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Abstract

We construct motion-adaptive transforms for image sequences by using
the eigenvectors of Laplacian matrices defined on vertex-weighted graphs,
where the weights of the vertices are defined by scale factors. The ver-
tex weights determine only the first basis vector of the linear transform
uniquely. Therefore, we use these weights to define two Laplacians of
vertex-weighted graphs. The eigenvectors of each Laplacian share the
first basis vector as defined by the scale factors only. As the first basis
vector is common for all considered Laplacians, we refer to it as subspace
constraint. The first Laplacian uses the inverse scale factors, whereas the
second utilizes the scale factors directly. The scale factors result from the
assumption of ideal motion. Hence, the ideal unscaled pixels are equally
connected and we are free to form arbitrary graphs, such as complete
graphs, ring graphs, or motion-inherited graphs. Experimental results on
energy compaction show that the Laplacian which is based on the inverse
scale factors outperforms the one which is based on the direct scale fac-
tors. Moreover, Laplacians of motion-inherited graphs are superior than
that of complete or ring graphs, when assessing the energy compaction of
the resulting motion-adaptive transforms.

1 Introduction

The objective of motion-adaptive transforms is to produce jointly coded frames for ef-
ficient video coding. For motion-connected pixels, we are able to perform linear trans-
forms efficiently, as they are highly correlated. The well-known motion-compensated
lifting wavelets permit a reversible filter structure, but struggle with unconnected,
connected, and multi-connected pixels when performing the update step. Hence, [1]
and [2] propose modified update operators to address this shortcoming. Instead of us-
ing a lifting wavelet, the class of motion-compensated orthogonal transforms (MCOT)
is designed for successive pictures in a video sequence and maintains strict orthogo-
nality for any motion field [3,4]. Not requiring the concept of lifting, these transforms
compact the signal energy efficiently by using the concept of scale factors.



Formally, the signals can be defined on graphs for processing. For example, [5]
considers lifting transforms on graphs based on spatial and temporal connections due
to block motion. Further, spectral graph theory using the Laplacian matrix of graphs
can be incorporated [6]. Utilizing the eigenvectors of the Laplacian matrix is helpful
in many fields. For example, [7] uses these eigenvectors to define a discrete transform
and to design a lowpass filter for smoothing curves and surfaces. Similarly, [8] con-
structs an edge-adaptive graph-based transform from the eigenvectors. Wavelets can
be constructed based on the Laplacian eigenvectors as well [9]. Aspects of both signal
processing and spectral graph theory are discussed in [10]. From the perspective of
approximation theory, [11] argues that the Laplacian eigenbasis can be regarded as a
meaningful Fourier transform.

In our previous work, a class of motion-adaptive transforms is proposed [12].
The transforms are constructed from vertex-weighted graphs, where the graphs are
defined by the motion information only. The vertex weights of the graph determine
one basis vector of the transform. The remaining basis vectors of the transform
are derived from the covariance matrix which is represented in a dimension-reduced
subspace. The transform is optimal in terms of energy compaction given the subspace
constraint. However, the basis vectors derived from the reduced covariance matrix are
signal dependent. Aiming at a transform basis that is independent of the signal, we
designed a transform that is constructed by simply rotating the basis of the discrete
cosine transform (DCT) [13]. However, since the subspace constraint determines only
one basis vector, there are many ways to construct the higher basis vectors of the
transform.

For our work, the energy compaction of the motion-adaptive transform is relevant.
In this paper, we consider two definitions for the Laplacian matrix of the vertex-
weighted graph. The eigenbasis of a Laplacian matrix serves as our transform, while
the first basis vector meets our subspace constraint. Since the subspace constraint
does not imply how the vertices are connected to each other, we are free to form graphs
that are reasonable for the connected pixels. We also discuss the relation between
the unweighted Laplacian matrix and our vertex-weighted Laplacian matrix. The
resulting transform basis does not need to be transmitted, since the vertex-weighted
graph is reconstructed from motion information at the decoder side.

