in multiple RBs, the circuit power in the algorithms
should be replaced by the total circuit power divided by the
number of RBs used, i.e. the average circuit power per RB.
The detailed discussion is beyond the scope of this paper and
would be the future work.
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APPENDIX I
PROOF OF LEMMA 1

Proof: According to Section II,

U(P) =

∑
i Ri

α
∑

i(PTi + PCi) + βPr

=

∑K
i=1

∑ki

k=1 B log2

(
1 +

pikλ
2
ik

Γσ2

)
α
∑K

i=1 PCi + βPr +
α
ζ

∑K
i=1

∑ki

k=1 pik
.

(I.35)

Define the upper contour sets of U(P) as

Sµ = {P ≽ 0|U(P) ≥ µ}, (I.36)

where symbol ≽ denotes matrix inequality and P ≽ 0 means
each element of P is nonnegative. According to Proposition
C.9 of [31], U(P) is strictly quasi-concave if and only if Sµ is
strictly convex for any real number µ. When µ < 0, no points
exist on the contour U(P) = µ. When µ = 0, only 0 is on the
contour U(0) = µ. Hence, Sµ is strictly convex when µ ≤ 0.
Now we investigate the case when µ > 0. Sµ is equivalent to

Sµ =

{
P ≽ 0|µα

K∑
i=1

PCi + µβPr +
µα

ζ

K∑
i=1

ki∑
k=1

pik

−
K∑
i=1

ki∑
k=1

B log2

(
1 +

pikλ
2
ik

Γσ2

)
≤ 0

}
.

(I.37)

Clearly µα
∑K

i=1 PCi + µβPr + µα
ζ

∑K
i=1

∑ki

k=1 pik −∑K
i=1

∑ki

k=1 B log2

(
1 +

pikλ
2
ik

Γσ2

)
is strictly convex in P as its

Hessian is positive definite. Therefore Sµ is strictly convex
and we have the strict quasi-concavity of U(P).

It is easy to see that at the local maximum of U(P), which is
also the global maximum because of the strict quasi-concavity,
all pik < ∞ as otherwise U(P) = 0. Hence at the local
maximum, pik is positive or pik = 0. If pik is positive, it
can be obtained by setting the partial derivative of U(P) with
respect to pik to be zero, i.e.,

∂U(P)

∂pik

∣∣∣∣
P=P∗

= 0, (I.38)

and we have
p∗ik =

Bζ

αU∗ ln 2
− Γσ2

λ2
ik

, (I.39)

Hence, the unique optimal energy-efficient power allocation is
given by

p∗ik =

{
Bζ

αU∗ ln 2 −
Γσ2

λ2
ik

if Bζλ2
ik

αΓσ2 > U∗,

0 otherwise.
(I.40)

Lemma 1 and Theorem 1 are readily obtained.
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APPENDIX II
PROOF OF QUASI-CONCAVITY OF f(µ)

Proof: Similar to the proof in Appendix I, define the upper
contour sets of f(µ) as

Sν = {µ > 0|f(µ) ≥ ν}. (II.41)

We need to show Sν is strictly convex for any real number ν,
which is obvious when ν ≤ 0. When ν > 0, Sν is equivalent
to

Sν=

µ>0

∣∣∣∣∣∣να
K∑
i=1

PCi + νβPr +
να

ζ

K∑
i=1

ki∑
k=1

[
µ−

Γσ2

λ2
ik

]+

−
K∑
i=1

ki∑
k=1

B log2

1 +

[
µ− Γσ2

λ2
ik

]+
λ2
ik

Γσ2

 ≤ 0


, {ν > 0|M(µ) ≤ 0} .

(II.42)

The second order derivative of M(µ) is

M ′′(µ)=−d2
K∑
i=1

ki∑
k=1

B log2

1+
[
µ− Γσ2

λ2
ik

]+
λ2
ik

Γσ2

/dµ2

=
∑

i,k:µ>Γσ2

λ2
ik

B

µ2
.

(II.43)

At lease one antenna of one user should have positive power
allocation as otherwise f(µ) = 0, which is clearly not optimal.
Therefore there exists at lease one i and k such that µ > Γσ2

λ2
ik

.
Hence M ′′(µ) > 0 for all feasible µ of interest and Sν is
strictly convex and we have the strict quasi-concavity of f(µ)
when f(µ) > 0.

APPENDIX III
CONDITION OF AN ANTENNA BEING TURNED ON

Proof: ∂f(pij)
∂pij

= − λ2
ij

Γσ2
α
ζ

(
Ro

ij +B log2(1 +
pijλ

2
ij

Γσ2 )
)
<

0. Therefore f(pij) is strictly decreasing. It is easy to see that
as pij → +∞, f(pij) → −∞. If when pij → 0, f(pij) > 0,
then there exists a unique pij > 0 such that f(pij) = 0.
Otherwise, Antenna (i, j) should be turned off.

lim
pij→0

f(pij) =
B

ln 2

λ2
ij

Γσ2
(P o

ij + PCi(k
o
i ))−

α

ζ
Ro

ij > 0.

Therefore, Antenna (i, j) should be turned on when
λ2
ij

σ2 >
Ro

ijΓα ln 2

(P o
ij+PCi(ko

i ))Bζ .
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