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Abstract

Several recent engineering applications in multi-agent systems, communication networks,
and machine learning deal with decision problems that can be formulated as optimization
problems. For many of  these problems, new constraints limit the usefulness of  traditional
optimization algorithms. In some cases, the problem size is much larger than what can
be conveniently dealt with using standard solvers. In other cases, the problems have to be
solved in a distributed manner by several decision-makers with limited computational and
communication resources. By exploiting problem structure, however, it is possible to design
computationally efficient algorithms that satisfy the implementation requirements of  these
emerging applications.

In this thesis, we study a variety of  techniques for improving the convergence times of
optimization algorithms for large-scale systems. In the first part of  the thesis, we focus on
multi-step first-order methods. These methods add memory to the classical gradient method
and account for past iterates when computing the next one. The result is a computationally
lightweight acceleration technique that can yield significant improvements over gradient
descent. In particular, we focus on the Heavy-ball method introduced by Polyak. Previous
studies have quantified the performance improvements over the gradient through a local
convergence analysis of  twice continuously differentiable objective functions. However, the
convergence properties of  the method on more general convex cost functions has not been
known. The first contribution of  this thesis is a global convergence analysis of  the Heavy-
ball method for a variety of  convex problems whose objective functions are strongly convex
and have Lipschitz continuous gradient. The second contribution is to tailor the Heavy-
ball method to network optimization problems. In such problems, a collection of  decision-
makers collaborate to find the decision vector that minimizes the total system cost. We
derive the optimal step-sizes for the Heavy-ball method in this scenario, and show how
the optimal convergence times depend on the individual cost functions and the structure
of  the underlying interaction graph. We present three engineering applications where our
algorithm significantly outperform the tailor-made state-of-the-art algorithms.

In the second part of  the thesis, we consider the Alternating Direction Method of
Multipliers (ADMM), an alternative powerful method for solving structured optimization
problems. The method has recently attracted a large interest from several engineering
communities. Despite its popularity, its optimal parameters have been unknown. The third
contribution of  this thesis is to derive optimal parameters for the ADMM algorithm when
applied to quadratic programming problems. Our derivations quantify how the Hessian
of  the cost functions and constraint matrices affect the convergence times. By exploiting
this information, we develop a preconditioning technique that allows to accelerate the
performance even further. Numerical studies of  model-predictive control problems illustrate
significant performance benefits of  a well-tuned ADMM algorithm. The fourth and final
contribution of  the thesis is to extend our results on optimal scaling and parameter tuning of
the ADMM method to a distributed setting. We derive optimal algorithm parameters and
suggest heuristic methods that can be executed by individual agents using local information.
The resulting algorithm is applied to distributed averaging problem and shown to yield
substantial performance improvements over the state-of-the-art algorithms.



Sammanfattning

Många nya tillämpningar inom områden som multiagentsystem, reglerteknik, kommu-
nikationsteori och maskininlärning innefattar beslut som ska fattas på bästa möjliga sätt.
Matematiska kan detta formuleras som optimeringsproblem. I vissa fall är de resulterande
problemen mycket stora med många beslutsvariabler. I andra fall måste problemen lösas
distribuerat av flera olika beslutsfattare som var och en har begränsade beräkningsresurser.
Det visar sig ofta att de traditionella och generella optimeringslösarna är olämpliga för dessa
nya problem. Genom att utnyttja de givna problemstrukturerna kan man istället formulera
beräkningsmässigt mycket mer effektiva algoritmer för de specifika optimeringsproblemen.

I denna avhandling studeras ett antal olika tekniker för att förbättra prestandan hos
optimeringsalgoritmer för storskaliga problem. Först studeras heavy-ball-metoden som en
beräkningstekniskt enkel teknik för att öka konvergenshastigheten hos gradientmetoden.
Heavy-ball-metoden introducerar minne i gradientmetoden genom att ta tidigare itera-
tioner i beaktande när nästa iterat beräknas. Det har visats att heavy-ball-metoden har
betydande fördelar jämfört med gradientmetoden i fråga om lokal konvergens för två
gånger kontinuerligt deriverbara målfunktioner. Metodens globala konvergensegenskaper
har dock varit okända under lång tid. Här presenteras en global konvergensanalys för
heavy-ball-metoden applicerad på problem med Lipschitzkontinuerliga gradienter och
starkt konvexa kostnadsfunktioner. Vidare introduceras en familj av gradient-baserade
flerstegsmetoder för nätverksoptimeringsproblem. Algoritmerna bygger på att problemet
distribueras till ett antal beslutsfattare som var för sig utför en typ av heavy-ball-iterationer.
Algoritmernas prestanda kan ytterligare förbättras genom rätt val av parametrar. Tre
tillämpningar där de nya algoritmerna uppvisar betydliga prestandaförbättringar jämfört
med gradientmetoden presenteras i denna avhandling.

Slutligen studeras ett tredje alternativ för att lösa storskaliga optimeringsproblem med
viss given struktur. Metoden Alternating Direction Method of  Multipliers (ADMM) är en
teknik som ökat i popularitet inom många olika ingenjörsområden. Prestandan hos ADMM
beror kritiskt på valet av ett antal parametrar. Det bästa valet för ett givet problem har
hittills varit okänt. I denna avhandling studeras valet av optimala parametrar för ADMM
då den används för att lösa centraliserade och distribuerade kvadratiska optimeringsprob-
lem. För centraliserade problem spelar hessianens och bivillkorsmatrisernas spektralgap
en avgörande roll medan kommunikationsgrafens spektralegenskaper är avgörande för
distribuerade problem. Följaktligen kan prestandan hos ADMM förbättras genom skalning
av ursprungsproblemet. Numeriska exempel visar fördelarna hos en optimalt skalad och
inställd ADMM-algoritm jämfört med andra tillgängliga metoder.
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Chapter 1

Introduction

IN the age of  connectivity, billions of  cell-phones1, tablets, cars, smart appliances, wireless
sensors, and other devices are beginning to form an “intelligent ambient”. In the mid

80’s, when the Internet was first introduced, it would have been hard to anticipate that less
than 30 years later, networked devices would play such a prominent part in our everyday
lives.

Still, it is likely that we have only seen the beginning of  this networked society.
In emerging road transportation networks, it is envisioned that groups of  autonomous
vehicles interact with each other and operator management centers. By accessing critical
traffic information from the infrastructure, vehicles will be able to compute efficient
routes, and even form platoons to minimize fuel consumption while ensuring safety and
traffic constraints. As another example, in the near future, electric cars, smart household
appliances, and new power meters will cooperate in large-scale “smart grids” to help
customers to control their power bills and emissions, while allowing power system operators
to safely and efficiently integrate large amount of  renewable energy production.

One thing that the above examples have in common is that peers with limited commu-
nication and computation capabilities have to act collectively to perform a complex task.
In other words, it is the clever interactions among the interconnected peers that make the
overall system appear intelligent.

One way of  engineering these interconnected systems is to develop them by engineering
intuition in a trial-and-error fashion. This approach has been used frequently in the
past, and produced several impressive systems in computer networking, wireless sensor
networks [1], multi-agent systems [2], etc. However, it is likely that it has produced many
more failed attempts, where system interactions have proven too complex to manage in an
ad-hoc manner.

To be able to exploit the full potential of  modern networked systems, we need systematic
techniques for designing mechanisms that coordinate connected peers. Ideally, these should
ensure that the peers converge quickly to the optimal operating point and do so in an energy-
efficient manner with a minimal information exchange. In several emerging applications, it

1There are almost as many cell-phone subscriptions (6.8 billion) as there are people on this earth (seven
billion) and it took a little more than 20 years for that to happen. In 2013, there were some 96 cell-phone service
subscriptions for every 100 people in the world. source: International Telecommunication Union (ITU), the United
Nations specialized agency for information and communication technologies.

1



2 | Introduction

is also desirable to have formal guarantees that the final implementation behaves correctly
and safely, and that the system respects end-user privacy. We argue that such formal
guarantees can only be given if  we base our design based on systematic and scientifically
sound techniques.

There exists a great deal of  interest in developing novel mathematical and computational
tools for fundamental understanding and engineering design of  interactions between the
connected peers in emerging networks. This thesis is part of  these exertions and aims to
contribute by designing optimization techniques for advanced engineering applications.

1.1 Engineering interconnected systems by optimization

Optimization theory provides an attractive framework for solving numerous decision
problems. It provides a methodology to formalize the objective of  an engineering problem
and the operational constraints in mathematical terms and then look for the best solution.
Using mathematical notation, an optimization problem can be formulated as

minimize f(x)
subject to x ∈ X . (1.1)

Here, the vector x ∈ Rn is the optimization variable (representing the decision parameter
that we optimize over), the function f(x) : Rn → R is the objective function (describing the
loss, or cost of  operating our system at x), and X is the set of  constraints that our decision
vector should satisfy.

Once we formulate the optimization problem, then obviously we would be interested in
solving it. It usually can done by an iterative process called optimization algorithm.

Classical optimization algorithms typically run in a central computer where the objec-
tive function and the constraints set are known and described by closed-form expressions.
Distributed optimization algorithms, on the other hand, decompose the optimization
problem into multiple pieces assigned to disjoint processors or agents that collaboratively
solve the overall problem. Given the limited capabilities of  the individual agents, simple
computation and collaboration mechanisms are often required for agents to carry out the
local computations and interact with neighbors. One example of  a distributed optimization
problem is illustrated in Figure1.1.

Alternative theoretical frameworks such as control and game theory are also suitable
means to deal with decentralized decision making problems. In control theory, one studies
the behavior of  dynamical systems with inputs and outputs and how to modify their
behavior by feedback. The objective in a control problem is typically to keep the state of  the
system at rest despite uncertainties, or to shape the dynamic response of  a system, despite
uncertainties.

Game theory, on the other hand, is about reconciling different interests in a competitive
environment. The majority of  game theory considers non-collaborative decision-making
and addresses how individual strategies can influence the state of  a competition which is
often called a game.

In emerging engineering applications, we believe that optimization, control, and game
theory should go hand in hand in order to address different aspects of  decision making.
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f1(x1)

f2(x2)

f3(x3)

f4(x4)

Figure 1.1: An example of  a distributed optimization problem. A network of 4 agents
collaboratively solve an optimization problem of  form f(x) = minimize

∑
i fi(x). Each

node i is endowed with a local cost function fi and a local variable xi. An example of fi
and xi are a function penalizing a mobile agent for deviating from its original position and
the current position of  the agent, respectively. The agents do not have access to each other
cost functions and only can communicate to a subset of  entire agents. A line connecting two
agents indicates that they can communicate with each other. The constraints xi = xj for
i, j being connected by a line indicates that the neighboring agents should meet each other
at a common position.

In the current thesis, we focus on optimization theory to formulate and solve collaborative
engineering problems.

1.2 Convex optimization

This thesis is about convex optimization, an important subset of  mathematical optimization.
A convex optimization problem has an objective function that satisfies

f(θx+ (1 − θ)y) ≤ θf(x) + (1 − θ)f(y), (1.2)

for all x, y ∈ Rn and θ ∈ [0, 1]. In addition, in a convex optimization problem, the
constraint set is convex. That is for all x, y ∈ X ,

θx+ (1 − θ)y ∈ X , (1.3)

for any θ ∈ [0, 1]. Figure1.2 depicts a convex function and a convex set.
Convex optimization problems have several distinct advantages. First, every locally

optimal point is also globally optimal. When we have found a locally optimal point, we can
safely terminate our algorithm knowing that we have found the optimal solution. Convex
optimization problems also have a strong and useful duality theory. Associated to every
(primal) optimization problem is another dual problem. For convex problems, under mild
assumptions of  constraint qualification [4], the optimal value of  the primal and dual problem
agree. This is known as strong duality. Moreover, when strong duality holds, the Karush-
Kuhn-Tucker conditions provide a necessary and sufficient characterization of  primal-dual
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(x, f(x))

(y, f(y))

(a) A convex function f

y
x

(b) A convex set X

Figure 1.2: Let f : Rn → R be a function defined on Rn. Then we say f is convex if  for
any two points x, y ∈ Rn, the line segment between (x, f(x)) and (y, f(y)) lies above f .
We say a set X is convex if  for any two points x, y ∈ X , the line segment connecting x and
y lies in X .

optimal points. These conditions can be used to develop well-founded stopping criteria for
iterative algorithms, to bound how far from optimal a given iterate is, and to design efficient
algorithms that exploit the structure in both primal and dual problems.

By exploiting properties of  convex problems, several efficient solution techniques have
been developed in recent decades. One group of  such techniques are the interior-point
methods [3] that solve a wide range of  convex problems including linear programs and
quadratic programs to a specified accuracy within a number of  operations that does not
exceed a polynomial function of  the problem dimension.

A large number of  engineering problems can be formulated as convex problems and
many others can be well approximated by convex problems (see e.g., [4, 5] for detailed
discussions on convex optimization methods and convexifying techniques).

1.2.1 Engineering applications that use convex optimization

Given the benefits of  convex problems, several engineering communities have recently
applied convex optimization techniques to solve their problems of  interest:

Multi-agent systems involve a collection of  mobile agents equipped with processing
and communication units performing collective tasks. Convex optimization theory
provides an attractive framework to formulate many problems including distributed
estimation and control for robotic networks [6], formation control and coordina-
tion of  autonomous agents [7], and decentralized rendezvous problems in multi-
agents [8].

Wireless sensor networks consist of  small sensor nodes with limited sensing, process-
ing, and communication capabilities that are usually deployed in some fields of
interest to perform monitoring, detection, or surveillance tasks. Modern wireless
sensor network scenarios in which convex optimization techniques are brought into
action include: sensor node position estimation [9], designing protocols for reliable
packet transfer for industrial process control [10] [11], and deadline-constrained
reliable forwarding [12].
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Communication networks have been actively developed during past decades. Convex
optimization has served as an important tool for researchers in this field. Some
examples include: distributed cross-layer congestion control in data networks [13, 14,
15], resource allocation in wireless networks [16, 17], coordinated transmission and
power management for wireless interference networks [18, 19, 20], energy-efficient
mobile radio-access technologies [21], and quality of  service and fairness in cellular
networks [22].

Networked control systems is an attractive area that has emerged as recent advances
in communication technologies embraced the traditional control techniques [23,
24]. Convex optimization methods have contributed a major role in this topic
including distributed model predictive control [25, 26], fuel-efficient heavy-duty
vehicle platooning [27], distributed reconfiguration for sensor and actuators [28],
and cyber-security and resilience against faults and attacks [29].

Machine learning deals with designing algorithms that can learn from data. Such algo-
rithms operate by building a model based on a restricted set of  available data and then
utilizing the model to perform decision and prediction tasks. Convex optimization
has played a major role in developing modern machine learning algorithms. The
classical examples include the convex optimization methods applied in: support
vector machine [30], image denoising [31], matrix completion [32], and compressed
sensing [33] problems. Moreover, recent advances in first-order convex optimization
methods has crafted lots of  powerful machine learning related techniques such as
composite methods [34, 35, 36], incremental gradient methods [37], dual averaging
method [38, 39], to name a few.

1.2.2 Convex optimization methods

The gradient descent method is among the earliest methods for solving optimization
problems. To find a minimum of  a function using gradient descent, one takes steps in the
direction of  the negative gradient of  the function at the current point. In each iteration
k ∈ N0 the gradient descent method updates its iterate through

x(k+1) = x(k) − α(k)∇f(x(k)),

where x(k) ∈ Rn is the current point, α(k) ∈ R++ is a positive step-size, and ∇f(x(k))
is the gradient of  the function at the current point. The main drawback of  the gradient
descent algorithm is that for general convex functions it converges slowly toward the optimal
solution. More effective optimization algorithms have been invented that require higher
order information. One example of  such methods is the Newton’s method that needs
Hessian of  the cost function in addition to its gradient at the current point in order to
compute the next iteration point. In cases in which higher order functional information is
available or can be easily evaluated, the Newton’s method can converge significantly faster
than the gradient descent method [4].

In the past decades, versatile convex optimization solvers such as interior-point methods
have been developed to solve convex optimization problems in polynomial time [40, 3]. For
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some variations of  convex problems, including linear programs, these solvers can handle
problem instances with thousands of  constraints and variables in a few seconds. In generic
nonlinear convex programs, however, such methods can be computationally prohibitive for
large sizes of  problem data.

1.3 New solution methods for modern engineering applications

In this section, we consider problems that traditional convex solvers are not able to cope
with. In particular, we consider two types of  engineering applications that motivate the
content of  this thesis. The first example is the so called distributed or network optimization
problems. As discussed earlier, many problems in multi-agent and networking applications
involve groups of  decision makers with limited resources that collaboratively perform
an overall task. Any solution method for these applications should allow for distributed
implementation. Moreover, it should impose low computational overheads for individual
decision makers.

In a second type of  modern applications, one has to deal with a gigantic chunk
of  data to perform statistical analysis or data mining tasks formulated as optimization
problems. Examples of  such huge-scale applications includes weather prediction, finite
element methods, and the analysis of  data extracted from Internet or telecommunication
networks. In these problems, one often deals with terabytes of  data that needs to be
processed. Even loading the entire data into memory, in such applications, can be an issue2.
An optimization solver for such applications has to involve easy to perform operations due
to the huge size of  problems in hand.

Motivated by these examples, we investigate new accelerated solution methods that take
into account two design principles of  modern optimization algorithms: (i) simplicity in a
sense that they should be applicable for the large scale problems with lots of  parameters; (ii)
decomposability in a sense that it should be possible to solve the optimization problem based
on a “divide and conquer” paradigm. The problem is split into several pieces and each piece
is often assigned to different parties that collaboratively solve the global problem.

In this thesis, we study the efficiency of  convex optimization methods for modern
applications. The efficiency of  an optimization algorithm is characterized by its convergence
time, that is, the time it takes to reach to the solution of  optimization problem of  interest.
By optimizing their tunable parameters such as constant step-sizes and constraints scales,
one can improve the convergence time of  optimization algorithms. In particular, we
are interested in the following two solution techniques that efficiently solve nowadays
engineering problems.

2Since the 1980s, the world’s technological per-capita capacity to compute and store information has roughly
doubled every 24 and 40 months, respectively [41]. This is, however, far behind the rate in which we generate
data. As of  2012, every day 2.5 exabytes (2.5 × 1018) of  data were created; so much that 90% of  the data in the
world at 2012 had been created in the previous two years alone [42]. About 75% of  data is coming from sources
such as text, voice and video. And as mobile phone penetration is forecast to grow from about 61% of  the global
population in 2013 to nearly 70% by 2017, those numbers can only grow [43].
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1.3.1 Making the most of first-order methods

Many truly large-scale convex optimization problems can be handled by decomposition
techniques that exploit the problem structure in the primal or dual space to distribute
the computations on multiple processors. The decomposition techniques are particularly
attractive when one can isolate subproblems that are easy to solve, and when these can be
effectively coordinated using a simple algorithm such as the gradient method. However, in
many cases, it is the slow convergence of  the gradient method that constitutes the bottleneck
in decomposition methods. By developing computationally cheap techniques that accelerate
the convergence of  the gradient method, it is possible to speed up decomposition techniques
and deal with even larger problem sizes.

One of  the simplest way to accelerate the gradient method is to consider multi-step
first-order methods. The idea is to design algorithms that generate new iterates as a linear
combination of  past iterates and past gradient evaluations. Different multi-step methods use
a different number of  past iterates and past gradients, and weight them together in different
ways. It turns out that it is possible to invent accelerated methods that only take just a few
past iterates into account when computing the next ones. These methods are particularly
efficient since their memory requirement is comparable with the vanilla gradient method
but bring a huge performance improvement often in the order of  magnitudes. In Chapters 3
and 4 we study accelerated gradient methods and provide theoretical performance bounds
for some of  these algorithms as well as machinery to implement such methods in distributed
optimization.

1.3.2 Adding robustness to the picture

A disadvantage of  a gradient based method is that its stability is sensitive to the choice of
the algorithm parameters, even to the point where poor parameters can lead to algorithm
divergence [44].

The Alternating Direction Method of  Multipliers (ADMM) is a powerful algorithm for
solving structured convex optimization problems that rectifies this issue. A key feature of  the
ADMM algorithm is that it converges for all values of  algorithm parameters. Moreover, it
provides a structured way of  decomposing very large problems into smaller sub-problems
that can be solved efficiently.

The origins of  ADMM can be traced back to the alternating direction implicit (ADI)
techniques for solving elliptic and parabolic partial difference equations. In the 70’s, see
[45] and references therein, ADMM was first introduced for solving optimization problems
and enjoyed much attention in the following years. However, the main advantage of
applying ADMM in solving distributed optimization problems remained largely untapped.
Nevertheless, the technique has again raised to prominence in the last few years3 as there
are many applications, e.g., in financial or biological data analysis, that are too large to be
handled by generic optimization solvers.

3A search for “Alternating direction method of  multipliers” as of  January 2015 in google scholar returned
about 3000 hits.
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Despite the superior stability of  the ADMM method, its convergence speed is sensitive to
the choice of  algorithm parameters. In Chapters 5 and 6 we provide better understanding of
the convergence properties of  the ADMM method and develop optimal parameter selection
rules for a number of  problem classes.

1.4 Outline and contributions

This section provides a brief  outline of  the thesis contributions and lists the publications that
the thesis is built upon. A more thorough description and the related work are presented in
each chapter.

1.4.1 Chapter 2

In this chapter, the fundamental definitions and algorithms used in the thesis are presented.
In particular, we discuss basic notions for fixed point iterations, convex optimization, graph
theory, and distributed optimization.

1.4.2 Chapter 3

In this chapter, we present the performance analysis of  accelerated first-order methods.
The acceleration is obtained by adding extra memory taps to the basic gradient iterates
resulting in so called multi-step methods. In particular, we present the global convergence
of  the celebrated Heavy-ball method for two classes of  continuously differentiable convex
cost functions. Two variations of  the Heavy-ball method with constant and time-varying
step-sizes and their convergence rate analysis is presneted in this chapter. As an artifact, we
also discuss the convergence rate of  the Nesterov method with constant step-sizes for the
class of  convex cost functions with Lipschitz continuous gradients. In all of  these scenarios,
we derive sufficient parameters bounds to globally stabilize the corresponding iterates.
Numerical examples illustrate our contributions. The chapter is partially based on the
following publication.

E. Ghadimi, H. R. Feyzmahdavian, and M. Johansson. Global convergence of  the Heavy-
ball method for convex optimization. Mathematical Programming. 2014. Submitted.

A preliminary version of  this work was presented in:

E. Ghadimi, H. R. Feyzmahdavian, M. Johansson. Global convergence of  the heavy-ball
method for convex optimization. To appear in European Control Conference. 2015.

1.4.3 Chapter 4

In this chapter, we devise the Heavy-ball based algorithms for the network optimization
applications. In particular, we consider the class of  twice continuously differentiable strongly
convex cost functions and linear equality constraints. These problems arise in applications
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such as distributed power network state-estimation and distributed averaging. In this class of
problems, a number of  decision-makers collaborate with neighbors in a graph to minimize
a cost function over a combination of  shared variables represented by the linear equality
constraints. Furthermore, the sparsity pattern of  the linear constraints are induced by the
structure of  the underlying graph.

We develop distributed multi-step method applied on the primal and dual of  the original
problem and derive corresponding optimal algorithm parameters. In both cases, we show
that the method has linear convergence rate and present the corresponding convergence
factors.

In the chapter, we also perform a robustness analysis in which the effects of  perturbations
in input parameters is studied on the convergence of  the algorithm. This study is practically
important if  we notice that in many applications, algorithm parameters such as Lipschitz
constants or strong convexity parameters are estimated with some bounds that are not
usually tight. Finally, we apply the developed algorithms to three applications: networked
resource allocation, consensus, and network flow control. In each case, we compare the
performance of  new algorithms to the state-of-the-art methods.The following publications
contributed to this chapter.

E. Ghadimi, I. Shames, M. Johansson. Multi-step gradient methods for networked opti-
mization. IEEE Transactions on Signal Processing. vol.61, no.21, pp.5417-5429, 2013.

E. Ghadimi, M. Johansson, I. Shames. Accelerated gradient methods for networked
optimization. In Proceedings of  American Control Conference (ACC). 2011.

1.4.4 Chapter 5

Chapter 5 presents the convergence properties of  the ADMM method for quadratic prob-
lems. We show that the method converges linearly for two classes of  quadratic optimization
problems: ℓ2-regularized quadratic minimization and quadratic programming with linear
inequality constraints. For each problem classes, we optimize the convergence behavior of
corresponding ADMM algorithm. First, we derive the optimal step-size parameter and the
corresponding factor as explicit expressions. Second, we study over-relaxation technique
and demonstrate how to jointly pick the step-size parameter and the over-relaxation
constant to even-further decrease the convergence factor of  the ADMM method. The final
technique to improve the convergence speed is to precondition the constraint matrices. We
formulate semi-definite programs to achieve such scaling and show its benefits. A model
predictive control application validates our theoretical findings. This chapter is based on
the following publication.

E. Ghadimi, A. Teixeira, I. Shames, M. Johansson. Optimal parameter selection for the
alternating direction method of  multipliers (ADMM): quadratic problems. IEEE Transactions
on Automatic Control. vol.60, no.3, pp.644-658, 2015.
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1.4.5 Chapter 6

The aim of  Chapter 6 is to address the best achievable performance of  the ADMM
method for a class of  distributed quadratic programming problems that appears in network
optimization. The decision makers in these applications have private and share equality
constraints between each other. By analyzing these equality-constrained QP problems, we
are able to characterize the optimal step-size, over-relaxation and constraint precondition-
ing for the associated ADMM iterations.

Specifically, since the ADMM iterations for the problems in this chapter are linear, the
convergence behavior depends on the spectrum of  the transition matrix. We prove that the
convergence of  the ADMM iterates is linear for the problem of  interest. The convergence
factor, however, equals to the largest magnitude of  non-unity eigenvalue of  the transition
matrix. We derive the explicit equations describing the minimal convergence factor and
corresponding optimal step-size and over-relaxation parameters. Moreover, given that the
optimal step-size and relaxation parameter are chosen, we propose methods to further
improve the convergence factor by optimal scaling (preconditioning).

We note that derived performance bounds in this chapter correspond to the exact fixed-
point representation of  the original ADMM iterates and not their worst-case surrogates.
This fact, as opposed to Chapter 5, provides exact performance bounds of  the ADMM
algorithm which has several theoretical merits.

As a case study, we specialize the results of  the chapter for the distributed averaging
problem. Numerical results show that our optimized ADMM based algorithms significantly
outperform several state-of-the-art distributed averaging algorithms. The following publi-
cations contribute to this chapter.

A. Teixeira, E. Ghadimi, I. Shames, H. Sandberg, M. Johansson. Optimal scaling of
the ADMM algorithm for distributed quadratic programming. IEEE Transactions on Signal
Processing. 2014. Submitted.

E. Ghadimi, A. Teixeira, M. Rabbat, and M. Johansson. The ADMM algorithm for
distributed averaging: Convergence rates and optimal parameter selection. In Proceedings
of  the 48th Asilomar Conference on Signals, Systems and Computers. 2014.

1.4.6 Chapter 7

In this chapter, we summarize the thesis by discussing the main results. We further discuss
possible directions to be taken in order to extend the work started with this thesis.

1.4.7 Other publications

The following publications are not explicitly covered in the thesis. However, they certainly
influenced the contents.
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E. Ghadimi, O. Landsiedel, P. Soldati, S. Duquennoy, M. Johansson. Opportunistic routing
in low duty-cycled wireless sensor networks. ACM Transactions on Sensor Networks. vol.10, no.4,
pp.67:1-39, 2014.

A. Teixeira, E. Ghadimi, I. Shames, H. Sandberg, M. Johansson. Optimal scaling of  the
ADMM algorithm for distributed quadratic programming. In Proceeding of  IEEE Conference
on Decision and Control (CDC). 2013.

E. Ghadimi, O. Landsiedel, P. Soldati, M. Johansson. A metric for opportunistic routing in
duty cycled wireless sensor networks. In Proceedings of  the 9th IEEE Conference on Sensor, Mesh
and Ad Hoc Communications and Networks (SECON). 2012.

O. Landsiedel, E. Ghadimi, S. Duquennoy, M. Johansson. Low power, low delay: oppor-
tunistic routing meets duty cycling. In Proceedings of  the 11th ACM/IEEE International Conference
on Information Processing in Sensor Networks (IPSN). 2012.

E. Ghadimi, A. Teixeira, I. Shames, M. Johansson. On the optimal step-size selection for
the alternating direction method of  multipliers. In Proceeding of  IFAC Workshop on Estimation
and Control of  Networked Systems (NECSYS). 2012.

E. Ghadimi, A. Khonsari, A. Diyanat, M. Farmani, N. Yazdani. An analytical model of
delay in multi-hop wireless ad hoc networks. Wireless Networks. vol.17, no.7, pp.1679-1697,
2011.

E. Ghadimi, P. Soldati, F. Österlind, H. Zhang, M. Johansson. Hidden terminal-aware
contention resolution with an optimal distribution. In Proceedings of  the 8th IEEE International
Conference on Mobile Ad-hoc and Sensor Systems (MASS). 2011.





Chapter 2

Preliminaries

IN this chapter, we briefly review the mathematical background of  the thesis.The outline
of  the chapter is as follows. We start with the basic definitions of  fixed-point iterations

in Section 2.1 and then present the type of  convex optimization problems considered in
the thesis in Section 2.2. Section 2.3 presents the graph theoretic concepts used throughout
the thesis. Section 2.4 introduces the notion of  network optimization and provides several
related applications to be discussed in the thesis. In Section 2.5 we discuss different
decomposition techniques that are used to solve network optimization problems in the
thesis. Finally, Section 2.6 summarizes the concepts presented in this chapter.

2.1 Fixed-point iterations

Consider a sequence {x(k)} converging to a fixed-point x⋆ ∈ Rn. The convergence factor
of {x(k)} is defined as

ζ ≜ lim sup
k→∞

∥x(k+1) − x⋆∥
∥x(k) − x⋆∥

. (2.1)

The sequence {x(k)} is said to converge at Q-sublinear rate if ζ = 1, at Q-linear rate if ζ ∈
(0, 1), and at Q-superlinear rate if ζ = 0. Moreover, we say that convergence rate is R-linear
if  there is a nonnegative scalar sequence {ν(k)} such that for all k ≥ 1, ∥x(k) − x⋆∥ ≤ ν(k)

and {ν(k)} converges Q-linearly to 0 [46] 1. In this thesis, we often omit the letters Q and
R while referring to the convergence rate.

To clarify the distinctions between the linear and sublinear convergence rates, note that
a linear rate is usually given in terms of  an exponential function of  the iteration count,
i.e., ∥x(k) − x⋆∥ ≤ σζk with ζ ∈ (0, 1) and σ ∈ R+ such that ∥x(0) − x⋆∥ ≤ σ. A
sublinear rate, on the other hand, is described in terms of  a power function of  the iteration
count. For example, we may have ∥x(k) − x⋆∥ ≤ σ/k ≜ O(1/k). This rate is much slower
than the linear rate. For instance, in order to reach to ε-vicinity of  the optimal solution,
i.e., to find i ≥ 1 such that ∥x(i) − x⋆∥ ≤ ε, one has to perform roughly i ≃ ln(1/ε) and
i ≃ 1/ε number of  iterations under linear and sublinear rate O(1/k), respectively.

1The letters Q and R stand for quotient and root, respectively.

13
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We define the ε-solution timeπε as the smallest iteration count to ensure that ∥x(k) − x⋆∥ ≤ ε
holds for all k ≥ πε, in the worst case of  all initial points x(0) for which ∥x(0) − x⋆∥ ≤ σ.
For linearly converging sequences with ζ ∈ (0, 1) the ε-solution time is given by

πε ≜
⌈
log(σ)− log(ε)

− log(ζ)

⌉
.

If  the 0-solution time is finite for all x(0), we say that the sequence converges in finite time. As
for linearly converging sequences ζ < 1, the ε-solution time πε is improved by decreasing ζ.

Consider the following linear iterative process

x(k+1) = Tx(k), (2.2)

where x(k) ∈ Rn and T ∈ Sn. Assume T has m < n eigenvalues at 1 and let V ∈ Rn×m

be a matrix whose columns span the 1-eigenspace of T so that TV = V 2.
Next we determine the properties of T such that, for any given starting point x(0), the

iteration in (2.2) converges to a fixed-point that is the projection of  the x(0) into the 1-
eigenspace of T , i.e.

x⋆ ≜ lim
k→∞

x(k) = lim
k→∞

T kx(0) = ΠIm(V )x
(0). (2.3)

Proposition 2.1
The iterations (2.2) converge to a fixed-point in Im(V ) if  and only if

V ⊤T = V ⊤, TV = V, r
(
T −ΠIm(V )

)
< 1, (2.4)

where r(·) denotes the spectral radius of  a matrix.

Proof. The result is an extension of [47, Theorem 1] for the case of 1-eigenspace of T with
dimension m > 1. First, we consider the sufficiency. Since TV = V we have

T k − V (V ⊤V )−1V ⊤ = T k(I − V (V ⊤V )−1V ⊤)

(a)
= T k(I − V (V ⊤V )−1V ⊤)k

=
(
T
(
I − V (V ⊤V )−1V ⊤) )k

= (T − V (V ⊤V )−1V ⊤)k,

where (a) uses the fact that I − V (V ⊤V )−1V ⊤ is a projection matrix. Now applying the
condition r(T − V (V ⊤V )−1V ⊤) < 1 leads to the convergence result.

For the necessary part, note that limk→∞ T k exists if  and only if  there exist a nonsingular
matrix S such that

T = S

[
Iη 0
0 ∆

]
S−1,

2Since T ∈ Sn we also have V ⊤T = V ⊤T⊤ = (TV )⊤ = V ⊤.
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where Iη is η-dimensional identity matrix (0 ≤ η ≤ n) and ∆ ∈ Rn−η×n−η is a convergent
matrix; i.e., r(∆) < 1. The former equality can be achieved via Jordan canonical forms
(see [48]). Let u1, u2, . . . , un be columns of S and v⊤1 , v⊤2 , . . . , v⊤n be rows of S−1. Then
we have

lim
k→∞

T k = lim
k→∞

(
S

[
Im 0
0 ∆

]
S−1

)k

= lim
k→∞

S

[
Im 0
0 ∆k

]
S−1 = S

[
Im 0
0 0

]
S−1

=
m∑
i=1

uiv
⊤
i .

(2.5)
Since uiv⊤i is a rank one matrix and the summation

∑n
i=1 uiv

⊤
i = SS−1 = I is of  rank n,

the matrix
∑η

i=1 uiv
⊤
i must have rank η. Comparing (2.3) and (2.5) reveals that η = m and∑m

i=1 uiv
⊤
i = V (V ⊤V )−1V ⊤. Equivalently, it indicates that ui and v⊤i for i = 1, . . .m

are pairs of  right and left eigenvectors of T corresponding to 1-eigenvalue. Moreover, it
follows that

r
(
T − V (V ⊤V )−1V ⊤) = r

(
S

[
0 0
0 ∆

]
S−1

)
= r(∆) < 1.

which is precisely (2.4). The proof  is complete.

Proposition 2.1 shows that when T ∈ Sn, the fixed-point iteration (2.2) is guaranteed
to converge to a point given by (2.3) if  all the non-unitary eigenvalues of T have magnitudes
strictly smaller than 1. From (2.2) one sees that

x(k+1) − x⋆ = Tx(k) −ΠIm(V )x
(0) (a)

=
(
T −ΠIm(V )

)
x(k)

=
(
T −ΠIm(V )

)
(x(k) − x⋆),

where (a) holds due to V ⊤T = V ⊤. Hence, the convergence factor of (2.2) is the modulus
of  the largest non-unit eigenvalue of  the symmetric matrix T .

One approach for improving the convergence properties of (2.2) is to also account for
past iterates when computing the next ones. The approach is called relaxation and performs
the following iterations

x(k+1) = αTx(k) + (1 − α)x(k),

where α ∈ (0, 1] is called the relaxation parameter. Note that setting α = 1 yields the
original linear iterates (2.2). In Chapters 4, 5 and 6, we will present different techniques
to minimize the quantity of  convergence factor with respect to some design parameters
including the relaxation parameter.

2.2 Convex optimization

This section explains basic definitions of  convex optimization and related algorithms. The
complete road map of  these topics can be found in [4, 49].
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2.2.1 Basic definitions

We start with defining the convex sets and convex functions.

Definition 2.1 A set X ⊆ Rn is convex if  for all x, y ∈ X ,

θx+ (1 − θ)y ∈ X ,

for any scalar θ ∈ [0, 1].

Definition 2.2 A function f(x) : Rn → R defined on the convex domain X ⊆ Rn is
convex if  for all x, y ∈ X ,

f(θx+ (1 − θ)y) ≤ θf(x) + (1 − θ)f(y),

for any scalar θ ∈ [0, 1].

Note that if  the preceding inequality holds with strict inequality then we say f is strictly
convex. Also if −f is convex, then we say f is concave.

A generic optimization problem is usually formulated as

minimize
x∈X

f(x). (2.6)

If  the feasible set X is convex and f is a convex (concave) objective function then the
minimization (maximization) problem in hand is called the convex optimization problem.
One nice property of  convex problems is that any local minimum point of  a convex
optimization problem is also a global minimum point, i.e., a solution point of  the problem
(see e.g., [5, Proposition 2.1.2]).

In this thesis, besides the convexity assumption of  the optimization problem, we require
that the objective f is a continuously differentiable convex function. Moreover, the objective
function f may fulfill extra smoothness properties defined as the following.

Definition 2.3 We say that f : Rn → R belongs to the class F1,1
L , if  it is convex,

continuously differentiable, and its gradient is Lipschitz continuous with constant L, i.e.,

0 ≤ f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ L

2
∥x− y∥2, ∀x, y ∈ Rn.

In addition, if f is also strongly convex with modulus µ > 0, i.e.,

f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥x− y∥2 ≤ f(y), ∀x, y ∈ Rn,

then, we say that f belongs to S1,1
µ,L

3.

3The symbols F1,1
L and S1,1

µ,Lare adopted from [50]. Essentially, having a convex function f ∈ Fk,p
L means

that f is k times continuously differentiable and that its p-th derivative is Lipschitz continuous with the constant
L. A similar description holds for f ∈ Sk,p

µ,L by additionally noting that f is also strongly convex with constant µ.
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Aforementioned conditions for an optimization problem might appear restrictive. But
surprisingly many real-world engineering problems fulfill these functional properties [4]
and there exists many powerful and efficient schemes to solve these problems. The next
sections review two important classes of  optimization methods suitable for solving large-
scale and distributed optimization problems. We refer the interested readers to [4, 50, 45]
for a complete description of  different solution methods to convex optimization problems.

2.2.2 First-order methods

In this thesis we consider convex optimization algorithms that only utilize first-order
information i.e., the gradient (sub-gradient) of  the objective functions. The first-order
methods are among the earliest algorithms developed to solve optimization problems. Their
simplicity and efficiency makes them attractive to various engineering communities.

Our baseline first-order method, in the thesis, is the gradient descent:

x(k+1) = x(k) − α∇f(x(k)), (2.7)

where α is a positive step-size parameter. Let x⋆ be an optimal point of  an unconstrained
convex optimization problem and f⋆ = f(x⋆). If f ∈ F1,1

L , then f(x(k)) − f⋆ associated
with the sequence {x(k)} in (2.7) converges at rate O(1/k) where k is the number of
performed iterates (a similar result for constrained convex optimization problems with f ∈
F1,1

L was shown in [51]).
On the other hand, if f ∈ S1,1

µ,L, then the sequence {x(k)} generated by the gradient
descent method converges linearly, i.e., there exists q ∈ [0, 1) such that

∥x(k) − x⋆∥ ≤ qk∥x(0) − x⋆∥, k ∈ N0.