The paper is organized as follows: Section 2 summarizes the subspace constraint
as obtained from the vertex-weighted graph. Section 3 defines the Laplacian matrix of
the vertex-weighted graph. Section 4 discusses the relation between the unweighted
and the vertex-weighted Laplacian matrices. Section 5 presents the experimental
results.

2 Subspace Constraint

In this section, we first introduce the scale factors, which are used to accommodate the
energy compaction in orthonormal transforms [3]. The weights for vertex-weighted
graphs are given by the scale factors. From the scale factors, we derive a subspace
constraint that determines the transform in a one-dimensional linear subspace [12].



An orthonormal transform compacts the energy of pixels into a lowband coeffi-
cient. The magnitude of the lowband pixel intensity changes. If there are two motion-
connected pixels x′

1 and x′
2, optimal energy compaction will produce a lowband coef-

ficient x1 = (x′2
1 + x′2

2 )
1
2 and a highband coefficient of zero. On the other hand, ideal

motion implies constant intensity for motion-connected pixels, which states x′
1 = x′

2.
Assuming ideal motion, the lowband coefficient can be simplified to x1 =

√
2x′

1 and
the scale factor for the lowband is set to be

√
2. If there is a third motion-connected

pixel, for ideal motion we have x′
3 = x′

1. Then, in the second step of the transform,
the energy of the third pixel will be compacted to the lowband coefficient as well. As
a result, the lowband coefficient becomes x1 =

√
3x′

1. The scale factor is updated to√
3, which captures the total energy.
Now we consider n motion-connected lowband pixels x = [x1, x2, . . . , xn]

T . In
general, we can express each lowband pixel as a product of the scale factor and the
original pixel intensity, i.e., xk = ckx

′
k, k = 1, 2, . . . , n, where ck is the scale factor

and x′
k is the original intensity. If a pixel has not been transformed before, the scale

factor is simply one. Now let c = [c1, c2, . . . , cn]
T denote a vector of these n scale

factors. Similar to [3] and assuming ideal motion, the original pixel values are all
equal, x′

1 = x′
2 = · · · = x′

n. Letting T be an n-dimensional orthonormal transform,
we want all the energy to be compacted into the first coefficient, i.e.,

y = T Tx = T T


c1x

′
1

c2x
′
2

...
cnx

′
n

 =


√∑n

k=1 c
2
k · x′

1

0
...
0

 , (2.1)

where y = [y1, y2, . . . , yn]
T is the output. As we see, the compaction of the energy is

represented by
√∑n

k=1 c
2
k. Rewriting (2.1), for the first vector of the transform, we

have
tT1 c =

√
cTc, (2.2)

where t1 is the first vector in T . This implies that all the energy is captured by t1.
Thus, t1 needs to be collinear with c such that all energy of c is captured by the basis
vector t1. Consequently, we have

tTk c = 0, k = 2, 3, . . . , n, (2.3)

which implies that there is no energy left to be captured by t2, . . . , tn, since they are
orthogonal to t1. Hence, our first vector of the linear transform T is

t1 =
c

∥c∥2
=

c√
cTc

. (2.4)

If x1, x2, . . . , xn are affected by noise, i.e., the original pixel values x′
k are not equal,

perfect energy compaction as in (2.1) will not be achieved. However, we preserve the
subspace constraint t1 =

c
∥c∥2 as it reflects the underlying motion.



3 Laplacian Matrices of Vertex-Weighted Graphs

The subspace constraint defines the first column of the transform. The remaining
n − 1 basis vectors are undetermined. To construct the remaining basis vectors, we
are interested in a class of matrices whose matrix of eigenvectors is a candidate for T .
Since graphs can be formed with the help of motion vectors, we use Laplacian matrices
to represent our graphs. The vertices of our graph represent the motion-connected
pixels, where the vertex weights are related to our scale factors.

