Open source tools for FPGA development What is available? What is missing? How can we contribute?

Francesco Robino

FOSS-Sthlm #16

Goal of the talk:

Spread knowledge about FPGAs and introduce open source tools which can be used for the development of FPGA-based projects.

FPGAs

- What is an FPGA?
- What is an FPGA used for?
- Who is interested in FPGAs?
- FPGA design flow and available open source tools
 - Overview of the design flow
 - Where and how can the FOSS community contribute
 - Available tools today (links)
- Conclusions (and other useful links)

What is a Field Programmable Gate Array (FPGA)?

FPGAs are programmable semiconductor devices composed by a matrix of Configurable Logic Blocks (**CLBs**).

CLBs are connected through programmable interconnects.

IO Buffers (**IOBs**) are used to communicate with the external world. IOBs can be configured to support different I/O standards (e.g. LVCMOS25).

What is a Field Programmable Gate Array (FPGA)?

"Clean slate" FPGA: programmable gates and routers

A 3-input, 1-output LUT programmed to compute (a&b)|c. Bits a,b,c are the LUT index, (a&b)|c are the stored values.

• • • • • • • • • • • • •

How to program an FPGA?

- Hardware description languages (HDLs): VHDL, Verilog
- HDL are synthesized (compiled) to a bitstream (the equivalent of binary executable)
- Bitstream is pushed into the FPGA from a configuration memory. This configures the FPGA components with the described functionality

FPGAs are often used to:

- accelerate computation (e.g. digital signal processing);
- prototype ASIC designs;
- create autonomous systems through run-time reconfigurability;
- ...much more

Benefits of FPGAs:

- Faster computation using less energy when compared to GPUs/CPUs-based solutions
- Reduce time-to-market and reduce development cost (when ASICs development is too expensive)
- Reliability and maintenance

- Companies working with big data and high data bandwidth:
 - reduce power, improve performances of algorithms (e.g. compression and decompression, data encryption) in data centers
 - increasing the number of cores is not the only way to go to improve performances and follow Moore's law – heterogeneity is the key
- Embedded: automotive, telecom
- Military
- Space agencies (run time reconfiguration and fault tolerance)
- Researchers
- ... and many others ...

So, if FPGAs have many advantages, why are they not used more often?

- Expensive when compared to CPUs and DSP based solutions
 - Niche market, small community
- Not easy to program (standard HDLs are not abstract)
- Complex, heavy, closed-source and expensive development tools maintained by few companies

FOSS development tools for FPGA can help to:

- Increase number of users and create a larger community
- Get new ideas to simplify the programming methods for FPGAs
- Enable small companies to use FPGAs
- ... [add your own] ...

TOOL(s)

Editors: emacs vhdl-mode, vim, ... Auto documentation: doxygen, vhdocl, **vhdl-dot**

* **ghdl** (when the design entry is VHDL) * **iverilog** (when the design entry is Verilog)

* Yosys

- * Vtr front-end: OdinII ABC
- * Torc: analyze edif and fine grain (architecture)
- * Vtr back-end: vpr (theoretical architectures) * Arachne-pnr (only ice40)
- Arachne-pnr (only ice40)
- * Torc: analyze xdl and fine grain (physical)
- * Vtr back-end: vpr (theoretical architectures) * Arachne-pnr (only ice40)
- * Torc: analyze xdl and fine grain (physical)

* Project icestorm (only ice40) * Fpgatools (only Spartan6 xc6slx9)

Code

Good editor HDL modes, poor documentation generators, low level design entry

Tools

Editors:

• Emacs vhdl-mode, Vim,... Automatic documentation generator:

• Doxygen, vhdocl, vhdl-dot

- New features to the hdl-mode(s) of the editors
- Improve the documentation generators
- Ideas for new abstract programming techniques