Recall from Section 2.1 that the scalar q is called the convergence factor. The optimal
gradient step-size parameter and the associated convergence factor for f ∈ S1,1

µ,Lis reported
as (see [52])

α =
2

L+ µ
, q =

L− µ

L+ µ
. (2.8)

The convergence of  the gradient iterates can be accelerated by accounting for the history
of  iterates when computing the ones to come. Methods in which the next iterate depends
not only on the current iterate but also on the preceding ones are called multi-step methods.
The simplest multi-step extension of  gradient descent is Polyak’s Heavy-ball method [52]:

x(k+1) = x(k) − α∇f(x(k)) + β
(
x(k) − x(k−1)

)
, (2.9)

for constant parameters α, β ∈ R++. For the class of  twice continuously differentiable
strongly convex functions with Lipschitz continuous gradient, Polyak used a local analysis
based on bounds on the norm of  the Hessian of  the objective function to derive optimal step-
size parameters. He showed that the optimal convergence factor of  the Heavy-ball iterates
and the associated step-size parameters are

α =

(
2√

L+
√
µ

)2

, β =

(√
L−√

µ
√
L+

√
µ

)2

, q =

√
L−√

µ
√
L+

√
µ
, (2.10)
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whereµ andL are the lower and the upper bounds on the Hessian of  the objective function4.
This convergence factor is always smaller than the one associated with the gradient iterates.
Note that this convergence analysis holds globally if  the Hessians are constant, i.e., QPs with
positive definite Hessians. For general cases of f ∈ F1,1

L and f ∈ S1,1
µ,L, however, Polyak’s

analysis only holds locally.
In contrast, Nesterov’s fast gradient method [50] is a first-order method with better

global convergence guarantees than the basic gradient method for objectives in F1,1
L and

S1,1
µ,Lclasses. In its simplest form, Nesterov’s algorithm with constant step-sizes takes the

form
y(k+1) = x(k) − α∇f(x(k)),
x(k+1) = y(k+1) + β(y(k+1) − y(k)),

(2.11)

with α > 0 and β > 0. When f ∈ S1,1
µ,L, Nesterov [50] proved a global linear convergence

rate towards the optimal point for the iterates produced by (2.11) with the following step-
sizes and convergence factor

α =
1
L
, β =

√
L−√

µ
√
L+

√
µ
, q = 1 −

√
µ

L
. (2.12)

This factor is smaller than that of  the gradient, but larger than that of  the Heavy-ball
method. A better local convergence factor of  Nesterov’s method for twice continuously
differentiable strongly convex functions with Lipschitz continuous gradient is achievable
with (see e.g., [53])

α⋆ =
4

3L+ µ
, β⋆ =

1 −
√
µα⋆

1 +
√
µα⋆

, q = 1 − 2
√

µ

3L+ µ
. (2.13)

This convergence factor is better than the one of  gradient method but still worse than the
one of  the Heavy-ball method.

2.2.3 Alternating Direction Method of Multipliers

This section presents the background to the celebrated ADMM method for solving
structured and large-scale problems. These concepts will be used later in Chapters 5 and 6
to optimize the performance of  the ADMM algorithm (See [45] for a detailed review of  the
technique). The ADMM algorithm solves problems of  the form

minimize
x,z

f(x) + g(z)

subject to Ax+Bz = c,
(2.14)

where f and g are convex functions, x ∈ Rn, z ∈ Rm,A ∈ Rp×n,B ∈ Rp×m and c ∈ Rp.

4Here f is assumed to belong to the class S2,1
µ,L which is a stronger assumption than f ∈S1,1

µ,L.
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Relevant examples that appear in this form are, e.g., regularized estimation, where f
is the estimator loss and g is the regularization term, and various network optimization
problems, e.g., [54, 45]. The method is based on the augmented Lagrangian

Lρ(x, z, y) = f(x) + g(z) +
ρ

2
∥Ax+Bz − c∥2 + y⊤(Ax+Bz − c),

with the penalty parameter ρ ∈ R+ and Lagrange multipliers y ∈ Rp, and performs
sequential minimization of  the x and z variables followed by a dual variable update:

x(k+1) = argmin
x

Lρ(x, z
(k), y(k)),

z(k+1) = argmin
z

Lρ(x
(k+1), z, y(k)), (2.15)

y(k+1) = y(k) + ρ(Ax(k+1) +Bz(k+1) − c),

for some arbitrary x(0) ∈ Rn, z(0) ∈ Rm, and y(0) ∈ Rp. It is often convenient to express
the iterations in terms of  the scaled dual variable u = y/ρ:

x(k+1) = argmin
x

{
f(x) +

ρ

2
∥Ax+Bz(k) − c+ u(k)∥2

}
,

z(k+1) = argmin
z

{
g(z) +

ρ

2
∥Ax(k+1) +Bz − c+ u(k)∥2

}
,

u(k+1) = u(k) +Ax(k+1) +Bz(k+1) − c.

(2.16)

ADMM is particularly useful when the x- and z-minimizations can be carried out efficiently,
for example when they admit closed-form expressions. Examples of  such problems include
linear and quadratic programming, basis pursuit, ℓ1-regularized minimization, and model
fitting problems to name a few.

One advantage of  the ADMM method is that there is only a single algorithm parameter,
ρ, and under rather mild conditions, the method can be shown to converge for all values
of  the parameter; see [45, 55] and references therein. This contrasts the gradient method
whose iterates diverge if  the step-size parameter is chosen too large. However, ρ has a direct
impact on the convergence factor of  the algorithm, and inadequate tuning of  this parameter
can render the method slow. The convergence of  ADMM is often characterized in terms of
the residuals

r(k+1) = Ax(k+1) +Bz(k+1) − c, (2.17)

s(k+1) = ρA⊤B(z(k+1) − z(k)), (2.18)

termed the primal and dual residuals, respectively [45]. One approach for improving the
convergence properties of  the algorithm is to use the relaxation technique introduced earlier
in this chapter. In particular, the relaxation technique in the ADMM context works by
replacing Ax(k+1) with h(k+1) = α(k)Ax(k+1) − (1 − α(k))(Bz(k) − c) in the z- and u-
updates [45], yielding

z(k+1) = argmin
z

{
g(z) +

ρ

2

∥∥∥h(k+1) +Bz − c+ u(k)
∥∥∥2
}
,

u(k+1) = u(k) + h(k+1) +Bz(k+1) − c.

(2.19)
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The parameter α(k) ∈ (0, 2) is called the relaxation parameter. Note that letting α(k) = 1
for all k recovers the original ADMM iterations (2.16).

Empirical studies show that over-relaxation, i.e., letting α(k) > 1, is often advantageous
and the guideline α(k) ∈ [1.5, 1.8] has been proposed [56]. An alternative way of  accel-
erating the ADMM iterates is to assign different quantities to the penalty parameter and
the dual step-size parameter. While certain accelerations in the algorithm are reported in
the literature the stability of  the algorithm is also restricted by this design choice [57]. In
Chapters 5 and 6 we present different techniques to tune the ADMM algorithm parameters
for two classes of  quadratic programing.

2.3 Graphs

In the thesis, we often deal with optimization problems to be solved in networked systems.
Graph theory provides a powerful framework to model connected peers in the network and
the physical correlations among them. In this section, we briefly introduce graph theoretical
concepts and refer the interested reader to [58, 59] for thorough discussions on this topic.

An undirected graphG(V, E) consists of  a vertex (node) setV and an edge set E ⊆ V×V .
The pair {i, j} ∈ E represents an edge between vertices i, j ∈ V . Sometimes it is convenient
to consider a given ordering of  the edges of G, in which case the k-th edge is denoted by
ek ∈ E . We consider graphs with only finitely many vertices. A path in G from i ∈ V to
j ∈ V is a sequence i, . . . , j of  distinct vertices such that there exists an edge between each
successive two vertices k, l in the sequence; i.e., {k, l} ∈ E . A graph is called connected if
there exists a path between each pair of  the nodes in the graph. LetNi ≜ {j ̸= i|{i, j} ∈ E}
be the neighbor set of  node i ∈ V . The sparsity pattern induced by G is defined as

A ≜ {S ∈ S |V||Sij = 0 if i ̸= j and {i, j} ̸∈ E}.

The adjacency matrix A ∈ A of  a graph G is a binary matrix (with 0 and 1 entries)
given by

Aij =

{
1 if i ̸= j and {i, j} ∈ E
0 otherwise.

The corresponding diagonal degree matrix D is given by Dii =
∑

j∈Ni
Aij .

Another useful matrix in the context of  graph theory is the incidence matrix. Assign
arbitrary orientations to the edges {i, j} ∈ E then the oriented incidence matrix and the
(unsigned) incidence matrix are defined as B̄ ∈ R|E|×|V| ≜ B̂ − B̊ and B ∈ R|E|×|V| ≜
B̂ + B̊, respectively. Moreover, B̊kj = 1 if j is the head of ek ∈ E and B̊kj = 0 otherwise.
Similarly, B̂ ∈ R|E|×|V| is defined such that B̂kj = 1 if j is the tail of ek ∈ E and B̂kj = 0
otherwise. Note that with this definition, B̄ is not unique with respect to G. All oriented
incidence matrices of G differ only by negating some set of  columns. According to their
construction, the following relations between adjacency matrix A ∈ A, degree matrix D
and incidence matrix B holds

B̊
⊤
B̂ + B̂

⊤
B̊ = A, B̊

⊤
B̊ + B̂

⊤
B̂ = D.
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Figure 2.1: An example graph G with |V| = 4 and |E| = 4.

The Laplacian matrix L of  a graph G is another important matrix which is defined as
L ≜ D − A = B̄⊤B̄. Aforementioned matrices have several interesting properties from
which one can say a great deal about the graph in hand [60, 59]. This is, however, out of
the scope of  the current thesis.

Example 2.1 An example graph G is shown in Figure.2.1. The associated adjacency,
incidence, and Laplacian matrices are

A =


0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

 , B =


1 1 0 0
0 1 1 0
0 1 0 1
0 0 1 1

 , L =


1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2

 .
In Chapters 4 and 6, we use asymmetric weights on the links in order to accelerate the

convergence rate of  certain fixed-point iterates. Therefore, along with the undirected graph
G(V, E), we introduce an associated weighted directed graph Ḡ(V, Ē ,W). The edge set Ē of
Ḡ contains two directed edges (i, j) and (j, i) for each undirected edge {i, j} ∈ E , such that
for each ek = {i, j} with 1 ≤ k ≤ |E|, we have ēk = (i, j) and ēk+|E| = (j, i). The edge
weights W = {W(i,j)}(i,j)∈Ē comprise matrix-valued weights W(i,j) ∈ Snw

+ with some
appropriate dimension nw for each directed edge (i, j) ∈ Ē . Moreover, the edge-weight
matrix is defined as W ≜ diag

(
{Wēk}

|Ē|
k=1

)
.

For nw = 1 and symmetric weights W{i,j} = W(i,j) = W(j,i) ∈ R+, Ḡ is equivalent
to a weighted undirected graph whose adjacency matrix A ∈ A is defined as Aij =W{i,j}
for {i, j} ∈ E and Aii = 0. The diagonal degree matrix D is defined as before Dii =∑

j∈Ni
W{i,j}.

2.4 Network optimization

Network optimization refers to collaborative optimization by a network of  decision-makers.
Each decision-maker i is endowed with a loss function fi, has control of  one decision-
variable xi, and collaborates with the others to solve

minimize
x

∑
i∈V fi(xi)

subject to Ax = b,
(2.20)
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for given matrices A and b with appropriate sizes. We will assume that b lies in the range
space of A, i.e., that there exists at least one decision vector x that satisfies the constraints.
The physical information exchange between decision-makers is represented by the graph
G = (V, E). Specifically, we will assume that decision-maker i only communicate with
neighboring nodes, and that the edges can be interpreted as bidirectional communication
links. That is if {i, j} ∈ E then both decision makers i and j can communicate with one
another. Since we are interested in finding a global optimal solution to (2.20), each decision
maker should be able to coordinate with other ones. Therefore, we make the following
assumption [61].

Assumption 2.1 The graph G(V, E) is connected.

In what follows, we introduce several network optimization problems that are considered
later in the thesis.

2.4.1 Collaborative minimization over a global shared variable

Consider a network of  agents, each endowed with a local convex loss function fi(x), that
collaborate to find the decision vector x that results in the minimal total loss, i.e.,

minimize
x∈Rnx

∑
i∈V fi(x). (2.21)

The interactions among agents are described by an undirected graph G(V, E).
One natural way of  distributing the computation of (2.21) among the agents is by

introducing local copies xi ∈ Rnx of  the global decision vector at each node i ∈ V .
Then, the original problem (2.21) can be re-written as an equality constrained optimization
problem with decision variables {xi}i∈V and separable objective:

minimize
{xi}

∑
i∈V fi(xi)

subject to xi = xj , ∀ i, j ∈ V.
(2.22)

The equality constraints ensure that the local decision vectors xi of  all agents agree at
optimum. Note that when the communication graph is connected (Assumption 2.1) all
equality constraints in (2.22) that do not correspond to neighboring nodes in G can be
removed without altering the optimal solution. The remaining inequality constraints can
be accounted for in different ways that will be discussed in details in chapters 4 and 6.
Moreover, we devise different distributed optimization algorithms that accelerate solving
the network-wide agreement problem (2.21).

2.4.2 Optimal resource allocation

When the decision-makers are only constrained by a global resource budget, (2.20) reduces
to

minimize
∑

i∈V fi(xi)
subject to

∑
i∈V xi = xtot.

(2.23)
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When the functions fi : R → R are strictly convex and twice differentiable with bounded
second derivatives then the problem has a unique optimal solution that can be find in an
efficient distributed manner.

A distributed algorithm for this problem was developed in [62] and interpreted as a
weighted gradient method in [63]. Later, in Chapter 4 we design a distributed algorithm
that solves (2.23) in a faster way.

2.4.3 Internet congestion control

Our final network optimization application is devoted to the area of  Internet congestion
control, where Network Utility Maximization (NUM) has emerged as a powerful framework
for studying various important resource allocation problems, see, e.g., [64, 15, 13, 14].
The vast majority of  the work in this area is based on the distributed approach introduced
in [15]. Here, the optimal bandwidth sharing among S flows in a data network is posed as
the optimal solution to the convex optimization problem

maximize
x

∑
s us(xs)

subject to xs ∈ [ms,Ms]
Rx ≤ c.

(2.24)

Here, xs is the communication rate of  flow s, and us(xs) is a strictly concave and
increasing function that describes the utility that source s has if  communicate at rate xs.
The communication rate is subject to upper and lower bounds. Finally, R ∈ {0, 1}L×S is
a routing matrix whose entries Rℓs are 1 if  flow s traverses link ℓ and are 0 otherwise. In
this way, Rx is the total traffic on links, which cannot exceed the link capacities c ∈ Rn.

In this thesis, we consider the cases where the utility functions are twice continuously
differentiable, the routing matrix has full row-rank and all the link constraints hold
with equality at optimum. Hence, we can replace Rx ≤ c in (2.24) with Rx = c
and, consequently, this problem falls under the umbrella of  the network optimization
problem (2.20). In Chapter 4 we develop techniques that lead into fast distributed algorithms
to solve (2.24).

2.5 Decomposition techniques

Decomposition techniques refer to methods by which a central optimization problem is split
into several subproblems that are solved by separate processors or agents. Even though the
subproblems can be solved independently they usually need to coordinate in order to reach
to a global optimal solution.

During past years, fueled by extraordinary advances in the fields of  telecommunication
and wireless networking, several decomposition techniques such as primal, dual, primal-
dual decomposition have been developed that efficiently solve many engineering problems.
See [65, 66] and [67, Chapter 6] for a survey on decomposition methods and related
engineering problems. In this section, we briefly introduce primal and dual decomposition
methods for a class of  problems that will be discussed later in this thesis.
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In particular, consider the following constrained convex optimization problem

minimize
x

f(x) =
∑N

i=1 fi(x(i))

subject to Ax = b,
(2.25)

with variable x ∈ Rn, where A ∈ Rm×n, b ∈ Rm and f : Rn → R is convex. Let
us assume that x is separable into N sub-vectors x = (x(1), . . . , x(N)) with dimensions
x(i) ∈ Rni . Moreover, let Ii denote the set of  indices of x belonging to the sub-vector i.

Partitioning A, accordingly, into N blocks A = (A(1), . . . , A(N)), the identity
Ax =

∑N
i=1 A(i)x(i) holds for the linear equality constraint in the original optimization

problem (2.25). We will use this setting to explain the decomposition methods for solving
the convex problem (2.25).

2.5.1 Dual decomposition

In dual decomposition, the original problem is solved by subproblems using Lagrangian
relaxation. The Lagrangian of  our optimization problem (2.25) can be written as

L(x, y) =

( N∑
i=1

fi(x(i)) + y⊤
(
A(i)x(i)− 1

N
b
))

=
N∑
i=1

Li(x(i), y),

where y is called the Lagrange multiplier (see [4] for the background). Clearly, the
Lagrangian is separable in x. This indicates that the problem can be solved separately inN
parallel sub-problems. To solve the problem, one forms the dual function and dual problem
pair

d(y) = inf
x
L(x, y), maximize d(y)

y∈Rm

.

Assuming that strong duality holds, the optimal values of  the primal and dual problems
coincide. One then can recover a primal optimal variable x⋆ from the optimal dual solution
y⋆ as

x⋆ = argmin
x

L(x, y⋆).

In the dual decomposition method, the dual problem is solved by employing gradient
ascent algorithm ( see e.g., [4]). Assuming that f is differentiable then d is differentiable and
the gradient ∇d(y) can be evaluated for each value of x. The dual ascent method then
reads

x(i)
(k+1)

= argmin
x(i)

Li(x(i), y
(k))

y(k+1) = y(k) + α(k)

( N∑
i=1

A(i)x(i)
(k) − 1

N
b

)
,

(2.26)

where α(k) ∈ R+ is a step-size. Provided that α(k) is picked appropriately, (x(k), y(k))
converges to an optimal primal-dual pair.
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The first step (2.26) is an x-minimization step, which is carried out in parallel for each
i = 1, ..., N . The second step is the dual variable update. The method is called dual
decomposition because it mixes parallel decomposed steps with a dual variable update step.

Note that in the dual update step (2.26), the equality constraint contributionsA(i)x(i)(k)

are collected by a master node in order to carry out the summation term in the dual update.
Once the dual update y(k+1) took place, it must be disseminated to the local processors
1, . . . , N to compute local x(i)-minimization steps.

Another main point that has to be considered while using dual decomposition is that
even though the final primal-dual optimality is guaranteed (if  several aforementioned
assumptions hold) the intermediate x-updates may not be even feasible. This is not a
problem in the primal decomposition method that is discussed next.

2.5.2 Primal decomposition

In primal decomposition, the subproblems are formulated using the original (primal)
variables. The main advantage of  primal decomposition compared to dual decomposition is
that at each intermediate updates of  resulting algorithms the primal feasibility is maintained.
There are various interpretations and solution methods associated with primal decomposi-
tion in the literature [8, 66]. Here we present a version of  scaled gradient method applicable
to our network optimization problem (2.25).

One natural way of  maintaining the primal feasibility in the literature is to employ
gradient-descent updates accompanied by Euclidean projection onto the constraint set.
Computing the Euclidean projection onto the constraint of (2.25) typically requires the
full decision vector x, which is not available to the decision-makers in our problem setting.

A primal decomposition technique, explored e.g., in [63, 68], is to consider weighted
gradient methods which use a linear combination of  the information available to nodes to
ensure that iterates remain feasible.

In general, the weighted gradient method takes the form

x(k+1) = x(k) − αW∇f(x(k)), (2.27)

where W ∈ Sn is a scaling matrix. For our problem (2.25), to be able to use this technique,
W should satisfy the following conditions:

1. the locality of  information exchange between the decision makers should be pre-
served. Assuming that graphG(V, E) represents the physical communication between
the decision makers 1, . . . , N in (2.25) then if i ̸= j and {i, j} /∈ E then for all k ∈ Ii
and l ∈ Ij we should have Wk,l = 0.

2. provided that the initial point x(0) is feasible, the iterates generated by the weighted
gradient should remain feasible. It is easily verifiable that ifAW = 0 then the identity
Ax(k+1) = Ax(k) is guaranteed which results in the primal feasibility of  each iterate
in (2.27).
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3. the fixed-points of (2.27) should satisfy the optimality conditions of  the original
problem (2.25). From the optimality conditions of  the Lagrangian of (2.25) we have
that pair (x⋆, y⋆) are optimal primal-dual variables if

Ax⋆ = b, ∇f(x⋆) = −A⊤y⋆.

The first condition always holds by the per-iterate feasibility of  the weighted gradient
method. Replacing the second condition in (2.27) with x(k) = x⋆ yields

x(k+1) = x⋆ + αWA⊤y⋆,

indicating that if WA⊤ = 0 then the fixed-point identity holds.

To sum up, if W has the same sparsity pattern as the information graph G, and

AW = 0, WA⊤ = 0, (2.28)

then one can derive the following distributed weighted gradient method that solves (2.25):

x(i)
(k+1)

= x(i)
(k) − α

∑
j∈{i∪Ni}

W(i,j)∇fj(x(j)
(k)

),

where W(i,j) ∈ Rni×nj and ∇fi ∈ Rni are the block weight and gradient matrices
storing corresponding sub-vector elements.

As the reader may recognize although primal decomposition method enjoys the feasible
x-updates, its applicability is subject to the restrictive assumptions (2.28). In Chapter 4, we
study examples where such a technique is applicable.

2.6 Summary

In this chapter we reviewed essential definitions and concepts related to the thesis. We
walked through the fixed-point iterations and defined the performance metrics such as
convergence rate and factors. We then introduced basic results in convex optimization and
reviewed first-order methods as well as the ADMM method to solve large-scale convex
optimization problems. We also presented required backgrounds to graph theory and
termed the network optimization problems. Finally, the decomposition techniques to solve
network optimization problems were discussed.



Chapter 3

First-order methods:
convergence bounds

and accelerations

THE aim of  this chapter is to study some open problems in global convergence of  first-
order methods. In particular, We provide a global convergence analysis for the Heavy-

ball method on convex optimization problems with Lipschitz-continuous gradient, with and
without the additional assumption of  strong convexity. We show that if  the parameters of
the Heavy-ball method are chosen within certain ranges, the running average of  the iterates
converge to the optimal point at the rate O(1/k) when the objective function has Lipschitz
continuous gradient. A similar result is shown for the Nesterov’s method with constant step-
sizes. Moreover, for the same class of  problems, we are able to show that the individual
iterates themselves converge at rate O(1/k) if  the Heavy-ball method uses (appropriately
chosen) time-varying step-sizes. Finally, if  the cost function is also strongly convex, we show
that the Heavy-ball iterates converge globally at a linear rate.

The rest of  the chapter is organized as follows. Section 3.1 reviews the related work
in first-order convex optimization algorithms. When the objective functions have Lips-
chitz continuous gradients, global convergence proofs for the Heavy-ball algorithm and
Nesterov’s method with constant step-sizes are presented in Section 3.2 and Section 3.3,
respectively. For objective functions that are also strongly convex, we provide global
convergence proofs for the Heavy-ball iterates in Section 3.4. Section 3.5 concludes the
chapter with a brief  statement of  the results.

3.1 Related work

First-order convex optimization methods have a rich history dating back to 1950’s [69,
70, 71]. Recently, these methods have attracted significant interest, both in terms of
new theory [72, 73, 74] and in terms of  applications in numerous areas such as signal
processing [51], machine learning [75] and control [76]. One reason for this renewed
interest is that first-order methods have a small per-iteration cost and are attractive in large-
scale and distributed settings. But the development has also been fueled by the advance of

27
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accelerated methods with optimal convergence rates [77] and re-discovery of  methods that
are not only order-optimal, but also have optimal convergence times for smooth convex
problems [78]. In spite of  all this progress, some very basic questions about the achievable
convergence speed of  first-order convex optimization methods are still open [74].

The basic first-order method is the gradient descent algorithm. For unconstrained
convex optimization problems with objective functions that have Lipschitz-continuous
gradient, the method produces iterates that are guaranteed to converge to the optimum
at the rate O(1/k), where k is the number of  iterations. When the objective function is also
strongly convex, the iterates are guaranteed to converge at a linear rate [52].

In the early 1980’s, Nemirovski and Yudin [79] proved that no first-order method can
converge at a rate faster than O(1/k2) on convex optimization problems with Lipschitz-
continuous gradient. This created a gap between the guaranteed convergence rate of  the
gradient method and what could potentially be achieved. This gap was closed by Nesterov,
who presented an accelerated first-order method that converges as O(1/k2) [77]. Later,
the method was generalized to also attain linear convergence rate for strongly convex
objective functions, resulting in the first truly order-optimal first-order method for convex
optimization [50]. The accelerated first-order methods combine gradient information at
the current and the past iterate, as well as the iterates themselves [50]. For strongly convex
problems, Nesterov’s method can be tuned to yield a better convergence factor than the
gradient iteration, but it is not known how small the convergence factor can be made.

When the objective function is twice differentiable, strongly convex, and has Lip-
schitz continuous gradient, Polyak [78] showed that the Heavy-ball iterates converge
locally at linear rate and have better convergence factor than both the gradient and
Nesterov’s accelerated gradient method1. The Heavy-ball method uses previous iterates
when computing the next, but in contrast to Nesterov’s method it only uses the gradient
at the current iterate. Extensions of  the Heavy-ball method to constrained and distributed
optimization problems have confirmed its performance benefits over the standard gradient-
based methods [44, 80, 81].

On the other hand, when the objective function is not necessary convex but has Lipschitz
continuous gradient Zavriev et al. [82] provided sufficient conditions for the Heavy-ball
trajectories to converge to a stationary point. However, there are virtually no results on
the global rate of  convergence of  the Heavy-ball method for convex problems. Recently,
Lessard et al [83] showed by an example that starting far enough from the stationary point,
the Heavy-ball method does not necessarily converge on strongly convex objective functions
even if  one chooses step-size parameters according to Polyak’s original stability criterion. In
general, when the objective is not quadratic, it is not clear whether the Heavy-ball method
performs better than Nesterov’s method, or even than the basic gradient descent.

1Polyak’s convergence analysis for the Heavy-ball iterates holds globally when the objective function is of
quadratic form with positive definite Hessian.
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3.2 Global analysis of Heavy-ball algorithm for the class F1,1
L

In this section, we consider the Heavy-ball iterates (2.9) for the objective functions f ∈
F1,1

L . Our first result shows that the method is indeed guaranteed to converge globally and
estimates the convergence rate of  the Cesáro averages of  the iterates.

Theorem 3.1
Assume that f ∈F1,1

L and that

β ∈ [0, 1), α ∈
(

0,
2(1 − β)

L

)
. (3.1)

Then, the sequence {x(k)} generated by Heavy-ball iteration (2.9) satisfies

f(x(T ))− f⋆ ≤


∥x(0)−x⋆∥2

2(T+1)

(
Lβ

1−β + 1−β
α

)
, if α ∈

(
0,

1 − β

L

]
,

∥x(0)−x⋆∥2

2(T+1)(2(1−β)−αL)

(
Lβ + (1−β)2

α

)
, if α ∈

[1 − β

L
,

2(1 − β)

L

)
,

(3.2)

where x(T ) is the Cesáro average of  the iterates

x(T ) ≜ 1
T + 1

T∑
k=0

x(k).

Proof. Assume that β ∈ [0, 1), and let

p(k) =
β

1 − β
(x(k) − x(k−1)), k ∈ N0. (3.3)

Then

x(k+1) + p(k+1) =
1

1 − β
x(k+1) − β

1 − β
x(k)

(2.9)
= x(k) + p(k) − α

1 − β
∇f(x(k)),

which implies that

∥x(k+1) + p(k+1) − x⋆∥2 =∥x(k) + p(k) − x⋆∥2 +

(
α

1 − β

)2

∥∇f(x(k))∥2

− 2α
1 − β

⟨x(k) + p(k) − x⋆,∇f(x(k))⟩

(3.3)
= ∥x(k) + p(k) − x⋆∥2 − 2α

1 − β
⟨x(k) − x⋆,∇f(x(k))⟩

− 2αβ
(1 − β)2 ⟨x

(k) − x(k−1),∇f(x(k))⟩+
(

α

1 − β

)2

∥∇f(x(k))∥2.

(3.4)
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Since f ∈ F1,1
L , it follows from [50, Theorem 2.1.5] that

1
L
∥∇f(x(k))∥2 ≤ ⟨x(k) − x⋆,∇f(x(k))⟩,

f(x(k))− f⋆ +
1

2L
∥∇f(x(k))∥2 ≤ ⟨x(k) − x⋆,∇f(x(k))⟩,

f(x(k))− f(x(k−1)) ≤ ⟨x(k) − x(k−1),∇f(x(k)))⟩.

(3.5)

Substituting the above inequalities into (3.4) yields

∥x(k+1) + p(k+1) − x⋆∥2 ≤∥x(k) + p(k) − x⋆∥2 − 2α(1 − λ)

L(1 − β)
∥∇f(x(k))∥2

− 2αλ
1 − β

(
f(x(k))− f⋆

)
− αλ

L(1 − β)
∥∇f(x(k))∥2

− 2αβ
(1 − β)2

(
f(x(k))− f(x(k−1))

)
+

(
α

1 − β

)2

∥∇f(x(k))∥2,

where λ ∈ (0, 1] is a parameter which we will use to balance the weights between the first
two inequities in (3.5). Collecting the terms in the preceding inequality, we find

2α
(1 − β)

(
λ+

β

1 − β

)(
f(x(k))− f⋆

)
+ ∥x(k+1) + p(k+1) − x⋆∥2

≤ 2αβ
(1 − β)2

(
f(x(k−1))− f⋆

)
+ ∥x(k) + p(k) − x⋆∥2

+

(
α

1 − β

)(
α

1 − β
− 2 − λ

L

)
∥∇f(x(k))∥2. (3.6)

Note that when α ∈ (0, (2−λ)(1−β)/L], the last term of (3.6) becomes non-positive and,
therefore, can be eliminated from the right-hand-side. Summing (3.6) over k = 0, . . . , T
gives

2αλ
(1 − β)

T∑
k=0

(
f(x(k))− f⋆

)
+

T∑
k=0

(
2αβ

(1 − β)2

(
f(x(k))− f⋆

)
+ ∥x(k+1) + p(k+1) − x⋆∥2

)

≤
T∑

k=0

(
2αβ

(1 − β)2

(
f(x(k−1))− f⋆

)
+ ∥x(k) + p(k) − x⋆∥2

)
,

which implies that

2αλ
(1 − β)

T∑
k=0

(
f(x(k))− f⋆

)
≤ 2αβ
(1 − β)2

(
f(x(0))− f⋆

)
+ ∥x(0) − x⋆∥2.

Note that as f is convex, we have

(T + 1)f(x(T )) ≤
T∑

k=0

f(x(k)). (3.7)
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It now follows that

f(x(T ))− f⋆ ≤ 1
T + 1

(
β

λ(1 − β)
(f(x(0))− f⋆) +

1 − β

2αλ
∥x(0) − x⋆∥2

)
. (3.8)

Additionally, according to [50, Lemma 1.2.3], f(x(0))−f⋆ ≤ (L/2)∥x(0)−x⋆∥2. The proof
is completed by replacing this upper bound in (3.8) and setting λ = 1 forα ∈

(
0, (1−β)/L

]
and λ = 2 − (αL)/(1 − β) for α ∈

[
(1 − β)/L, 2(1 − β)/L

)
.

A few remarks regarding the results of  Theorem 3.1 are in order. first, a similar
convergence rate can be proved for the minimum function values within T number of
Heavy-ball iterates. More precisely, the sequence {x(k)} generated by (2.9) satisfies

min
0≤k≤T

f(x(k))− f⋆ ≤ O
(
∥x(0) − x⋆∥2

T

)
,

for all T ∈ N0. Second, for any fixed ᾱ ∈ (0, 1/L], one can verify that the β ∈ (0, 1) that
minimize the convergence factor (3.2) is β⋆ = 1−

√
ᾱLwhich yields the convergence factor

f(x(T ))− f⋆ ≤ 1
2(T + 1)

(
2
√
ᾱL− ᾱL

ᾱ

)
∥x(0) − x⋆∥2.

This convergence factor is always smaller than the one for the gradient descent method
obtained by setting β = 0 in (3.2), i.e.,

f(x(T ))− f⋆ ≤ 1
2ᾱ(T + 1)

∥x(0) − x⋆∥2.

Finally, setting ᾱ = 1/L in the preceding upper bounds, we see that the factors coincide
and equal the best convergence factor of  the gradient descent method reported in [51].

Next, we show that our analysis can be strengthened when we use (appropriately chosen)
time-varying step-sizes in the Heavy-ball method. In this case, the individual iterates x(k)
(and not just their running average) converge with rate O(1/k).

Theorem 3.2
Assume that f ∈F1,1

L and that

β(k) =
k

k + 2
, α(k) =

α(0)

k + 2
, k ∈ N, (3.9)

where α(0) ∈ (0, 1/L]. Then, the sequence {x(k)} generated by Heavy-ball iteration (2.9)
satisfies

f(x(T ))− f⋆ ≤∥x(0) − x⋆∥2

2α(0)(T + 1)
. (3.10)
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Proof. The proof  is similar to that of  Theorem 3.1, so we will be somewhat terse. For k ∈ N0,
let p(k) = k(x(k) − x(k−1)). It is easy to verify that

x(k+1) + p(k+1) = x(k) + p(k) − α(0)∇f(x(k)),

which together with the inequalities in (3.4) implies that

2α(0)(k + 1)
(
f(x(k))− f⋆

)
+ ∥x(k+1) + p(k+1) − x⋆∥2

≤ 2α(0)k
(
f(x(k−1))− f⋆

)
+ ∥x(k) + p(k) − x⋆∥2.

Summing this inequality over k = 0, . . . , T gives

2α(0)(T + 1)
(
f(x(T ))− f⋆

)
+ ∥x(T+1) + p(T+1) − x⋆∥2 ≤ ∥x(0) − x⋆∥2.

The proof  is complete.

To illustrate our results, we evaluate the gradient method and the two variations of  the
Heavy-ball method on a numerical example. In this example, the objective function is the
Moreau proximal envelope of  the function f(x) = (1/c)∥x∥:

f(x) =


1
c
∥x∥ − 1

2c2 ∥x∥ ≥ 1
c
,

1
2
∥x∥2 ∥x∥ ≤ 1

c
,

(3.11)

with c = 5 and x ∈ R50. One can verify that f(x) ∈F1,1
L , i.e., it is convex and continuously

differentiable with Lipschitz constant L = 1 [84]. First-order methods designed to find the
minimum of  this cost function are expected to pertain very poor convergence behavior [74].
For the Heavy-ball algorithm with constant step-sizes (2.9) we chose β = 0.5 and α = 1/L,
for the variant with time varying step-sizes (3.9) we used α(0) = 1/L whereas the gradient
algorithm was implemented with the step-size α = 1/L. Figure 3.1 shows the progress
of  the objective values towards the optimal solution. The plot shows that both Heavy-ball
iterates outperform the gradient algorithm and suggests that O(1/k) is a quite accurate
convergence rate estimate for the Heavy-ball and the gradient method.

3.3 Convergence of Nesterov’s method with constant step-sizes for
the class F1,1

L

For objective functions f ∈S1,1
µ,L, it is possible to use constant step-sizes in Nesterov’s method

and still guarantee a linear rate of  convergence [50]. For the objective functions on the
class F1,1

L , however, to the best of  our knowledge no convergence result exists for Nesterov’s
method with fixed step-sizes. Using a similar analysis as in the previous section, we can
derive the following convergence rate bound.
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Figure 3.1: Comparison of  the progress of  the objective values evaluated at the Cesáro
average of  the iterates of  the gradient descent and Heavy-ball methods, and of  the primal
variable itself  for Heavy-ball iterates with time-varying step-sizes. Included for reference is
also an O(1/k) upper bound.

Theorem 3.3
Assume that f ∈F1,1

L and that β ∈ [0, 1). Then the sequence {x(k)} generated by Nesterov’s
iteration (2.11) satisfies

f(x(T ))− f⋆ ≤ 1
T + 1

(
β

1 − β
(f(x(0))− f⋆) +

L(1 − β)

2
∥x(0) − x⋆∥2

)
(3.12)

where x(T ) is the Cesáro average of  the iterates:

x(T ) ≜ 1
T + 1

T∑
k=0

x(k).

Proof. Assume that β ∈ [0, 1), and let

p(k) =
β

1 − β

(
x(k) − x(k−1) +

1
L
∇f(x(k−1))

)
, k ∈ N0. (3.13)

Considering (2.11) and substituting the y-th iterates in the x-th iterates

x(k+1) + p(k+1) =
1

1 − β
x(k+1) +

β

1 − β
(

1
L
∇f(x(k))− x(k))

(2.11)
= x(k) + p(k) − 1

L(1 − β)
∇f(x(k)),
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which implies that

∥x(k+1) + p(k+1) − x⋆∥2 =∥x(k) + p(k) − x⋆∥2 +
1

L2(1 − β)2 ∥∇f(x
(k))∥2

− 2
L(1 − β)

⟨x(k) + p(k) − x⋆,∇f(x(k))⟩

(3.13)
= ∥x(k) + p(k) − x⋆∥2 − 2

L(1 − β)
⟨x(k) − x⋆,∇f(x(k))⟩

− 2β
L2(1 − β)2 ⟨∇f(x

(k−1)), ∇f(x(k))⟩+ 1
L2(1 − β)2 ∥∇f(x

(k))∥2

− 2β
L(1 − β)2 ⟨x

(k) − x(k−1),∇f(x(k))⟩

(3.5)
≤ ∥x(k) + p(k) − x⋆∥2 − 2

L(1 − β)
(f(x(k))− f⋆)

− 1
L2(1 − β)

∥∇f(x(k))∥2 − 2β
L(1 − β)2 (f(x

(k))− f(x(k−1)))

− β

L2(1 − β)2 ∥∇f(x
(k))−∇f(x(k−1))∥2

− 2β
L2(1 − β)2 ⟨∇f(x

(k−1)), ∇f(x(k))⟩

+
1

L2(1 − β)2 ∥∇f(x
(k))∥2.

After rearrangement of  terms, we thus have

2
L(1 − β)2 (f(x

(k))− f⋆)+∥x(k+1) + p(k+1) − x⋆∥2 ≤ 2β
L(1 − β)2 (f(x

(k−1))− f⋆)

+ ∥x(k) + p(k) − x⋆∥2 − β

L2(1 − β)2 ∥∇f(x
(k−1))∥2.

(3.14)

Multiplying the sides of (3.14) in L/2 and summing over k = 0, . . . , T gives

1
1 − β

T∑
k=0

(
f(x(k))− f⋆

)
+

T∑
k=0

(
β

(1 − β)2

(
f(x(k))− f⋆

)
+
L

2
∥x(k+1) + p(k+1) − x⋆∥2

)

≤
T∑

k=0

(
β

(1 − β)2

(
f(x(k−1))− f⋆

)
+
L

2
∥x(k) + p(k) − x⋆∥2

)
,

which implies that

1
1 − β

T∑
k=0

(
f(x(k))− f⋆

)
≤ β

(1 − β)2

(
f(x(0))− f⋆

)
+
L

2
∥x(0) − x⋆∥2.



Global analysis of Heavy-ball algorithm for the class S1,1
µ,L | 35

Using the convexity inequality (3.7) concludes the proof.

Recently, Allen-Zou and Orrechia [85] demonstrated that another fast gradient method
due to Nesterov [34] converges with constant step-sizes for all f ∈ F1,1

L . That method
generates iterates in the following manner

y(k+1) = x(k) − 1
L
∇f(x(k)),

z(k+1) = arg min
z∈Rn

{Vx(z) + ⟨α∇f(x(k)), z − z(k)⟩},

x(k+1) = τz(k+1) + (1 − τ)y(k+1),

(3.15)

where α ∈ R+, τ ∈ [0, 1], and Vx(·) is the Bergman divergence function [85]. Similar to
Theorem 3.3, it has been shown in [85] that the Cesáro average of  the iterates generated
by (3.15) converges to the optimum at a rate ofO(1/k). Note that while both iterations (2.11)
and (3.15) enjoy the same global rate of  convergence, the two schemes are remarkably
different computationally. In particular, (3.15) requires two gradient computations per
iteration, as opposed to one gradient computation needed in (2.11).