In the following, we consider two possible definitions of the Laplacian matrix
for a vertex-weighted graph. One is based on the inverse scale factors. The other
relates to the scale factors directly [14]. In both cases, the resulting matrices of
eigenvectors satisfy our subspace constraint. However, the main difference between
the two definitions stems from the diagonal entries of the Laplacian matrix.

3.1 Laplacian for Vertex-Weighted Graphs Using Inverse Scale Factors

Let G = {V , E} denote a graph with a set of n vertices V and a set of edges E , where
each vertex vi is associated with the weight wi for i = 1, 2, . . . , n. Note this weight can
be different from the scale factors, as it is only used to help defining the Laplacian
matrix. Let D be the degree matrix with diagonal entries d1, d2, . . . , dn, where di
represents the number of connections for vertex vi. The unweighted Laplacian is

L◦(i, j) =


−1, if (i, j) ∈ E
di, if i = j
0, otherwise.

(3.1)

We see that L◦ has an all-one eigenvector 1 and the corresponding eigenvalue zero.
Now, let W be a diagonal weighting matrix with the ith diagonal entry wi. The
vertex-weighted Laplacian may be determined by

L⋆ = WL◦W T . (3.2)

As discussed above, one eigenvector of the vertex-weighted Laplacian needs to satisfy
our subspace constraint. The corresponding eigenvalue should be zero. From (3.2),
we write the definition of the Laplacian of the vertex-weighted graph as

L⋆(i, j) =


−wiwj, if (i, j) ∈ E
diw

2
i , if i = j

0, otherwise.
(3.3)

The definition states that if there is an edge between two vertices vi and vj, L⋆(i, j)
is −wiwj. The ith diagonal entry of L⋆ is diw

2
i , i.e. the degree multiplied by the

squared weight. L⋆(i, j) is zero if there is no edge. The unweighted Laplacian can be
viewed as a special case with all weights equal to one.

From the definition, it can be shown that L⋆ has an eigenvector W T−1
1. The

corresponding eigenvalue is λ⋆
1 = 0. Since we want the eigenvector matrix of L⋆ to be



our transform matrix T , the first eigenvector W T−1
1 should be collinear with c, for

simplicity, W Tc = 1. Thus, wi = c−1
i . W becomes

W = diag[w1, w2, . . . , wn] = diag
[
c−1
1 , c−1

2 , . . . , c−1
n

]
. (3.4)

This guarantees that the eigenvector matrix of L⋆ satisfies the subspace constraint.
Note also the special case where the number of connections and the square of the scale
factor at all vertices vi are equal, i.e., di = c2i , then the vertex-weighted Laplacian
becomes a normalized Laplacian with all diagonal elements equal to one.

Given a vector x ∈ Rn defined on the graph, the unweighted Laplacian quadratic
form is xTL◦x =

∑
(i,j)∈E(xi − xj)

2. It measures the smoothness of x. If x is smooth,
this value will be small. If x varies significantly over any edge, it will be large.
Similarly, the vertex-weighted Laplacian quadratic form is

xTL⋆x = xTWL◦W Tx =
∑

(i,j)∈E

(wixi − wjxj)
2 =

∑
(i,j)∈E

(
xi

ci
− xj

cj

)2

. (3.5)

We see that L⋆ is positive semi-definite. (3.5) implies that using the weighted Lapla-
cian is equivalent to scaling the signal down with scale factors before computing the
unweighted Laplacian.

3.2 Laplacian for Vertex-Weighted Graphs Using Direct Scale Factors

The second definition for the Laplacian is proposed in [14]. We denote it as Ľ.
Similarly to the eigenvector W T−1

1 of L⋆, this Laplacian Ľ has an eigenvector that
can be obtained directly from the vertex weights as well. Assume each vertex vi is
associated with a weight w̌i, i = 1, 2, . . . , n. Again, w̌i is only used to define the
Laplacian matrix. Ľ is given by

Ľ(i, j) =


−w̌iw̌j, if (i, j) ∈ E∑
(i,k)∈E

w̌2
k, if i = j

0, otherwise.