Simulate

Good simulators but very few maintainers

Tools

- Vhdl: GHDL (written in ADA)
- Verilog: icarus verilog
- GTKWave

- Do not let the projects disappear!
- More maintainers

😸 🗇 🕕 GTKWave - testlog.vcd		
X 🗈 🛍 I 🛛 🔿 👄 🛻 🛏 🚽	From: 0 sec	To: 142005 ns C Marker: 55630 ns Cursor: 55673100 ps
▼ SST	Signals	Waves
白赤orpsoc_tb 日本Adu 日本Adg_ifo 日本Adg_ifo 日本Adg_ifo 日本Adg_ifo 日本Adg_ifo 日本Adg_ifo 日本Adg_ifo 日本Adg_ifo 日本Adg_ifo 日本Adg_ifo 日本Adg_ifo	Time iwbm_ack i == iwbm_adr_o[31:0] == iwbm_bte_o[1:0] == iwbm_cti_o[2:0] == iwbm_cvc_o ==	355500 ms 55500 ms 55500 ms 55000 00002454 00002465 00002467 0mm + + (0mm +
부···· wo_intercon 면	<pre>iwbm_dat_i[31:0] = iwbm_dat_o[31:0] = iwbm_err_i = iwbm_rrty_i = iwbm_sel_o[3:0] = </pre>	8406-94800818 (00003011)35000000)+ 35000000 (*) 00000000 7
Type Signals wire avm_d_address_o[31:0] wire avm_d_burstrount_o[3:0]	iwbm_stb_o= iwbm_we_o= clk=	

Synthesis

Check code syntax, analyze the hierarchy of the design and generate an intermediate hardware description optimized for the selected FPGA family architecture (netlist).

- Generic hardware generation (HDL to generic HW such as AND/NAND gates)
- 2 Logic optimization: remove redundant logic expressions,...
- Binding to FPGA primitives (e.g. LUTs, MUL,...) of the target FPGA family (e.g. Kintex7)

Tools

- Yosys (includes ABC), only Verilog
- Vtr project front-end: OdinII + ABC

- Enable VHDL for Yosys
- Improve logic optimizations
- Extend Yosis to other FPGA families (requires knowledge of primitives for each family)

The netlist of primitives is **mapped into CLB and IOBs** for the specific FPGA (e.g. Xilinx Kintex7 XC7K325T-2FFG900C).

Require detailed knowledge of the specific FPGA architecture (e.g. number of LUTs per CLB, number of LUT inputs,...) Usually represented using a proprietary file (e.g. NCD and XDL files in Xilinx)

Tools

- Vtr back-end: vpr (only theoretical architectures)
- Arachne-pnr: includes the mapping step (only iCE40HX)
- Torc: read and interpret XDL files (physical namespace)

What can we do?

- **Document** FPGA architectures when documents are available,
- Use tools like Torc to understand the details of the architectures
- Include those infos in map & pnr tools

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Placing: decides on the placement of the CLBs and IOBs cells of the target hardware.

Routing: Determines wiring of inputs and outputs of the CLBs and IOBs cells through wiring channels and configuring the configurable switches of the target hardware

Usually represented using a proprietary file (e.g. NCD and XDL files in Xilinx)

Tools

- Vtr back-end: vpr (only theoretical architectures)
- Arachne-pnr: includes the mapping step (only iCE40HX)
- Torc: read and interpret XDL files (physical namespace)

What can we do?

- **Document** FPGA architectures when documents are available
- Use tools like Torc to understand the details of the architectures
- Improve exploration algorithms (e.g. constraint programming)

▲ □ ► ▲ □ ► ▲

Tools

- Project icestorm (only iCE40HX)
- fpgatools (only Spartan 6 xc6slx9)

- **Document** FPGA architectures when documents are available,
- Use tools like Torc, **debit**, **bitgen** to understand the bitstream formats
- Connect fpgatools to arachne-pnr and yosis to have a full toolchain for Xilinx

Toolchain for Lattice iCE40HX1k

- iVerilog
- Yosis
- arachne-pnr
- icestorm

Toolchain for Xilinx xc6slx9

- iVerilog
- Yosis
- ...
- fpgatools

< ≣ > <

- 一司

Where can I start with FPGAs?

- Logi pi (http://valentfx.com/logi-pi/)
- Zynq based boards (Parallella, Zybo)
- Get an iceStick (ca 200 kr) and:

yosis -p read_verilog example.v; synth_ice40 -blif example.blif arachne-pnr -d 1k -p pin_file.pcf -o example.txt example.blif icepack example.txt example.bin iceprog example.bin

- vhdl-dot: https://code.google.com/p/vhdl-dot/ https://github.com/frobino/vhdl-dot-resurrection/
- GHDL: http://sourceforge.net/projects/ghdl-updates/
- iVerilog: http://iverilog.icarus.com/
- Yosys: http://www.clifford.at/yosys/
- Vtr: https://code.google.com/p/vtr-verilog-to-routing/
- Torc: http://torc-isi.sourceforge.net/
- Arachne-pnr: https://github.com/cseed/arachne-pnr/
- Project Icestorm: http://www.clifford.at/icestorm/
- Fpgatools: https://github.com/Wolfgang-Spraul/fpgatools