3.4 Global analysis of Heavy-ball algorithm for the class S1,1
µ,L

In this section, we focus on objective functions in the class S1,1
µ,Land derive a global linear

rate of  convergence for the Heavy-ball algorithm. In our convergence analysis, we will use
the following simple lemma on convergence of  sequences.

Lemma 3.1
Let {A(k)}k≥0 and {B(k)}k≥0 be nonnegative sequences of  real numbers satisfying

A(k+1) + bB(k+1) ≤ a1A
(k) + a2A

(k−1) + cB(k), k = 0, 1 . . . , (3.16)

with constants a1, a2, b ∈ R+ and c ∈ R. Moreover, assume

A(−1) = A(0), a1 + a2 < 1, c < b.

Then

A(k) ≤ qk((q − a1 + 1)A(0) + cB(0)), q = max

cb , a1 +
√
a2

1 + 4a2

2

 ∈ [0, 1).

(3.17)

Proof. It is easy to check that (3.17) holds for k = 0. Let γ ≥ 0 and k = t. From (3.16) we
have

A(t+1) + γA(t) + bB(t+1) ≤ (a1 + γ)A(t) + a2A
(t−1) + cB(t)

= (a1 + γ)(A(t) +
a2

a1 + γ
A(t−1) +

c

a1 + γ
B(t))

≤ (a1 + γ)(A(t) + γA(t−1) + bB(t)),

(3.18)
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where the last inequality holds if  and only if

a2

a1 + γ
≤ γ,

c

a1 + γ
≤ b. (3.19)

The first term in (3.19) along with γ ≥ 0 is equivalent to have γ ≥ (−a1 +
√
a2

1 + 4a2)/2.
The second condition in (3.19) can be rewritten as γ ≥ c/b− a1. Thus, (3.19) holds if

γ = max

−a1 +
√
a2

1 + 4a2

2
,
c

b
− a1, 0

 . (3.20)

Denoting q ≜ a1 + γ < 1 , it follows from (3.18) that

A(t+1) + γA(t) + bB(t+1) ≤ q(A(t) + γA(t−1) + cB(t)) ≤ · · · ≤ qt+1((1 + γ)A0 + cB0).

Since A(t) and B(t+1) are nonnegative, (3.17) holds. The proof  is complete.

We are now ready for the main result in this section.

Theorem 3.4
Assume that f ∈ S1,1

µ,Land that

α ∈ (0,
2
L
), 0 ≤ β <

1
2

(
µα

2
+

√
µ2α2

4
+ 4(1 − αL

2
)

)
. (3.21)

Then, the Heavy-ball method (2.9) converges linearly to a unique optimizer x⋆. In
particular,

f(x(k))− f⋆ ≤ qk(f(x(0))− f⋆). (3.22)

where q ∈ [0, 1).

Proof. Consider the following identity that holds for the heavy-ball iterates (2.9)

∥x(k+1) − x(k)∥2 =α2∥∇f(x(k))∥2 + β2∥x(k) − x(k−1)∥2

− 2αβ⟨∇f(x(k)), x(k) − x(k−1)⟩.
(3.23)

Since f also belongs to F1,1
L , by [50, Theorem 2.1.5] and (2.9) we have

f(x(k+1))− f⋆ ≤f(x(k))− f⋆ − α(1 − αL

2
)∥∇f(x(k))∥2 +

Lβ2

2
∥x(k) − x(k−1)∥2

+ β(1 − αL)⟨∇f(x(k)), x(k) − x(k−1)⟩
(3.24)
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Let θ ∈ (0, 1), multiply both sides of (3.23) by Lθ/(2 − 2θ), and add the resulting identity
to (3.24) to obtain

f(x(k+1))− f⋆+
Lθ

2(1 − θ)
∥x(k+1) − x(k)∥2 ≤ f(x(k))− f⋆

+ α

(
L

2(1 − θ)
α− 1

)
∥∇f(x(k))∥2 +

Lβ2

2(1 − θ)
∥x(k) − x(k−1)∥2

+ β(1 − αL

1 − θ
)⟨∇f(x(k)), x(k) − x(k−1)⟩

(3.25)
Assume that (1 − θ)/L ≤ α < 2(1 − θ)/L . Then, since f ∈ S1,1

µ,L, by [50, Theorem
2.1.10] and Definition 2.3, we have

f(x(k+1))− f⋆ +
Lθ

2(1 − θ)
∥x(k+1) − x(k)∥2

≤f(x(k))− f⋆ + 2αµ
(

L

2(1 − θ)
α− 1

)
(f(x(k))− f⋆)

+
Lβ2

2(1 − θ)
∥x(k) − x(k−1)∥2

+ β(1 − αL

1 − θ
)(f(x(k))− f(x(k−1)))

+
βµ

2
(1 − αL

1 − θ
)∥x(k) − x(k−1)∥2.

Collecting terms yields

f(x(k+1))− f⋆+b∥x(k+1) − x(k)∥2 ≤ a1(f(x
(k))− f⋆)

+ a2(f(x
(k−1))− f⋆) + c∥x(k) − x(k−1)∥2,

(3.26)

with
a1 ≜ 1 − 2αµ(1 − αL

2(1 − θ)
)− β(

αL

1 − θ
− 1), a2 ≜ β(

αL

1 − θ
− 1),

b ≜ Lθ

2(1 − θ)
, c ≜ β

2

(
µ(1 − αL

1 − θ
) +

Lβ

1 − θ

)
,

which is on the form of  Lemma 3.1 if  we identify A(k) with f(x(k)) − f⋆ and B(k) with
∥x(k) − x⋆∥2. It is easy to verify that if θ ∈ (0, 1) and (1 − θ)/L ≤ α < 2(1 − θ)/L one
has

b > 0, a1 + a2 < 1.

Moreover, provided that

0 ≤ β <
1
2

(
µ

L
(αL+ θ − 1) +

√
µ2

L2 (αL+ θ − 1)2 + 4θ
)
,
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it holds that c < b and consequently one can apply Lemma 3.1 with constants a1, a2, b, and
c to conclude the linear convergence (3.22). Defining λ ≜ 1 − θ the stability criteria reads

λ ∈ (0, 1),
λ

L
≤ α <

2λ
L
, 0 ≤ β <

1
2

(
µ

L
(αL− λ) +

√
µ2

L2 (αL− λ)2 + 4(1 − λ)

)
.

The first two conditions can be rewritten as

α ∈ (0,
2
L
), λ ∈

(
αL

2
,min(αL, 1)

)
.

Substituting λ = αL/2 in the upper stability bound on β completes the proof.

This result extends earlier theoretical results for S2,1
L,µ to S1,1

µ,Land demonstrates that the
Heavy-ball method has the same rate of  convergence as the gradient method and Nesterov’s
fast gradient method for this class of  objective functions. A few comments regarding our
stability criteria (3.21) are in order.

First, we observe that (3.21) guarantees stability for a wider range of  parameters than the
stability criteria (3.1) for f ∈F1,1

L , and wider ranges of  parameters than the stability analysis
of  the Heavy-ball method for non-convex cost functions presented in [82]. In particular,
when α tends to 2λ/L, our stability criterion allows β to be as large as µ/L, whereas the
stability condition (3.1) requires that β tends to zero when α reaches 2/L; see Figure 3.2.
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Figure 3.2: The set of  parameters (α, β) which guarantee convergence of  the Heavy-ball
algorithm for f ∈ F1,1

L (Theorem. 3.1) and f ∈ S1,1
µ,L(Theorem. 3.4). The left figure uses

L = 2, µ = 1 and in the right figure L = 10, µ = 1.

Second, by comparing (3.21) with α and β that guarantee stability for f ∈ S1,1
µ,L [52]:

β ∈ [0, 1), α ∈
(

0,
2(1 + β)

L

)
, (3.27)

our stability criteria may appear restrictive at first. However, motivated by [83], we consider
a counter example where the local stability criteria (3.27) for twice differentiable strongly
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Figure 3.3: Heavy-ball iterates with optimal step-sizes for f ∈ S2,1
µ,L do not converge for the

example in (3.28). However, parameters that satisfy our new global stability criteria ensure
convergence of  the iterates.

convex functions do not hold globally for the class S1,1
µ,L. In particular, let us consider

∇f(x) =

 50x+ 45 x < −1,
5x −1 ≤ x < 0,
50x x ≥ 0.

(3.28)

It is easy to check that ∇f is continuous and f ∈ S1,1
µ,Lwith µ = 1 and L = 50.

According to our numerical tests, for an initial condition in the interval x(0) < −0.8 or
x(0) > 0.15, the Heavy-ball method with optimal parameters α⋆ = 4/(

√
L +

√
µ)2 and

β⋆ = (
√
L−√

µ)2/(
√
L+

√
µ)2 produces non-converging sequences. However, Figure 3.3

shows that using the maximum value of α permitted by our global analysis results in iterates
that converge to the optimum.

Finally, note that Lemma 3.1 also provides an estimate of  the convergence factor of  the
iterates. In particular, after a few simplifications one can find that for

α ∈ (0,
1
L
], β =

√
(1 − αµ)(1 − αL),

and θ = 1 − αL in (3.26), the convergence factor of  the Heavy-ball method (2.9) is given
by q = 1 − αµ. Note that this factor coincides with the best known convergence factor for
the gradient method on S1,1

µ,L [52, Theorem 2, Chapter 1].
Here, we illustrate an instance of  problems in the class S1,1

µ,Land compare the perfor-
mance of  first-order methods. The objective function is the regularized logistic regression

f(x) = log(1 + exp(−a⊤x)) + (1/2)a⊤x+ (µ/2)∥x∥2,

with random parameters a ∈ R100 and µ ∈ R+. The problem is widely used in machine
learning applications [75]. Figure 3.4 compares the per-iterate progress of  the gradient
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descent, Nesterov’s and Heavy-ball algorithms. For the gradient descent method, we set
the optimal step-size α = 2/(L + µ); for the Nesterov’s algorithm we set α = 1/L and
β = (

√
L−√

µ)/(
√
L+

√
µ) according to [50], and finally for the Heavy-ball method we

picked α = 2/L and β = µ/L.
Supported by the numerical simulations we envisage that the convergence factor could

be strengthened even further. This is indeed left as a future work.
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Figure 3.4: Comparison of  the progress of  the objective values for the gradient descent,
Nesterov’s and Heavy-ball methods. For this particular example, both Nesterov’s and
Heavy-ball algorithms out-perform the gradient method.

3.5 Summary

Global stability of  the first-order methods have been established for two important classes of
convex optimization problems. Specifically, we have shown that when the objective function
is convex and has a Lipschitz-continuous gradient, then the Cesáro-averages of  the iterates
generated by the Heavy-ball and Nesterov’s methods with constant step-sizes converge to
an optimum at a rate no slower than O(1/k), where k is the number of  iterations. When
the objective function is also strongly convex, we established that the Heavy-ball iterates
converge linearly to the unique optimum. Numerical examples confirmed the theoretical
findings.



Chapter 4

Multi-step methods
for network optimization

DISTRIBUTED first-order methods are investigated in this chapter. First, we develop
a multi-step weighted gradient method that maintains a network-wide constraint

on the decision variables throughout the iterations. The accelerated algorithm is based
on the Heavy-ball method extended to the networked setting. We derive optimal algo-
rithm parameters, show that the method has linear convergence rate, and quantify the
improvement in convergence factor over the gradient method. Our analysis shows that the
method is particularly advantageous when the eigenvalues of  the Hessian of  the objective
function and/or the eigenvalues of  the graph Laplacian of  the underlying network have
a large spread. Second, we investigate how similar techniques can be used to accelerate
dual decomposition across a network of  decision-makers. In particular, given smoothness
parameters of  the objective function, we present closed-form expressions for the optimal
parameters of  an accelerated gradient method for the dual. Third, we quantify how the
convergence properties of  the algorithm are affected when the algorithm is tuned using
misestimated problem parameters. This robustness analysis shows that the accelerated
algorithm endures parameter violations well and in most cases outperforms its non-
accelerated counterpart. Finally, we apply the developed algorithms to three case studies:
networked resource allocation, distributed averaging, and Internet congestion control. In
each application we demonstrate superior performance compared to alternatives from the
literature.

The chapter is organized as follows. In Section 4.1, we review the related literature to
distributed first-order methods. The problem formulation along with our assumptions are
presented in Section 4.2. Section 4.3 proposes a multi-step weighted gradient algorithm,
establishes conditions for its convergence, and derives optimal step-size parameters. Sec-
tion 4.4 develops a technique for accelerating the dual problem based on parameters for the
(smooth) primal. Section 4.5 presents a robustness analysis of  the multi-step algorithm in the
presence of  uncertainty. Section 4.6 applies the proposed techniques to three engineering
problems: resource allocation, consensus, and network flow control. Numerical results and
performance comparisons are presented for each case study. Section 4.7 summarizes the
content of  the chapter.

41
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4.1 Related work

Distributed optimization has recently attracted significant attention from several research
communities. Examples include the work on network utility maximization for resource
allocation in communication networks [64], distributed coordination of  multi-agent sys-
tems [86], collaborative estimation in wireless sensor networks [87], distributed machine
learning [45], and many others. The majority of  these works apply gradient or sub-gradient
methods to the dual formulation of  the decision problem. Although gradient methods are
easy to implement and require modest computations, they suffer from slow convergence. In
some cases, such as the development of  distributed power control algorithms for cellular
phones [88], one can replace gradient methods by fixed-point iterations and achieve
improved convergence rates. For other problems, such as average consensus [89], a number
of  heuristic methods have been proposed that improve the convergence time of  the standard
method [90, 8]. However, we are not interested in tailoring techniques to individual
problems; our aim is to develop general-purpose schemes that retain the simplicity of  the
gradient method but improve convergence times.

Even if  the optimization problem is convex and the sub-gradient method is guaranteed
to converge to an optimal solution, the rate of  convergence is very modest. The convergence
rate of  the gradient method is improved if  the objective function is differentiable with
Lipschitz-continuous gradient, and even more so if  the function is also strongly convex [50].
When the objective and constraint functions are smooth, several techniques exist that
allow for even shorter solution times. One such technique is higher-order methods, such
as Newton’s method [67], which use both the gradient and the Hessian of  the objective
function. Although distributed Newton methods have recently been developed for special
problem classes (e.g., [91, 92]), they impose large communication overhead for collecting
global Hessian information. Another way to obtain faster convergence is to use multi-step
methods [52, 67] that have been introduced in the previous chapters. Recall that these
methods rely only on gradient information but use a history of  the past iterates when
computing the future ones. We explore the latter approach for distributed optimization.

4.2 Assumptions and problem formulation

This chapter is concerned with collaborative optimization by a network of  decision-makers
of  the form (2.20), which is restated here for convenience

minimize
x

∑
i∈V fi(xi)

subject to Ax = b,
(4.1)

where x,A, and b are of  dimensions Rn, Rm×n, and Rm, respectively. Recall from
Section 2.4 that we termed (4.1) as networked optimization problem and that the undirected
graph G = (V, E) represents the physical information exchange between the decision-
makers.

The formulation (4.1) is more general that it might first appear. For example, problems
with coupled objectives can be put of  the form (4.1) by first introducing new variables,
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which act as local copies of  the shared variable, and then constraining these copies to be
equal (see, e.g., [66] and Appendix 4.A). We will use this technique in Section 4.6.2. To use
such modeling techniques in their fullest generality (e.g., to allow cost functions to be coupled
through several distinct decision variables), one would need to allow the cost functions to
be multivariable. While the results in this chapter are generalizable to multivariable cost
functions, we have chosen to present the scalar case for ease of  notation.

Most acceleration techniques in the literature (e.g., [50, 93, 94]) require that the cost
functions are smooth and convex. Similarly, we will make the following assumptions:

Assumption 4.1 Each cost function fi in (4.1) is convex and twice continuously differen-
tiable with

li ≤ ∇2fi(xi) ≤ ui, ∀i ∈ V, (4.2)

for some positive real constants li and ui such that 0 < li ≤ ui.

Some remarks are in order. Let

µ ≜ min
i∈V

li, L ≜ max
i∈V

ui, (4.3)

and define f(x) ≜
∑

i∈V fi(xi). Then, Assumption 4.1 ensures that f(x) ∈ S1,1
µ,L, i.e., it

is strongly convex with modulus µ and its gradient is Lipschitz-continuous with constant µ.
Moreover, the Hessian of f satisfies

µI ⪯ ∇2f(x) ⪯ LI, ∀x. (4.4)

See, e.g, [50, Lemma 1.2.2 and Theorem 2.1.11] for details. Furthermore, Assumption 4.1
guarantees that (4.1) is a convex optimization problem whose unique optimizer x⋆ satisfies

Ax⋆ = b, ∇f(x⋆) = A⊤y⋆, (4.5)

where y⋆ ∈ Rm is the vector of  optimal Lagrange multipliers for the linear constraints.

4.3 A multi-step weighted gradient method

In the absence of  constraints, (4.1) is trivial to solve since the objective function is separable
and each decision-maker could simply minimize its cost independently of  the others. Hence,
it is the existence of  constraints that makes (4.1) challenging. Recall from Chapter 2 that in
the optimization literature, there are essentially two ways to deal with constraints: the primal
and the dual decomposition. In the primal decomposition, one projects the iterates onto the
constraint set to maintain feasibility at all iterations; such a method will be developed in this
section. In the dual decomposition, on the other hand, we eliminate couplings between
decision-makers and solve the associated dual problem; we will consider such techniques in
Section 4.4.

Computing the Euclidean projection onto the constraint of  (4.1) typically requires the
full decision vector x, which is not available to the decision-makers in our setting. An
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alternative, explored e.g., in [63], is to consider weighted gradient methods which use a
linear combination of  the information available to nodes to ensure that iterates remain
feasible. For our problem (4.1), the weighted gradient method takes the form

x(k+1) = x(k) − αW∇f(x(k)). (4.6)

Here, W ∈ Rn×n is a weight matrix that should satisfy the following three conditions: (i)
the locality of  information exchange between the decision makers should be preserved; (ii)
provided that the initial point x(0) is feasible, the iterates generated by (4.6) should remain
feasible; and (iii), the fixed-points of  (4.6) should satisfy the optimality conditions (4.5).

To ensure condition (i), W should have the same sparsity pattern as the information
graph G, i.e., Wij = 0 if i ̸= j and {i, j} ̸∈ E . In this way, the iterations (4.6) read

xi
(k+1) = xi

(k) − α
∑

j∈i∪Ni

Wij∇fj(x(k)j ),

and can be executed by individual decision-makers based on the information that they
have access to. Conditions (ii) and (iii) translate into the following requirements (see [63]
for details)

AW = 0, WA⊤ = 0. (4.7)

The next example describes one particular problem instance.

Example 4.1 When the decision-makers are only constrained by a global resource budget,
(4.1) reduces to

minimize
∑

i∈V fi(xi)
subject to

∑
i∈V xi = xtot.

A distributed algorithm for this problem was developed in [62] and interpreted as a weighted
gradient method in [63]. In our notation,A = 1⊤ and b = xtot so in addition to the sparsity
pattern, W should also satisfy 1⊤W = 0⊤ and W1 = 0. In [63], it was shown that the
symmetricW that satisfies these constraints and guarantees the smallest convergence factor
of  the weighted gradient iterations can be found by solving a convex optimization problem.
In addition, [63] proposed several heuristics for constructing W in a distributed manner.

A few comments are in order. First, not all constraint matrices A admit a weight matrix
W that satisfies the above constraints, hence not all problems of  the form (4.1) are amendable
to a distributed solution using a weighted gradient method. Second, to find a feasible initial
point x(0), one typically needs to find a solution for the linear system of  equationsAx = b in
a distributed way. This generally requires a separate distributed mechanism; see, e.g., [62]
and [95, Chapter 2].
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4.3.1 A multi-step weighted gradient method and its convergence

Consider the following multi-step weighted gradient iteration

x(k+1) = x(k) − αW∇f(x(k)) + β
(
x(k) − x(k−1)

)
. (4.8)

Under the sparsity constraint on W detailed above, these iterations can be implemented
by individual decision-makers. Moreover, (4.7) ensures that if Ax(0) = Ax(1) = b then
every iterate produced by (4.8) will also satisfy the linear constraints. The next theorem
characterizes the convergence of  the iterations (4.8) and derives optimal step-size parameters
α and β.

Theorem 4.1
Consider the optimization problem (4.1) under Assumption 4.1, and let x⋆ denote its unique
optimizer. Assume that W has m < n eigenvalues at 0 and satisfies AW = 0 and WA⊤ =
0. Let H = ∇2f(x⋆) and λ1(WH) ≤ λ2(WH) ≤ · · · ≤ λn(WH) be the (ordered)
eigenvalues of WH so that λ = λm+1(WH) is the smallest non-zero eigenvalue of WH
and λ = λn(WH) is the largest. Then, if

0 ≤ β < 1, 0 < α <
2
L

(1 + β)

λn(W )
,

the iterates (4.8) converge to x⋆ at linear rate

∥x(k+1) − x⋆∥ ≤ q∥x(k) − x⋆∥ ∀k ≥ 0,

with q = max
{√

β, |1 + β − αλ| −
√
β, |1 + β − αλ| −

√
β
}

. Moreover, the minimal
value of q is

q⋆ =

√
λ−

√
λ√

λ+
√
λ
,

obtained for step-sizes α = α⋆ and β = β⋆ where

α⋆ =

(
2√

λ+
√
λ

)2

, β⋆ =

(√
λ−

√
λ√

λ+
√
λ

)2

. (4.9)

Proof. See Appendix 4.C for this and all other proofs of  this chapter.

It is interesting to investigate when (4.8) significantly improves over the single-step
algorithm. In [63], it is shown that the best convergence factor of  the weighted gradient
iteration (4.6) is

q⋆0 =
λ− λ

λ+ λ
.
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One can verify that q⋆ ≤ q⋆0 , i.e., the optimally tuned multi-step method is never slower
than the single-step method. Moreover, the improvement in convergence factor depends
on the quantity κ = λ/λ: when κ is large, the speed-up is roughly proportional to

√
κ.

In the networked setting, there are two reasons for a large value of κ. One is simply that
the Hessian of  the objective function is ill-conditioned, so that the ratio L/µ is large. The
other is that the matrix W is ill-conditioned, i.e., that λn(W )/λm+1(W ) is large. As we
will see in the examples, the graph Laplacian is often a valid choice for W . Thus, there
is a direct connection between the topology of  the underlying information graph and
the convergence rate (improvements) of  the multi-step weighted gradient method. We will
discuss this connection in detail in Section 4.6.

In many applications, H = ∇2f(x⋆) is not known, but the bounds such as (4.4) are
known. In such cases, the next result can be useful.

Proposition 4.1
Let λW = µλm+1(W ) and λW = Lλn(W ). Then λW ≤ λ and λW ≥ λ. Moreover, the
step-sizes

α =

(
2√

λW +
√
λW

)2

, β =

(√
λW −

√
λW√

λW +
√
λW

)2

,

ensure the linear convergence of (4.8) with the convergence factor

q̃ =

√
λW −

√
λW√

λW +
√
λW

.

4.3.2 Optimal weight selection for the multi-step method

The results in the previous subsection provide optimal step-size parameters α and β for
a given weight matrix W . However, the expressions for the associated convergence factors
depend on the eigenvalues ofWH and optimizing the entries inW jointly with the step-size
parameters can yield even further speed-ups. We make the following observation.

Proposition 4.2
Under the hypotheses of  Proposition 4.1,

(i) IfH is known, then minimizing the convergence factor q⋆ is equivalent to minimizing
λ/λ.

(ii) If H is not known, while µ and L in (4.4) are, then the weight matrix that minimizes
q̃ is the one with minimal value of λW /λW .

The next result shows how the optimal weight selection for both scenarios can be found
via convex optimization.
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Proposition 4.3
The weight matrix for (4.8) that minimizes λ/λ can be found by solving the convex
optimization problem

minimize
W,t

t

subject to In−m ⪯ P⊤H1/2WH1/2P ⪯ tIn−m

W ∈ A, W ⪰ 0, H1/2WH1/2V = 0,
(4.10)

where A ∈ Sn is the sparsity pattern induced by G, V = H−1/2A⊤, and P ∈ Rn×n−m is
a matrix of  orthonormal vectors spanning the null space of V ⊤.

Remark 4.1 When H is not known but the bounds µ and L in (4.4) are, Proposition 4.2
suggests that one should look for a weight matrix W that minimizes λW /λW . This can be
done by using the formulation in Proposition 4.3 by setting H = I .

Remark 4.2 In addition to the basic conditions that admissible weight matrices have to
satisfy, Proposition 4.3 also requires thatW be positive semi-definite. Without this additional
requirement, (4.10) is non-convex and generically has no tractable solution (see [96],
[97]). Designing distributed algorithms for constructing weight matrices that guarantee
optimal or close-to-optimal convergence factors is an open question and a subject for future
investigations.

4.4 A multi-step dual ascent method

When the constraint matrix A is such that the weight optimization problem (4.10) does not
admit a solution, we have no systematic approach to find a weight matrixW that guarantees
convergence of  the weighted multi-step gradient iterations. An alternative approach for
solving (4.1) can then be to use Lagrange relaxation, i.e., to introduce Lagrange multipliers
y ∈ Rm for the equality constraints and solve the dual problem. The dual function
associated with (4.1) is

d(y) ≜ inf
x

∑
i

{
fi(xi) +

(
m∑
r=1

yrAri

)
xi

}
−

m∑
r=1

yrbr. (4.11)

Since the dual function is separable in x, it can be evaluated in parallel. For a given Lagrange
multiplier vector y, each decision-maker then needs to compute

x⋆i (y) = argmin
z

fi(z) +

(
m∑
r=1

yrAri

)
z. (4.12)

The dual problem is to maximize d(y) with respect to y, i.e.,

minimize
y

−d(y) = f⋆(−A⊤y) + b⊤y,
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where f⋆(z) ≜ supx z⊤x − f(x) is the conjugate function. Recall that if f is strongly
convex then f⋆ and hence −d(·) are convex and continuously differentiable [98]. Moreover,
∇d(y) = Ax⋆(y)− b. In light of  our earlier discussion, it is natural to attempt to solve the
dual problem using a multi-step iteration of  the form

y
(k+1)
r = y

(k)
r + α

(∑
iArix

⋆
i (y

(k))− br
)
+ β

(
y
(k)
r − y

(k−1)
r

)
. (4.13)

To be able to execute the multi-step dual ascent iterations (4.12) and (4.13) in a
distributed manner, decision-maker i needs to be able to collect the Lagrange multipliers
yr for all r such that Ari ̸= 0, and the decision-maker in charge of  updating yr needs to be
able to collect all x⋆i (y) for all i with Ari ̸= 0. This is certainly not always possible, but we
will give two examples that satisfy these requirements in Section 4.6.

To find the optimal step-sizes and estimate the convergence factors of  the iterations, we
need to be able to bound the strong convexity modulus of d(y) and the Lipschitz constant
of  its gradient. The following observation is in order:

Lemma 4.1
Consider the optimization problem (4.1) with associated dual function (4.11). Let f be a
continuously differentiable and closed convex function. Then,

(i) If f is strongly convex with modulus µ, then −∇d is Lipschitz continuous with
constant λn(AA⊤)/µ.

(ii) If ∇f is Lipschitz continuous with constant L, then −d is strongly convex with
modulus λ1(AA

⊤)/L.

These dual bounds can be used to derive the following result:

Theorem 4.2
For the optimization problem (4.1) under Assumption 4.1, the multi-step dual ascent
iterations (4.13) converge to y⋆ at linear rate with the guaranteed convergence factor

q⋆ =

√
Lλn(AA⊤)−

√
µλ1(AA⊤)√

Lλn(AA⊤) +
√
µλ1(AA⊤)

,

obtained for step-sizes:

α⋆ =

(
2√

Lλn(AA⊤) +
√
µλ1(AA⊤)

)2

, β⋆ =

(√
Lλn(AA⊤)−

√
µλ1(AA⊤)√

Lλn(AA⊤) +
√
µλ1(AA⊤)

)2

.

The advantage of  Theorem 4.2 is that it provides step-size parameters with guaranteed
convergence factor using readily available data of  the primal problem. How close to optimal
these results are depends on how tight the bounds in Lemma 4.1 are. If  the bounds are tight,
then the step-sizes in Theorem 4.2 are truly optimal. The next example shows that a certain
degree of  conservatism may be present, even for quadratic problems.
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Example 4.2 Consider the quadratic minimization problem

minimize 1
2x

⊤Qx
subject to Ax = b,

where Q ≻ 0, A ∈ Rn×n is full row-ranked, and b ∈ Rn. This implies that the objective
function is strongly convex with modulus λ1(Q) and that its gradient is Lipschitz-continuous
with constant λn(Q). Hence, according to Lemma 4.1, −d is strongly convex with modulus
λ1(AA

⊤)/λn(Q) and its gradient is Lipschitz continuous with constant λn(AA⊤)/λ1(Q).
However, direct calculations reveal that

d(y) = −1
2
y⊤AQ−1A⊤y − y⊤b,

from which we see that −d has convexity modulus λ1(AQ
−1A⊤) and that its gradient

is Lipschitz continuous with constant λn(AQ−1A⊤). By [99, p. 225], these bounds are
tighter than those offered by Lemma 4.1. Specifically, for congruent matrices Q−1 and
AQ−1A⊤ there exist nonnegative real numbers θk such that λ1(AA

⊤) ≤ θk ≤ λn(AA
⊤)

and θkλk(Q−1) = λk(AQ
−1A⊤). For k = 1, n we obtain

λ1(AA
⊤)

λn(Q)
≤ λ1(AQ

−1A⊤), λn(AQ
−1A⊤) ≤ λn(AA

⊤)

λ1(Q)
.

For some important classes of  problems, the bounds are, however, tight. One such example
is the average consensus application considered in Section 4.6.

4.5 Robustness analysis

The proposed multi-step methods have significantly improved convergence factors com-
pared to the gradient iterations, and particularly so when the Hessian of  the cost function
and/or the graph Laplacian of  the network is ill-conditioned. The results of  Theorem 4.1
and Proposition 4.1 specify sufficient conditions for the convergence of  multi-step iterations
in terms of  the design parameters α, β, andW . However, these parameters are determined
based on upper and lower bounds on the Hessian and the largest and smallest non-zero
eigenvalue of W . In many applications, W and H might not be perfectly known, and λ
and λ have to be estimated based on available data. It is therefore important to analyze
the sensitivity of  the multi-step methods to errors in these parameters to assess if  the
performance benefits prevail when the step-sizes are calculated using (slightly) misestimated
λ and λ. Such an analysis will be performed in this section.

Let λ˜ and λ̃ denote the estimates of λ and λ available when tuning the step-sizes.
We are interested in quantifying how the convergence and the convergence factors of  the
gradient and the multi-step methods are affected when λ˜ and λ̃ are used in the step-size
formulas we derived earlier. Theorem 4.1 provides some useful observations for the multi-
step method. The corresponding results for the weighted gradient method are summarized
in the following lemma:
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Lemma 4.2
Consider the weighted gradient iterations (4.6) and let λ and λ denote the largest and
smallest non-zero eigenvalue of WH , respectively. Then, for fixed step-size 0 < α < 2/λ,
(4.6) converges to x⋆ at linear rate with convergence factor

qG = max
{
|1 − αλ|, |1 − αλ|

}
.

Furthermore, the minimal value q⋆G = (λ − λ)/(λ + λ) is obtained for the step-size α =
2/(λ+ λ).

Combining this lemma with our previous results from Theorem 4.1 yields the following
observation.

Proposition 4.4
Let λ˜ and λ̃ be estimates of λ and λ, respectively, and assume that 0 < λ˜ < λ̃. Then, for
all values of λ˜ and λ̃ such that λ < λ̃ + λ˜, both the weighted gradient iteration (4.6) with
step-size

α̃ = 2/(λ̃+ λ˜), (4.14)

and the multi-step method variant (4.8) with

α̃ =

 2√
λ̃+

√
λ˜
2

, β̃ =

√λ̃−
√
λ˜√

λ̃+
√
λ˜
2

, (4.15)

converge to the optimizer x⋆ of  (4.1).

In practice, one should expect an overestimated λ̃, in which case both methods con-
verge. However, convergence can be guaranteed for a much wider range of  perturbations.
Figure 4.1(a) considers perturbations of  the form λ˜ = λ + ε˜ and λ̃ = λ + ε̃. The white
area is the locus of  perturbations for which convergence is guaranteed, while the dark area
represents inadmissible perturbations which render either λ˜ or λ̃ negative. Note that both
algorithms are robust to a continuous departure from the true values of λ and λ, since there
is a ball with radius

√
3λ/2 around the origin for which both methods are guaranteed to

converge. Next, we compare the convergence factors of  the two methods when the step-sizes
are tuned based on inaccurate parameters. The following lemma is then useful.

Lemma 4.3
Let λ˜ and λ̃ satisfy 0 < λ < λ˜+λ̃. The convergence factor of  the weighted gradient method
(4.6) with step-size (4.14) is given by

q̃G =

{
2λ/(λ˜ + λ̃)− 1 if λ˜ + λ̃ ≤ λ+ λ

1 − 2λ/(λ˜ + λ̃) otherwise,
(4.16)
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Figure 4.1: (a) Perturbations in the white and gray area correspond to the stable and unstable
regions of  multi-step algorithm respectively. (b) Multi-step algorithm outperforms gradient
iterations in (ε˜, ε̃) ∈ C\Q4. For symmetric errors in Q4 (along the line ε˜ = −ε̃) gradient
might outperform multi-step algorithm.

while the multi-step weighted gradient method (4.8) with step-sizes (4.15) has convergence
factor

q̃ = max

{√
β̃, |1 + β̃ − α̃λ| −

√
β̃, |1 + β̃ − α̃λ| −

√
β̃

}
. (4.17)

The convergence factor expressions derived in Lemma 4.3 allow us to come to the
following conclusions:

Proposition 4.5
Let λ˜ = λ+ ε˜, λ̃ = λ+ ε̃ and define the set of  perturbations, C, under which the methods
converge

C = {(ε˜, ε̃) | ε˜≥ −λ, ε̃ ≥ −λ, ε˜+ ε̃ ≥ −λ},

and the fourth quadrant in the perturbation space Q4 = {(ε˜, ε̃) | ε˜ < 0 ∩ ε̃ > 0}. Then,
for all (ε˜, ε̃) ∈ C\Q4, we have q̃ ≤ q̃G. However, there exists (ε˜, ε̃) ∈ Q4 for which the
scaled gradient has a smaller convergence factor than the multi-step variant. In particular,
for

(ε˜, ε̃) ∈ Q4 and (λ+ ε̃)/(λ+ ε˜) ≥ (λ/λ)2, (4.18)

the multi-step iterations (4.8) converge slower than (4.6).

Figure 4.1b illustrates the different perturbations considered in Proposition 4.5. While
the multi-step method has superior convergence factors for many perturbations, the
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(a) Symmetric perturbations in Q4.
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Figure 4.2: (a) Convergence factor of  multi-step and gradient algorithms under the condition
described by (4.18). Solid lines belong to q̃ while the dashed lines depict q̃G. (b) Level curves
of q̃ − q̃G around the origin for (ε˜, ε̃) ∈ Q4.

troublesome region Q4 is probably common in engineering applications since it represents
perturbations where the smallest eigenvalue is underestimated while the largest eigenvalue
is overestimated. To shed more light on the convergence properties in this region, we
perform a numerical study on a quadratic function with λ = 1 and λ varying from 2
to 100. We first consider symmetric perturbations ε˜ = −ε̃, in which case the convergence
factor of  the gradient method is q̃G = 1 − 2/(1 + λ/λ) while the convergence factor of

the multi-step method is q̃ = 1 − 2/
√

1 + λ̃/λ˜. The convergence factor of  the gradient
iterations is insensitive to symmetric perturbations, while the performance of  the multi-step
iterations degrades with the size of  the perturbation and eventually becomes inferior to the
gradient; see Figure 4.2a. To complement this study, we also sweep over (ε˜, ε̃) ∈ C ∩ Q4
and compute the convergence factors of  the two methods for problems with different λ.
Figure 4.2b indicates that when the condition number λ/λ increases, the area where the
gradient method is superior (the area above the contour line) shrinks. It also shows that
when λ˜ tends to zero or λ̃ is very large, the performance of  the multi-step method is severely
degraded.

4.6 Applications

In this section, we apply the developed techniques to three classes of  engineering problems:
resource-allocation under network-wide resource constraints, distributed averaging, and
Internet congestion control. In all cases, we demonstrate that direct applications of  our
techniques yield algorithms with significantly faster convergence than state-of-the-art
algorithms that have been tailor-made to the specific applications.
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4.6.1 Accelerated resource allocation

Our first application is the distributed resource allocation problem under a network-wide
resource constraint [62, 63] discussed in Example 4.1. We compare the multi-step method
developed in this chapter with the optimal and suboptimal tuning for the standard weighted
gradient iterations proposed in [63]. Similarly to [63], we create problem instances by
generating random networks and assigning cost functions of  the form fi(xi) = ai(xi −
ci)

2 +log[1+exp(xi−di)] to nodes. The parameters ai, bi, ci and di are drawn uniformly
from intervals (0, 2], [−2, 2], [−10, 10] and [−10, 10], respectively. In [63], it was shown
that the second derivatives of  these functions are bounded by li = ai and ui = ai + b2

i/4.
Figure 4.3 shows a representative problem instance along with the convergence behavior

for weighted and multi-step weighted gradient iterations under several weight choices. The
optimal weights for the weighted gradient method, denoted by Xiao-Boyd in the figure, are
found by solving a semi-definite program derived in [63], and by Proposition 4.3, withH =
I , for the multi-step variant. In addition, we evaluate the heuristic weights “best constant”
and “metropolis” introduced in [63] (refer to Appendix 4.B for their definitions). In all cases,
we observe significantly improved convergence factors for the multi-step method.

4.6.2 Distributed averaging

Our second application is devoted to the distributed averaging. Distributed algorithms for
consensus seeking have been researched intensively for decades; see e.g., [89, 100, 101].
Here, each node i in the network initially holds a value ci and coordinates with neighbors
in the graph to find the network-wide average. Clearly, this average can be found by applying
any distributed optimization technique to the problem

minimize
x

∑
i∈V

1
2 (x− ci)

2, (4.19)
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since the optimal solution to this problem is the network-wide average of  the constants ci.
In particular, we will explore how the multi-step technique with our optimal parameter
selection rule compares with the state-of-the art distributed averaging algorithms from the
literature.

The basic consensus algorithms use iterations of  the form

xi
(k+1) = Qiixi

(k) +
∑
j∈Ni

Qijxj
(k), (4.20)

whereQij are scalar weights, and the node states are initialized by x(0)
i = ci. The paper [47]

provides necessary and sufficient conditions on the matrix Q = [Qij ] to ensure that
the iterations converge to the network-wide average of  the initial values. Specifically, it
is required that 1⊤Q = 1⊤, Q1 = 1, and r(Q − (1/|V|)11⊤) < 1 where r(·) denotes
the spectral radius of  a matrix. Although the convergence conditions do not require that
Q is symmetric, techniques for minimizing the convergence factor often assume Q to be
symmetric [47], [8].