(3.6)

We see that the diagonal entries of L⋆ and Ľ are different. The ith diagonal entry
for L⋆ is diw

2
i . While the ith diagonal entry for Ľ is the summation of all squared

weights whose vertices are connected to the vertex vi.
Let W̌ be a diagonal matrix with the ith diagonal entry w̌i. It is easy to show

that Ľ has one eigenvector W̌1 with the corresponding eigenvalue λ̌1 = 0. Again, we
need this eigenvector to be collinear with c. Thus, w̌i = ci. Comparing to W , instead
of having the ith diagonal entry as c−1

i , W̌ simply has ci, i.e.,

W̌ = diag[w̌1, w̌2, . . . , w̌n] = diag [c1, c2, . . . , cn] . (3.7)

The Laplacian quadratic form is

xT Ľx =
∑

(i,j)∈E

(w̌ixj − w̌jxi)
2 =

∑
(i,j)∈E

(cixj − cjxi)
2. (3.8)

This implies that for each pair (i, j) ∈ E , the signal values xi and xj are scaled by
the index-switched scale factors cj and ci, respectively.



4 Unweighted and Vertex-Weighted Laplacian Matrices

The ideal motion in Sec. 2 assumes that the n connected pixels are x′
1 = x′

2 = · · · = x′
n.

It implies that these n pixels are equally important. There is no further assumption
about which pixel should be connected to which other pixels. Since the subspace
constraint does not imply the structure of the graph, the connections between the
pixels can be defined freely without violating the subspace constraint. As these n
pixels are connected together in a group, one intuitive option is a complete graph,
i.e., each pixel is connected to all other pixels. An example of a complete graph with
n = 4 is depicted in Fig. 1(a), where the vertices are labeled x′

1 to x′
4. Another option

can be a ring graph, i.e., each vertex is connected to two neighbors, as shown in
Fig. 1(b). The complete graph or the ring graph does not emphasize any vertex, as
each vertex is equally connected. The Laplacian matrix for an unweighted complete
graph or an unweighted ring graph is circulant, thus the discrete Fourier transform
(DFT) diagonalizes the Laplacian matrix. A third way to form a graph is to inherit
the connections from motion vectors. This is appealing, since the motion vector
trajectories can be viewed as graphs as well. As exemplified in Fig. 1(c), x′

1 is the
motion reference pixel for x′

2, and x′
2 is the motion reference pixel for x′

3 and x′
4.
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Figure 1: Examples of graphs. (a) A complete graph. (b) A ring graph. (c) A motion-
inherited graph.

In the following, we study the relationship between vertex-weighted and un-
weighted Laplacian matrices in the context of our subspace constraint. Let F be
the eigenvector matrix of the unweighted Laplacian and Λ◦ the eigenvalue matrix,
i.e., L◦ = FΛ◦FH , where (·)H denotes Hermitian transpose. Similarly, let T be the
eigenvector matrix of L⋆ with a corresponding eigenvalue matrix Λ⋆. From Sec. 3 we
know that the eigenvector matrix T always satisfies the subspace constraint t1, either
for a complete graph, a ring, or an inherited graph. The eigenvector t1 is fixed, while
the remaining eigenvectors are not unique. They are determined by the structure of
the graph and the definition of the Laplacian matrix.

Further, let the weighting between the eigenvalue matrices be Λ⋆ = UΛ◦UT , where
U is a diagonal matrix with the ith nonzero diagonal entry ui. Since both L◦ and
L⋆ are singular, i.e., λ◦

1 = 0 and λ⋆
1 = 0, the value of u1 is not unique. Based on the

eigen-decompositions, we have the following relation

L⋆ = TΛ⋆TH = TUΛ◦UTTH = TUFHL◦ (TUFH
)H

= GL◦GH , (4.1)

where G = TUFH is expressed by a singular value decomposition. On the other hand,
the relation between L◦ and L⋆ can also be expressed by the weighting process L⋆ =
WL◦W T , as shown in (3.2). This challenges the characterization of the relationship.