Following the steps given in Section 4.4, we now develop a dual approach to derive
iterations that solve (4.19). In particular, we can rewrite (4.19) in the form of  collaborative
minimization over a global shared variable (2.22). Converting to the vector notation, the
constraints xi = xj for all {i, j} ∈ E reads B̄x = 0, where B̄ is the oriented incidence
matrix associated with G. Applying Lagrange duality to the coupling constraint, we find the
Lagrangian

L(x, y) =
1
2
(x− c)⊤(x− c) + y⊤B̄x. (4.21)

By the first-order optimality conditions for (4.21), we can define the dual problem

minimize −g(y) = − 1
2y

⊤B̄B̄⊤y − y⊤B̄c. (4.22)

For given Lagrange multiplier y, the primal variable x will be updated by minimizing
the Lagrangian (4.21). The multi-step dual ascent method, hence, suggests the accelerated
iterations

y(k+1) = y(k) − α(B̄B̄⊤y(k) − B̄c) + β
(
y(k) − y(k−1))

x(k+1) = c− B̄⊤y(k+1).
(4.23)

To understand the relationship between this method and alternative schemes in the
literature, it is useful to try to eliminate the y-update and only consider the dynamics of
the primal variables. To this end, multiplying B̄⊤ on both sides of y-update in (4.23) yields

B̄⊤y(k+1) = B̄⊤y(k) − αB̄⊤(B̄B̄⊤y(k) − B̄c) + βB̄⊤(y(k) − y(k−1)). (4.24)

Applying the identity B̄⊤y(k) = c− x(k) and letting W = B̄⊤B̄ gives

x(k+1) = x(k) − αWx(k) + β(x(k) − x(k−1)). (4.25)

Similarly, the gradient based counterpart of  the consensus iterates is

x(k+1) = x(k) − αWx(k), (4.26)
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From the properties of  the graph Laplacian, W is positive semidefinite with a simple
eigenvalue at 0 and fulfills W1 = 0, 1⊤W = 0⊤. These iterations are of  the same
form as (4.20) but use a particular weight matrix. In a fair comparison between the multi-
step iterations (4.25) and the basic consensus iterations, the weight matrices of  the two
approaches should not necessarily be the same, nor necessarily equal to the graph Laplacian.
Rather, the weight matrix for the consensus iterations (4.20) should be optimized using the
results from [47] and the weight matrix for the multi-step iteration should be computed by
using Proposition 4.3.

In addition to the basic consensus iterations with optimal weights, we will also compare
our multi-step iterations with two alternative acceleration schemes from the literature.
The first one comes from the literature on accelerated consensus and uses shift regis-
ters [90], [102], [103]. The idea is to use relaxation technique to accelerate the linear
consensus iterates. Recall from Chapter 2 that similarly to the multi-step method, the
relaxation method uses a history of  past iterates, stored in local registers, when computing
the next. For the consensus iterations (4.20), the corresponding shift register iterations are

x(k+1) = ηQx(k) + (1 − η)x(k−1). (4.27)

The current approaches to consensus based on shift-registers assume that Q is given and
design η to minimize the convergence factor of  the iterations. The key results can be
traced back to Golub and Varga [104] who determined the optimal η and the associated
convergence factor to be

η⋆ =
2

1 +
√

1 − λ2
n−1(Q)

, q⋆SR =

√√√√√1 −
√

1 − λ2
n−1(Q)

1 +
√

1 − λ2
n−1(Q)

. (4.28)
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In our comparisons, the shift-register iterations will use the Q-matrix optimized for the
basic consensus iterations and the associated η⋆ given above. The second acceleration tech-
nique that we will compare with is the order-optimal gradient iterations (2.11) developed
by Nesterov [50]. Recall that while the technique has optimal convergence rate, it is not
guaranteed to obtain the best convergence factor. When applying this technique to the
consensus problem, following a similar approach as the multi-step iterations, we arrive at
the iterations

x(k+1) = (I − aW )
(
x(k) + b(x(k) − x(k−1))

)
, (4.29)

withW = B̄⊤B̄, a = λ−1
n (W ) and b = (

√
λn(W )−

√
λ2(W ))/(

√
λn(W )+

√
λ2(W )),

where λ2(·) and λn(·) are the smallest and largest non-zero eigenvalues of  their variables,
respectively.

Figure 4.4 compares the multi-step iterations (4.25) developed in this chapter with (a)
the basic consensus iterations (4.20) using a weight matrix determined using the metropolis
scheme, (b) the shift-register acceleration (4.27) with the same weight matrix and the optimal
η, and (c) the order-optimal method (4.29). The particular results shown are for a network
of 100 nodes in a dumbbell topology. The simulations show that all three methods yield a
significant improvement in convergence factors over the basic iterations, and that the multi-
step method developed in this chapter outperforms the alternatives.

Several remarks are in order. First, since the Hessian of  (4.19) is equal to identity matrix,
the speed-up of  the multi-step iterations is proportional to

√
κ =

√
λn(W )/λ2(W ). When

W equals L, the Laplacian of  the underlying graph, we can quantify the speed-ups for
certain classes of  graphs using spectral graph theory [60]. For example, the complete graph
has λ2(L) = λn(L) so κ = 1 and there is no real advantage of  the multi-step iterations.
On the other hand, for a ring network the eigenvalues of L are given by 1 − cos(2πk)/|V|
for k = 0, 1, . . . , |V| − 1. Therefore, κ grows quickly with the number of  nodes, and the
performance improvements of  (4.25) over (4.26) could be substantial.

Our second remark pertains to the shift-register iterations. Since these iterations have
the same form as (4.25), we can go beyond the current literature on shift-register consensus
(which assumes Q to be given and optimizes η) and provide jointly optimal weight matrix
and η-parameter:

Proposition 4.6
The weight matrix Q⋆ and constant η⋆ that minimizes the convergence factor of  the
shift-register consensus iterations (4.27) are Q⋆ = I − θ⋆W ⋆, where W ⋆ is computed in
Proposition 4.3 with H = I and θ⋆ = 2

λ2(W⋆)+λn(W⋆) while η⋆ = 1 + β⋆ and β⋆ is given
in Theorem 4.1.

4.6.3 Internet congestion control

Our final application is related to the area of  Internet congestion control, where Network
Utility Maximization (NUM) has emerged as a powerful framework for studying various
important resource allocation problems, see, e.g., [64, 15, 13, 14]. The vast majority of  the
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work in this area is based on the dual decomposition approach introduced in [15]. Here,
the optimal bandwidth sharing among S flows in a data network is posed as the optimizer
of  a convex optimization problem

maximize
x

∑
s us(xs)

subject to Rx ≤ c
xs ∈ [ms,Ms].

(4.30)

Here, xs is the communication rate of  flow s, and us(xs) is a strictly concave and increasing
function that describes the utility that source s has of  communicating at rate xs. The
communication rate is subject to upper and lower bounds. Finally, R ∈ {0, 1}L×S is a
routing matrix whose entries Rℓs = 1 if  flow s traverses link ℓ and Rℓs = 0 otherwise. In
this way, Rx is the total traffic on links that cannot exceed the link capacities c ∈ Rn. We
make the following assumptions.

Assumption 4.2 For the problem (4.30) it holds that

(i) Each us(xs) is twice continuously differentiable and satisfies 0 < µ < −∇2us(xs) <
L for xs ∈ [ms,Ms].

(ii) For every link ℓ, there exists a source s whose flow only traverses ℓ, i.e., Rℓs = 1 and
Rℓ′s = 0 for all ℓ′ ̸= ℓ.

While these assumptions appear restrictive, they are often postulated in the literature
(e.g., [15, Assumptions C1-C4]). Note that under Assumption 4.2, the routing matrix has
full row-rank and all the link constraints hold with equality at optimum. Hence, we can
replace Rx ≤ c in (4.30) with Rx = c. Following the steps of  the dual ascent method in
Section 4.4, we have the following primal-dual iterations

x(k+1)
s = argmax

z∈[ms,Ms]

us(z)− z
∑
ℓ

Rℓsy
(k)
ℓ (4.31)

y
(k+1)
ℓ = y

(k)
ℓ + α

(∑
ℓ

Rℓsx
(k+1)
s − cℓ

)
. (4.32)

Note that each source solves a localized minimization problem based on the sum of  the
Lagrange multipliers for the links that the flow traverses; this information can be effectively
signaled back to the source explicitly or implicitly using the end-to-end acknowledgements.
The Lagrange multipliers, on the other hand, are updated by individual links based on the
difference between the total traffic imposed by the sources and the capacity of  link. Clearly,
this information is also locally available. It is possible to show that under the conditions of
Assumption 4.2, the dual function is strongly concave, differentiable, and has a Lipschitz-
continuous gradient [15]. Hence, by standard arguments, the updates (4.31) and (4.32)
converge to a primal-dual optimal point (x⋆, y⋆) for appropriately chosen step-size α. Our
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results from Section 4.4 indicate that substantially improved convergence factors could be
obtained by the following class of  multi-step updates of  the Lagrange multipliers

y
(k+1)
ℓ = y

(k)
ℓ + α

(∑
ℓ

Rℓsx
(k+1)
s − cℓ

)
+ β(y

(k)
ℓ − y

(k−1)
ℓ ). (4.33)

To tune the step-sizes in an optimal way, we bring the techniques from Section 4.4 into
action. To do so, we first bound the eigenvalues of RR⊤ using the following result:

Lemma 4.4
Let R ∈ {0, 1}L×S satisfy Assumption 4.2. Then

1 ≤ λ1(RR
⊤), λn(RR

⊤) ≤ ℓmaxsmax,

where ℓmax = maxs
∑

ℓRℓs and smax = maxℓ
∑

sRℓs.

The optimal step-size parameters and corresponding convergence factor now follow
from Lemma 4.4 and Theorem 4.2:

Proposition 4.7
Consider the NUM problem (4.30) under Assumption 4.2. Then, for 0 ≤ β < 1 and
0 < α < 2(1 + β)/(Lℓmaxsmax), the iterations (4.31) and (4.33) converge linearly to a
primal-dual optimal pair. The step-sizes

α =

(
2√

Lℓmaxsmax +
√
µ

)2

, β =

(√
Lℓmaxsmax −

√
µ

√
Lℓmaxsmax +

√
µ

)2

,

ensure that the convergence factor of  the dual iterates is

q NUM =

√
Lℓmaxsmax −

√
µ

√
Lℓmaxsmax +

√
µ
.

Note that an upper bound on the Hessian of  the dual function was also derived in [15].
However, strong concavity was not explored and the associated bounds were not derived.

We now comment on the steady behavior of  accelerated link price algorithm (4.33).
From the saturation of  link traffics due to Assumption 4.2 as k → ∞, close to the
equilibrium, we have

α

(∑
ℓ

Rℓsx
(k)
s − cℓ

)
→ 0.

Therefore, for large values of k, we approximate the link price updates (4.33) as

y
(k+1)
ℓ = y

(k)
ℓ + β

(
y
(k)
ℓ − y

(k−1)
ℓ

)
y
(k+1)
ℓ − y⋆ℓ = y

(k)
ℓ − y⋆ℓ + β

((
y
(k)
ℓ − y⋆ℓ

)
−
(
y
(k−1)
ℓ − y⋆ℓ

))
e
(k+1)
ℓ = e

(k)
ℓ + β

(
e
(k)
ℓ − e

(k−1)
ℓ

)
,

(4.34)
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Figure 4.5: Convergence of  Low-Lapsley [15] and multi-step. Plot shows log-scale of  the
Euclidian distance from optimal source rates ∥x(k)s − x⋆s∥2 vs. the iteration count k.

where y⋆ℓ is the optimal price of  link ℓ and e(k)ℓ ≜ y
(k)
ℓ − y⋆ℓ is the discrepancy between the

current price and the optimal price of  link ℓ. It is easy to note that (4.34) corresponds to a
Proportional-Derivative (PD) controller for driving the price of  link ℓ to its optimal value.
Hence, it is obvious that asymptotically (4.33) behaves like a PD controller.

To compare the gradient iterations with the multi-step congestion control mechanism,
we present representative results from a network with 10 links and 20 flows which satisfies
Assumption 4.2. The utility functions are of  the form −(Ms − xs)

2/2 with ms = 0 and
Ms = 105 for all sources. As shown in Figure 4.5, substantial speedups are obtained.

As a final remark, note that Lemma 4.4 underestimates λ1 and overestimates λn, so we
have no formal guarantee that the multi-step method will always outperform the gradient-
based algorithm. However, in our experiments with a large number of  randomly generated
networks, the disadvantageous situation identified in Section 4.5 never occurred.

4.7 Summary

In this chapter, we studied accelerated gradient methods for distributed optimization
problems. In particular, we considered problems with twice differentiable strongly convex
cost functions subject to a set of  network constraints. Given the bounds of  the Hessian
of  the objective function and the Laplacian of  the underlying communication graph, we
derived primal and dual multi-step techniques that allow improving the convergence factors
significantly compared to the standard gradient-based techniques.

We derived optimal parameters and convergence factors, and characterized the robust-
ness of  our tuning rules to errors that occur when critical problem parameters are not
known but have to be estimated. Our multi-step techniques were applied to three classes
of  problems: distributed resource allocation under a network-wide resource constraint,
distributed averaging, and Internet congestion control. We demonstrated, both analytically
and through numerical simulations, that the approaches developed in this chapter signifi-
cantly outperform alternatives from the literature.





Appendix

4.A Network optimization with coupled costs and higher dimen-
sional variables

The proposed method in this chapter is indeed applicable for a class of  problems of  the
general form (4.1). However, there exist several applications that can be cast as this form.
Apart from the examples presented in the chapter, here we consider a form of  coupled cost
functions and convert it into the canonical form (4.1). Consider the following problem

minimize
∑

i∈V,j∈Ci
fi(xi, xj)

subject to Ax = b,

where Ci ⊆ Ni is the set of  neighbors j ∈ Ni such that fi depends on their decision
variable xj . Moreover, A ∈ Rm×n and x ∈ Rn is a vector consisting of  local decision
variables xi ∈ R. One can recast the former problem into

minimize
∑

i∈V,j∈Ci
fi(xi, xij)

subject to Ax = b
xij = xj , ∀i ∈ V, j ∈ Ci,

where xij is a local copy of  the general variable xj . Define zi ∈ R|Ci| as the vector of  local
copies {xij |j ∈ Ci} at agent i. For each agent i, the last constraint in the aforementioned
problem can be written as Eix = zi where Ei ∈ R|Ci|×n, and is defined in the following
way. Assume that them-th component (m < |Ci|) of zi is xik thenm-th row ofEi is all zeros
except the k-th column that equals 1. Now, letting z ≜ [{z⊤i }|V|

i=1]
⊤ and E ≜ [{E⊤

i }|V|
i=1]

⊤

be the stacked matrices of  the newly defined variables, one can obtain the general problem
formulation

minimize
∑

i fi(xi)

subject to
[
A 0
E −I

]
︸ ︷︷ ︸

Â

[
x
z

]
︸︷︷︸
x̂

=

[
b
0

]
︸︷︷︸

b̂

,

where xi ≜
[
xi z⊤i

]⊤ is the local decision vector. Given that b belongs to the column space
of A, it can be observed that Âx̂ = b̂ is also feasible. Therefore, we have reformulated an
originally coupled problem into the canonical form (4.1) with decoupled cost functions. One

61
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might apply the results of  either multi-step gradient technique or the dual ascent method to
accelerate this problem.

Above arguments can be generalized to those problems with local variables of  higher
dimensions. Particularly, in the case of  vector valued decision variables, one needs to
augment the constraint matrix A and the weight matrix W in the following way. Consider
|V| number of  agents with local decision variables xi ∈ Rni that aim at solving (4.1).
Assume that the stack vector x lives in Rn with n =

∑
i∈V ni. One has to update the

constraint matrix A, as A = [A1 . . . A|V|] ∈ Rm×n where Ai ∈ Rm×ni is the constraint
matrix for agent i. The smoothness assumption of  the cost function of  each agent takes
the form liIni ⪯ ∇2fi(xi) ⪯ uiIni , ∀xi for nonzero li, ui ∈ R+, under which the strong
convexity constant µ and Lipschitz-continuity constant L remain untapped as in (4.3).

The sparsity pattern of  the wight matrix W ∈ Rn×n is defined as Wij = 0ni×nj if
i ̸= j and {i, j} /∈ E . The results of  the rest of  the chapter will hold with aforementioned
extended dimensions.

4.B Heuristic weights for weighted gradient method

Consider the resource allocation problem in Example 4.1 and the weighting matrix W in
the associated weighted gradient iterates (4.6) to solve it.

One heuristic matrix that satisfies these constraints on W is the Laplacian of  the
underlying graph. Recall from Chapter 2 that L = D − A with D and A being the
degree and the adjacency matrices defined on G, respectively. To ensure convergence of
the iteration (4.6), the Laplacian has to be appropriately scaled W = −δL for some δ ∈ R.
Note that the Laplacian weights relevant to a specific node can be determined using local
topology information. But W = −δL might need some global information depending on
δ. Specifically, we have

Wij =

 δ (i, j) ∈ E ,
−δdi i = j,
0 otherwise,

(4.35)

where di is the degree of  node i; i.e., we have di = Dii. Following the notation in [63], we
call these weights constant since they assign a constant weight to all edges and then adjust
Wii such thatW1 = 0. Several heuristic weight choices are introduced in [63] that include:
the max-degree weights where δ = −1/(maxi∈V diui); the best constant weights, for which
δ = −2/(λ2(L) + λn(L)); and the locally determined Metropolis-Hasting weights

Wij =


−min{1/(diui), 1/(djuj)} {i, j} ∈ E ,
−
∑

k∈Ni
Wik i = j,

0 otherwise.
(4.36)
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4.C Proofs

Here we present the proofs of  the chapter.

4.C.1 Proof of Theorem 4.1

Let x⋆ be the optimizer of (4.1). The Taylor series expansion of ∇f
(
x(k)

)
around x⋆ yields

W∇f
(
x(k)

) ∼=W (∇f(x⋆) +∇2f(x⋆)(x(k) − x⋆))

=W∇2f(x⋆)(x(k) − x⋆)

≜WH(x(k) − x⋆),

where the first identity holds because W∇f(x⋆) = 0 due to (4.5) and (4.7). Introducing
z(k) ≜ [x(k) − x⋆, x(k−1) − x⋆]⊤, we can thus re-write (4.8) as

z(k + 1) =
[
C −βI
I 0

]
︸ ︷︷ ︸

Γ

z(k) + o(z(k)2), (4.37)

whereC ≜ (1+β)I−αWH . Now, for non-zero vectors v1 and v2, consider the eigenvalue
equation [

C −βI
I 0

] [
v1
v2

]
= ϕ(Γ)

[
v1
v2

]
.

Since v1 = ϕ(Γ)v2, the first row can be re-written as(
−ϕ2(Γ)I + ϕ(Γ)C − βI

)
v2 = 0. (4.38)

Note that (4.38) is a polynomial in C and C is in turn a polynomial in WH . Hence, if λ
denotes an eigenvalue of WH , we have

ϕ2(Γ)− (1 + β − αλ)ϕ(Γ) + β = 0. (4.39)

The roots of  (4.39) have the form

ϕ(Γ) =
1 + β − αλ±

√
∆

2
, ∆ = (1 + β − αλ)

2 − 4β. (4.40)

If ∆ ≥ 0, then |ϕ(Γ)| < 1 is equivalent to

(1 + β − αλ)
2 − 4β ≥ 0

− 2 < 1 + β − αλ±
√

(1 + β − αλ)2 − 4β < 2,

which, after simplifications, yields 0 < α < 2(1 + β)/λ.
Furthermore, if ∆ < 0, then |ϕ(Γ)| < 1 is equivalent to

0 ≤ (1 + β − αλ)2 −∆

4
< 1,
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which, after similar simplifications, implies 0 ≤ β < 1.
Note that the upper bound for α gives a necessary condition for λ. Here we find an

upper bound for this eigenvalue. Since H is a positive diagonal matrix, under similarity
equivalence we have WH ∼ H1/2WHH−1/2 = H1/2WH1/2. Without loss of  generality
assume x ∈ Rn and x⊤x = 1, then x⊤WHx = x⊤H1/2WH1/2x = y⊤Wy, where y =
H1/2x. Clearly, for y⊤Wy it holds that λ1(W )y⊤y ≤ y⊤Wy ≤ λn(W )y⊤y. Now,
µ ≤ y⊤y = x⊤Hx ≤ L, implies µλ1(W ) ≤ x⊤WHx ≤ Lλn(W ). Hence, a sufficient
condition on α reads

0 < α <
2(1 + β)

Lλn(W )
. (4.41)

Having proven the sufficient conditions for convergence stated in the theorem, we now
proceed to estimate the convergence factor. To this end, we need the following lemmas
describing the eigenvalue characteristics of WH and Γ.

Lemma 4.5
If W has m < n zero eigenvalues, then WH has exactly n − m nonzero eigenvalues,
i.e. λ1(WH) = · · · = λm(WH) = 0, and λi(WH) ̸= 0, for i = m+ 1, · · · , n.

Proof. From [99] we know that if  and only if  all the principal sub-matrices of  a matrix
have nonnegative determinants then that matrix is positive semi-definite. Note that the i-
th principal sub-matrix of WH , WHi, is obtained by multiplication of  the corresponding
principal sub-matrix of W , Wi by the same principal sub-matrix of H , Hi from the right,
and we have det(WHi) = det(Wi) det(Hi). We know det(Hi) > 0 and det(Wi) ≥ 0
because W ≥ 0, thus det(WHi) ≥ 0 and WH is positive semi-definite. Furthermore,
rank(WH) = rank(W ). So rank(WH) = n −m which means that WH has exactly m
zero eigenvalues.

Lemma 4.6
For any WH such that λi(WH) = 0 for i = 1, · · · ,m, and λi(WH) ̸= 0, for i =
m+ 1, ..., n., the matrix Γ has m eigenvalues equal to 1 and the absolute values of  the rest
of  the 2n−m eigenvalues are strictly less than 1.

Proof. For complex ϕi(Γ) we have |ϕi(Γ)| = β < 1. For real-valued ϕi(Γ), on the other
hand, the bound on α implies that α(λ(WH)) is a decreasing function of λ. In this case,
0 < α < 2(1+β)

λ
guarantees that 0 < α < 2(1+β)

λi(WH) for any 0 < λi(WH) ≤ λ. Note
that if  we set a tighter bound on α, then it does not change satisfactory condition for having
|ϕ(Γ)| < 1. Only when λi(WH) = 0, we have limx→0 α = ∞. For this case, if  we
substitute λi(WH) = 0 in (4.39) we obtain ϕ2i−1(Γ) = 1 and ϕ2i(Γ) = β < 1.

We are now ready to prove the remaining parts of  Theorem 4.1. By the lemmas above,
Γ has m < n eigenvalues equal to 1, which correspond to the m zero eigenvalues of W
implied by the optimality condition (4.7). Hence, minimizing m + 1-th largest eigenvalue
of  (4.37) leads to the optimal convergence factor of  the multi-step weighted gradient
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iterations (4.8). Calculating ϕΓ ≜ min
α,β

max
1≤j≤2n−m

|ϕj(Γ)| yields the optima α⋆ and β⋆.

Noting that eigenvalues of Γ are given by (4.40), we have

ϕΓ =
1
2
max

{
|1 + β − αλi|+

√
(1 + β − αλi)2 − 4β

}
,

where λi ≜ λi(WH), ∀i = m+ 1, .., n. There are two cases:
Case 1: (1 + β − αλi)

2 −4β ≥ 0. Then, a and b are non-negative and real with a ≥ b.
Hence, a2 − b2 ≥ (a− b)2 and consequently a+

√
a2 − b2 ≥ 2a− b ≥ b.

Case 2: (1 + β − αλi)
2 − 4β < 0. In this case, ϕi(Γ) is complex-valued. Consider

c, d ∈ R+ with c < d. Then, |c+
√
c2 − d| =

√
c2 − c2 + d =

√
d ≥ 2c−

√
d.

Substitute these results into ϕΓ with a = 1 + β − αλi, b = 2
√
β, c = |1 + β − αλi|,

and d = 4β, we get

ϕΓ ≥ max
{√

β,max
{
|1 + β − αλi| −

√
β
}}

,

which can be expressed in terms of λ and λ:

ϕΓ ≥ max
{√

β, |1 + β − αλ| −
√
β, |1 + β − αλ| −

√
β
}
. (4.42)

It can be verified that

max
{
|1 + β − αλ| −

√
β, |1 + β − αλ| −

√
β
}

≥ |1 + β − α′λ| −
√
β,

(4.43)

where α′ is such that |1 + β − α′λ| =
∣∣1 + β − α′λ

∣∣, i.e.,

α′ =
2(1 + β)

λ+ λ
. (4.44)

Combining (4.42), (4.43), and (4.44), we thus obtain

ϕΓ ≥ max

{√
β, (1 + β)

λ− λ

λ+ λ
−
√
β

}
. (4.45)

Again, the max-operator can be bounded from below by its value at the point where the
arguments are equal. To this end, consider β′ which satisfies

√
β′ = (1 + β′)λ−λ

λ+λ
−

√
β′,

that is,

β′ =

(√
λ−

√
λ√

λ+
√
λ

)2

. (4.46)

Since max
{√

β, (1 + β)λ−λ

λ+λ
−
√
β
}
≥

√
β′,we can combine this with (4.45) to conclude

that

ϕΓ ≥
√
β′ =

√
λ−

√
λ√

λ+
√
λ
. (4.47)

Our proof  is concluded by noting that equality in (4.47) is attained for the smallest non-zero
eigenvalue of Γ and the optimal step-sizes β⋆ and α⋆ stated in the body of  the theorem.
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4.C.2 Proof of Proposition 4.1

As shown in the proof  of  Theorem 4.1, the eigenvalues of WH are equal to those of
H1/2WH1/2. According to [99, p.225] for matrices W and H1/2WH1/2, there exists a
nonnegative real number θk such that λ1(H) ≤ θk ≤ λn(H) and λk(H1/2WH1/2) =
θkλk(W ). Letting k = m+ 1 and k = n, yields λ ≥ µλW and λ ≤ LλW . The rest of  the
proof  is similar to that of  Theorem 4.1 and is omitted for brevity.

4.C.3 Proof of Proposition 4.2

Direct calculations yield q⋆ = (
√
λ −

√
λ)/(

√
λ +

√
λ) = 1 − 2/((λ/λ)1/2 + 1).

Similarly, q̃ = 1 − 2/((λW /λW )1/2 + 1). Hence, minimizing q⋆ and q̃ are equivalent
to minimizing the condition number of WH and W , respectively.

4.C.4 Proof of Proposition 4.3

As shown in the proof  of  Theorem 1, the eigenvalues of WH are equal to those of Ω ≜
H1/2WH1/2. Thus, combined with the constraint that W ⪰ 0 the problem of  minimizing
λ/λ is equivalent to minimizing L/µ, where L and µ are the largest and the smallest non-
zero eigenvalues of Ω. Next we will construct the constraint set of  this optimization problem.
First, recall that W should provide the sparsity pattern induced by G, i.e., W ∈ A. Second,
W fulfills (4.7). For the case that W is symmetric, this constraint can be rewritten in terms
of Ω in the form ΩV = H1/2WH1/2V = 0 where V = H−1/2A⊤. Third constraint
is to bound the remaining n − m eigenvalues of Ω away from zero. Let v ∈ Rn be a
column of i, and let v⊥ ∈ Rn be orthogonal to i. Since Ω ≥ 0 and Ωv = 0 then we
have x⊤Ωx > 0 ∀x ∈ v⊥. This condition is equivalent to P⊤ΩP > 0, where P =
[p1, p2, ..., pn−m] ∈ Rn×n−m is a matrix of  orthonormal vectors spanning the null space of
V ⊤. More explicitly, one can define this subspace by unit vectors satisfying p⊤i vj = 0, ∀i =
1, . . . , n−m, j = 1, . . . , n, p⊤i pk = 0, ∀i ̸= k. The optimization problem becomes

minimize L/µ
subject to µI ⪯ P⊤ΩP ⪯ LI,

W ∈ A, W ⪰ 0, ΩV = 0.

Denoting t = L/µ and γ = 1/µ, this problem can be recast as

minimize t
subject to I ⪯ γP⊤ΩP ⪯ tI, W ∈ A,

W ⪰ 0, ΩV = 0, γ > 0.
(4.48)

Finally, the constraint on γ in (4.48) can be omitted. Specifically, consider (W ⋆, α⋆, β⋆) to
be the joint-optimal weight and stepsizes given by (4.48) and (4.9), respectively. One can
replace any positive scale γW ⋆ in (4.9) and derive the step-sizes α = α⋆/γ and β = β⋆. It
is easy to check that the triple (γW ⋆, α, β) leads to an identical multi-step iterations (4.8) as
the optimal ones.
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4.C.5 Proof of Lemma 4.2

Since f is twice differentiable on [x⋆, x], we have

∇f
(
x
)
= ∇f(x⋆) +

∫ 1

0
∇2f(x⋆ + τ(x− x⋆))(x− x⋆)dτ

= A⊤y⋆ +H(x)(x− x⋆),

where we used the fact that ∇f(x⋆) = A⊤y⋆ and we introduced

H(x) =

∫ 1

0
∇2f(x⋆ + τ(x− x⋆))dτ.

By virtue of  Assumption 4.1, H(x) is symmetric and nonnegative definite and satisfies
µI ⪯ H(x) ⪯ LI [52]. Hence from (4.6) and (4.7)

∥x(k+1) − x⋆∥ = ∥x(k) − x⋆ − αW∇f
(
x(k)

)
∥

= ∥x(k) − x⋆ − αW (A⊤y⋆ +H(x(k))(x(k) − x⋆))∥
= ∥(I − αWH(x(k)))(x(k) − x⋆)∥
≤ ∥I − αWH(x(k))∥∥x(k) − x⋆∥.

The rest of  the proof  follows the same steps as [52, Theorem 3]. Essentially for fixed step-
size 0 < α < 2/λ, (4.6) converges linearly with factor q2 = max{|1 − αλ|, |1 − αλ|}. The
minimum convergence factor q⋆G = λ−λ

λ+λ
is obtained by minimizing qG over α, which yields

the optimal step-size α⋆ = 2
λ+λ

.

4.C.6 Proof of Proposition 4.4

According to Lemma 4.2, the weighted gradient iterations (4.6) with estimated step-size
α̃ = 2/(λ˜ + λ̃) will converge provided that 0 < α̃ < 2/λ, i.e., when λ < λ˜ + λ̃. For the
multi-step algorithm (4.8), Theorem 4.1 guarantees convergence if 0 ≤ β̃ < 1, 0 < α̃ <

2(1+ β̃)/λ. The assumption 0 < λ˜ ≤ λ̃ implies that the condition on β̃ is always satisfied.
Regarding α̃, inserting the expression for β̃ in the upper bound for α̃ and simplifying yield

4(√
λ˜ +

√
λ̃
)2 < 2

2(λ̃+ λ)˜(√
λ̃+

√
λ˜
)2

1
λ
,

which is satisfied if 0 < λ < λ̃+ λ˜. The statement is proven.

4.C.7 Proof of Lemma 4.3

We consider two cases. First, when λ˜ + λ̃ < λ + λ combined with the assumption that
0 < λ < λ˜+ λ̃ yields α̃λ > 1, which means that |1 − α̃λ| = α̃λ− 1. Moreover, α̃λ− 1 ≥
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1 − α̃λ, so by Lemma 4.2,

q̃G = max{α̃λ− 1,max{1 − α̃λ, α̃λ− 1}} = α̃λ− 1 = 2λ/(λ˜ + λ̃)− 1.

The second case is when λ˜+ λ̃ > λ+λ. Then, α̃λ < 1 and hence |1− α̃λ| = 1− α̃λ.
Moreover, 1 − α̃λ ≥ α̃λ− 1, so

q̃G = max{1 − α̃λ,max{α̃λ− 1, 1 − α̃λ}} = 1 − α̃λ.

The convergence factor of  the multi-step iterations with inaccurate step-sizes (4.15)
follows directly from Theorem 4.1.

4.C.8 Proof of Proposition 4.5

We analyze the four quadrants Q1 through Q4 in order.

Q1 : when (ε˜, ε̃) ∈ Q1 we have λ˜ > λ and λ̃ > λ > λ. From the convergence factor
of  multi-step gradient method (4.17) it then follows that q̃ = 1 + β̃ − α̃λ− β̃1/2.

Moreover, since in this quadrant λ̃ + λ˜ ≥ λ + λ, from (4.16) we have q̃G =

1−2λ/(λ˜+ λ̃). A direct comparison between the two expressions yields that q̃ ≤ q̃G.

Q2 : when (ε˜, ε̃) ∈ Q2 we have λ < λ˜ and λ̃ < λ. Combined with the stability assumption
λ˜+λ̃ > λ, straightforward calculations show that the convergence factor of  the multi-
step iterations with inaccurate step-sizes (4.15) is

q̃ =

 α̃λ− β̃ − 1 −
√
β̃ λ̃+ λ̃ ≤ λ+ λ,

1 + β̃ − α̃λ−
√
β̃ otherwise.

Moreover, for this quadrant the convergence factor of  weighted gradient method is
given by (4.16). To verify that q̃ < q̃G, we perform the following comparisons:

(a) If λ˜+ λ̃ < λ+λ then we have q̃ = α̃λ− β̃−1− β̃1/2 and q̃G = (2λ)/(λ˜+ λ̃)−1.
To show that q̃ < q̃G, we rearrange it to obtain the following inequality

∆ ≜ (λ− λ̃+ λ̃1/2λ˜1/2)(λ̃+ λ˜)− 2λλ̃1/2λ˜1/2 < 0.

After simplifications

∆ = (λ̃1/2 − λ˜1/2)
(
−λ̃1/2(λ̃+ λ˜ − λ)− λ˜1/2λ

)
< 0.

Note that the negativity of  above quantity comes from the stability condition,
λ̃+ λ˜ > λ.

(b) If λ˜+λ̃ > λ+λ then we have q̃ = 1+β̃−α̃λ−(β̃)1/2 and q̃G = 1−(2λ)/(λ˜+λ̃).After some simplifications, we see that q̃ < q̃G boils down to the inequality

−(λ˜ + λ̃)λ˜1/2λ̃1/2 + 2λλ˜1/2λ̃1/2 − λ(λ˜ + λ̃) < 0,
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or equivalently −(λ˜+ λ̃− 2λ)λ˜1/2λ̃1/2 − λ(λ˜+ λ̃) < 0, which holds by noting that
λ˜ + λ̃ > λ+ λ > 2λ.

(c) for the case λ˜ + λ̃ = λ + λ, we have q̃ = 1 + β̃ − α̃λ − (β̃)1/2 and
q̃G = (λ − λ)/(λ + λ), which coincides with the optimal convergence factor of
unperturbed gradient method. After some rearrangements we notice that q̃ < q̃G
reduces to checking that (λ̃1/2 − λ˜1/2)(λ− λ) < (λ˜1/2 + λ̃1/2)(λ˜+ λ̃), which holds
since λ̃1/2 − λ˜1/2 < λ˜1/2 + λ̃1/2 and λ− λ < λ+ λ = λ˜ + λ̃.

Q3 : if (ε˜, ε̃) ∈ Q3 we have 0 < λ˜ < λ and λ̃ < λ. Combined with the stability assumption
λ̃+λ˜ > λ, one can verify that the convergence factors of  the two perturbed iterations
are q̃G = (2λ)/(λ˜+ λ̃)− 1 and q̃ = α̃λ− β̃− 1− (β̃)1/2, respectively. The fact that
q̃ < q̃G was proven in step (a) of  the analysis of Q2.

Q4 : if (ε˜, ε̃) ∈ Q4 then, (4.17) implies that q̃ = β̃1/2. On the other hand, for this
region, (4.16) yields q̃G = (λ−λ)/(λ+λ). To conclude, we need to verify that there
exists λ̃ and λ˜ such that q̃ > q̃G, i.e., (λ̃1/2−λ˜1/2)/(λ̃1/2+λ˜1/2) > (λ−λ)/(λ+λ).
We do so by multiplying both sides with (λ+λ)(λ̃1/2+λ˜1/2) and simplifying the result
to find that the inequality holds if λλ̃1/2 > λλ˜1/2, or equivalently λ̃/λ˜ > λ

2
/λ2. The

statement is proven.

4.C.9 Proof of Lemma 4.1

To prove (i), we exploit the equivalence of µ-strong convexity of f(·) and 1/µ-Lipschitz
continuity of ∇f⋆. Specially according to [105, Theorem 4.2.1], for nonzero z1, z2 ∈ Rn,
Lipschitz continuity of ∇f⋆ implies that

⟨∇f⋆(z1)−∇f⋆(z2), z1 − z2⟩ ≤
1
µ
∥z1 − z2∥2.

Now, for −∇d(z) = −A∇f⋆(−A⊤z) + b, change the right hand side of  the former
inequality to obtain

⟨−∇d(z1) +∇d(z2), z1 − z2⟩ = ⟨∇f⋆(−A⊤z1)−∇f⋆(−A⊤z2),−A⊤(z1 − z2)⟩.

In light of 1/µ-Lipschitzness of ∇f⋆, we get

⟨∇f⋆(−A⊤z1)−∇f⋆(−A⊤z2),−A⊤(z1 − z2)⟩ ≤
1
µ
∥A⊤(z1 − z2)∥2

≤ λn(AA
⊤)

µ
∥z1 − z2∥2.

(ii) According to [105, Theorem 4.2.2], If ∇f(·) is L-Lipschitz continuous then f⋆ is 1/L-
strongly convex, i.e., for non-identical z1, z2 ∈ Rn we have

⟨∇f⋆(z1)−∇f⋆(z2), z1 − z2⟩ ≥
1
L
∥z1 − z2∥2.
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One can manipulate above inequality as

⟨−∇d(z1) +∇d(z2), z1 − z2⟩
= ⟨∇f⋆(−A⊤z1)−∇f⋆(−A⊤z2),−A⊤(z1 − z2)⟩

≥ 1
L
∥ −A⊤(z1 − z2)∥2 ≥ λ1(AA

⊤)

L
∥z1 − z2∥2,

where the last inequality holds since A is of  full row rank.

4.C.10 Proof of Theorem 4.2

The result follows from Lemma 4.1 and Theorem 4.1 with W = I and noting that

λ1(AA
⊤)

L
I ⪯ H ⪯ λn(AA

⊤)

µ
I.

4.C.11 Proof of Proposition 4.6

The iterations (4.25) and (4.27) are equivalent when

1 − η = −β, (1 + β)I − αW = ηQ.

The first condition implies that η⋆ = 1 + β⋆. Combining this expression with the second
condition, we find

Q⋆ = I − α⋆

1 + β⋆
W ⋆ = I − 2

λ+ λ
W ⋆.

The proof  is completed by noting that for the consensus case, λ = λ2(W
⋆) and

λ = λn(W
⋆).

4.C.12 Proof of Lemma 4.4

For the upper bound on λn(RR⊤), we use a similar approach as [15, Lemma 3]. Specially,
from [99, p.313], it yields

λ2
n(RR

⊤) = ∥RR⊤∥2 ≤ ∥RR⊤∥∞∥RR⊤∥1 = ∥RR⊤∥2
∞.

Hence,

λn(RR
⊤) = max

ℓ

∑
ℓ′

[RR⊤]ℓℓ′ = max
ℓ

∑
ℓ′

∑
s

RℓsRℓ′s

≤ max
ℓ

∑
s

Rℓsℓmax ≤ smaxℓmax.
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To find a lower bound onλ1(RR
⊤), we consider the definitionλ1(RR

⊤) = min
∥x∥=1

∥R⊤x∥2.

We have

[R⊤x]s =

L∑
ℓ=1

R⊤
sℓxℓ =

L∑
ℓ=1

Rℓsxℓ.

According to Assumption 4.2, R⊤ has L independent rows that have only one non-zero
(equal to 1) component. Hence,

∥R⊤x∥2 =
L∑

s=1

x2
s +

S∑
s=S−L+1

(
L∑

ℓ=1

Rℓsxℓ

)2

= 1 +

n∑
s=S−L+1

(
L∑

ℓ=1

Rℓsxℓ

)2

≥ 1,

where the last equality is due to ∥x∥ = 1.





Chapter 5

Accelerating the
ADMM algorithm:

quadratic problems

IN the previous chapters, we mainly focused on gradient-like optimization algorithms and
studied different techniques to speed up the algorithms. The aim of  the next two chapters

is to contribute to the understanding of  the convergence properties of  the ADMM method.
We have chosen to focus on quadratic problems, since they allow for analytical tractability,
yet have vast applications in estimation [106], multi-agent systems [107] and control [108].
Furthermore, many complex problems can be reformulated as or approximated by QPs [4],
and optimal ADMM parameters for QPs can be used as a benchmark for more complex
ADMM sub-problems e.g., ℓ1-regularized problems [45].