To obtain a characteristic relation between L◦ and L⋆, we modify the two matrices
such that they become nonsingular while maintaining all eigenvectors. We assume
small positive eigenvalues ε◦1 and ε⋆1 to replace λ◦

1 and λ⋆
1, respectively. Let fk be

the kth eigenvector of L◦ and tk the kth eigenvector of L⋆. We use the following
nonsingular matrices to replace the Laplacian matrices, i.e.,

L̃◦ = L◦ + ε◦1f1f
H
1 = ε◦1f1f

H
1 +

n∑
k=2

λ◦
kfkf

H
k (4.2)

and

L̃⋆ = L⋆ + ε⋆1t1t
H
1 = ε⋆1t1t

H
1 +

n∑
k=2

λ⋆
ktkt

H
k . (4.3)

Clearly, this modification does not change the eigenvectors in F and T . Let Λ̃◦ and Λ̃⋆

be the eigenvalue matrices of L̃◦ and L̃⋆, respectively. Then, Λ̃◦ = diag[ε◦1, λ◦
2, . . . , λ

◦
n],

Λ̃⋆ = diag[ε⋆1, λ⋆
2, . . . , λ

⋆
n], and u2

1 = ε⋆1/ε
◦
1. With that, we have a characteristic relation

L̃⋆ = T Λ̃⋆TH = TU Λ̃◦UTTH = TUFHL̃◦ (TUFH
)H

= GL̃◦GH , (4.4)

where G is again TUFH . Since both T and F are unitary, the eigen-decomposition
for GGH and GHG are

GGH = TU2TH and GHG = FU2FH , (4.5)

respectively. As U has full rank, G is nonsingular. T and F can be expressed as
T = GFU−1 and F = G−1TU , respectively. Then, the ith vector of T can be
computed as

ti =
Gfi

∥Gfi∥2
, for i = 1, 2, . . . , n. (4.6)

Fig. 2 depicts a commutative diagram for L̃◦, L̃⋆, F , and T . The problem of
mapping F to T is related to the mapping from L̃◦ to L̃⋆. The link is given by the
eigenvalue decomposition / Karhunen Loeve Transform (KLT). This commutative
diagram shows that there exists a unique T for each graph.

F

L̃
◦

T

L̃
⋆

KLT KLT

L̃⋆
= GL̃◦GH

L̃◦ = G−1L̃⋆G−1
H

T = GFU−1

F = G−1TU

Figure 2: Commutative diagram for the modified Laplacian matrices and transforms.



5 Experimental Results

In the experiments, we evaluate the energy compaction for the QCIF sequences Fore-
man, Mobile and City. We compare the Motion-Compensated Orthogonal Transform
(MCOT) [3], the Graph-Based Rotation (GBR) [13], the eigenvectors of the Lapla-
cian L⋆ with inverse scale factors and complete graphs (VW-ISF-CG), ring graphs
(VW-ISF-RG), and inherited graphs (VW-ISF-IG), as well as the eigenvectors of the
Laplacian Ľ with direct scale factors and inherited graphs (VW-DSF-IG) [14].

The MCOT is performed along the connections as given by motion vectors where
each transform is operated on two coefficients. The GBR is obtained by rotating the
discrete cosine transform (DCT) basis. We concluded in [12] that t1 approximates
the energy compaction of the KLT well, since it compacts lowband energy close to
that of the KLT. It confirms the relevance of the subspace constraint. It is shown
in [13] that the GBR compacts highband energy close to optimal, given the subspace
constraint. Here, the GBR is provided as a reference for comparison purpose.

We perform transforms on a hierarchical decomposition of a group of pictures
(GOP) with a size of sixteen. A GOP includes two hierarchical decomposition levels.
In the first level, sixteen frames are separated into four graphs sets. Each set contains
four successive pictures. In the second level, four tempotal lowbands from the four
sets are grouped together for process. The GOP size and graph sets can be changed,
as the vertex-weighted Laplacian can represent a random graph structure. The graphs
are defined by 16× 16 block motion with a search range of ±32.