In this chapter, we derive the algorithm parameters that minimize the convergence
factor of  the ADMM iterations for two classes of  quadratic optimization problems: ℓ2-
regularized quadratic minimization and quadratic programming with linear inequality
constraints. In both cases, we establish linear convergence rates and develop techniques
to minimize the convergence factors of  the ADMM iterates. These techniques allow
us to give explicit expressions for the optimal algorithm parameters and the associated
convergence factors. We also study over-relaxed ADMM iterations and demonstrate how
to jointly choose the ADMM parameter and the over-relaxation parameter to improve the
convergence times even further.

The chapter is organized as follows. Section 5.1 reviews the related literature. Sec-
tion 5.2 studies ℓ2-regularized quadratic programming and gives explicit expressions for the
jointly optimal step-size and acceleration parameter that minimize the convergence factor.
We then shift our focus to the quadratic programming with linear inequality constraints
and derive the optimal step-sizes for such problems in Section 5.3. We also consider two
acceleration techniques and discuss inexpensive ways to improve the speed of  convergence.
Our results are illustrated through numerical examples in Section 5.4. In Section 5.4
we perform an extensive Model Predictive Control (MPC) case study and evaluate the
performance of  ADMM with the proposed parameter selection rules. A comparison with
an accelerated ADMM method from the literature is also performed. Finally, Section 5.5

73
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summarizes the results of  the chapter.

5.1 Related work

ADMM is a powerful algorithm for solving structured convex optimization problems. While
the ADMM method was introduced for optimization in the 1970’s, its origins can be
traced back to techniques for solving elliptic and parabolic partial difference equations
developed in the 1950’s (see [45] and references therein). ADMM enjoys the strong
convergence properties of  the method of  multipliers and the decomposability property of
dual ascent, and is particularly useful for solving optimization problems that are too large
to be handled by generic optimization solvers. The method has found a large number of
applications in diverse areas such as compressed sensing [109], regularized estimation [110],
image processing [111], machine learning [112], and resource allocation in wireless
networks [113]. This broad range of  applications has triggered a strong recent interest in
developing a better understanding of  the theoretical properties of  ADMM [57, 114, 115].

Mathematical decomposition is a classical approach for parallelizing numerical op-
timization algorithms. If  the decision problem has a favorable structure, decomposition
techniques such as primal and dual decomposition allow to distribute the computations
on multiple processors [116, 95]. The processors are coordinated towards optimality by
solving a suitable master problem, typically using gradient or sub-gradient techniques.
If  problem parameters such as Lipschitz constants and convexity parameters of  the cost
function are available, the optimal step-size parameters and associated convergence rates
are well-known [50]. A drawback of  the gradient method is that it is sensitive to the choice
of  the step-size, even to the point where poor parameter selection can lead to algorithm
divergence. In contrast, the ADMM technique is surprisingly robust to poorly selected
algorithm parameters: under mild conditions, the method is guaranteed to converge for all
positive values of  its single parameter. Recently, an intense research effort has been devoted
to establishing the rate of  convergence of  the ADMM method. It is now known that if  the
objective functions are strongly convex and have Lipschitz-continuous gradients, then the
iterates produced by the ADMM algorithm converge linearly to the optimum in a certain
distance metric e.g., [57]. The application of  ADMM to quadratic problems was considered
in [115] and it was conjectured that the iterates converge linearly in the neighborhood of
the optimal solution. It is important to stress that even when the ADMM method has linear
convergence rate, the number of  iterations ensuring a desired accuracy, i.e., the convergence
time, is heavily affected by the choice of  the algorithm parameter. We will show that a
poor parameter selection can result in arbitrarily large convergence times for the ADMM
algorithm.

To the best of  our knowledge, this is one of  the first works that addresses the problem
of  optimal parameter selection for ADMM. A few recent papers have focused on the
optimal parameter selection of  ADMM algorithm for some variations of  distributed convex
programming subject to linear equality constraints e.g., [117, 118]. Moreover, [57] has
recommended certain choices of  the step-size parameter for the case when objective
functions are strongly convex, have Lipschitz-continuous gradients, and the constraint
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matrices satisfy some full-rank assumptions. Compared to their results, we offer tighter
bounds to compute the step-size parameter for quadratic programing problems.

In the rest of  this chapter, we will consider the traditional ADMM iterations (2.15)
and the relaxed version (2.19) for different classes of  quadratic problems, and derive
explicit expressions for the step-size ρ and the relaxation parameter α that minimize the
convergence factors.

5.2 Optimal convergence factor for ℓ2-regularized quadratic mini-
mization

Regularized estimation problems

minimize f(x) +
δ

2
∥x∥qp,

where δ ∈ R++ are abound in statistics, machine learning, and control. In particular,
ℓ1-regularized estimation where f(x) is quadratic and p = q = 1, and sum of  norms
regularization where f(x) is quadratic, p = 2, and q = 1, have recently received significant
attention [119]. In this section we will focus on ℓ2-regularized estimation, where f(x) is
quadratic and p = q = 2, i.e.,

minimize
x,z

1
2
x⊤Qx+ q⊤x+

δ

2
∥z∥2

subject to x− z = 0,
(5.1)

for Q ∈ Sn
++, x, q, z ∈ Rn and constant regularization parameter δ ∈ R++. While

these problems can be solved explicitly and do not motivate the ADMM machinery per
se, they provide insight into the step-size selection for ADMM and allow us to compare the
performance of  an optimally tuned ADMM to direct alternatives (see Section 5.4).

5.2.1 Standard ADMM iterations

The standard ADMM iterations are given by

x(k+1) = (Q+ ρI)−1(ρz(k) − y(k) − q),

z(k+1) =
y(k) + ρx(k+1)

δ + ρ
,

y(k+1) = y(k) + ρ(x(k+1) − z(k+1)).

(5.2)

The z-update implies that y(k) = (δ+ρ)z(k+1)−ρx(k+1), so the y-update can be re-written
as

y(k+1) = (δ + ρ)z(k+1) − ρx(k+1) + ρ(x(k+1) − z(k+1)) = δz(k+1).

Hence, to study the convergence of  (5.2) one can investigate how the errors associated with
x(k) or z(k) vanish. Inserting the x-update into the z-update and using the fact that y(k) =
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δz(k), we find

z(k+1) =
1

δ + ρ

(
δI + ρ(ρ− δ) (Q+ ρI)

−1
)

︸ ︷︷ ︸
E

z(k)

− ρ

δ + ρ
(Q+ ρI)−1q.

(5.3)

Let z⋆ be a fixed-point of (5.3), i.e. z⋆ = Ez⋆ − ρ(Q+ ρI)−1

δ + ρ
q. The dual error e(k+1) ≜

z(k+1) − z⋆ then evolves as

e(k+1) = Ee(k). (5.4)

A direct analysis of  the error dynamics (5.4) allows us to characterize the convergence of
(5.2):

Theorem 5.1
For all values of  the step-size ρ > 0 and regularization parameter δ > 0, both x(k) and
z(k) in the ADMM iterations (5.2) converge to x⋆ = z⋆, the solution of  optimization
problem (5.1). Moreover, z(k+1) − z⋆ converges at linear rate ζ ∈ (0, 1) for all k ≥ 0
where

ζ ≜ lim sup
k→∞

∥z(k+1) − z⋆∥
∥z(k) − z⋆∥

.

The pair of  the optimal constant step-size ρ⋆ and convergence factor ζ⋆ are given as

ρ⋆ =


√
δλ1(Q) if δ < λ1(Q),√
δλn(Q) if δ > λn(Q),

δ otherwise.
ζ⋆ =



(
1 +

δ + λ1(Q)

2
√
δλ1(Q)

)−1

if δ < λ1(Q),(
1 +

δ + λn(Q)

2
√
δλn(Q)

)−1

if δ > λn(Q),

1
2

otherwise.
(5.5)

Proof. See Appendix 5.A for all proofs of  this chapter.

Corollary 5.1
Consider the error dynamics described by (5.4) and E in (5.3). For ρ = δ,

λi(E) = 1/2, i = 1, . . . , n,

and the convergence factor of  the error dynamics (5.4) is independent of Q.
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Remark 5.1 Note that the convergence factors in Theorem 5.1 and Corollary 5.1 are
guaranteed for all initial values, and that iterates generated from specific initial values might
converge even faster. Furthermore, the results focus on the dual error. For example, in
Algorithm (5.2) with ρ = δ and initial condition z(0) = 0, y(0) = 0, the x-iterates converge
in one iteration since x1 = −(Q + δI)−1q = x⋆. However, the constraint in (5.1) is not
satisfied and a straightforward calculation shows that e(k+1) = 1/2e(k). Thus, although
x(k) = x⋆ for k ≥ 1, the dual residual ∥e(k)∥ = ∥z(k) − z⋆∥ decays linearly with a factor
of 1/2.

Remark 5.2 The analysis above also applies to the more general case with cost function
1
2
x̄⊤Q̄x̄+ q̄⊤x̄+

δ

2
z̄⊤P̄ z̄ where P̄ ∈ Sn

++. A change of  variables x = P̄ 1/2x̄, z = P̄ 1/2z̄,

q = P̄−1/2q̄, and Q = P̄−1/2Q̄P̄−1/2 is then applied to transform the problem into the
form (5.1).

5.2.2 Over-relaxed ADMM iterations

Recall from Section 2.2.3 that the over-relaxed ADMM iterations for (5.1) can be found by
replacing x(k+1) by αx(k+1) + (1 − α)z(k) in the z- and y- updates of (5.2). The resulting
iterations take the form

x(k+1) = (Q+ ρI)−1(ρz(k) − y(k) − q),

z(k+1) =
y(k) + ρ(αx(k+1) + (1 − α)z(k))

δ + ρ
,

y(k+1) = y(k) + ρ
(
α(x(k+1) − z(k+1)) + (1 − α)

(
z(k) − z(k+1))) . (5.6)

The next result demonstrates that in a certain range ofα it is possible to obtain a guaranteed
improvement of  the convergence factor compared to the classical iterations (5.2).

Theorem 5.2
Consider the ℓ2-regularized quadratic minimization problem (5.1) and its associated over-
relaxed ADMM iterations (5.6). For all positive step-sizes ρ > 0 and all relaxation
parameters

α ∈
(

0, 2 min
i

{
(λi(Q) + ρ)(ρ+ δ)

ρδ + ρλi(Q)

})
,

the iterates x(k) and z(k) converge to the solution of (5.1). Moreover, z(k+1)−z⋆ converges
at linear rate ζR ∈ [0, 1) for all k ≥ 0. For a given step-size ρ, the convergence factor
ζR < 1 is strictly smaller than that of  the classical ADMM algorithm (5.2) if

α ∈
(

1, 2 min
i

{
(λi(Q) + ρ)(ρ+ δ)

ρδ + ρλi(Q)

})
.

The jointly optimal step-size, relaxation parameter, and the convergence factor (ρ⋆, α⋆, ζ⋆R)
are given by

ρ⋆ = δ, α⋆ = 2, ζ⋆R = 0. (5.7)

With these parameters, the ADMM iterations converge in one iteration.
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Remark 5.3 The upper bound on α which ensures faster convergence of  the over-relaxed
ADMM iterations (5.6) compared to (5.2) depends on the eigenvalues of Q, λi(Q), which
might be unknown. However, since (ρ+ δ)(ρ+ λi(Q)) > ρ(λi(Q) + δ) the over-relaxed
iterations are guaranteed to converge faster for all α ∈ (1, 2], independently of Q.

5.3 Optimal convergence factor for quadratic programming

In this section, we consider a QP problem of  the form

minimize
x

1
2
x⊤Qx+ q⊤x

subject to Ax ≤ c,
(5.8)

where Q ∈ Sn
++, q ∈ Rn, A ∈ Rm×n is full rank and c ∈ Rm.

5.3.1 Standard ADMM iterations

The QP-problem (5.8) can be put on ADMM standard form (2.14) by introducing a slack
vector z and putting an infinite penalty on negative components of z, i.e.

minimize
1
2
x⊤Qx+ q⊤x+ I+(z)

subject to Ax− c+ z = 0,
(5.9)

where I+(·) is the indicator function of  the positive orthant defined as the following

I+(z) =
{

0 for z ≥ 0,
+∞ otherwise.

The associated augmented Lagrangian is

Lρ(x, z, u) =
1
2
x⊤Qx+ q⊤x+ I+(z) +

ρ

2
∥Ax− c+ z + u∥2,

where u = y/ρ, which leads to the scaled ADMM iterations

x(k+1) = −(Q+ ρA⊤A)−1[q + ρA⊤(z(k) + u(k) − c)],
z(k+1) = max{0,−Ax(k+1) − u(k) + c},
u(k+1) = u(k) +Ax(k+1) − c+ z(k+1).

(5.10)

To study the convergence of (5.10) we rewrite it in an equivalent form with linear time-
varying matrix operators. To this end, we introduce a vector of  indicator variables d(k) ∈
{0, 1}n such that d(k)i = 0 if u(k)i = 0 and d(k)i = 1 if u(k)i ̸= 0. From the z- and u- updates
in (5.10), one observes that z(k)i ̸= 0 → u

(k)
i = 0, i.e., u(k)i ̸= 0 → z

(k)
i = 0. Hence,

d
(k)
i = 1 means that at the current iterate, the slack variable zi in (5.9) equals zero; i.e.,

the i-th inequality constraint in (5.8) is active. We also introduce the variable vector v(k) ≜
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z(k) +u(k) and let D(k) = diag(d(k)) so that D(k)v(k) = u(k) and (I −D(k))v(k) = z(k).
Now, the second and third steps of (5.10) imply that

v(k+1) =
∣∣∣Ax(k+1) + u(k) − c

∣∣∣ = F (k+1)(Ax(k+1) +D(k)v(k) − c),

where F (k+1) ≜ diag
(
sign(Ax(k+1) +D(k)v(k) − c)

)
and sign(·) returns the signs of  the

elements of  its vector argument. Hence, (5.10) becomes

x(k+1) = −(Q+ ρA⊤A)−1[q + ρA⊤(v(k) − c)],
v(k+1) =

∣∣Ax(k+1) +D(k)v(k) − c
∣∣ = F (k+1)(Ax(k+1) +D(k)v(k) − c),

D(k+1) =
1
2
(I + F (k+1)),

(5.11)

where the D(k+1)-update follows from the observation that

(D
(k+1)
ii , F

(k+1)
ii ) =

{
(0, −1) if v

(k+1)
i = −(Ax

(k+1)
i + u

(k)
i − c)

(1, 1) if v
(k+1)
i = Ax

(k+1)
i + u

(k)
i − c

Since the v(k)-iterations will be central in our analysis, we will develop them further.
Inserting the expression for x(k+1) from the first equation of (5.11) into the second, we
find

v(k+1) = F (k+1)
((

d(k) −A(Q/ρ+A⊤A)−1A⊤
)
v(k)

)
− F (k+1)

(
A(Q+ ρA⊤A)−1(q − ρA⊤c) + c

)
.

(5.12)

Noting that D(k) =
1
2
(I + F (k)) and introducing

M ≜ A(Q/ρ+A⊤A)−1A⊤, (5.13)

we obtain

F (k+1)v(k+1) − F (k)v(k) =

(
I

2
−M

)
(v(k) − v(k−1)) +

1
2

(
F (k)v(k) − F (k−1)v(k−1)

)
.

(5.14)
We now relate v(k) and F (k)v(k) to the primal and dual residuals, r(k) and s(k), defined in
(2.17) and (2.18):

Proposition 5.1
Consider r(k) and s(k) the primal and dual residuals of  the QP-ADMM algorithm (5.10)
and auxiliary variables v(k) and F (k). The following relations hold

F (k+1)v(k+1) − F (k)v(k) = r(k+1) − 1
ρ
A†s(k+1) −ΠN (A⊤)(z

(k+1) − z(k)), (5.15)

v(k+1) − v(k) = r(k+1) +
1
ρ
A†s(k+1) +ΠN (A⊤)(z

(k+1) − z(k)), (5.16)



80 | Accelerating the ADMM algorithm: quadratic problems

∥r(k+1)∥ ≤ ∥F (k+1)v(k+1) − F (k)v(k)∥, (5.17)

∥s(k+1)∥ ≤ ρ∥A∥∥F (k+1)v(k+1) − F (k)v(k)∥, (5.18)

where

(i) A† = A(A⊤A)−1 and ΠN (A⊤) = I −A(A⊤A)−1A⊤, if A has full column-rank;

(ii) A† = (AA⊤)−1A and ΠN (A⊤) = 0, if A has full row-rank;

(iii) A† = A−1 and ΠN (A⊤) = 0, if A is invertible.

The next theorem guarantees that (5.14) converges linearly to zero in the auxiliary
residuals (5.15) which implies R-linear convergence of  the ADMM algorithm (5.10) in
terms of  the primal and dual residuals. The optimal step-size ρ⋆ and the smallest achievable
convergence factor are characterized immediately afterwards.

Theorem 5.3
Consider the QP (5.8) and the corresponding ADMM iterations (5.10). For all values of  the
step-size ρ ∈ R++ the residual F (k+1)v(k+1) − F (k)v(k) converges to zero at linear rate.
Furthermore, r(k) and s(k), the primal and dual residuals of (5.10), converge R-linearly to
zero.

Theorem 5.4
Consider the QP problem (5.8) and the corresponding ADMM iterations (5.10). If  the
constraint matrix A is either full row-rank or invertible then the optimal step-size and
convergence factor for the F (k+1)v(k+1) − F (k)v(k) residuals are

ρ⋆ =

(√
λ1(AQ−1A⊤)λn(AQ−1A⊤)

)−1

,

ζ⋆ =
λn(AQ

−1A⊤)

λn(AQ−1A⊤) +
√
λ1(AQ−1A⊤)λn(AQ−1A⊤)

.

(5.19)

Although the convergence result of  Theorem 5.3 holds for all QPs of  the form (5.8),
optimality of  the step-size choice proposed in Theorem 5.4 is only established for problems
where the constraint matrix A has full row-rank or it is invertible. However, as shown next,
the convergence factor can be arbitrarily close to 1 when rows of A are linearly dependent.

Theorem 5.5
Define variables

ϵk ≜ ∥M(v(k) − v(k−1))∥
∥F (k)v(k) − F (k−1)v(k−1)∥

, δk ≜ ∥D(k)v(k) −D(k−1)v(k−1)∥
∥F (k)v(k) − F (k−1)v(k−1)∥

,

ζ̃(ρ) ≜ max
i: λi(AQ−1A⊤)>0

{∣∣∣∣ ρλi(AQ
−1A⊤)

1 + ρλi(AQ−1A⊤)
− 1

2

∣∣∣∣+ 1
2

}
,

and ζ(k) ≜ |δk − ϵk|.
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The convergence factor ζ of  the residual F (k+1)v(k+1)−F (k)v(k) is lower bounded by

ζ ≜ max
k

ζ(k) < 1. (5.20)

Furthermore, given an arbitrarily small ξ ∈ (0, 1
2 ) and ρ > 0, we have the following results:

(i) the inequality ζ < ζ̃(ρ) < 1 holds for all δk ∈ [0, 1] if  and only if  the nullity of A is
zero;

(ii) when the nullity of A is nonzero and ϵk ≥ 1 − ξ, it holds that ζ ≤ ζ̃(ρ) +

√
ξ

2
;

(iii) when the nullity of A is nonzero, δk ≥ 1 − ξ, and

∥ΠN (A⊤)(v
(k) − v(k−1))∥

∥v(k) − v(k−1)∥
≥
√

1 − ξ2/∥M∥2,

it follows that ζ ≥ 1 − 2ξ.

The previous result establishes that slow convergence can occur locally for any value of
ρ when the nullity of A is nonzero and ξ is small. However, as section (ii) of  Theorem 5.5
suggests, in these cases, (5.19) can still work as a heuristic to reduce the convergence time if
λ1(AQ

−1A⊤) is taken as the smallest nonzero eigenvalue of AQ−1A⊤. In Section 5.4, we
show numerically that this heuristic performs well with different problem setups.

5.3.2 Over-relaxed ADMM iterations

Consider the relaxation of (5.10) obtained by replacing Ax(k+1) in the z- and u-updates
with αAx(k+1) − (1 − α)(z(k) − c). The corresponding relaxed iterations read

x(k+1) = −(Q+ ρA⊤A)−1
[
q + ρA⊤(z(k) + u(k) − c)

]
,

z(k+1) = max
{

0,−α(Ax(k+1) − c) + (1 − α)z(k) − u(k)
}
,

u(k+1) = u(k) + α(Ax(k+1) + z(k+1) − c) + (1 − α)(z(k+1) − z(k)).

(5.21)

In next, we study convergence and optimality properties of  these iterations. We observe:

Lemma 5.1
Any fixed-point of (5.21) corresponds to a global optimum of (5.9).

Like the analysis of (5.10), introduce v(k) = z(k) + u(k) and d(k) ∈ Rn with d(k)i = 0
if u(k)i = 0 and d(k)i = 1 otherwise. Adding the second and the third step of (5.21) yields
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v(k+1) =
∣∣α(Ax(k+1) − c)− (1 − α)z(k) + u(k)

∣∣. Moreover, D(k) = diag(d(k)) satisfies
D(k)v(k) = u(k) and (I −D(k))v(k) = z(k), so (5.21) can be rewritten as

x(k+1) = −(Q+ ρA⊤A)−1
[
q + ρA⊤(v(k) − c)

]
,

v(k+1) = F (k+1)
(
α
(
Ax(k+1) +D(k)v(k) − c

) )
− F (k+1)

(
(1 − α)(I − 2D(k))v(k)

)
,

D(k+1) =
1
2
(I + F (k+1)),

(5.22)

where

F (k+1) ≜ diag
(

sign
(
α(Ax(k+1) +D(k)v(k) − c)− (1 − α)(I − 2D(k))v(k)

))
.

Defining M ≜ A(Q/ρ + A⊤A)−1A⊤ and substituting the expression for x(k+1) in (5.22)
into the expression for v(k+1) yields

v(k+1) = F (k+1)
((

−αM + (2 − α)D(k) − (1 − α)I
)
v(k)

)
− F (k+1)

(
αA(Q+ ρA⊤A)−1(q − ρA⊤c) + αc

)
.

(5.23)

As in the previous section, we replaceD(k) by
1
2
(I+F (k)) in (5.23) and formF (k+1)v(k+1)−

F (k)v(k):

F (k+1)v(k+1) − F (k)v(k) =
α

2
(I − 2M)

(
v(k) − v(k−1)

)
+ (1 − α

2
)
(
F (k)v(k) − F (k−1)v(k−1)

)
.

(5.24)

The next theorem characterizes the convergence rate of  the relaxed ADMM iterations.

Theorem 5.6
Consider the QP (5.8) and the corresponding relaxed ADMM iterations (5.21). If

ρ ∈ R++, α ∈ (0, 2], (5.25)

then the equivalent fixed point iteration (5.24) converges linearly in terms ofF (k+1)v(k+1)−
F (k)v(k) residual. Moreover, r(k) and s(k), the primal and dual residuals of (5.21), converge
R-linearly to zero.

Next, we restrict our attention to the case where A is either invertible or full row-rank
to be able to derive the jointly optimal step-size and over-relaxation parameter, as well as
an explicit expression for the associated convergence factor. The result shows that the over-
relaxed ADMM iterates can yield a significant speedup compared to the standard ADMM
iterations.
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Theorem 5.7
Consider the QP (5.8) and the corresponding relaxed ADMM iterations (5.21). If  the
constraint matrix A is of  full row-rank or invertible then the joint optimal step-size,
relaxation parameter and the convergence factor with respect to the F (k+1)v(k+1) −
F (k)v(k) residual are

ρ⋆ =

(√
λ1(AQ−1A⊤) λn(AQ−1A⊤)

)−1

, α⋆ = 2,

ζ⋆R =
λn(AQ

−1A⊤)−
√
λ1(AQ−1A⊤) λn(AQ−1A⊤)

λn(AQ−1A⊤) +
√
λ1(AQ−1A⊤) λn(AQ−1A⊤)

.

(5.26)

Moreover, for a given step-size ρ, when the iterations (5.24) are over-relaxed; i.e., α ∈ (1, 2]
their iterates have a smaller convergence factor than that of (5.14).

5.3.3 Optimal constraint preconditioning

In this section, we consider another technique to improve the convergence of  the ADMM
method. The approach is based on the observation that the optimal convergence factors
ζ⋆ and ζ⋆R from Theorem 5.4 and Theorem 5.7 are monotone increasing in the ratio
λn(AQ

−1A⊤)/λ1(AQ
−1A⊤). This ratio can be decreased –without changing the com-

plexity of  the ADMM algorithm (5.10)– by scaling the equality constraint in (5.9) by a
diagonal matrix L ∈ Sm

++, i.e., replacing Ax − c + z = 0 by L (Ax− c+ z) = 0. Let
Ā ≜ LA, z̄ ≜ Lz, and c̄ ≜ Lc. The resulting scaled ADMM iterations are derived by
replacing A, z, and c in (5.10) and (5.21) by the new variables Ā, z̄, and c̄, respectively.
Furthermore, the results of  Theorem 5.4 and Theorem 5.7 can be applied to the scaled
ADMM iterations in terms of  new variables. Although these theorems only provide the
optimal step-size parameters for the QP when the constraint matrices are invertible or
have full row-rank, we use the expressions as heuristics when the constraint matrix has full
column-rank. Hence, in the following we consider λn(ĀQ−1Ā⊤) and λ1(ĀQ

−1Ā⊤) to be
the largest and smallest nonzero eigenvalues of ĀQ−1Ā⊤ = LAQ−1A⊤L, respectively and
minimize the ratio λn/λ1 in order to minimize the convergence factors ζ⋆ and ζ⋆R.

Theorem 5.8
Let RqR

⊤
q = Q−1 be the Choleski factorization of Q−1 and P ∈ Rn×n−s be a

matrix whose columns are orthonormal vectors spanning Im(R⊤
q A

⊤) with s being the
dimension of N (A). Moreover, let λn(LAQ−1A⊤L) and λ1(LAQ

−1A⊤L) be the largest
and smallest nonzero eigenvalues of LAQ−1A⊤L. The diagonal scaling matrix L⋆ ∈ Sm

++

that minimizes the eigenvalue ratio λn(LAQ−1A⊤L)/λ1(LAQ
−1A⊤L) can be obtained

by solving the convex problem

minimize
t∈R, w∈Rm

t

subject to W = diag(w), w > 0,
tI −R⊤

q A
⊤WARq ∈ Sn

+,
P⊤(R⊤

q A
⊤WARq − I)P ∈ Sn−s

+ ,

(5.27)
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and setting L⋆ =W ⋆1/2
.

So far, we characterized the convergence factor of  the ADMM algorithm based on
general properties of  the sequence {F (k)v(k)}. However, if  we a priori know which
constraints will be active during the ADMM iterations, our parameter selection rules (5.19)
and (5.26) may not be optimal. To illustrate this fact, we will now analyze the two extreme
situations where no and all constraints are active in each iteration and derive the associated
optimal ADMM parameters.

5.3.4 Special cases of quadratic programming

The first result deals with the case where the constraints of (5.8) are never active. This could
happen, for example, if  we use the constraints to impose upper and lower bounds on the
decision variables, and use very loose bounds.

Proposition 5.2
Assume that F (k+1) = F (k) = −I for all epochs k ∈ R+ in (5.11) and (5.22). Then the
modified ADMM algorithm (5.24) attains its minimal convergence factor for the parameters

α = 1, ρ→ 0. (5.28)

In this case (5.24) coincide with (5.14) and their convergence factor is minimized: ζ = ζR →
0.

The next proposition addresses another extreme scenario when the ADMM iterates are
operating on the active set of  the quadratic program (5.8). This could happen, for example,
if  the constraints are defined in a way that, at optimality, all the inequality constraints are
satisfied with equality.

Proposition 5.3
Suppose that F (k+1) = F (k) = I for all k ∈ R+ in (5.11) and (5.22). Then the relaxed
ADMM algorithm (5.24) attains its minimal convergence factor for the parameters

α = 1, ρ→ ∞. (5.29)

In this case (5.24) coincides with (5.14) and their convergence factors are minimized: ζ =
ζR → 0.

It is worthwhile to mention that when (5.8) is defined so that its constraints are all active
(inactive) then the s(k) (r(k)) residuals of  the ADMM algorithm remain zero for all k ≥ 2
updates.

5.4 Numerical examples

In this section, we evaluate our parameter selection rules on numerical examples. First,
we illustrate the convergence factor of  ADMM and gradient algorithms for a family
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of ℓ2-regularized quadratic problems. These examples demonstrate that the ADMM
method converges faster than the gradient method for certain ranges of  the regularization
parameter δ, and slower for other values. Then, we consider QP problems and compare the
performance of  the over-relaxed ADMM algorithm with an alternative accelerated ADMM
method presented in [120]. The two algorithms are also applied to a MPC benchmark
where QP problems are solved repeatedly over time for fixed matricesQ andA but varying
vectors q and b.

5.4.1 ℓ2-regularized quadratic minimization via ADMM

We consider ℓ2-regularized quadratic minimization problem (5.1) for a Q ∈ S100
++ with

condition number 1.2 × 103 and for a range of  regularization parameters δ. Figure 5.1
shows how the optimal convergence factor of  ADMM depends on δ. The results are shown
for two step-size rules: ρ = δ and ρ = ρ⋆ given in (5.5). For comparison, the gray and
dashed-gray curves show the optimal convergence factor of  the gradient method

x(k+1) = x(k) − γ(Qx(k) + q + δx(k)),

with step-size γ < 2/(λn(Q) + δ) and the multi-step gradient iterations on the form

x(k+1) = x(k) − a(Qx(k) + q + δx(k)) + b(x(k) − x(k−1)).

Recall that the latter algorithm is known as the heavy-ball method and significantly
outperforms the standard gradient method on ill-conditioned problems [52]. The algorithm
has two parameters: a < 2(1 + b)/(λn(Q) + δ), and b ∈ [0, 1]. For our problem, since
the cost function is quadratic and its Hessian ∇2f(x) = Q + δI is bounded between
l = λ1(Q) + δ and u = λn(Q) + δ, the optimal step-size for the gradient method is γ⋆ =
2/(l+ u) and the optimal parameters for the heavy-ball method are a⋆ = 4/(

√
l+

√
u)2,

and b⋆ = (
√
u−

√
l)2/(

√
l +

√
u)2 (see Chapter 2).

Figure 5.1 illustrates the convergence properties of  the ADMM method under both step-
size rules. The optimal step-size rule gives significant speedups of  the ADMM for small or
large values of  the regularization parameter δ. This phenomena can be intuitively explained
based on the interplay of  the two parts of  the objective function in (5.1). For extremely small
values of δ, one sees that the x-th part of  the objective is becoming dominant compared to
z-th part. Consequently, using the optimal step-size in (5.5), z- is dictated to quickly follow
the value of x-update. A similar reasoning holds when δ is large, in which the x- has to obey
the z-update.

It is interesting to observe that ADMM outperforms the gradient and heavy-ball meth-
ods for small δ (an ill-conditioned problem), but actually performs worse as δ grows large
(i.e., when the regularization makes the overall problem well-conditioned). It is noteworthy
that the relaxed ADMM method solves the same problem in one step (convergence factor
ζ⋆R = 0).
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Figure 5.1: Convergence factor of  the ADMM, gradient, and heavy-ball methods for ℓ2
regularized minimization with fixed Q-matrix and different values of  the regularization
parameter δ.

5.4.2 Quadratic programming via ADMM

Next, we evaluate our step-size rules for ADMM-based quadratic programming and
compare their performance with that of  other accelerated ADMM variants from the
literature.

Accelerated ADMM

One recent proposal for accelerating the ADMM-iterations is called fast-ADMM [120] and
consists of  the following iterations

x(k+1) = argmin
x

Lρ(x, ẑ
(k), û(k)),

z(k+1) = argmin
z

Lρ(x
(k+1), z, û(k)),

u(k+1) = û(k) +Ax(k+1) +Bz(k+1) − c,
ẑ(k+1) = α(k)z(k+1) + (1 − α(k))z(k),
û(k+1) = α(k)u(k+1) + (1 − α(k))u(k).

(5.30)

The relaxation parameter α(k) in the fast-ADMM method is defined based on the
Nesterov’s order-optimal method [50] combined with an innovative restart rule where α(k)

is given by

α(k) =

 1 +
β(k) − 1
β(k+1) if

max(∥r(k)∥, ∥s(k)∥)
max(∥r(k−1)∥, ∥s(k−1)∥)

< 1,

1 otherwise,
(5.31)

where

β(1) = 1, β(k+1) =
1 +

√
1 + 4β(k)2

2
, for k ∈ N.
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Figure 5.2: Convergence of  primal plus dual residuals of  four ADMM algorithms. The figure
at left has n = 100 decision variables andm = 50 inequality constraints. The figure at right
has n = 100 and m = 200 decision variables and inequality constraints, respectively.

The restart rule assures that (5.30) is updated in the descent direction with respect to the
primal-dual residuals.

To compare the performance of  the over-relaxed ADMM iterations with our proposed
parameters to that of  fast-ADMM, we conducted several numerical examples. For the first
numerical comparison, we generated several instances of (5.8); Figure 5.2 shows the results
for the two representative examples. In the first case, A ∈ R50×100 and Q ∈ S100

++ with
condition number 1.95 × 103; 32 constraints are active at the optimal solution. In the
second case, A ∈ R200×100 and Q ∈ S100

++, where the condition number of Q is 7.1 × 103.
The polyhedral constraints correspond to random box-constraints, of  which 66 are active
at optimality. We evaluate for four algorithms: the ADMM iterates in (5.21) with and
without over-relaxation and the corresponding tuning rules developed in this chapter, and
the fast-ADMM iterates (5.30) with ρ = 1 as proposed by [120] and ρ = ρ⋆ of  our result.
The convergence of  corresponding algorithms in terms of  the summation of  primal and
dual residuals ∥r(k)∥ + ∥s(k)∥ are depicted in Figure 5.2. The plots exhibit a significant
improvement of  our tuning rules compared to the fast-ADMM algorithm.

To the best of  our knowledge, there are currently no results about optimal step-size
parameters for the fast-ADMM method. However, based on our numerical investigations,
we observed that the performance of  fast-ADMM algorithm significantly improved by
employing our optimal step-size ρ⋆ (as illustrated in 5.2). In the next section we perform
another comparison between three algorithms, using the optimal ρ-value for fast-ADMM
obtained by an extensive search.

Model Predictive Control

Consider the discrete-time linear system

xt+1 = Hxt + Jut + Jrr, (5.32)
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(b) α = 2, L = I .
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(c) α = 1, L = L⋆.
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Figure 5.3: Number of  iterations k : max{∥r(k)∥, ∥s(k)∥} ≤ 10−5 for ADMM applied to
the MPC problem for different initial states x0. The dashed green line denotes the minimum
number of  iterations taken over all the initial states, the dot-dashed blue line corresponds to
the average, while the red solid line represents the maximum number of  iterations.

where t ≥ 0 is the time index, xt ∈ Rnx is the state, ut ∈ Rnu is the control input, r ∈ Rnr

is a constant reference signal, and H ∈ Rnx×nx , J ∈ Rnx×nu , and Jr ∈ Rnx×nr are fixed
matrices. Model predictive control aims at solving the following optimization problem

minimize
{ui}

Np−1
0

1
2
∑Np−1

i=0 (xi − xr)
⊤Qx(xi − xr)

+(ui − ur)
⊤R(ui − ur) + (xNp − xr)

⊤QN (xNp − xr)
subject to xt+1 = Hxt + Jut + Jrr ∀t,

xt ∈ Cx ∀t,
ut ∈ Cu ∀t,

(5.33)
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where x0, xr, and ur are given, Qx ∈ Snx
++, R ∈ Snu

++, and QN ∈ Snx
++ are the

state, input, and terminal costs, and the sets Cx and Cu are convex. Suppose that the sets
Cx and Cu correspond to component-wise lower and upper bounds, i.e., Cx = {x ∈
Rnx |1nx x̄min ≤ x ≤ 1nx x̄max} and Cu = {u ∈ Rnu |1nu ūmin ≤ u ≤ 1nu ūmax}.
Defining χ = [x⊤1 . . . x⊤Np

]⊤, υ = [u⊤0 . . . u⊤Np−1]
⊤, υr = [r⊤ . . . r⊤]⊤, (5.32) can be

rewritten as χ = Θx0 + Φυ + Φrυr. The latter relationship can be used to replace xt for
t = 1, . . . , Np in the optimization problem, yielding the following QP:

minimize
υ

1
2
υ⊤Qυ + q⊤υ

subject to Aυ ≤ b,
(5.34)

where

Q̄ =

[
INp−1 ⊗Qx 0

0 QN

]
, R̄ = INp ⊗R,

A =


Φ
−Φ
I
−I

 , b =


1nxNp x̄max −Θx0 − Φrυr
1nxNp x̄min +Θx0 +Φrυr

1nuNp ūmax

1nuNp ūmin

 , (5.35)

and Q = R̄+Φ⊤Q̄Φ and

q⊤ = x⊤0 Θ⊤Q̄Φ+ υ⊤r Φ
⊤
r Q̄Φ− x⊤r

(
1⊤
Np

⊗ Inx

)
Q̄Φ− u⊤r

(
1⊤
Np

⊗ Inu

)
R̄.

Below we illustrate the MPC problem for the quadruple-tank process [121]. The state
of  the process x ∈ R4 corresponds to the water levels of  all tanks, measured in centimeters.
The plant model was linearized at a given operating point and discretized with a sampling
period of 2 s. The MPC prediction horizon was chosen as Np = 5. A constant reference
signal was used, while the initial condition x0 was varied to obtain a set of  MPC problems
with different non-empty feasible sets and linear cost terms. In particular, we considered
initial states of  the form x0 = [x1 x2 x3 x4]

⊤ where xi ∈ {10, 11.25, 12.5, 13.75, 15} for
i = 1, . . . , 4. Out of  the possible 625 initial values, 170 yields feasible QPs (each withn = 10
decision variables and m = 40 inequality constraints). We have made these QPs publicly
available as a MATLAB formatted binary file [122]. To prevent possible ill-conditioned
QP-problems, the constraint matrix A and vector b were scaled so that each row of A has
unit-norm.

Figure 5.3 illustrates the convergence of  the ADMM iterations for the 170 QPs as a
function of  the step-size ρ, scaling matrix L, and over-relaxation factor α. Since A⊤ has
a non-empty null-space, the step-size ρ⋆ was chosen heuristically based on Theorem 5.4
as ρ⋆ = 1/

√
λ1(AQ−1A⊤)λn(AQ−1A⊤), where λ1(AQ

−1A⊤) is the smallest nonzero
eigenvalue of AQ−1A⊤. As shown in Figure 5.3, the heuristic ρ⋆ results in a number of
iterations close to the empirical minimum. Moreover, performance is improved by setting
L = L⋆ and α = 2.

The performance of  the Fast-ADMM and ADMM algorithms is compared in Figure 5.4
forL = I and α = 2. The ADMM algorithm with the optimal over-relaxation factorα = 2
uniformly outperforms the Fast-ADMM algorithm, even with suboptimal scaling matrix L.
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Figure 5.5: Slow convergence of  ADMM algorithm for the example in (5.36) with α = 1
and L = I . The residuals r(k), s(k), and F (k+1)v(k+1) − F (k)v(k) and the lower bound
on the convergence factor ζ(k) are shown in the left, while the number of  iterations for
ρ ∈ [0.1ρ⋆ 10ρ⋆] are shown in the right.
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Local convergence factor

To illustrate our results on the slow local convergence of  ADMM, we consider a QP problem
of  the form (5.34) with

Q =

[
40.513 0.069
0.069 40.389

]
, q = 0,

A =

 −1 0
0 −1

0.1151 0.9934

 , b =

 6
6

−0.3422

 . (5.36)

The ADMM algorithm was applied to the former optimization problem with α = 1
and L = I . Given that the nullity of A is not 0, the step-size was chosen heuristically based
on Theorem 5.4 as ρ⋆ = 1/

√
λ1(AQ−1A⊤)λn(AQ−1A⊤) = 28.6 with λ1(AQ

−1A⊤)
taken to be the smallest nonzero eigenvalue ofAQ−1A⊤. The resulting residuals are shown
in Figure 5.5, together with the lower bound on the convergence factor ζ evaluated at
each time-step. As expected from the results in Theorem 5.3, the residual F (k+1)v(k+1) −
F (k)v(k) is monotonically decreasing. However, as illustrated by ζ(k), the lower bound on
the convergence factor from Theorem 5.5, the auxiliary residual F (k+1)v(k+1) − F (k)v(k)

and the primal-dual residuals show a convergence factor close to 1 over several time-steps.
The heuristic step-size rule performs reasonably well as illustrated in the right subplot of
Figure 5.5.

5.5 Summary

In this chapter, we studied optimal parameter selection for the ADMM algorithm for
two classes of  quadratic problems: ℓ2-regularized quadratic minimization and quadratic
programming under linear inequality constraints. For both problem classes, we established
global convergence of  the algorithm at linear rate and provided explicit expressions for
the parameters that ensure the smallest possible convergence factors. We also considered
iterations accelerated by over-relaxation, characterized the values of  the relaxation param-
eter for which the over-relaxed iterates are guaranteed to improve the convergence times
compared to the non-relaxed iterations, and derived jointly optimal step-size and relaxation
parameters. We validated the analytical results on numerical examples and demonstrated
superior performance of  the tuned ADMM algorithms compared to existing methods from
the literature.





Appendix

5.A Proofs

5.A.1 Proof of Theorem 5.1

From Proposition 2.1, the variables x(k) and z(k) in iterations (5.2) converge to the optimal
values x⋆ and z⋆ of (5.1) if  and only if  the spectral radius of  the matrixE in (5.3) is less than
one. To express the eigenvalues ofE in terms of  the eigenvalues ofQ, let λi(Q), i = 1, . . . , n
be the eigenvalues of Q sorted in ascending order. Then, the eigenvalues ζ(ρ, λi(Q)) of E
satisfy

ζ(ρ, λi(Q)) =
ρ2 + λi(Q)δ

ρ2 + λi(Q)δ + (λi(Q) + δ)ρ
. (5.37)

Since λi(Q), ρ, δ ∈ R++, we have 0 ≤ ζ(ρ, λi(Q)) < 1 for all i, which ensures
convergence.

To find the optimal step-size parameter and the associated convergence factor (ρ⋆, ζ⋆),
note that, for a fixed ρ, the convergence factor ζ(ρ) = maxe(k) ∥e(k+1)∥/∥e(k)∥ corre-
sponds to the spectral radius of E, i.e., ζ(ρ) = maxi {ζ(ρ, λi(Q))}. It follows that the
optimal pair (ρ⋆, ζ⋆) is given by

ρ⋆ = argmin
ρ

max
i

{ζ(ρ, λi(Q))} , ζ⋆ = max
i

{ζ(ρ⋆, λi(Q))} . (5.38)

From (5.37), we can see that ζ(ρ, λi(Q)) is monotone decreasing in λi(Q) when ρ > δ
and monotone increasing when ρ < δ. Hence, we consider these two cases separately.

When ρ > δ, the largest eigenvalue of E is given by ζ(ρ, λ1(Q)) and ρ⋆ =
argminρζ(ρ, λ1(Q)). By the first-order optimality conditions and the explicit expressions
in (5.37) we have

ρ⋆ =
√
δλ1(Q), ζ⋆ = ζ(ρ⋆, λ1(Q)) = (1 +

δ + λ1(Q)

2
√
δλ1(Q)

)−1.

However, this value of ρ is larger than δ only if δ < λ1(Q). When δ ≥ λ1(Q), the
assumption that ρ > δ implies that 0 ≤ (ρ− δ)2 ≤ (ρ− δ)(ρ− λ1(Q)), so

ζ(ρ, λ1(Q)) =
ρ2 + λi(Q)δ

ρ2 + λi(Q)δ + (λi(Q) + δ)ρ
≥

93
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ρ2 + λ1(Q)δ

ρ2 + λ1(Q)δ + (λ1(Q) + δ)ρ+ (ρ− δ)(ρ− λ1(Q))
=

1
2
.

Since ρ = δ attains ζ(δ, λ1(Q)) = 1/2 it is optimal.
A similar argument applies to ρ < δ. In this case, maxi ζ(ρ, λi(Q)) = ζ(ρ, λn(Q)) and

when δ > λn(Q), ρ⋆ =
√
δλn(Q) is the optimal step-size and the associated convergence

factor is

ζ⋆ =

(
1 +

δ + λn(Q)

2
√
δλn(Q)

)−1

.

For δ ≤ λn(Q), the requirement ρ < δ implies

0 ≤ (δ − ρ)2 ≤ (λn(Q)− ρ)(δ − ρ), ζ(ρ, λn(Q)) ≥ 1
2
,

which leads to ρ = δ being optimal.

5.A.2 Proof of Corollary 5.1

The proof  is a direct consequence of  evaluating (5.37) at ρ = δ for i = 1, . . . , n.

5.A.3 Proof of Theorem 5.2

The z-update in (5.6) implies that y(k) = (δ + ρ)z(k+1) − ρ(αx(k+1) + (1 − α)z(k)), and
that the y-update in (5.6) can be written as y(k+1) = δz(k+1). Similarly to the analysis of
Section 5.2.1, inserting the x-update into the z-update, we find

z(k+1) =
1

δ + ρ

(
δI + ρ

(
α(ρ− δ) (Q+ ρI)

−1
+ (1 − α)I

))
︸ ︷︷ ︸

ER

z(k)

− 1
δ + ρ

ρα(Q+ ρI)−1q.

Consider the fixed-point candidate z⋆ satisfying z⋆ = ERz
⋆ − 1

δ + ρ
ρα(Q+ ρI)−1q and

z(k+1)− z⋆ = ER(z
(k)− z⋆). The z(k)-update in (5.6) converges (and so does the ADMM

algorithm) if  and only if  the spectral radius of  the error matrix in the above linear iterations
is less than one. The eigenvalues of ER can be written as

ζR(α, ρ, λi(Q)) = 1 − αρ(λi(Q) + δ)

(ρ+ λi(Q))(ρ+ δ)
. (5.39)

Since ρ, δ, and λi(Q) ∈ R++, we see that

0 < α < 2min
i

(ρ+ δ)(ρ+ λi(Q))

ρ(λi(Q) + δ)
,
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implies that |ζR(α, ρ, λi(Q))| < 1 for all i, which completes the first part of  the proof.
For a fixed ρ and δ, we now characterize the values of α that ensure that the over-

relaxed iterations (5.6) have a smaller convergence factor and thus a smaller ε-solution time
than the classical ADMM iterates (5.2), i.e., ζR − ζ < 0. From (5.37) and (5.39) we have
argmaxi ζR(α, ρ, λi(Q)) = argmaxi ζ(ρ, λi(Q)), since ζR and ζ are equivalent up to an
affine transformation and they have the same sign of  the derivative with respect to λi(Q).
For any given λi(Q) we have

ζR − ζ =
ρ(1 − α)(λi(Q) + δ)

ρ2 + (λi(Q) + δ)ρ+ λi(Q)δ

and we conclude that ζR − ζ < 0 when

α ∈
(

1,
2(ρ+ δ)(ρ+ λi(Q))

ρ(λi(Q) + δ)

)
.

Recalling the first part of  the proof  we conclude that, for given ρ, δ ∈ R++, the over-relaxed
iterations converge with a smaller convergence factor than classical ADMM for

1 < α < 2min
i

(ρ+ δ)(ρ+ λi(Q))

ρ(λi(Q) + δ)
.

To find (ρ⋆, α⋆, ζ⋆R), we define

(ρ⋆, α⋆) = argmin
ρ,α

max
i

|ζR(ρ, α, λi(Q))| , ζ⋆R = max
i

|ζR(ρ⋆, α⋆, λi(Q))| . (5.40)

One readily verifies that ζR(δ, 2, λi(Q)) = 0 for i = 1, . . . n. Since zero is the global
minimum of |ζR| we conclude that the pair (ρ⋆, α⋆) = (δ, 2) is optimal. Moreover, for
(ρ⋆, α⋆) = (δ, 2) the matrix ER is a matrix of  zeros and thus the algorithm (5.6) converges
in one iteration.

5.A.4 Proof of Proposition 5.1

For the sake of  brevity we derive the expressions only for w(k+1)
− ≜ F (k+1)v(k+1) −

F (k)v(k), as similar computations also apply to w
(k+1)
+ ≜ v(k+1) − v(k). First, since

v(k) = z(k) + u(k), it holds that F (k)v(k) = (2D(k) − I)v(k) = 2D(k)v(k) − u(k) − z(k).
From the equality D(k)v(k) = u(k) we then have F (k)v(k) = u(k) − z(k). The residual
w

(k+1)
− can be rewritten as w(k+1)

− = u(k+1)−u(k)− z(k+1)+ z(k). From (2.17) and (5.10)
we observe that u(k+1)−u(k) = r(k+1), sow(k+1)

− = r(k+1)−(z(k+1)−z(k)). Decomposing
z(k+1) − z(k) as ΠIm(A)(z

(k+1) − z(k)) + ΠN (A⊤)(z
(k+1) − z(k)) we then conclude that

w
(k+1)
− = r(k+1) −ΠIm(A)(z

(k+1) − z(k))−ΠN (A⊤)(z
(k+1) − z(k)).

We now examine each case (i)-(iii) separately:
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(i) When A has full column rank, ΠIm(A) = A(A⊤A)−1A⊤ and ΠN (A⊤) = I −
ΠIm(A). In the light of  the dual residual (2.18) we obtain ΠIm(A)(z

(k+1) − z(k)) =

1/ρA(A⊤A)−1s(k+1).
(ii) Note that the nullity of A⊤ is 0 if A is full row-rank. Thus, ΠN (A⊤) = 0 and

ΠIm(A) = I . Moreover, sinceAA⊤ is invertible, z(k+1)−z(k) = (AA⊤)−1AA⊤(z(k+1)−
z(k)) = 1/ρ(AA⊤)−1As(k+1).

(iii) When A is invertible, the result easily follows.
We now relate the norm of r(k+1) and s(k+1) to the one of w(k+1)

− . From (5.15)
and (5.16), we have

∥r(k+1)∥ =
1
2
∥w(k+1)

− + w
(k+1)
+ ∥

≤ 1
2
(∥w(k+1)

− ∥+ ∥w(k+1)
+ ∥) ≤ ∥w(k+1)

− ∥,

where the first inequality is the triangle inequality and the last inequality holds as v(k)’s are
positive vectors, ∥w(k+1)

+ ∥ = ∥v(k+1) − v(k)∥ ≤ ∥F (k+1)v(k+1) −F (k)v(k)∥ = ∥w(k+1)
− ∥.

For the dual residual, it can be verified that in case (i) and (ii),

A⊤(w
(k+1)
+ − w

(k+1)
− ) =

2
ρ
s(k+1),

therefore,

∥s(k+1)∥ =
ρ

2
∥A⊤(w

(k+1)
− − w

(k+1)
+ )∥

≤ ρ

2
∥A∥

(
∥w(k+1)

− − w
(k+1)
+ ∥

)
≤ ρ

2
∥A∥

(
∥w(k+1)

− ∥+ ∥w(k+1)
+ ∥

)
≤ ρ∥A∥∥w(k+1)

− ∥.

In case (iii), one finds A(w(k+1)
+ − w

(k+1)
− ) = (2/ρ)s(k+1) and again the same bound can

be achieved (by replacing A⊤ with A in above equality), thus concluding the proof.

5.A.5 Proof of Theorem 5.3

Note that since v(k) is positive and F (k) is diagonal with elements in ±1, F (k+1)v(k+1) =
F (k)v(k) implies v(k+1) = v(k). Hence, it suffices to establish the convergence of F (k)v(k).
From (5.14) we have∥∥∥F (k+1)v(k+1) − F (k)v(k)

∥∥∥ ≤ 1
2
∥2M − I∥

∥∥∥v(k) − v(k−1)
∥∥∥

+
1
2

∥∥∥F (k)v(k) − F (k−1)v(k−1)
∥∥∥ .



Proofs | 97

Furthermore, as v(k)s are positive vectors,
∥∥v(k) − v(k−1)

∥∥ ≤
∥∥F (k)v(k) − F (k−1)v(k−1)

∥∥,
which implies ∥∥∥F (k+1)v(k+1) − F (k)v(k)

∥∥∥ ≤(
1
2
∥2M − I∥+ 1

2

)
︸ ︷︷ ︸

ζ

∥∥∥F (k)v(k) − F (k−1)v(k−1)
∥∥∥ . (5.41)

We conclude that if ∥2M − I∥ < 1, then ζ < 1 and the iterations (5.14) converge to zero
at a linear rate.

To determine for what values of ρ the iterations (5.14) converge, we characterize the
eigenvalues of M . By the matrix inversion lemma

M = ρAQ−1A⊤ − ρAQ−1A⊤(I + ρAQ−1A⊤)−1ρAQ−1A⊤.

From [99, Cor. 2.4.4], (I + ρAQ−1A⊤)−1 is a polynomial function of ρAQ−1A⊤ which
implies that M = f(t) ≜ t − t(1 + t)−1t is a polynomial function of t = ρAQ−1A⊤.
Applying [99, Thm. 1.1.6], the eigenvalues of M are given by f(λi(ρAQ−1A⊤)) and thus

λi(M) =
λi(ρAQ

−1A⊤)

1 + λi(ρAQ−1A⊤)
. (5.42)

If ρ ∈ R++, then λi(ρAQ−1A⊤) ∈ R+ and λi(M) ∈ [0, 1). Hence ∥2M − I∥ ≤ 1
is guaranteed for all ρ ∈ R++ and equality only occurs if M has eigenvalues at 0. If A is
invertible or has full row-rank, thenM is invertible and all its eigenvalues are strictly positive,
so ∥2M − I∥ < 1 and (5.14) is guaranteed to converge linearly.

The case when A is tall, i.e., A⊤ is rank deficient, is more challenging since M has
zero eigenvalues and ∥2M − I∥ = 1. To prove convergence in this case, we analyze the
0-eigenspace of M and show that it can be disregarded. From the x-iterates given in (5.11)
we have x(k+1) − x(k) = −(Q/ρ+A⊤A)−1A⊤(v(k) − v(k−1)). Multiplying the former
equality by A from the left on both sides yields A(x(k+1) − x(k)) = −M(v(k) − v(k−1)).
Consider a nonzero vector v(k) − v(k−1) in N (M). Then we have either x(k+1) = x(k)

or x(k+1) − x(k) ∈ N (A). Having assumed that A is full column-rank denies the second
hypothesis. In other words, the 0-eigenspace ofM corresponds to the stationary points of  the
algorithm (5.11). We therefore disregard this eigenspace and the convergence result holds.

Finally, the R-linear convergence of  the primal and dual residuals follows from the linear
convergence rate of F (k+1)v(k+1) − F (k)v(k) and Proposition 5.1.

5.A.6 Proof of Theorem 5.4

From the proof  of  Theorem 5.3 recall that∥∥∥F (k+1)v(k+1) − F (k)v(k)
∥∥∥ ≤ 1

2

(
∥2M − I∥+ 1

)∥∥∥F (k)v(k) − F (k−1)v(k−1)
∥∥∥ .
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Define

ζ ≜ 1
2
∥2M − I∥+ 1

2
= max

i

1
2
|2λi(M)− 1|+ 1

2

= max
i

∣∣∣∣ ρλi(AQ
−1A⊤)

1 + ρλi(AQ−1A⊤)
− 1

2

∣∣∣∣+ 1
2
,

where the last equality follows from the definition of λi(M) in (5.42). Since ρ ∈ R++ and
for the case where A is either invertible or has full row-rank, λi(AQ−1A⊤) ∈ R++ for all
i, we conclude that ζ < 1.

It remains to find ρ⋆ that minimizes the convergence factor, i.e.

ρ⋆ = argmin
ρ

max
i

{∣∣∣∣ ρλi(AQ
−1A⊤)

1 + ρλi(AQ−1A⊤)
− 1

2

∣∣∣∣+ 1
2

}
. (5.43)

Since
ρλi(AQ

−1A⊤)

1 + ρλi(AQ−1A⊤)
is a monotonically increasing function in λi(AQ

−1A⊤), the

maximum values of ζ happen for the two extreme eigenvaluesλ1(AQ
−1A⊤) andλn(AQ−1A⊤):

max
i

{
ζ(λi(AQ

−1A⊤), ρ)

}
=


1

1 + ρλ1(AQ−1A⊤)
if ρ ≤ ρ⋆,

ρλn(AQ
−1A⊤)

1 + ρλn(AQ−1A⊤)
if ρ > ρ⋆.

(5.44)

Since the left brace of maxi
{
ζ(λi(AQ

−1A⊤), ρ)
}

, i.e. (1 + ρλ1(AQ
−1A⊤))−1 is mono-

tone decreasing in ρ and the right brace is monotone increasing, the minimum with respect
to ρ happens at the intersection point (5.19).

5.A.7 Proof of Theorem 5.5

First we derive the lower bound on the convergence factor and show it is strictly smaller
than 1. From (5.14) we have∥∥∥F (k+1)v(k+1) − F (k)v(k)

∥∥∥ =
∥∥∥D(k)v(k) −D(k−1)v(k−1) −M(v(k) − v(k−1))

∥∥∥ .
By applying the reverse triangle inequality and dividing by ∥F (k)v(k)−F (k−1)v(k−1)∥, we
find

∥F (k+1)v(k+1) − F (k)v(k)∥
∥F (k)v(k) − F (k−1)v(k−1)∥

≥ |δk − ϵk|.

Recalling from (2.1) that the convergence factor ζ is the maximum over k of  the left hand-
side yields the lower bound (5.20). Moreover, the inequality 1 > ζ ≥ ζ follows directly from
Theorem 5.3.

The second part of  the proof  addresses the cases (i)-(iii) for ρ > 0. Consider case (i)
and let N (A⊤) = {0}. It follows from Theorem 5.4 that the convergence factor is given
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by ζ̃(ρ), thus proving the sufficiency of N (A⊤) = {0} in (i). The necessity follows directly
from statement (iii), which is proved later.

Now consider the statement (ii) and supposeN (A⊤) is not zero-dimensional. Recall that
λ1(AQ

−1A⊤) is the smallest nonzero eigenvalue ofAQ−1A⊤ and suppose that ϵk ≥ 1−ξ.
Next we show that ϵk ≥ 1 − ξ implies

∥ΠN (A⊤)(v
(k) − v(k−1))∥

∥v(k) − v(k−1)∥
≤
√

2ξ.

Since MΠN (A⊤) = 0, ∥M∥ < 1, and ∥v(k) − v(k−1)∥ ≤ ∥F (k)v(k) − F (k−1)v(k−1)∥ we
have

ϵ2
k =

∥M(I −ΠN (A⊤))(v
(k) − v(k−1))∥2

∥F (k)v(k) − F (k−1)v(k−1)∥2 ≤
∥ΠIm(A)(v

(k) − v(k−1))∥2

∥v(k) − v(k−1)∥2

= 1 −
∥ΠN (A⊤)(v

(k) − v(k−1))∥2

∥v(k) − v(k−1)∥2 .

Using the above inequality and ϵ2
k ≥ (1 − ξ)2 we obtain

∥ΠN (A⊤)(v
(k) − v(k−1))∥

∥v(k) − v(k−1)∥
≤
√

2ξ − ξ2 ≤
√

2ξ.

The latter inequality allows us to derive an upper-bound on ζ as follows. Recalling (5.14),
we have

ζ ≤∥F (k+1)v(k+1) − F (k)v(k)∥
∥F (k)v(k) − F (k−1)v(k−1)∥

≤ 1
2
+

1
2
∥(I − 2M)(v(k) − v(k−1))∥
∥F (k)v(k) − F (k−1)v(k−1)∥

=
1
2
+

1
2

√
∥(I − 2M)ΠIm(A)(v

(k) − v(k−1))∥2

∥F (k)v(k) − F (k−1)v(k−1)∥2 +
∥ΠN (A⊤)(v

(k) − v(k−1))∥2

∥F (k)v(k) − F (k−1)v(k−1)∥2 .

(5.45)
Using the inequalities ∥v(k)−v(k−1)∥ ≤ ∥F (k)v(k)−F (k−1)v(k−1)∥ and

√
a2 + b2 ≤ a+b

for a, b ∈ R+, the inequality (5.45) becomes

ζ ≤ 1
2
+

1
2
∥(I − 2M)ΠIm(A)∥+

√
ξ

2
≤ ζ̃(ρ) +

√
ξ

2
,

which concludes the proof  of  (ii).
As for the third case (iii), note that ϵk ≤ ξ holds if

∥ΠN (A⊤)(v
(k) − v(k−1))∥

∥v(k) − v(k−1)∥
≥

√
1 − ξ2

∥M∥2 , (5.46)

as the latter inequality implies that

ϵk =
∥MΠIm(A)(v

(k) − v(k−1))∥
∥F (k)v(k) − F (k−1)v(k−1)∥

≤ ∥M∥
∥ΠIm(A)(v

(k) − v(k−1))∥
∥v(k) − v(k−1)∥

≤ ξ.

Supposing that there exists a non-empty set K such that δk ≥ 1 − ξ and (5.46) holds for all
k ∈ K, we have ζ ≥ maxk∈K δk − ϵk ≥ 1 − 2ξ regardless the choice of ρ.
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5.A.8 Proof of Lemma 5.1

Let (x⋆, z⋆, u⋆) denote a fixed-point of (5.21) and let y be the Lagrange multiplier
associated with the equality constraint in (5.9). For the optimization problem (5.9), the KKT
optimality conditions [50] are

0 = Qx+ q +A⊤y, z ≥ 0,
0 = Ax+ z − b, 0 = diag(y)z.

Next we show that the KKT conditions hold for the fixed-point (x⋆, z⋆, u⋆) with y⋆ =
1/ρu⋆. From the u−iterations we have 0 = α(Ax⋆−c)−(1−α)z⋆+z⋆ = α(Ax⋆+z⋆−c).
It follows that z⋆ is given by z⋆ = max{0,−α(Ax⋆ + z⋆ − c) + z⋆ − u⋆} = max{0, z⋆ −
u⋆} ≥ 0. The x−iteration then yields 0 = Qx⋆ + q + ρA⊤(Ax⋆ + z⋆ − c + u⋆) =
Qx⋆ + q+A⊤y⋆. Finally, from z⋆ ≥ 0 and the z−update, we have that z⋆i > 0 ⇒ u⋆i = 0
and z⋆i = 0 ⇒ u⋆i ≥ 0. Thus, ρ diag(y⋆)z⋆ = 0.

5.A.9 Proof of Theorem 5.6

Taking the Euclidean norm of (5.24) and applying the Cauchy-Schwarz inequality yields∥∥∥F (k+1)v(k+1) − F (k)v(k)
∥∥∥ ≤ |α|

2
∥2M − I∥

∥∥∥v(k) − v(k−1)
∥∥∥

+ |1 − α

2
|
∥∥∥F (k)v(k) − F (k−1)v(k−1)

∥∥∥ .
Note that since v(k)s are positive vectors we have∥∥∥v(k) − v(k−1)

∥∥∥ ≤
∥∥∥F (k)v(k) − F (k−1)v(k−1)

∥∥∥ ,
and thus ∥∥F (k+1)v(k+1) − F (k)v(k)

∥∥∥∥F (k)v(k) − F (k−1)v(k−1)
∥∥ ≤

(
|α|
2

∥2M − I∥+
∣∣∣1 − α

2

∣∣∣)︸ ︷︷ ︸
ζR

. (5.47)

Note that ρ ∈ R++ and recall from the proof  of  Theorem 5.3 that the 0-eigenspace of

M can be disregarded. Let τ ≜ max
λi

1
2
|2λi(M) − 1| with i = 1, . . . ,m − dim(N (M)),

where the upper bound on i is to discard the 0-eigenspace of M . Note that τ <
1
2

and we
have

ζR = ατ + |1 − α

2
| < α

2
+ |1 − α

2
|

Hence, we conclude that for ρ ∈ R++ and α ∈ (0, 2], it holds that ζR < 1 , which
implies that (5.24) converges linearly to a fixed-point. By Lemma 5.1 this fixed-point is also
a global optimum of (5.8). Now, denote w(k+1)

− ≜ F (k+1)v(k+1) −F (k)v(k) and w(k+1)
+ ≜
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v(k+1)−v(k). Following the same steps as Proposition 5.1, it is easily verified thatw(k+1)
− =

u(k+1) − u(k) + z(k) − z(k+1) and w(k+1)
+ = u(k+1) − u(k) + z(k+1) − z(k) from which

combined with (5.21) one obtains

s(k+1) = ρ
A⊤

2
(w

(k+1)
+ − w

(k+1)
− ), r(k+1) =

1
2
w

(k+1)
+ +

2 − α

2α
w

(k+1)
− .

We only upper-bound ∥r(k+1)∥, since an upper bound for ∥s(k+1)∥ was already established
in (5.18). Taking the Euclidean norm of  the second equality above and using the triangle
inequality

∥r(k+1)∥ ≤ 1
2
∥w(k+1)

+ ∥+ 2 − α

2α
∥w(k+1)

− ∥ ≤ 1
α
∥w(k+1)

− ∥. (5.48)

The R-linear convergence of  the primal and dual residuals now follows from the linear
convergence rate of F (k+1)v(k+1) − F (k)v(k) and the bounds in (5.18) and (5.48).

5.A.10 Proof of Theorem 5.7

Define

ζR

(
ρ, α, λi(AQ

−1A⊤)

)
= α

∣∣∣∣ ρλi(AQ
−1A⊤)

1 + ρλi(AQ−1A⊤)
− 1

2

∣∣∣∣+ 1 − α

2
,

ζ⋆R = max
i

min
ρ,α

{
ζR(ρ, α, λi(AQ

−1A⊤))

}
.

(5.49)

Since ∣∣∣∣ ρλi(AQ
−1A⊤)

1 + ρλi(AQ−1A⊤)
− 1

2

∣∣∣∣ < 1
2
,

it follows that ζR(ρ, α, λi(AQ−1A⊤)) is monotone decreasing inα. Thus, ζR(ρ, α, λi(AQ−1A⊤))
is minimized by α⋆ = 2. To determine

ρ⋆ = argmin
ρ

max
i

{
ζR(ρ, 2, λi(AQ−1A⊤))

}
, (5.50)

we note that (5.43) and (5.50) are equivalent up to an affine transformation, hence we
have the same minimizer ρ⋆. It follows from the proof  of  Theorem 5.4 that

ρ⋆ =
1√

λ1(AQ−1A⊤) λn(AQ−1A⊤)
.

Using ρ⋆ in (5.49) results in the convergence factor (5.26).
For given A, Q, and ρ, we can now find the range of  values of α for which (5.21) have

a smaller convergence factor than (5.10), i.e., for which ζR − ζ < 0. By (5.41) and (5.47) it
holds that

ζR − ζ =
α

2
∥2M − I∥+ 1 − α

2
− 1

2
∥2M − I∥ − 1

2
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= (1 − α)

(
1
2
− 1

2
∥2M − I∥

)
.

This means that ζR − ζ < 0 when α > 1. Therefore, the iterates produced by the relaxed
algorithm (5.21) have smaller convergence factor than the iterates produced by (5.10) for all
values of  the relaxation parameter α ∈ (1, 2]. This concludes the proof.

5.A.11 Proof of Theorem 5.8

Note that the non-zero eigenvalues ofLAQ−1A⊤L are the same as the ones ofR⊤
q A

⊤WARq

whereW = L2 andR⊤
q Rq = Q−1 is its Choleski factorization [99]. Definingλn(R⊤

q A
⊤WARq)

and λ1(R
⊤
q A

⊤WARq) as the largest and smallest nonzero eigenvalues ofLAQ−1A⊤L, the
optimization problem we aim at solving can be formulated as

minimize
λ̄∈R, λ∈R, l∈Rm

λ̄/λ

subject to λ̄ > λn(R
⊤
q A

⊤WARq),
λ1(R

⊤
q A

⊤WARq) > λ,
W = diag(w), w > 0.

(5.51)

In the proof  we show that the optimization problem (5.51) is equivalent to (5.27).
Define T (λ̄) ≜ λ̄I − R⊤

q A
⊤WARq . First observe that λ̄ ≥ λn(R

⊤
q A

⊤WARq) holds
if  and only if T (λ̄) ∈ Sn

+, which proves the first inequality in the constraint set (5.27).
To obtain a lower bound on λ1(R

⊤
q A

⊤WARq) one must disregard the zero eigenvalues
of R⊤

q A
⊤WARq (if  they exist). This can be performed by restricting ourselves to the

subspace orthogonal to N (R⊤
q A

⊤WARq) = N (ARq). In fact, letting s to be the
dimension of  the nullity ofARq or simplyA and denotingPn×n−s as a basis of Im(R⊤

q A
⊤),

we have that λ ≤ λ1 if  and only if x⊤P⊤T (λ)Px ≤ 0 for all x ∈ Rn−s. Note that for the
case when the nullity of A is 0 (s = 0), all the eigenvalues of R⊤

q A
⊤WARq are strictly

positive and, hence, one can set P = I . We conclude that λ ≤ λ1(R
⊤
q A

⊤WARq) if  and
only if P⊤ (R⊤

q A
⊤WARq − λI

)
P ∈ Sn−s

+ .
Note that λ1(R

⊤
q A

⊤WARq) > 0 can be chosen arbitrarily by scaling W , which
does not affect the ratio λn(R⊤

q A
⊤WARq)/λ1(R

⊤
q A

⊤WARq). Without loss of  generality,
one can suppose λ⋆ = 1 and thus the lower bound on λ1(R

⊤
q A

⊤WARq) ≥ λ⋆ =
1 corresponds to the last inequality in the constraint set of (5.27). Observe that the
optimization problem now reduces to minimizing λ̄. The proof  concludes by rewriting (5.51)
as (5.27), which is a convex problem.

5.A.12 Proof of Proposition 5.2

AssumingF (k+1) = F (k) = −I , (5.23) reduces to v(k+1)−v(k) = ((1 − α)I + αM) (v(k)−
v(k−1)). By taking the Euclidean norm of  both sides and applying the Cauchy inequality,
we find

∥v(k+1) − v(k)∥ ≤ ∥(1 − α)I + αM∥∥v(k) − v(k−1)∥.
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Since the eigenvalues M are ρλi(AQ
−1A⊤)/

(
1 + ρλi(AQ

−1A⊤)
)
, the convergence

factor ζR is

ζR(ρ, α, λi(AQ
−1A⊤)) = 1 − α+ α

ρλi(AQ
−1A⊤)

1 + ρλi(AQ−1A⊤)
.

It is easy to check that the smallest value of |ζR| is obtained when α = 1 and ρ→ 0. Since
α = 1 the relaxed ADMM iterations (5.21) coincide with (5.10) and consequently ζ = ζR.

5.A.13 Proof of Proposition 5.3

The proof  follows similarly to the one of  Proposition 5.2 but with F (k+1) = F (k) = I .





Chapter 6

Accelerating the
ADMM algorithm:

distributed quadratic
problems

THIS chapter presents the parameter selection of  the ADMM method for distributed
quadratic programming. In this class of  problems, a number of  agents collaborate with

neighbors in a graph to minimize a quadratic objective function over a combination of
shared and private variables.

In particular, we consider equality-constrained quadratic problems, where the con-
straints enforce consistency among the local decision variables. By analyzing these equality-
constrained quadratic programming problems, we are able to characterize the optimal step-
size, over-relaxation and constraint scalings for the associated ADMM iterations.

The outline of  this chapter is as follows. Section 6.1 discusses the related work.
Section 6.2 illustrates how the ADMM method can be used to formulate distributed prob-
lems as equality-constrained optimization problems. The ADMM iterations for equality-
constrained quadratic programming problems are formulated and analyzed in Section 6.3.
Distributed quadratic programming and optimal networked-constrained scaling of  the
ADMM algorithm are addressed in Section 6.4. Numerical examples illustrating our results
and comparing them to state-of-the-art techniques are presented in Section 6.5. Section 6.6
concludes the chapter.

6.1 Related work

Recently, a number of  applications have triggered a strong interest in distributed algorithms
for large-scale quadratic programming. Such applications are in areas as varied as multi-
agent systems [107, 54], distributed model predictive control [25, 123], and state estimation
in networks [106].

As these systems become larger and their complexity increases, the need for developing
scalable and efficient algorithms become of  central importance. As argued in the previous

105
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chapters, the ADMM method is a particularly powerful approach for structured problems.
One attractive feature of  ADMM is that it is guaranteed to converge for all (positive) values
of  its step-size parameter. This contrasts with many alternative techniques, such as dual
decomposition, where mis-tuning of  the step-size parameter for the gradient iterations can
lead to divergence.

The ADMM method has been observed to converge fast in many distributed applica-
tions [45, 124, 125, 126, 118]. However, the solution times are sensitive to the choice of
the step-size parameter, and as we observed in the previous chapter, when this parameter is
not properly tuned, the ADMM iterations may converge (much) slower than the standard
gradient algorithm. In practice, the ADMM algorithm parameters are tuned empirically
for each specific application. For example, [124, 125, 126] propose different rules of  thumb
for picking the step-size for different distributed quadratic programming applications, and
empirical results for choosing the best relaxation parameter can be found in [45]. However,
a thorough analysis and design of  the optimal step-size, relaxation parameter, and scaling
rules for the distributed ADMM algorithm is still missing in the literature.

6.2 ADMM for distributed optimization

In this section, we describe an equality-constrained distributed optimization problem and
discuss how it can be posed in ADMM standard format.

Consider a network of  agents, each endowed with a local convex loss function fi(x),
that collaborate to find the decision vector x ∈ Rnx that results in a minimal total loss. In
particular, recall problem (2.21) and it’s equivalent locally separable form (2.22).

Moreover, recall from Chapter 2 that the interactions among agents are described by a
connected undirected graph G(V, E). When the communication graph is connected, all
equality constraints in (2.22) that do not correspond to neighboring nodes in G can be
removed without altering the optimal solution. The remaining inequality constraints can
be accounted for in different ways as described next (c.f. [54]).

6.2.1 Enforcing agreement with edge variables

One way to ensure agreement between all nodes is to enforce all pairs of  nodes connected by
an edge to have the same value, i.e., xi = xj for all {i, j} ∈ E . To include this constraint
in the ADMM formulation, one can form the extended edge set Ē (see Section 2.3) and
introduce an auxiliary variable z{i,j} for the pair of  edges (i, j), (j, i) in Ē . The local
constraints xi = z{i,j} and xj = z{i,j} are then introduced for neighboring nodes i and j,
and an equivalent form of (2.22) is formulated as

minimize
{xi},{z{i,j}}

∑
i∈V fi(xi)

subject to R(i,j)xi = R(i,j)z{i,j}, ∀i ∈ V, ∀(i, j) ∈ Ē .
(6.1)

Here, R(i,j) ∈ Rnx×nx acts as a scaling factor for the constraint defined along each edge
(i, j) ∈ Ē and W(i,j) ≜ R⊤

(i,j)R(i,j) is the weight of  the edge (i, j) ∈ Ē . The edge weights
W(i,j) are included to increase the degrees of  freedom available for nodes to improve the
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performance of  the algorithm. We will discuss optimal design of  these constraint scalings in
Section 6.3.2. Note that when the edge variables z{i,j} are fixed, (6.1) is separable and each
agent i can find the optimal xi without interacting with the other agents.

The optimization problem (6.1) can be written in the ADMM standard form as follows.
Define x = [x⊤1 · · · x⊤|V|]

⊤, z = [z⊤e1
· · · ze|E| ]

⊤, f(x) =
∑

i∈V fi(xi), and B̊ ∈ R|Ē|×|V|

such that B̊kj = 1 if j is the head of ēk ∈ Ē and B̊kj = 0 otherwise. Problem (6.1) can then
be rewritten as

minimize
x,z

f(x)

subject to REx+RFz = 0,
(6.2)

where
E = B̊ ⊗ Inx , F = −

[
I|E|
I|E|

]
⊗ Inx , R = diag({Rēi}ēi∈Ē). (6.3)

Note that the problems considered in this chapter, are in a particular form of  the standard
ADMM formulation (2.14) in which g(z) = 0.

6.2.2 Enforcing agreement with node variables

Another way of  enforcing the agreement among the decision makers is via node variables.
In this setup, each agent i has to agree with all the neighboring agents, including itself. In
the ADMM formulation, this constraint is formulated as xi = zj for all j ∈ Ni∪{i}, where
zi ∈ Rnx is an auxiliary variable created per each node i. The optimization problem can
be written as

minimize
{xi},{zi}

∑
i∈V fi(xi)

subject to R(i,j)xi = R(i,j)zj , ∀i ∈ V, ∀j ∈ {Ni ∪ {i}},
(6.4)

where R(i,j) ∈ Rnx×nx and W(i,j) = R⊤
i,(i,j)Ri,(i,j) is the weight of  the edge (i, j) ∈ Ē .

Additionally, we also have R(i,i) ∈ Rnx×nx and define W(i,i) ≜ R⊤
(i,i)R(i,i) as the matrix-

valued weight of  the self-loop (i, i). Recall B̊ defined in the previous section, and define
B̂ such that B̂kj = 1 if j is the tail of ēk ∈ Ē and B̂kj = 0 otherwise. The distributed
quadratic problem (6.4) can be rewritten as(6.2) with the constraints set

E =

[
B̊
I|V|

]
⊗ Inx , F = −

[
B̂
I|V|

]
⊗ Inx , R = diag({Rēk}ēk∈Ē , {R(i,i)}i∈V). (6.5)

6.3 ADMM for equality-constrained quadratic programming

In this section, we analyze and optimize scaled ADMM iterations for solving (6.2) with
quadratic cost functions. Consider the following class of  equality-constrained quadratic
programming problems

minimize
x,z

1
2
x⊤Qx+ q⊤x+ c⊤z

subject to REx+RFz = 0.
(6.6)
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where Q ∈ Sn
++, q ∈ Rn, c ∈ Rm, E ∈ Rp×n, and F ∈ Rp×m. We assume that E, and F

have full-column rank. An important difference compared to the standard ADMM form is
that the original constraints Ex+ Fz = 0 have been scaled by a matrix R ∈ Rr×p.

Assumption 6.1 The scaling matrix R is chosen so that no non-zero vector v of  the form
v = Ex+ Fz belongs to the null-space of R.

In other words, after the scaling with R, the set of  feasible solution to Ex+ Fz = 0 is
the same as the ones to REx+RFz = 0.

Our aim is to find the optimal scaling that minimizes the convergence factor of  the
corresponding ADMM iterations. In the next lemma we show that (6.6) can be converted
to a more general form:

minimize
x,z

1
2
x⊤Qx+ d⊤x+ c⊤z

subject to REx+RFz = Rh,
(6.7)

for some h ∈ Rp×1.

Lemma 6.1
Let (x⋆, z⋆) be the optimal solution to (6.6) and let (x̂, ẑ) be any feasible solution to (6.7).
Then the optimization problem (6.7) has the optimal solution (x⋆ + x̂, z⋆ + ẑ) if  the
parameters q and d in (6.6) and (6.7) satisfy q = Qx̂+ d.

Proof. See Appendix 6.A for all the proofs of  this chapter.

Without loss of  generality we thus assume h = 0 in the remainder of  the chapter. Letting
Ē = RE and F̄ = RF , the penalty term in the augmented Lagrangian becomes ρ/2∥Ēx+
F̄ z− h̄∥2. The scaled ADMM iterations for (6.6) with fixed relaxation parameter α(k) = α
for all k then read

x(k+1) =(Q+ ρĒ⊤Ē)−1
(
−q − ρĒ⊤(F̄ z(k) + u(k))

)
z(k+1) =− (F̄⊤F̄ )−1

(
F̄⊤

(
αĒx(k+1) − (1 − α)F̄ z(k) + u(k)

)
+ c/ρ

)
u(k+1) =u(k) + αĒx(k+1) − (1 − α)F̄ z(k) + F̄ z(k+1).