Tables 1 to 3 show the relative energy in the temporal subband frames on the
second decomposition level for Foreman, Mobile, and City, respectively. We utilize
all the energy in the test frames. Since the transforms are orthonormal, the energy
is preserved by the transform. All transforms contain the same basis vector t1, thus,
the same lowband energy is produced.

For the remaining basis vectors tk, k > 1, we see that the second largest energy
component of the VW-ISF-IG is greater than that of the VW-ISF-CG and the VW-
ISF-RG, which implies that the inherited graph is better than the complete graph
and the ring graph. It has higher energy than the second largest energy component
of the GBR as well. In Table 3, we observe almost 1% improvement compared to
the GBR. However, the second largest energy components of the VW-ISF-CG and
VW-ISF-RG are both lower than that of the GBR, which means these two kinds of
graphs are less efficient in energy compaction.

Then, we compare the inherited graph for two different definitions of the Laplacian
matrix. We see that the second largest energy component of the VW-ISF-IG is larger
than that of the VW-DSF-IG, which indicates that the Laplacian with inverse scale
factors works better than the one with direct scale factors. We also observe that
VW-DSF-IG still provides better energy compaction than the GBR. Thus, utilizing
the inherited graph is efficient in terms of energy compaction.

The smallest energy component is also given by the VW-ISF-IG. For example, in
Table 3, the smallest energy component of VW-ISF-IG is about 0.5% lower than that
of the GBR and about 1.5% lower than that of the MCOT. Therefore, among the
proposed transforms, VW-ISF-IG achieves the highest energy compaction.



Table 1: Relative energy in the temporal subband frames on the second decomposition level
for Foreman.

Low High 1 High 2 High 3
MCOT 97.51% 0.74% 1.00% 0.75%
GBR 97.51% 1.03% 0.73% 0.73%

VW-ISF-CG 97.51% 0.88% 0.73% 0.88%
VW-ISF-RG 97.51% 0.83% 0.96% 0.70%
VW-ISF-IG 97.51% 1.13% 0.81% 0.55%
VW-DSF-IG 97.51% 1.08% 0.82% 0.59%

Table 2: Relative energy in the temporal subband frames on the second decomposition level
for Mobile.

Low High 1 High 2 High 3
MCOT 92.39% 3.07% 2.73% 1.81%
GBR 92.39% 4.66% 1.67% 1.28%

VW-ISF-CG 92.39% 1.97% 2.06% 3.58%
VW-ISF-RG 92.39% 2.92% 2.97% 1.72%
VW-ISF-IG 92.39% 4.72% 1.85% 1.04%
VW-DSF-IG 92.39% 4.71% 1.84% 1.06%

Table 3: Relative energy in the temporal subband frames on the second decomposition level
for City.

Low High 1 High 2 High 3
MCOT 82.18% 5.24% 6.96% 5.62%
GBR 82.18% 7.16% 4.61% 6.05%

VW-ISF-CG 82.18% 5.75% 6.00% 6.07%
VW-ISF-RG 82.18% 5.94% 6.05% 5.83%
VW-ISF-IG 82.18% 8.14% 5.50% 4.18%
VW-DSF-IG 82.18% 7.79% 5.39% 4.64%

6 Conclusions

In this paper, we consider Laplacian matrices of vertex-weighted graphs, where the
weights of the vertices are defined by scale factors. The vertex-weighted graph deter-
mines uniquely the first basis vector of the linear transform. We refer to this as the
subspace constraint. The vertex-weighted Laplacian matrices are defined such that
the eigenvector matrices satisfy this subspace constraint. The eigenvector matrix
defines our motion-adaptive transform for image sequences. We compare Laplacian
matrices for different weights and different graphs. The results show that using a
motion-inherited graph Laplacian which is defined by inverse scale factors is efficient
in terms of energy compaction.
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