(6.8)

Inserting the expression for z(k+1) in the u-update yields

u(k+1) = ΠN (F̄⊤)

(
u(k) + αĒx(k+1)

)
− F̄ (F̄⊤F̄ )−1c/ρ.

Since N (F̄⊤) and Im(F̄ ) are orthogonal complements, this implies that ΠIm(F̄ )u
(k) =

−F̄ (F̄⊤F̄ )−1c/ρ for all k. Thus

F̄ z(k+1) = (1 − α)F̄ z(k) − αΠIm(F̄ )Ēx
(k+1). (6.9)
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By inserting this expression in the u-update and applying the simplified iteration recursively,
we find that

u(k+1) = ΠN (F̄⊤)

(
u(0) + α

k+1∑
i=1

Ēx(i)

)
− F̄ (F̄⊤F̄ )−1c/ρ. (6.10)

We now apply (6.9) and (6.10) to eliminate u from the x-updates:

x(k+1) = αρ(Q+ ρĒ⊤Ē)−1Ē⊤
(
ΠIm(F̄⊤) −ΠN (F̄⊤)

)
Ēx(k)

+ x(k) + αρ(Q+ ρĒ⊤Ē)−1Ē⊤F̄ z(k−1).
(6.11)

Thus, using (6.11) and defining χ(k) ≜ Ē⊤F̄ z(k), the ADMM iterations can be rewritten
in the following matrix form[

x(k+1)

χ(k)

]
=

[
M11 M12
M21 (1 − α)I

]
︸ ︷︷ ︸

M

[
x(k)

χ(k−1)

]
, (6.12)

for k ≥ 1 with x(1) = −(Q + ρĒ⊤Ē)−1 (q + ρĒ⊤(F̄ z(0) + u(0))
)
, χ0 = Ē⊤F̄ z(0),

z(0) = −(F̄⊤F̄ )−1c/ρ, u(0) = F̄ z(0), and

M11 = αρ(Q+ ρĒ⊤Ē)−1Ē⊤
(
ΠIm(F̄ ) −ΠN (F̄⊤)

)
Ē + I,

M12 = αρ(Q+ ρĒ⊤Ē)−1, M21 = −αĒ⊤ΠIm(F̄ )Ē.
(6.13)

The next theorem shows how the convergence properties of  the ADMM iterations are
characterized by the spectral properties of  the matrix M .

Theorem 6.1
Define σ(k+1) ≜ [x(k+1)⊤ χ(k)⊤ ]⊤, s ≜ dim (X ), where X is the feasibility subspace

X ≜
{
x ∈ Rn, z ∈ Rm| Ēx+ F̄ z = 0

}
,

and let {φi} be the eigenvalues of M ordered so that |φ1| ≤ · · · ≤ · · · ≤ |φ2n|. Then
s = dim

(
Im(Ē) ∩ Im(F̄ )

)
and the ADMM iterations (6.8) converge linearly to the optimal

solution of (6.6) if  and only if s ≥ 1 and |φ2n−s| < φ2n−s+1 = · · · = φ2n = 1.
Moreover, the convergence factor of  the ADMM iterates in terms of  the sequence {σ(k)}
equals |φ2n−s|.

Let us discuss the results of  Theorem 6.1 by an example. Consider a problem of  the
form (2.21), in which a network of |V| agents, each endowed with a local strongly convex
quadratic loss function, collaborate to find a nx-dimensional decision vector that results in
a minimal total loss. For this example, one can use either edge-variable or node-variable
formulation to obtain the standard ADMM problem (6.2) with x ∈ Rn and z ∈ Rn where
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n = |V| · nx. It can be easily verified that the overall problem is feasible1, and that the
dimension of  the feasibility subspace equals to s = nx. Then Theorem 6.1 specifies that
the corresponding ADMM algorithm (6.8) converges linearly toward the optimum point.
Moreover,M takesnx unit eigenvalues and the convergence factor of  the ADMM algorithm
is given by |φ2n−nx | < 1.

Below we state the main problem to be addressed in the remainder of  this chapter.

Problem 6.1 What values of ρ, α, andR minimize |φ2n−s|, the convergence factor of  the
ADMM iterates?

As the initial step to tackle Problem 6.1, we characterize, φi, the eigenvalues ofM . Our
analysis will be simplified by choosing an R that satisfies the following assumption.

Assumption 6.2 The scaling matrix R is such that E⊤R⊤RE = Ē⊤Ē = κQ for some
κ > 0 and Ē⊤Ē ≻ 0.

Remark 6.1 The eigenvalues of M are given by a Quadratic Eigenvalue Problem
(QEP) [127]. Characterizing the spectral properties of  a QEP is typically a daunting
task and requires numerical methods. With Assumption 6.2, However, we are able to
exploit some structural properties of  matrix M that help us to analytically characterize its
eigenvalues. Moreover, Assumption 6.2 may appear restrictive at first sight, but we will later
describe several techniques for finding such an R, even for the distributed setting outlined
in Section 6.2. Finally, we note that our scaling parameter R has two purposes. First, it
is employed to satisfy Assumption 6.2 and, the second, it is used to speedup the ADMM
algorithm.

Replacing Ē⊤Ē = κQ in (6.13) and using the identity

ΠIm(F̄ ) −ΠN (F̄⊤) = 2ΠIm(F̄ ) − I,

yields
M11 = α

ρκ

1 + ρκ
(Ē⊤Ē)−1Ē⊤

(
2ΠIm(F̄ ) − I

)
Ē + I,

M12 = α
ρκ

1 + ρκ
(Ē⊤Ē)−1, M21 = −αĒ⊤ΠIm(F̄ )Ē.

These expressions allow us to explicitly characterize the eigenvalues of M in (6.12).

Theorem 6.2
Consider the ADMM iterations (6.12) and suppose that Ē⊤Ē = κQ. Let vi be a generalized
eigenvector of

(
Ē⊤

(
2ΠIm(F̄ ) − I

)
Ē, Ē⊤Ē

)
with associated generalized eigenvalue λi.

Then,M has two right eigenvectors on the form [v⊤i w⊤
i1]

⊤ and [v⊤i w⊤
i2]

⊤ whose associated
eigenvalues φi1 and φi2 are the solutions to the quadratic equation

1In fact, we know much more about the centralize problem in this example. One can analytically find the
optimal primal-dual variables (x⋆, z⋆, y⋆) by solving the KKT system obtained from the Lagrangian of  the
centralized problem of  the form (6.2) with quadratic cost function.



ADMM for equality-constrained quadratic programming | 111

φ2
i + a1(λi)φi + a0(λi) = 0, (6.14)

where

a1(λi) ≜ α− αβλi − 2, a0(λi) ≜ αβ(1 − α

2
)λi +

1
2
α2β + 1 − α, (6.15)

and
β ≜ ρκ

(1 + ρκ)
.

From (6.14) and (6.15) one directly sees that α, ρ (or, equivalently, β), and R affect the
eigenvalues ofM . We will use φ(α, β, λi) to emphasize this dependence. In the next section
we study the properties of (6.14) with respect to β, α, and λi.

6.3.1 Optimal parameter selection

To minimize the convergence factor of  the iterates (6.8), we combine Theorem 6.1, which
relates the convergence factor of  the ADMM iterates to the spectral properties of  the matrix
M , with Theorem 6.2, which gives explicit expressions for the eigenvalues ofM in terms of
the ADMM parameters. The following result is useful for the development of  our analysis.

Proposition 6.1 (Jury’s stability test [128])
The quadratic polynomial a2φ

2
i +a1φi+a0 with real coefficients a2 > 0, a1, and a0 has its

roots inside the unit-circle, i.e., |φi| < 1, if  and only if  the following three conditions hold:

i) a0 + a1 + a2 > 0;
ii) a2 > a0;

iii) a0 − a1 + a2 > 0.

The next sequence of  lemmas derive some useful properties of λi and of  the eigenvalues
of M .

Lemma 6.2
The generalized eigenvalues of (Ē⊤

(
2ΠIm(F̄ ) − I

)
Ē, Ē⊤Ē) are real scalars in [−1, 1].

Lemma 6.3
Let λi be the i-th generalized eigenvalue of (Ē⊤

(
2ΠIm(F̄ ) − I

)
Ē, Ē⊤Ē), ordered as

λn ≥ · · · ≥ λi ≥ · · · ≥ λ1 and let dim
(
Im(Ē) ∩ Im(F̄ )

)
= s. If  the optimization

problem (6.6) is feasible, we have s ≥ 1 and λi = 1, for all i = n, . . . , n− s+ 1.

Lemma 6.4
Consider the eigenvalues {φi} of  the matrix M in (6.12), ordered as |φ2n| ≥ · · · ≥ |φi| ≥
· · · ≥ |φ1|. Thenφ2n = · · · = φ2n−s+1 = 1 where s = dim

(
Im(Ē) ∩ Im(F̄ )

)
. Moreover,

for β ∈ (0, 1) and α ∈ (0, 2] we have |φi| < 1 for i ≤ 2n− s.
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Lemma 6.4 and Theorem 6.1 establish that the convergence factor of  the ADMM
iterates, |φ2n−s|, is strictly less than 1 for β ∈ (0, 1) and α ∈ (0, 2]. Next, we characterize
|φ2n−s| explicitly in terms of α, β and λi.

Theorem 6.3
Consider the eigenvalues {φi} of M ordered as in Lemma 6.4. For fixed α ∈ (0, 2] and
β ∈ (0, 1), the magnitude of φ2n−s is given by

|φ2n−s| ≜ max
{
g+r , g

−
r , gc, g1

}
(6.16)

where
g+r ≜ 1 +

α

2
βλn−s −

α

2
+
α

2

√
λ2
n−sβ

2 − 2β + 1 + s+r ,

g−r ≜ −1 − α

2
βλ1 +

α

2
+
α

2

√
λ2

1β
2 − 2β + 1 + s−r ,

gc ≜
√

1
2
α2β(1 − λn−s) + 1 − α+ αβλn−s + sc,

g1 ≜ |1 − α(1 − β)|,
s+r ≜ max{0, −(β2λ2

n−s − 2β + 1)},
s−r ≜ max{0, −(β2λ2

1 − 2β + 1)},
sc ≜ max{0, −a0(λn−s)}.

(6.17)

Moreover, we have |φ2n−s| > g+r , |φ2n−s| > g−r , and |φ2n−s| > gc if s+r > 0, s−r > 0,
and sc > 0, respectively.

Given the latter result, the problem of  minimizing |φ2n−s| with respect to α and β can
be written as

min
α∈(0, 2], β∈(0, 1)

max
{
g+r , g

−
r , gc, g1

}
.

Numerical studies have suggested that under-relaxation, i.e., lettingα < 1, does not improve
the convergence speed of  ADMM, see, e.g., [45]. The next result establishes formally that
this is indeed the case for our considered class of  problems.

Proposition 6.2
Let β ∈ (0, 1) be fixed and consider φ2n−s(α, β) . For α < 1, it holds

|φ2n−s(1, β)| < |φ2n−s(α, β)|.

The main result presented below provides explicit expressions for the optimal parame-
ters α and β that minimize |φ2n−s| over given intervals.

Theorem 6.4
Consider the optimization problem (6.6) under Assumption 6.2 and its associated ADMM
iterates (6.12). The parameters α⋆ and β⋆ that minimize the convergence factor |φ2n−s|
over α ∈ (0, α⋆] and β ∈ (0, 1) are:
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Case I : if λn−s > 0 and λn−s ≥ |λ1|,

β⋆ =
1 −

√
1 − λ2

n−s

λ2
n−s

, α⋆ = 2, |φ2n−s| =
1 −

√
1 − λ2

n−s

λn−s
; (6.18)

Case II : if |λ1| ≥ λn−s > 0,

β⋆ =
1 −

√
1 − λ2

n−s

λ2
n−s

, α⋆ =
4

2 −
(
λn−s + λ1 −

√
λ2

1 − λ2
n−s

)
β⋆
,

|φ2n−s| = 1 +
α⋆

2
λn−sβ

⋆ − α⋆

2
;

(6.19)

Case III : if 0 ≥ λn−s ≥ λ1,

β⋆ =
1
2
, α⋆ =

4
2 − λ1

, |φ2n−s| =
−λ1

2 − λ1
. (6.20)

Considering the standard ADMM iterations with α = 1, the next result immediately
follows.

Corollary 6.1
For α = 1, the optimal β⋆ that minimizes the convergence factor |φ⋆

2n−s| is

β⋆ =


1 −

√
1 − λ2

n−s

λ2
n−s

λn−s > 0,

1
2

λn−s ≤ 0.

(6.21)

Moreover, the corresponding convergence factor is

|φ⋆
2n−s| =


1
2

1 +
λn−s

1 +
√

1 − λ2
n−s

 λn−s > 0,

1
2

λn−s ≤ 0.

(6.22)

6.3.2 Optimal constraint scaling

As seen in Theorem 6.4, the convergence factor of  ADMM depends in a piecewise fashion
on λn−s and λ1. In Case I and Case II of  Theorem 6.4, the convergence factor is
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monotonically increasing with respect to λn−s, and it makes sense to choose the constraint
scaling matrix R to minimize λn−s while satisfying the structural constraint imposed by
Assumption 6.2. To formulate the selection of R as a quasi-convex optimization problem,
we first enforce the constraint κQ = E⊤WE by using the following result.

Lemma 6.5
Consider the optimization problem (6.6) with Q ⪰ 0 and let P ∈ Rn×s be an orthonormal
basis for N (ΠN (F⊤)E). LetW = R⊤R and assume thatE⊤WE ≻ 0. If P⊤E⊤WEP =

P⊤QP ≻ 0, then the optimal solution to (6.6) remains unchanged whenQ is replaced with
E⊤WE.

The following result provides necessary and sufficient conditions for Assumption 6.1 to
hold.

Lemma 6.6
LetP1 be an orthonormal basis for the orthogonal complement toN (ΠN (F⊤)E) and define
W = R⊤R ⪰ 0. The following statements are true:

i) Assumption 6.1 holds if  and only if F⊤WF ≻ 0 and P⊤
1 Ē

⊤ΠN (F̄⊤)ĒP1 ≻ 0;

ii) If  Assumption 6.1 holds, then N (ΠN (F⊤)E) = N (ΠN (F̄⊤)Ē).

Next, we derive a tight upper bound on λn−s.

Lemma 6.7
Let P1 be an orthonormal basis for the orthogonal complement to N (ΠN (F⊤)E). Defining
W = R⊤R ⪰ 0 and letting λ ≤ 1, we have λ ≥ λn−s if  and only if[

(λ+ 1)P⊤
1 E

⊤WEP1 P⊤
1 E

⊤WF

F⊤WEP1
1
2
F⊤WF

]
≻ 0. (6.23)

Moreover, Assumption 6.1 holds for a given W satisfying (6.23) with λ ≤ 1.

Using the previous results, the matrixW minimizing λn−s can be computed as follows.

Theorem 6.5
LetP1 ∈ Rn×n−s be an orthonormal basis for the orthogonal complement toN (ΠN (F⊤)E),
define P ∈ Rn×s as an orthonormal basis for N (ΠN (F⊤)E), and denote A as a given
sparsity pattern. The matrix W = R⊤R ∈ A that minimizes λn−s while satisfying
Assumptions 6.2 and 6.1 is the solution to the quasi-convex optimization problem

minimize
W,λ

λ

subject to W ∈ A, W ⪰ 0, (6.23),
P⊤E⊤WEP = P⊤QP.

(6.24)

The results derived in the current section contribute to improve the convergence
properties of  the ADMM algorithm for equality-constrained quadratic programming
problems. The procedure to determine suitable choices of ρ, α, and R is summarized in
Algorithm 6.1.
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Algorithm 6.1 Optimal Constraint Scaling and Parameter Selection

1. Compute W ⋆ and the corresponding λn−s and λ1 according to Theorem 6.5;

2. Use Lemma 6.5 to replace Q with E⊤WE and let κ = 1;

3. Given λn−s and λ1, use the ADMM parameters ρ⋆ = β⋆

1−β⋆ and α⋆ according to
Theorem 6.4.

6.4 ADMM for distributed quadratic programming

We are now ready to develop optimal scalings for the ADMM iterations for distributed
quadratic programming. Specifically, we consider (2.22) with fi(xi) = (1/2)x⊤i Qixi +
q⊤i xi and Qi ≻ 0 and use the results derived in the previous section to derive optimal algo-
rithm parameters for the ADMM iterations in both edge- and node-variable formulations.

6.4.1 Enforcing agreement with edge variables

In the edge variable formulation, we introduce auxiliary variables z{i,j} for each edge
{i, j} ∈ E and re-write the optimization problem in the form of  (6.1). The resulting ADMM
iterations for node i can be written as

x
(k+1)
i = argmin

xi

1
2
x⊤i Qixi + q⊤i xi +

ρ

2

∑
j∈Ni

∥R(i,j)xi −R(i,j)z
(k)
{i,j} +R(i,j)u

(k)
(i,j)∥

2,

γ
(k+1)
(j,i) = αx

(k+1)
j + (1 − α)z

(k)
{i,j}, ∀j ∈ Ni,

z
(k+1)
{i,j} = argmin

z{i,j}

{
∥R(i,j)γ

(k+1)
(i,j) +R(i,j)u

(k)
(i,j) −R(i,j)z{i,j}∥2

+ ∥R(j,i)γ
(k+1)
(j,i) +R(j,i)u

(k)
(j,i) −R(j,i)z{i,j}∥2

}
,

u
(k+1)
(i,j) = u

(k)
(i,j) + γ

(k+1)
(i,j) − z

(k+1)
{i,j} .

(6.25)
Here, u(i,j) is the scaled Lagrange multiplier, private to node i, associated with the
constraint R(i,j)xi = R(i,j)z{i,j}, and the variables γ(i,j) have been introduced to write
the iterations in a more compact form. Note that the algorithm is indeed distributed, since
each node i only needs the current iterates x(k+1)

j and u(k)(j,i) from its neighboring nodes
j ∈ Ni.

We can also re-write the problem formulation as an equality constrained quadratic
program on the form (6.2) with f(x) = (1/2)x⊤Qx + q⊤x , Q = diag

(
{Qi}i∈V

)
, and

q⊤ = [q⊤1 . . . q⊤|V|]. As shown in Section 6.3, the associated ADMM iterations can be
written in vector form (6.8) and the step-size and the relaxation parameter that minimize
the convergence factor of  the iterates are given in Theorem 6.4.
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Recall the assumptions that W ⪰ 0 is chosen so that E⊤WE = κQ for κ > 0. The
next result shows that such assumptions can be satisfied locally by each node.

Proposition 6.3
Consider the distributed optimization problem described by (6.2) and (6.3) and let W =
R⊤R. The equation E⊤WE = κQ can be ensured for any κ > 0 by following a weight-
assignment scheme satisfying the local constraints

∑
j∈Ni

W(i,j) = κQi for all i ∈ V .

Next, we analyze in more detail the scalar case with symmetric edge weights.

Scalar case

Consider the scalar case nx = 1 with n = |V| and let the edge weights be symmetric with
W(i,j) = W(j,i) = w{i,j} ≥ 0 for all (i, j) ∈ Ē . As derived in Section 6.3, the ADMM
iterations can be written in matrix form as (6.12). Exploiting the structure of E and F , we
derive

M11 = αρ(Q+ ρD)−1A+ I, M12 = αρ(Q+ ρD)−1, M21 = −α
2
(D +A).

(6.26)
The optimal step-size ρ⋆ and relaxation parameter α⋆ that minimizes the convergence

factor |φ2n−1| are given in Theorem 6.4, where the eigenvalues {λi} in the corresponding
theorems are the set of  ordered generalized eigenvalues of (A,D). Here, we briefly comment
on the relationship between the generalized eigenvalues of (A,D) and the eigenvalues of  the
normalized Laplacian,Lnorm = I−D−1/2AD−1/2. In particular, we have 1−λ = ψ, where
ψ is any eigenvalue of  the normalized Laplacian and λ is a generalized eigenvalue of (A,D)
corresponding to ψ. For certain well-known classes of  graphs the value of  the eigenvalues
of  the normalised Laplacian are known, e.g. see [60] and [129] for more information. As a
result, one can identify which case of  Theorem 6.4 is applied to each of  these graphs. The
following proposition establishes one such result.

Proposition 6.4
Adopt the hypothesis of  Theorem 6.4. The following statements are true.

i) Case II of  Theorem 6.4 holds for path graphs with |V| ≥ 4, cycle graphs with |V| ≥ 5,
and wheel-graphs with |V| ≥ 6.

ii) Case III of  Theorem 6.4 holds for complete graphs, bi-partite graphs, star graphs,
path graphs with |V| = 3, cycle graphs with |V| ∈ {3, 4} and wheel-graphs with
|V| ∈ {4, 5}.

Figure 6.1 illustrates some of  the topologies that are mentioned in Proposition 6.4.
For general topologies, without computing the generalized eigenvalues it is not easy to
know which case of  Theorem 6.4 applies. Moreover, when we use non-unity edge-weights,
optimizing these for one case might alter the generalized eigenvalues so that another case
applies. In extensive simulations, we have found that a good heuristic is to use scalings that
attempt to reduce the magnitude of  both the smallest and the second-largest generalized



ADMM for distributed quadratic programming | 117

k4 k2,3

p4

c5 w6

Figure 6.1: From left to right: a complete graph with |V| = 4, a complete bi-partite graph
with |V| = 5, a path graph with |V| = 4, a cycle graph with |V| = 4, and a wheel graph
with |V| = 6 nodes.

eigenvalues. The next lemma shows how to compute such scalings for the edge-variable
formulation.

Lemma 6.8
Consider the weighted undirected graph G = (V, E ,W). The non-negative edge-weights
{w{i,j}} that jointly minimize and maximize the second largest and smallest generalized
eigenvalue of (A,D), λn−1 and λ1, are obtained from the optimal solution to the quasi-
convex problem

minimize
{w{i,j}}, λ

λ

subject to w{i,j} ≥ 0, ∀ i, j ∈ V,
Aij = w{i,j}, ∀ {i, j} ∈ E ,
Aij = 0, ∀ {i, j} ̸∈ E ,
D = diag(A1n),
D ≻ ϵI,
P⊤ (A− λD)P ≺ 0,
A+ λD ≻ 0,

(6.27)

where the columns of P ∈ Rn×n−1 form an orthonormal basis of N (1⊤
n ) and ϵ ∈ R++.

6.4.2 Enforcing agreement with node variables

Recall the node variable formulation (6.4) using the auxiliary variables zi ∈ Rnx for each
node i ∈ V described in Section 6.2.2. The ADMM iterations for node i can be rewritten
as

x
(k+1)
i = argmin

xi

1
2
x⊤i Qixi + q⊤i xi +

ρ

2

∑
j∈Ni∪{i}

∥R(i,j)xi −R(i,j)z
(k)
j +R(i,j)u

(k)
(i,j)∥

2,

γ
(k+1)
(j,i) = αx

(k+1)
j + (1 − α)z

(k)
i , ∀j ∈ Ni ∪ {i},

z
(k+1)
i = argmin

zi

∑
j∈Ni∪{i}

∥R(j,i)γ
(k+1)
(j,i) +R(j,i)u

(k)
(j,i) −R(j,i)zi∥2,

u
(k+1)
(i,j) = u

(k)
(i,j) + γ

(k+1)
(i,j) − z

(k+1)
j , ∀j ∈ Ni ∪ {i},

(6.28)
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where u(i,j) is the scaled Lagrange multiplier, private to node i, associated with the
constraint R(i,j)xi = R(i,j)zj , and γ(k)(i,j) is an auxiliary variable private to node i and
associated with the edge (i, j). Note that the algorithm is distributed, since it only requires
communication between neighbors. However, unlike the previous formulation with edge
variables, here two communication rounds must take place: the first to exchange the private
variables x(k+1)

j and u(k)(j,i), required for the zi-update; the second to exchange the private

variables z(k+1)
j , required for the u(i,j)- and xi-updates.

Let x = [x⊤1 · · · x⊤|V|]
⊤, z = [z⊤1 · · · z⊤|V|]

⊤, Q = diag
(
{Qi}i∈V

)
, and q⊤ =

[q1 . . . q|V|]. The cost function in (6.4) takes the form f(x) = (1/2)x⊤Qx+ q⊤x while E
andF are given in (6.5). Note that the matrixE is the same as for the edge-variable case, thus
Proposition 6.3 may also be applied to the present formulation to ensure E⊤WE = κQ.

Next we consider the scalar case with symmetric weights.

Scalar case

Consider the scalar case nx = 1 with n = |V| and let the edges weights be symmetric with
W(i,j) = W(j,i) = w{i,j} ≥ 0 for all (i, j) ∈ Ē . Using the structure of E and F , the fixed
point equation (6.12) can be formulated by the following relations

M11 = αρ(Q+ ρD)−1(2AD−1A−D) + I,

M12 = αρ(Q+ ρD)−1, M21 = −αAD−1A.
(6.29)

The optimal step-size ρ⋆ and relaxation parameter α⋆ that minimizes the convergence
factor |φ2n−s| are given in Theorem 6.4, where the eigenvalues {λi} are the set of  ordered
generalized eigenvalues of (2AD−1A−D, D). For the node-variable formulation, we have
not been able to formulate a weight optimization corresponding to Lemma 6.8. However,
in the numerical evaluations, we will propose a modification that ensures that Case I of
Theorem 6.4 applies, and then minimize the second-largest generalized eigenvalue.

6.5 Numerical examples

In this section, we illustrate our results via numerical examples. In particular, we consider
a toy example with three nodes collaborating in a path topology trying to agree on a global
variable. We demonstrate how our parameter selection rules can accelerate the decision
making process. Our second application is devoted to distributed averaging where we
compare ADMM with several state-of-the-art techniques.

6.5.1 Distributed quadratic programming

As a first example, we consider a distributed quadratic programming problem with 3 agents,
a decision vector x ∈ R4, and an objective function on the form

f(x) =
∑
i∈V

1/2x⊤Qix+ q⊤i x



Numerical examples | 119

with

Q1 =


0.4236 −0.0235 −0.0411 0.0023
−0.0235 0.0113 0.0023 −0.0001
−0.0411 0.0023 0.4713 −0.0262
0.0023 −0.0001 −0.0262 0.0115



Q2 =


0.8417 −0.1325 −0.0827 0.0132
−0.1325 0.0311 0.0132 −0.0021
−0.0827 0.0132 0.9376 −0.1477
0.0132 −0.0021 −0.1477 0.0335



Q3 =


0.0122 0.0308 −0.0002 −0.0031
0.0308 0.4343 −0.0031 −0.0422
−0.0002 −0.0031 0.0125 0.0344
−0.0031 −0.0422 0.0344 0.4833


q1 = q2 = 0, q⊤3 =

[
−0.1258 0.0087 0.0092 −0.1398

]
.

The communication graph is a line graph where node 2 is connected to nodes 1 and 3.
The distributed optimization problem is formulated using edge variables and solved by
executing the resulting ADMM iterations. The convergence behavior of  the iterates for
different choices of  scalings and algorithm parameters are presented in Figure 6.1.

The optimal constraint scaling matrix and ADMM parameters are computed using
Algorithm 6.1, resulting in ρ = 1 and α = 1.33. In the “local” algorithm, the nodes
determined the constraint scalings in a distributed manner in accordance to Proposition 6.3,
while the optimal parameters computed using Theorem 6.4 are ρ = 1.44 and α = 1.55.
The remaining iterations correspond to ADMM algorithms with unitary edge weights, fixed
relaxation parameter α, and manually optimized step-size ρ. The parameter α is fixed at
1.0, 1.5, and 1.8, while the corresponding ρ is chosen as the empirical best.

Figure 6.1 shows that the manually tuned ADMM algorithm exhibits worse perfor-
mance than the optimally and locally scaled algorithms. Here, the best parameters for the
scaled versions are computed systematically using the results derived earlier, while the best
parameters for the unscaled algorithms are computed through exhaustive search.

6.5.2 Distributed averaging

In this section we apply our methodology to derive optimally scaled ADMM iterations for a
particular problem instance usually referred to as average consensus. The problem amounts
to devising a distributed algorithm that ensures that all agents i ∈ V in a network reach
agreement on the network-wide average of  local valuesxi ∈ R held by the individual agents.
This problem can be formulated as a particular case of (2.22). That is the problem (4.19)
which was previously studied in chapter 4.

We consider edge-variable and node-variable formulations and compare the perfor-
mance of  the corresponding ADMM iterates with the relevant state-of-the-art algorithms.
As performance indicator, we use the convergence factors computed as the second largest
eigenvalue of  the linear fixed point iterations associated with each method. We generated
communication graphs from the Erdős-Rényi and the Random Geometric Graph (RGG)
families (see, e.g., [130]). Having generated |V| number of  nodes, in Erdős-Rényi graphs we
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Figure 6.1: Normalized error for the scaled ADMM algorithm withW ⋆ from Theorem 6.5,
local scaling from Proposition 6.3, and unitary edge weights with fixed over-relaxation
parameter α. The ADMM parameters for the scaled algorithms are computed from
Theorem 6.4. The step-sizes for the unscaled algorithms are empirically chosen.

connected each pair of  nodes with probability p = (1 + ϵ)log(|V|)/|V| where ϵ ∈ (0, 1).
In RGG, |V| nodes were randomly deployed in the unit square and an edge was introduced
between each pair of  nodes whose inter-distance is at most 2 log(|V|)/|V|; this guarantees
that the graph is connected with high probability [131].

Figure 6.2 presents Monte Carlo simulations of  the convergence factors versus the
number of  nodes |V| ∈ [10, 50]. Each data point is the average convergence factor in 60
instances of  randomly generated graphs with the same number of  nodes. In our simulations,
we consider both edge-variable and node-variable formulations. For both formulations, we
consider three versions of  the ADMM algorithm with our parameter settings: the standard
one (with step-size given in Corollary 6.1), an over-relaxed version with parameters in
Theorem 6.4, and the scaled-relaxed-ADMM that uses weight optimization in addition
to the optimal parameters in Theorem 6.4.

In the edge-variable scenario, we compare the ADMM iterates to three other algo-
rithms: fast-consensus [54] from the ADMM literature and two state-of-the-art algorithms
from the literature on the accelerated consensus: Oreshkin et al. [101] from the shift-register
type of  acceleration and the multi-step method developed in Section 4.6.2 (and termed
here as Ghadimi et al.). In these algorithms, a two-tap memory mechanism is implemented
so that the values of  two last iterates are taken into account when computing the next.
All the averaging algorithms in our experiment employ their best known weight scheme.
For Ghadimi et al., the optimal weight is given by Proposition 4.3 while fast-consensus
and Oreshkin et al. use the optimal weights in [47]. The scaled-relaxed-ADMM method
employs the weight heuristic presented in Lemma 6.8. Figures 6.2a, 6.2c and 6.2e show a
significant improvement of  our design rules compared to the alternatives for both RGG and
Erdős-Rényi graphs in sparse (ϵ = 0.2) and dense (ϵ = 0.8) topologies. We observe that in
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all cases, the convergence factor decreases with increasing network size on RGG, while it
stays almost constant on Erdős-Rényi graphs.

For the node-variable formulation, we compare the three variants of  our ADMM
algorithm to the fast-consensus [54] algorithm. The reason why we exclude two other
methods from the comparison is that they do not (yet) exist for the node-variable formu-
lation. By comparing their explicit x-updates in (6.25) and (6.28), it is apparent that while
each iterate of  the consensus algorithms based on edge-variable formulation requires a
single message exchange within the neighborhood of  each node, the node-variable based
algorithms require at least twice the number of  message exchanges per round.

In the scaled-relaxed-ADMM method, we first minimize the second largest generalized
eigenvalue of (2AD−1A−D,D) using the quasi-convex program (6.24). LetA⋆ andD⋆ be
the adjacency and the degree matrices associated with the optimal solution of (6.24). After
extensive simulations, we observed that formulating the fixed point equation (6.12) as

M11 = αρ(Q+ ρD⋆)−1(A⋆D⋆−1A⋆) + I,

M12 = αρ(Q+ ρD⋆)−1, M21 = −α
2
(A⋆D⋆−1A⋆ +D⋆),

(6.30)

instead of  using (6.29), often significantly improves the convergence factor of  the ADMM
algorithm for the node-variable formulation. Note that this reformulation leads to {λi} (in
Theorem 6.4) being the generalized eigenvalues of (AD−1A, D). These eigenvalues have
several nice properties, e.g., they are positive and satisfy Case I, for which we presented the
optimal ADMM parameters (α⋆, ρ⋆) in Theorem 6.4. The algorithm formulated by (6.30)
corresponds to running the ADMM algorithm over a network with possible self  loops with
the adjacency matrix Ã = Ã⊤ such that

A⋆D⋆−1A⋆ =
1
2
(ÃD⋆−1Ã+D⋆), diag(Ã1n) = D⋆.

Figures 6.2b, 6.2d and 6.2f illustrate the performance benefits of  employing optimal
parameter settings developed in this chapter compared to the alternative fast-consensus
for different random topologies.

Finally, we compare the performance of  different averaging algorithms under fully
distributed implementations, where all the algorithm parameters are either computed or
estimated in a distributed fashion. For this aim, |V| = 200 nodes were deployed in an
RGG topology with initial values x(0)

i = i/n. The ADMM (edge-variable) algorithm
with local weights given in Proposition 6.3 is compared to the traditional linear averaging
algorithm [47], fast-consensus and Oreshkin et al., all with Metropolis-Hastings (MH)
weight matrices [47]. While our weight matrix is constructed locally with each node only
knowing its own degree, in MH weights each node needs to know its neighbors’ degrees as
well. We restricted our method and Oreshkin et al. to Case I (Oreshkin et al. also required
a similar condition). Following a similar mapping as the node-variable case presented in
in (6.30), we replaced the adjacency matrix A in ADMM iterations (6.26) with (A+D)/2
that can be computed locally.

To compute the algorithm parameters for all methods, one has to compute the second
largest eigenvalue of  the corresponding weight matrices. The parameter can be obtained
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(c) ϵ = 0.2 edge variable
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(d) ϵ = 0.2 node variable
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(e) ϵ = 0.8 edge variable
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(f) ϵ = 0.8 node variable

Figure 6.2: Performance comparison of  the proposed optimal scaling for the ADMM
algorithm with state-of-the-art algorithms fast-consensus [54], Oreshkin et.al [101] and the
multi-step method (Ghadimi et.al). The network of  size n = [10, 50] is randomly generated
by RGG (random geometric graphs) and Erdős-Rényi graphs with low and high densities
ϵ = {0.2, 0.8}.
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Figure 6.3: MSE versus iteration number for n = 200 nodes in RGG topology.

by a distributed power method scheme presented in [101]. In particular, nodes iterate 50
consensus rounds to compute the estimated parameter. We neglected this initialization cost
to conduct the experiment.

Figure 6.3 compares the Mean Square Error (MSE) decay rate of  different algorithms
versus the number of  iterations. The ADMM algorithm with the exact knowledge of  the
second largest eigenvalue is also included as a reference. The figure indicates that our design
rules outperform the alternatives.

6.6 Summary

In this chapter, we addressed the optimal parameter selection of  the ADMM method for
distributed quadratic problems. Two formulations that yield ADMM iterations which can
be executed in a distributed manner were considered. For each formulation, we derived the
step-size and relaxation parameters that minimize the convergence factor of  the iterates.
Under mild assumptions on the communication graph, analytical expressions for the opti-
mal parameters were derived and related to the spectral properties of  the communication
graph. Supposing the optimal constant parameters were chosen, the convergence factor was
further minimized by optimizing the edge weights. Several numerical examples validated
our theoretical results and confirmed significant performance improvements over the state-
of-the-art techniques.





Appendix

6.A Proofs

6.A.1 Proof of Lemma 6.1

Rewrite (6.6) in terms of  the variables x̃ = x+ x̂ and z̃ = z + ẑ:

minimize
x̃,z̃

1
2
(x̃− x̂)⊤Q(x̃− x̂) + q⊤(x̃− x̂) + c⊤(z̃ − ẑ)

subject to RE(x̃− x̂) +RF (z̃ − ẑ) = 0.

Collecting the terms in the objective and noting that the feasible solution (x̂, ẑ) satisfies
REx̂+RFẑ = Rh, one can rewrite this problem as

minimize
x̃,z̃

1
2
x̃⊤Qx̃+ (q −Qx̂)⊤x̃+ c⊤z̃ + k

subject to REx̃+RFz̃ = Rh,

where k collects the constant terms. Since k does not affect the minimizer, it can be removed
and the problem is equivalent to (6.7) when d = q −Qx̂.

6.A.2 Proof of Theorem 6.1

First, we show that s = dim
(
Im(Ē) ∩ Im(F̄ )

)
. Consider the quadratic programming

problem (6.6) with Ē = RE, F̄ = RF and h = 0. The dimension of X is given
by dim (X ) = dim

(
N ([Ē F̄ ])

)
. Since Ē ∈ Rp×n and F̄ ∈ Rp×m are of  full col-

umn rank, we observe that dim
(
Im(Ē)

)
= n and dim

(
Im(F̄ )

)
= m. Using the equal-

ities dim
(
Im([Ē F̄ ])

)
= dim

(
Im(Ē)

)
+ dim

(
Im(F̄ )

)
− dim

(
Im(Ē) ∩ Im(F̄ )

)
and

dim
(
N ([Ē F̄ ])

)
+ dim

(
Im([Ē F̄ ])

)
= n+m, we conclude

dim (X ) = dim
(
Im(Ē) ∩ Im(F̄ )

)
= s.

Provided that (6.6) is feasible and under the assumption that there exists a (non-trivial)
non-zero tuple (x, z) ∈ X , we have s ≥ 1. From Proposition 2.1 it follows that the ADMM
iteration (6.6) with feasible solutions (x, z) ∈ X converges linearly to a fixed-point in the
1-eigenspace of M with multiplicity s̄ ≥ 1 if  and only if |φ2n−s̄| < 1.

Next, we show that s̄ = s. i. Suppose s̄ > s, then the 1-eigenspace of M (i.e., the
subspace containing the fixed points of (6.6) with dimension s̄) cannot be a subset of  the
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feasibility subspace X with dimension s. Therefore, depending on the initial condition, a
fixed-point of (6.6) might be infeasible. Thus, we conclude s̄ ≤ s. ii. We show that each
base of X relates to a 1-eigenvector ofM . Let VX ∈ R(n+m)×s be a matrix whose columns
are a basis for the feasibility subspace X and partition this matrix as VX = [V ⊤

x V ⊤
z ]⊤.

Given the partitioning of VX we have that ĒVx + F̄ Vz = 0 and for all columns v of Vx
it holds Ēv ∈ Im(F̄ ). Let u ≜ [u⊤1 , u

⊤
2 ]⊤ be a 1-eigenvector of (6.6). From the identity

Mu = u it yields (
M11 +

1
α
M12M21 − I

)
u1 = 0, u2 =

1
α
M21u1.

By substituting M11,M12, and M21 from (6.6) in former identities we have

−αρ(Q+ ρĒ⊤Ē)−1Ē⊤ΠN (F̄⊤)Ēu1 = 0.

From Ēv ∈ Im(F̄ ) it follows ΠN (F̄⊤)Ēv = 0 and, therefore,

u =

[
I

1
α
M21

]
v,

is a 1-eigenvector ofM . This means that each column of Vx corresponds to a 1-eigenvector
ofM ; i.e., rank(Vx) ≤ s̄. Next, we derive the rank of Vx. Given that F̄ has full column rank,
using the equation ĒVx+ F̄ Vz = 0 we have that Vz = −F̄ †ĒVx. Hence, we conclude that
rank(Vx) = rank(VX ) = dim(X ) = s. Thus, s ≤ s̄. Combining i. and ii., we have s̄ = s.

Finally, we show that fixed-points of  the ADMM iterations satisfy the optimality
conditions of (6.6) in terms of  the augmented Lagrangian. The fixed-point of  the ADMM
iterations (6.8) satisfy the system of  equationsQ+ ρĒ⊤Ē ρĒ⊤F̄ ρĒ⊤

αF̄⊤Ē αF̄⊤F̄ F̄⊤

Ē F̄ 0

x⋆z⋆
u⋆

 =

 −q
−c/ρ

0

 . (6.31)

From Karush-Kuhn-Tucker optimality conditions of  the augmented Lagrangian

Lρ(x, z, u) =
1
2
x⊤Qx+ q⊤x+ c⊤z +

ρ

2
∥Ēx+ F̄ z∥2 + ρu⊤(Ēx+ F̄ z),

it yields Q+ ρĒ⊤Ē ρĒ⊤F̄ ρĒ⊤

ρF̄⊤Ē ρF̄⊤F̄ ρF̄⊤

Ē F̄ 0

x⋆z⋆
u⋆

 =

−q−c
0

 ,
which is equivalent to (6.31) by noting that F̄⊤Ēx⋆ + F̄⊤F̄ z⋆ = F̄⊤(Ēx⋆ + F̄ z⋆) = 0.
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6.A.3 Proof of Theorem 6.2

To satisfy the eigenvalue equation M [v⊤i w⊤
i ]

⊤ = φi[v
⊤
i w⊤

i ]
⊤, vi and wi should satisfy(

M11 +
1

φi − 1 + α
M12M21 − φiI

)
vi = 0,

wi =
1

(φi − 1 + α)
M21vi.

When Ē⊤Ē = κQ, we have(
M11 +

1
φi − 1 + α

M12M21 − φiI

)
vi

= αβ(Ē⊤Ē)−1Ē⊤
(

2ΠIm(F̄ ) − I
)
Ēvi + vi

− α2β

φi − 1 + α
(Ē⊤Ē)−1Ē⊤ΠIm(F̄ )Ēvi − φivi

= (αβλi + 1)vi −
α2β

2
λi + 1

φi − 1 + α
vi − φivi

=

(
αβλi + 1 − φi −

α2β(λi + 1)
2(φi − 1 + α)

)
vi,

where the last steps follow from the generalized eigenvalue assumption. Thus, the eigenval-
ues of M are given as the solution of

φ2
i + (α− αβλi − 2)φi + αβλi(1 − α

2
) +

1
2
α2β + 1 − α = 0.

6.A.4 Proof of Lemma 6.2

Recall that a complex numberλi is a generalized eigenvalue of
(
Ē⊤(2ΠIm(F̄ ) − I)Ē, Ē⊤Ē

)
if  there exists a non-zero vector νi ∈ Cn such that

(
Ē⊤(2ΠIm(F̄ ) − I)Ē − λiĒ

⊤Ē
)
νi =

0. Since Ē has full column rank, Ē⊤Ē is invertible and we observe that λi is an eigenvalue
of  the symmetric matrix (Ē⊤Ē)−1/2Ē⊤(2ΠIm(F̄ ) − I)Ē(Ē⊤Ē)−1/2. Since the latter is a
real symmetric matrix, we conclude that the generalized eigenvalues and eigenvectors are
real.

For the second part of  the proof, note that the following bounds hold for a generalized
eigenvalue λi

min
ν∈Rn

2ν⊤Ē⊤ΠIm(F̄ )Ēν

ν⊤Ē⊤Ēν
− 1 ≤ λi ≤ max

ν∈Rn

2ν⊤Ē⊤ΠIm(F̄ )Ēν

ν⊤Ē⊤Ēν
− 1.

Since the projection matrix ΠIm(F̄ ) only takes 0 and 1 eigenvalues we have 0 ≤
2ν⊤Ē⊤ΠIm(F̄ )Ēν ≤ 2ν⊤Ē⊤Ēν which shows that λi ∈ [−1, 1].
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6.A.5 Proof of Lemma 6.3

Recall VX = [V ⊤
x V ⊤

z ]⊤ ∈ R(n+m)×s, the basis for the feasibility subspace X , from
Section 6.A.2. We first show that the generalized eigenvectors associated with the unit
generalized eigenvalues λi = 1 are in Vx.

Given the partitioning ofVX we have that ĒVx+F̄ Vz = 0 and Ēν ∈ Im(F̄ ) for ν ∈ Vx.
Hence, we haveΠIm(F̄ )Ēν = Ēν, yielding (ν⊤(Ē⊤(2ΠIm(F̄ )−I)Ē)ν)/(ν⊤(Ē⊤Ē)ν) =
1. Moreover, as 1 is the upper bound for λi according to Lemma 6.2, we conclude
that λn = 1 is a generalized eigenvalue associated with the eigenvector ν. Recalling from
Section 6.A.2 that rank(Vx) = s, we conclude that there exist s generalized eigenvalues
equal to 1.

6.A.6 Proof of Lemma 6.4

Recall from Lemma 6.3 that for a feasible problem of  the form (6.6) we have λi = 1 for
i ≥ n − s + 1. From (6.14) it follows that each λi = 1 results in two eigenvalues φ = 1
and φ = 1 − α(1 − β). Thus we conclude that M has at least s eigenvalues equal to 1.
Moreover, since β ∈ (0, 1) and α ∈ (0, 2], we observe that |1 − α(1 − β)| < 1. Next we
consider i < n − s + 1 and show that the resulting eigenvalues of M are inside the unit
circle for all β ∈ (0, 1) and α ∈ (0, 2] using the necessary and sufficient conditions from
Proposition 6.1.

The first condition of  Proposition 6.1 can be rewritten as a0 + a1 + a2 = 1/2α2β(1 −
λi) > 0, which holds for λi ∈ [−1, 1). Having α > 0 and λi < 1, the condition a2 > a0
can be rewritten as α < (2(1 − βλi)) / (β(1 − λi)). For β < 1, that the right hand side
term is greater than 2, from which we conclude that the second condition is satisfied. It
remains to show a0 − a1 + 1 > 0. Replacing the terms on the left-hand-side, they form a
convex quadratic polynomial on α, i.e.,

D(α) =
1
2
α2β(1 − λi) + 2α(βλi − 1) + 4.

The minimizer of D(α) is at α = (2(1 − βλi)) / (β(1 − λi)), which was shown to be
greater than 2 when addressing the second condition. Since D(2) = 2β(1 + λ) > 0, we
conclude D(α) > 0 for all α ≤ 2 and the third condition holds.

6.A.7 Proof of Theorem 6.3

The magnitude of φ2n−s can be characterized with Jury’s stability test as follows. Consider
the non-unit generalized eigenvalues {λi}i≤n−s and let φi = rφ̃i for r ≥ 0. Substituting
φi in the eigenvalue polynomials (6.14) yields r2φ̃i

2 + ra1(λi)φ̃i + a0(λi) = 0. Therefore,
having the roots of  these polynomials inside the unit circle is equivalent to having |φi| < r.
From the stability of  ADMM iterates (see Lemma 6.4) it follows that it is always possible to
find r < 1. Using the necessary and sufficient conditions from Proposition 6.1, |φ2n−s| is
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obtained as

minimize
r≥0

r

subject to a0(λi) + ra1(λi) + r2 ≥ 0

r2 ≥ a0(λi) ∀ i ≤ n− s

a0(λi)− ra1(λi) + r2 ≥ 0
r ≥ |1 − α(1 − β)|.

(6.32)

Next, we remove redundant constraints from (6.32). Considering the first constraint, we
aim at finding λ ∈ {λi}i≤n−s such that a0(λi) + ra1(λi) + r2 ≥ a0(λ) + ra1(λ) + r2 for
all i ≤ n − s. Observing that the former inequality can be rewritten as αβ(λ − λi)(1 −
α
2 − r) ≤ 0, we conclude that λ = λn−s if 1 − α

2 ≤ r and λ = λ1 otherwise. Hence
the constraints a0(λi) + ra1(λi) + r2 ≥ 0 for 1 < i < n − s are redundant. As for the
second condition, note that a0(λn−s) − a0(λi) = αβ(λn−s − λi)(1 − α

2 ) ≥ 0 for all
i ≤ n − s, since α ∈ (0, 2]. Consequently, the constraints r2 ≥ a0(λi) for i < n − s can
be removed. Regarding the third constraint, we aim at finding λ ∈ {λi}i≤n−s such that
a0(λi)−ra1(λi)+r

2 ≥ a0(λ)−ra1(λ)+r
2 for all i ≤ n−s. Since the previous inequality

can be rewritten as αβ(λ− λi)(1− α
2 + r) ≤ 0, which holds for λ = λ1, we conclude that

the constraints for 1 < i ≤ n− s are redundant. Removing the redundant constraints, the
optimization problem (6.32) can be rewritten as

minimize
r≥0,{si}

r

subject to a0(λn−s) + ra1(λn−s) + r2 − s1 = 0
a0(λ1) + ra1(λ1) + r2 − s2 = 0
r2 − a0(λn−s)− s3 = 0
a0(λ1)− ra1(λ1) + r2 − s4 = 0
r − |1 − α(1 − β)| − s5 = 0
si ≥ 0 ∀i ≤ 5,

(6.33)

where {si} are slack variables. Subtracting the fourth equation from the second we obtain
the following equivalent problem

minimize
{si}

max
i

{ri}

subject to si ≥ 0, ∀i ≤ 5
ri ≥ 0, ∀i ≤ 7
a0(λn−s) + s3 ≥ 0
β2λ2

n−s − 2β + 1 + s1 ≥ 0
β2λ2

1 − 2β + 1 + s4 ≥ 0,

(6.34)
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where
r1 = 1 − α

2
+
α

2
βλn−s +

α

2

√
β2λ2

n−s − 2β + 1 + s1

r2 =
s2 − s4

2a1(λ1)

r3 =
√
a0(λn−s) + s3

r4 = −1 +
α

2
− α

2
βλ1 +

α

2

√
β2λ2

1 − 2β + 1 + s4

r5 = |1 − α(1 − β)|+ s5

r6 = 1 − α

2
+
α

2
βλn−s −

α

2

√
β2λ2

n−s − 2β + 1 + s1

r7 = −1 +
α

2
− α

2
βλ1 −

α

2

√
β2λ2

1 − 2β + 1 + s4.

In the above equation, {r1, r6}, r2, r3, {r4, r7}, and r5 are solutions to the first, second,
third, forth and fifth equality constraints in (6.33), respectively. The last three inequalities
impose that r1, r3, r4, r6, and r7 are real values. Moreover, the last two constraints ensure
that the inequalities r1 ≥ r6 and r4 ≥ r7 hold. Performing the minimization of  each ri with
respect to the corresponding slack variable si we obtain |φ2n−s| = max{r⋆1 , r⋆3 , r⋆4 , r⋆5}
where r⋆i are computed as in (6.34) with

s⋆1 = max{0, −(β2λ2
n−s − 2β + 1)},

s⋆2 = s⋆4 = max{0, −(β2λ2
1 − 2β + 1)},

s⋆3 = max{0, −a0(λn−s)}, s⋆5 = 0.

The proof  concludes by noting that the optimum solutions to the optimization problem
(6.32) are attained at the boundary of  its feasible set. Therefore, having a zero slack variable,
i.e., s⋆i = 0, is a necessary condition for |φ2n−s| = r⋆i .

6.A.8 Proof of Proposition 6.2

Recalling that |φ2n−s| is characterized by (6.16), the proof  follows from showing that the
inequalities

i) g−r (1, β, λ) < g+r (1, β, λ)

ii) g+r (1, β, λ) < max{g+r (α, β, λ), g−r (α, β, λ)}

iii) g1(1, β) < g1(α, β)

iv) gc(1, β, λ) < gc(α, β, λ)

hold for α < 1, β ∈ (0, 1), and λ ∈ {λi}i≤n−s.
The first inequality i) can be rewritten as −βλ < 1, which holds since λ ≥ −1. As for

the second inequality ii), it suffices to show ∆g+ ≜ g+r (1, β, λ)−g+r (α, β, λ) < 0. Forming
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∆g+, after simplifications, it yields

∆g+ =
1 − α

2

(√
λ2β2 − 2β + 1 + s+r + λβ − 1

)
and observe that ∆g+ < 0 holds if

√
λ2β2 − 2β + 1 + s+r + λβ − 1 < 0. The latter

inequality holds for λ ∈ [−1, 1), hence we conclude that g+r (1, β, λ) < g+r (α, β, λ) ≤
max{g+r (α, β, λ), g−r (α, β, λ)}.

Next we consider the third inequality iii). For α ≤ 1 we have g1(α, β) = 1 −α(1 − β).
It directly follows that g1(1, β) < g1(α, β) for α < 1, since g1(1, β)− g1(α, β) = α− 1.

In the last step of  the proof  we address iv). In particular, since gc(α, β, λ) is positive,
having ∆gc ≜ gc(1, β, λ)2 − gc(α, β, λ)

2 < 0 is equivalent to iv). Thus we study the sign

of ∆gc = (1 − α)

(
1
2
βα(1 − λ) +

1
2
λβ +

1
2
β − 1

)
+ sc(1)− sc(α). Using the equality

1
2
β(1 − λ) +

1
2
λβ +

1
2
β − 1 = β − 1 and 1 − λ > 0, for α < 1 we have

∆gc <(1 − α) (β − 1) + sc(1)− sc(α).

Recall from Theorem 6.3 that we can only have |φ2n−s(α, β, λ)| = gc(α, β, λ) when
sc(α) = 0. Note that the case when sc(α) > 0 corresponds to

|φ2n−s(α, β, λ)| = max{g+r (α, β, λ), g−r (α, β, λ), g1(α, β)},

which is covered in the previous part of  the proof. In the following we let sc(α) = 0
and derive the upper bound sc(1) < −(1 − α)(β − 1). Given the definition of sc(1) =
max{0,−(1/2β(1−λ)+βλ)} in Theorem 6.3, the latter upper bound holds if  the following
inequalities are satisfied: (1 − α)(β − 1) < 0 and ∆sc ≜ (1 − α)(β − 1) − (β(1 −
λ)/2 + βλ) < 0. The proof  concludes by observing that, for α < 1, β ∈ (0, 1), and
λ ∈ [−1, 1), the former inequality holds, which in turn satisfies the latter inequality, since
∆sc < −(β(1 − λ)/2 + βλ) = −1/2β(1 + λ) < 0.

6.A.9 Proof of Theorem 6.4

Some preliminary results are derived before proving the theorem.

Lemma 6.9
For a fixed α ∈ [1, 2], λ ∈ {λi}i≤n−s, and sc = 0, the function gc(α, β, λ), defined in
(6.17), is monotonically increasing with β ∈ (0, 1).

Proof. The derivative of gc(α, β, λ) with respect to β is

∇βgc =
1
2
(

1
2
α2β(1 − λ) + 1 − α+ αβλ)−1/2(

1
2
α(1 − λ) + λ),

which is nonnegative if  and only if 1
2α(1 − λ) + λ ≥ 0. The inequality can be rewritten as

α ≥ −2λ
1 − λ

, which holds for all α ∈ [1, 2] and λ ≥ −1.
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Lemma 6.10
For a fixed α ∈ (0, 2], λ ∈ {λi}i≤n−s, and s+r = s−r = 0, the functions g+r (α, β, λ) and
g−r (α, β, λ) are monotonically decreasing with respect to β.

Proof. Considering first g+r (α, β, λ), its derivative with respect to β is

∇βg
+
r (α, β, λ) =

α

2

(
(λ2β − 1)(λ2β2 − 2β + 1)−1/2 + λ

)
.

Since β ∈ (0, 1) and recalling from Lemma 6.2 that |λ| ≤ 1, we have λ2β − 1 < 0 and
thus

∇βg
+
r (α, β, λ) ≤

α

2

(
(λ2β − 1)(β2 − 2β + 1)−1/2 + λ

)
=
α(λ− 1)(1 + λβ)

2(1 − β)
< 0.

Considering g−r (α, β, λ), we have∇βg
−
r (α, β, λ) =

α

2
(
(λ2β − 1)(λ2β2 − 2β + 1)−1/2 − λ

)
.

Similarly as before, ∇βg
−
r (α, β, λ) can be upper-bounded by

∇βg
−
r (α, β, λ) ≤

α

2

(
(λ2β − 1)(β2 − 2β + 1)−1/2 − λ

)
=
α(λ+ 1)(λβ − 1)

2(1 − β)
≤ 0.

[Proof  of  Theorem 6.4] Recall from Proposition 6.2 that the minimizing relaxation
parameter α⋆ lies in the interval [1, 2].

First, suppose that s+r = sc = 0 and observe that g+r ≥ g−r is equivalent to

α ≤ 4
η

(6.35)

with
η = 2 − (λn−s + λ1)β +

√
λ2

1β
2 − 2β + 1 −

√
λ2
n−sβ

2 − 2β + 1.

Recall that g1 = max{1−α(1−β), −1+α(1−β)}. For β ≤ 1/2, g−r ≥ −1+α(1−β).
Therefore, given (6.35):

|φ2n−s| = max{g+r , gc, 1 − α(1 − β)} (6.36)

Note that g+r is decreasing with respect to β while gc and 1 − α(1 − β) are increasing
with respect to β. Hence, β⋆ satisfies g+r = max{gc, 1 − α(1 − β)}. Next, we consider the
following cases.
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Case I and Case II: Suppose that λn−s ̸= 0 and β⋆ is the solution to g+r =

gc, yielding β⋆ = (1 −
√

1 − λ2
n−s)/λ

2
n−s. We show β⋆ is the minimizer by deriving

g+r (α, β
⋆, λn−s) ≥ 1−α(1−β⋆). Since β⋆2λ2

n−s−2β⋆+1 = 0, the latter inequality can

be rewritten as β⋆ ≤ 1/(2 − λn−s), which is equivalent to 1 − λ2
n−s ≥

(
1 − λ2

n−s

2−λn−s

)2
.

After manipulations, the former condition reduces to λn−s(1 − λn−s) ≥ 0, which holds
for 1 > λn−s ≥ 0. Hence the parameter β⋆ occurs for g+r = gc. Moreover, note that
β⋆2λ2

n−s − 2β⋆ + 1 = 0, which ensures s+r = sc = 0.
We now fix β⋆ and optimize over the relaxation parameter. Observing that g+r is

decreasing with α, since ∇αg
+
r (α, β

⋆, λn−s) = 1/2(−1 + β⋆λn−s) < 0, we conclude
that α⋆ is the upper bound in (6.35).

For the case where λn−s ≥ |λ1| and λn−s ̸= 0 (Case I), since λn−s + λ1 ≥ 0 for any
choice of β,

√
λ2

1β
2 − 2β + 1 −

√
λ2
n−sβ

2 − 2β + 1 ≤ 0, the upperbound of (6.35) will
be larger than 2. On the other hand, α ∈ (0, 2]. Thus, α⋆ = 2.

For the case where |λ1| ≥ λn−s > 0 (Case II), following a similar line of  reasoning to
the previous case, we obtain

α⋆ =
4

2 − (λn−s + λ1)β⋆ +
√
λ2

1β
⋆2 − 2β⋆ + 1

≤ 2.

Case III: As before |φ2n−s| = max{g+r , gc, 1−α(1−β)}. Given Lemmas 6.9 and 6.10,
the minimizer β⋆ occurs for g+r = max{gc, 1 − α(1 − β)}. Supposing that the minimizer
occurs for g+r (α, β⋆, λn−s) = 1−α(1−β⋆), we obtain β⋆ = 1/2 and g+r (α, β⋆, λn−s) =
1 − α/2. Next we show that 1 − α/2 ≥ gc(α, β

⋆, λn−s), which can be rewritten as 0 ≥
α
2 λn−s(1 − α

2 ) + sc. Recalling from Theorem 6.3 that sc = 0 is a necessary condition
for |φn−s| = gc, we set sc to zero. Since λn−s ≤ 0, we have that g+r (α, β⋆, λn−s) ≥
gc(α, β

⋆, λn−s) for sc = 0.
Next we fix β⋆ = 1/2 and optimize over α ∈ [1, 2]. Note that g+r (α, β⋆, λn−s) =

1−α/2 is decreasing with α and recall that α is constrained to satisfy (6.35). Hence the best
parameter α⋆ occurs at the boundary of (6.35), i.e., α⋆ = 4/(2 − λ1), thus concluding the
proof.

6.A.10 Proof of Corollary 6.1

From the proof  of  Theorem 6.4, when λn−s > 0, then β⋆ = (1 −
√

1 − λ2
n−s)/λ

2
n−s is

optimal, and when λn−s ≤ 0, β⋆ = 1/2 is the minimizer. The result follows by setting α =
1 and obtaining corresponding convergence factors that are given by g+r (α = 1, β⋆, λn−s).

6.A.11 Proof of Lemma 6.5

Without loss of  generality, consider the optimization problem (6.6) with h̄ = 0 (see
Lemma 6.1) and include the additional constraint F̄⊤(Ēx+ F̄ )z = 0. This constraint may



134 | Accelerating the ADMM algorithm: distributed quadratic problems

be rewritten as z = −F̄ †Ēx. Replacing the latter expression in the constraint Ēx+F̄ z = 0
we obtain ΠN (F⊤)Ēx = 0, which can be rewritten as x = Py for some y ∈ Rs. Hence
the optimization problem (6.6) is equivalent to

minimize
y∈Rs

1
2
y⊤P⊤QPy + q⊤Py − c⊤F̄ †ĒPy

The proof  follows directly by noting that P⊤E⊤WEP = P⊤QP yields the same optimal
solution of  the equivalent problem when Q ⪰ 0 is replaced with E⊤WE ≻ 0.

6.A.12 Proof of Lemma 6.6

Recall that Assumption 6.1 states that R is chosen so that all solutions to R(Ex+Fz) = 0
satisfy Ex + Fz = 0. Decomposing Ex as Ex = ΠN (F⊤)Ex + ΠIm(F )Ex, the first

equation becomes R
(
ΠN (F⊤)Ex+ΠIm(F )(Ex+ Fz)

)
= 0. Since N (F⊤) and Im(F )

are orthogonal complements, the latter equation can be rewritten as

0 = RF
(
(F⊤F )−1F⊤Ex+ z

)
(6.37a)

0 = RΠN (F⊤)Ex. (6.37b)

The equation (6.37a) admits the same solutions as its unscaled counterpart with R = I if
and only if RF has an empty null-space, which is equivalent to have F⊤WF ≻ 0.

As for equation (6.37b), assuming the latter inequality holds and decomposing REx =
Ēx as Ēx = ΠN (F̄⊤)Ēx+ΠIm(F̄ )Ēx, the scaled equations (6.37) can be rewritten as

0 = ΠIm(F̄ )Ēx+ F̄ z (6.38a)

0 = ΠN (F̄⊤)Ēx. (6.38b)

Solutions to (6.37b) withR = I can be parameterized as x = Pw ∈ N (ΠN (F⊤)E), where
P ∈ Rn×s is an orthonormal basis for N (ΠN (F⊤)E). Moreover, note that x = Pw is also
a solution to (6.38b), yieldingΠN (F̄⊤)ĒPw = 0. Decomposing x as x = Pw+P1y, (6.38b)
becomes ΠN (F̄⊤)Ē(Pw + P1y) = ΠN (F̄⊤)ĒP1y = 0. Thus, (6.37b) and (6.38b) admit
the same solutions x = Pw if  and only if P⊤

1 Ē
⊤ΠN (F̄⊤)ĒP1 ≻ 0.

The proof  concludes by observing that, under Assumption 6.1, (6.37b) with R = I
and (6.38b) admit the same solutions.

6.A.13 Proof of Lemma 6.7

First, suppose that W = R⊤R is chosen such that Assumption 6.1 holds, as per
Lemma 6.6. Therefore, we have N (ΠN (F⊤)E) = N (ΠN (F̄⊤)Ē). Note that the unit

generalized eigenspace of (Ē⊤
(

2ΠIm(F̄ ) − I
)
Ē, Ē⊤Ē) is characterized by the solutions

of  the equation (Ē⊤
(

2ΠIm(F̄ ) − I
)
Ē− Ē⊤Ē)v = 0 and corresponds to N (ΠN (F̄⊤)Ē).
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Hence, we have P⊤
1

(
Ē⊤

(
2ΠIm(F̄ ) − I

)
Ē
)
P1 ≺ λn−sP

⊤
1 (Ē⊤Ē)P1 and conclude that

λ > λn−s holds if  and only if

P⊤
1

(
Ē⊤

(
2ΠIm(F̄ ) − I

)
Ē − λĒ⊤Ē

)
P1 ≺ 0. (6.39)

Using the Schur lemma, (6.39) can be rewritten as (6.23).
To conclude the proof, we show that a feasible W with λ ≤ 1 does indeed satisfy the

conditions in Lemma 6.6. Suppose that (6.39) holds with some λ ≤ 1. The inequality
F⊤WF ≻ 0 is clearly satisfied. As for the condition P⊤

1 Ē
⊤ΠN (F̄ )ĒP1 ≻ 0, note that W

satisfies
P⊤

1

(
Ē⊤

(
2ΠIm(F̄ ) − I

)
Ē − λĒ⊤Ē − (1 − λ)Ē⊤Ē

)
P1 ≺ 0,

since (1 − λ)Ē⊤Ē ⪰ 0 for λ ≤ 1. Observing that the latter condition can be rewritten as
2P⊤

1 Ē
⊤(I −ΠIm(F ))ĒP1 = 2P⊤

1 Ē
⊤ΠN (F̄ )ĒP1 ≻ 0 concludes the proof.

6.A.14 Proof of Theorem 6.5

The proof  follows from Lemmas 6.5, 6.6, and 6.7.

6.A.15 Proof of Proposition 6.3

From the xi-update in the ADMM iterations (6.25), we see that the diagonal block of
E⊤WE corresponding to node i is given by

∑
j∈Ni

W(i,j). Hence, E⊤WE = κQ is met
if  each agent i ensures that

∑
j∈Ni

W(i,j) = κQi.

6.A.16 Proof of Proposition 6.4

The proof  is a direct consequence of  the analytical expressions of  the eigenvalues of  the
normalized Laplacian of  given in [60, 129] and the relationship 1 − λ = ψ.

6.A.17 Proof of Lemma 6.8

The second last constraint ensures that λ > λn−1 and follows from a special case of
Lemma 6.7, while the last constraint enforces λ1 > −λ.





Chapter 7

Conclusions and
future work

IN this thesis, we have analyzed and optimized the performance of  large-scale opti-
mization algorithms. In particular, we addressed a number of  open problems in the

global convergence of  first-order methods. Moreover, we presented novel primal and dual
techniques to accelerate the basic gradient iterates via multi-step iterates in the context
of  network optimization. In the second line of  work, we considered the ADMM method
and optimized its performance for quadratic problems. We demonstrated how different
techniques such as relaxation and constraint scaling can be properly carried out to meliorate
the performance of  the ADMM algorithm.

In this chapter, we discuss the outcome of  each chapter of  the thesis. In each case, we
also sketch the possible directions to be taken in order to extend the results of  the current
thesis.

7.1 First-order methods

In Chapter 3, we considered the global convergence of  the Heavy-ball method for convex
optimization. Previous studies have shown that, when applied to unconstrained optimiza-
tion problems with strongly convex twice-differentiable cost functions, the method locally
converges to the optimum point and demonstrated the advantages of  the method compared
to alternative first-order techniques [52]. Motivated by these results, we derived the global
convergence rate of  the Heavy-ball methods for two classes of  unconstrained optimization
problems.

When the objectives are convex and continuously differentiable with Lipschitz gradient
(f ∈ F1,1

L ), we observed that the Césaro-mean of  the Heavy-ball iterates converge to the
optimum at rate O(1/k). A similar convergence rate was also proved for the Nesterov’s
method with constant step-sizes. Our result indicates that if f ∈ F1,1

L , the gradient, Heavy-
ball, and Nesterov’s method with constant step-sizes converge at the same rate.

When the objective functions are also strongly convex but not necessarily twice con-
tinuously differentiable (f ∈ S1,1

µ,L), we established linear global convergence rate for the
Heavy-ball method along with global stability conditions. The newly derived parameter
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bounds are wider than the ones for the class F1,1
L and wider than the previously known

bounds for non-convex cost functions with Lipschitz continuous gradients.

7.1.1 Future work

One natural direction to proceed is to extend the results of  this chapter by applying the
Heavy-ball iterations to the constrained convex optimization problems. Several applications
in distributed optimization, multi-agent systems, control, and machine learning motivate
such a study.

Moreover, for the classS1,1
µ,L, numerical experiments showed that the Heavy-ball method

can be tuned to outperform the alternatives. Deriving sharper convergence bounds for the
Heavy-ball method is another interesting future direction.

Finally, for the class F1,1
L , we designed a Heavy-ball based algorithm with time-varying

step-sizes in which the individual iterates x(k) converge at rate O(1/k). Our theoretical and
numerical results (see Fig. 3.1) suggest that the Heavy-ball method (at least with currently
developed step-sizes) cannot perform at a better convergence rate. This is more noticeable
when we consider that Nesterov’s iterations with similar time-varying step-sizes converge
at rate O(1/k2). Proving or disproving a O(1/k2) convergence rate for Heavy-ball iterates
remains as an open question.

7.2 Multi-step methods for network optimization

In Chapter 4, we studied the multi-step gradient methods for network optimization.
Motivated by the Heavy-ball iterates from the literature of  unconstrained minimization,
we designed primal and dual decomposition based methods to improve the performance
of  gradient-based algorithms in network optimization. In these applications, a group of
decision makers collaborated among each other through an undirected graph to solve
joint optimization problems such as resource allocation, global agreement, or network
utility maximization problems. By a primal decomposition approach, we studied a weighted
gradient method and derived the multi-step counterpart along with its stability conditions,
optimal step-size parameters and the associated convergence factor.

The weighting matrices had to obey the sparsity pattern imposed by the underlying
graph. In addition, they had to fulfill some extra requirements to maintain the per-iterate
feasibility of  the primal decision parameters. We also looked into the problem of  optimal
weight selection for the multi-step methods and proposed convex optimization problems to
find such weights. We showed how the technique is applicable for the resource allocation
problem and demonstrated the performance benefits of  the multi-step method compared
to the alternatives.

In general, however, finding the feasible weighting matrices for network optimization
problems may not be always possible. Therefore, we proposed a dual-decomposition based
multi-step method and derived its optimal step-sizes along with the optimal convergence
factor. The applications of  this technique was demonstrated numerically in distributed
averaging and Internet congestion control applications.
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The algorithm parameters for both gradient and multi-step methods are highly de-
pendent on the global information concerning the smoothness of  the cost functions and
the spectral properties of  the communication graphs. Such information may not be locally
available to the decision makers and usually are estimated in practice. For this reason, we
performed a robustness study to evaluate the sensitivity of  the multi-step method to the
estimation errors. It turned out that misestimation in algorithm parameters has exactly the
same effect on the gradient and the multi-step methods in terms of  the stability. Moreover,
in most of  the cases the performance benefits of  the multi-step method compared to the
gradient method prevails in the presence of  parameter uncertainty.

7.2.1 Future work

The results of  Chapter 4 hold under the assumption of  having perfect synchronized
communication between the agents. In real-world applications, however, decision makers
often perform asynchronous updates. The wireless links between the decision makers are
most likely asymmetric which indicates that the directed graphs should be considered in
order to model the communication mechanism. The effects of  packet losses, communication
delays, and quantization errors, on the other hand, are unknown on the performance
of  the multi-step methods. All of  these challenges are interesting directions for future
investigations.

The second type of  interesting extensions are to consider other types of  dependencies
between the decision makers such as linear inequality constraints. These constraints are
usually handled by projected gradient methods. Similar projected multi-step counterparts
then can be applied to accelerate the gradient iterates.

Finally, we notice that the effects of  adding more memory units into the standard
gradient method in order to improve its convergence speed are unknown. An early study
by Polyak [78] suggests that such an idea may bring in some extra performance speedup.
But the amount of  speedup is lower than the two-step method. In a recent study, it is shown
that adding more than a single memory unit, does not improve the convergence speed of
the linear consensus iterations [132]. A quantitative answer to this question that considers
general convex optimization problems is still missing in the literature.

7.3 Accelerating the ADMM algorithm: quadratic problems

Performance optimization of  the ADMM algorithm for solving QP problems was discussed
in Chapter 5. We first considered ℓ2-regularized QP problems in which we obtained the
optimal ADMM parameters along with the best possible convergence factors. The analysis
provided insights about the parameter optimization of  the ADMM algorithm and served as
a framework to compare the performance of  different first-order optimization algorithms.

Then we shifted our attention to the case of  QP problems subject to linear inequality
constraints. We showed if  the cost function is strictly convex and the constraint matrix is
surjective (is of  full row-rank) then the associated ADMM algorithm converges linearly and
globally to the optimal solution. We also suggested the optimal step-size and relaxation
parameters that lead into the best achievable performance. Another performance speedup
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technique was also considered by efficiently preconditioning the constraint matrix. Many
engineering problems involve constraint matrices that are not of  full-row rank. For such
cases, we proposed the heuristic parameters that improve the performance of  the ADMM
algorithm.

Several numerical examples elucidated our theoretical findings. We compared the
performance of  gradient, Heavy-ball, and ADMM methods in the context of ℓ2-regularized
QP problem and discussed the benefits of  using each of  these optimization algorithms.
Furthermore, the performance of  ADMM method with our tuning rules was compared
to a Nesterov based accelerated ADMM method. Finally, a MPC benchmark with 170
QPs was considered in which we tested several parameter configurations for the ADMM
method. The numerical results showed the superiority of  our optimal or heuristic parameter
selection rules compared to alternatives.

7.3.1 Future work

A first natural extension to the results of  the chapter is to consider more general cost
functions. A recent study shows that the same linear convergence rate and similar tuning
rules also hold if  we replace QPs with a more general class of  strongly convex functions
with Lipschitz continuous gradients [133]. A quantitative study that considers the role of
parameter selection for the cases when the ADMM method do not converge linearly is an
interesting future topic to investigate.

Another generalization that can be made to the results of  the chapter is to relax our
assumptions. Especially, one can try to find optimal ADMM parameters for the cases when
the Hessian is positive semi-definite (instead of  positive definite) or the linear constraint
matrix is rank deficit. It is noteworthy to mention that a recent paper addresses some of
these issues by considering QPs with linear equality and bound constraints [134].

7.4 Accelerating the ADMM algorithm: distributed quadratic prob-
lems

Performance optimization of  the ADMM algorithm for solving distributed QP prob-
lems was discussed in Chapter 6. Distributed unconstrained QPs were cast as equality-
constrained quadratic problems, to which the scaled ADMM method was applied. For
this class of  problems, the network-constrained scaling corresponds to the usual step-size
constant, the relaxation parameter, and the edge-weights of  the communication graph.
By applying amendable scalings on the constraint matrices, for connected communication
graphs, we derived analytical expressions for the optimal step-size, relaxation parameter,
and the resulting convergence factor. We showed how these parameters depend on the
spectral properties of  the underlying communication graph.

In particular, we considered two ADMM compliant distributed QP formulations and
discussed their optimal parameter selection rules. We noted while node-variable formulation
often offers better performance, it imposes more communication overhead compared to
edge-variable formulation. Supposing the optimal step-size and relaxation parameter are
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chosen, the convergence factor was further improved by properly scaling the edge weights.
We formulated several convex programing problems to derive such edge weights.

Numerical examples illustrated the theoretical achievements of  the chapter. We com-
pared the best performance of  ADMM based distributed averaging algorithms to several
state-of-the-art techniques. Moreover, we examined the performance of  these algorithms
in a distributed setup in which the algorithm parameters are chosen based on imperfect
locally available information. Significant performance improvements over alternatives were
demonstrated for ADMM algorithms with our performance optimization techniques.

7.4.1 Future work

In this chapter, we considered synchronized ADMM algorithms. The works [135, 136, 137]
proposed a variety of  ADMM algorithms with asynchronous updates. While the first two
works consider the distributed setup in which a randomly chosen node (or group of  nodes)
is allowed to update at each iteration, the work in [137] is a centralized approach in which
nodes coordinate with a master node in a star topology. Similar to Chapter 4, investigating
the effects of  imperfections such as packet losses, quantization and topology changes on the
performance of  ADMM algorithm are interesting future directions.

As we noticed in Chapter 6, ADMM formulation is naturally compatible with undi-
rected graphs. The recent work [138] presents a distributed optimization framework in the
setting of  time-varying directed communications. As another future work, we plan to extend
the results to account for directed communications among agents.





Appendix A

Notation

Vectors are denoted with small characters, e.g., x, and are column vectors by default.
Matrices, however, are denoted with capital letters, e.g., A. Functions are denoted with
Latin characters, e.g., f and g. Sets are mostly denoted with calligraphic letters, e.g., X . A
list of  symbols in this thesis is presented in the following table.

Symbols ≜ Interpretations
R Set of  real numbers
C Set of  complex numbers
R+ Set of  positive real numbers
R++ Set of  strictly positive real numbers
N Set of  natural numbers
N0 Set of  natural numbers including zero
Rn Set of  real vectors with n components
Rn×m Set of  real n×m matrices
Sn Set of n× n real symmetric matrices
Sn
+ Set of n× n real positive semi-definite matrices

Sn
++ Set of n× n real positive definite matrices
ϕ Empty set
0 The (matrix) vector of  all 0 entries
1 The (matrix) vector of  all 1 entries
I Identity matrix
In n× n Identity matrix
x(k) Value of x at iteration k
xi The i-th entry of x
Aij The element on row i and column j in the matrix A
Z = diag(z) The diagonal matrix with Zii = zi and Zij = 0 for j ̸= i
A⊤ Transpose of  the matrix A
∥ · ∥p The vector (matrix) p-norm
∥z∥p,⋆ Dual norm, ∥z∥p,⋆ = sup{z⊤x | ∥x∥p ≤ 1}
∥x∥ Euclidean norm, ∥x∥ =

√
x⊤x
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∥A∥ Spectral norm, ∥A∥ = supx ̸=0∥Ax∥/∥x∥
|ϵ| (Element-wise) absolute value of ϵ ∈ R (ϵ ∈ Rn)
|A| The cardinality of  a set A
λi(A) The i-th smallest in modulus eigenvalue of A
λ-eigenspace of A The space spanned by all the eigenvectors corresponding to λ(A)
r(A) The spectral radius, r(A) ≜ maxλ{|λ||Ax = λx}
⟨x, y⟩ Inner product of x and y, x⊤y
∇f(x) Gradient of f evaluated at x
∇2f(x) Hessian of f evaluated at x
N (A) The null-space of A, {x ∈ Rm| Ax = 0}
Im(A) The range space of A, {y ∈ Rn| y = Ax, x ∈ Rm}
dim(X ) The dimension of  a subspace X
span(A) The subspace spanned by columns of A
λ(B,D) Generalized eigenvalues (B − λD)v = 0
A† ≜ (A⊤A)−1A⊤ The pseudo-inverse of  full-column rank matrix A
ΠIm(A) ≜ AA† The orthogonal projector onto Im(A)

A ≻ 0 (A ⪰ 0) Indicates that A is positive definite (semi-definite)
diag ({Ai}mi=1) Block-diagonal matrix with Ai ∈ Rn×n in its i-th diagonal block
⊗ Kronecker matrix product
G The (undirected) graph G(V, E)
V Set of  vertices (nodes or agents)
E Set of  edges (or links)
Ni The neighbor set of  node i, Ni ≜ {j ̸= i|{i, j} ∈ E}
Sparsity pattern A A ≜ {S ∈ S |V||[S]ij = 0 if i ̸= j and {i, j} ̸∈ E}

Consider B,D ∈ Rn×n with D being invertible. The generalized eigenvalue problem
(B,D) is to find pairs of λi ∈ C and nonzero vi ∈ Cn such that (B − λiD)vi = 0 for
i = 1, . . . , n. The pair λi and vi are termed as a generalized eigenvalue and its associated
generalized eigenvector, respectively.
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Acronyms

ADMM Alternating Direction Method of  Multipliers
IEEE Institute of  Electrical and Electronics Engineers
KKT Karush-Kuhn-Tucker
MH Metropolis-Hastings
MPC Model Predictive Control
MSE Mean Square Error
NUM Network Utility Maximization
PD Proportional Derivative
QEP Quadratic Eigenvalue Problem
QP Quadratic Program
RGG Random Geometric Graph
SDP Semi-Definite Program
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