L7: Multi-level optimization
Reading material

• de Micheli pp. 343 - 408
• Curtis, “The design of switching circuits”, pp. 269 - 307
Outline

• Introduction and Motivation
• Basic ideas in multi-level optimization
• Theory behind multi-level optimization
 – Boolean and algebraic factors
 – Kernels and kernel extraction
Two-level vs. multi-level

PLA
control logic
constrained layout
highly automatic
technology independent
Very predictable

Multi-level Logic
all logic
general (e.g. standard cell, FPGAs)
automatic
partially technology independent
Very hard to predict
Optimization criteria for synthesis

The optimization criteria for multi-level logic is to *minimize* some function of:

- **Area occupied by the logic gates and interconnect** (approximated by *literals = transistors* in technology independent optimization)
- **Critical path delay** of the longest path through the logic
- **Degree of testability** of the circuit, measured in terms of the *percentage* of faults covered by a specified set of test vectors for an approximate fault model (e.g. single or multiple stuck-at faults)
- **Power** consumed by the logic gates
- **Noise Immunity**
- **Placeability, Wire-ability**

while simultaneously satisfying upper or lower bound constraints placed
Example: area-delay trade-off
Network representation

Boolean network:

- directed acyclic graph (DAG)
- node logic function
 representation \(f_j(x, y) \)
- node variable \(y_j: y_j = f_j(x, y) \)
- edge \((i, j)\) if \(f_j \) depends explicitly on \(y_i \)

Inputs \(x = (x_1, x_2, \ldots, x_n) \)

Outputs \(z = (z_1, z_2, \ldots, z_p) \)

External don’t cares \(d_1(x), \ldots, d_p(x) \)
Node representation

- Sum-of-products
- BDD
- factored forms
Sum of Products (SOP)

- Advantages:
 - easy to manipulate and minimize
 - many algorithms available
 - two-level theory applies

- Disadvantages:
 - bad representative of logic complexity.
Reduced Ordered BDDs

- given an ordering, ROBDD is canonical, hence it is a good replacement for truth tables
 - not really a good estimator for implementation complexity
- for a good ordering, BDDs remain reasonably small for complicated functions (e.g. not multipliers)
- manipulations are well defined and efficient
Factored Forms

• Advantages
 – good representative of logic complexity
 – in many designs (e.g. complex gate CMOS) the implementation of a function corresponds directly to its factored form
 – good estimator of logic implementation complexity
 – doesn’t blow up easily

• Disadvantages
 – not as many algorithms available for manipulation
 – hence often just convert into SOP before manipulation
Manipulation of Boolean Networks

- Basic Techniques:
 - Global structural operations (change topology)
 - algebraic
 - Boolean
 - Local node simplification (change node functions)
 - don’t cares
 - node minimization
Boolean and algebraic methods

• Boolean methods
 – exploit properties of Boolean algebra
 – use don’t cares
 – complex at times

• Algebraic methods
 – treat functions symbolically as polynomials
 – exploit properties of polynomial algebra
 – simpler and faster, but weaker
Boolean and Algebraic Methods

- In both methods, the goal is to reduce the number of literals in network representation by factorization.
- “Weaker” means that algebraic methods may not find the decomposition which is found by Boolean methods.
- Contrary, Boolean methods will find all the decompositions found by algebraic methods.
Example

• Consider the function
 \[f = ab + ac + ad + a\prime c + a\prime d \]

• Using algebraic method, we get:
 \[f = a(b + c + d) + a\prime(c + d), \quad 7 \text{ literals} \]

• Using Boolean method, we get
 \[f = ab + c + d, \text{ by applying } a+a\prime = 1, \quad 4 \text{ literals} \]
Boolean methods

• Based on the theory of Boolean decomposition
 – Ashenhurst 1959: disjoint decomposition
 – Curtis 1962: non-disjoint decomposition
 – Roth, Karp 1963: some extensions to MVL and practical algorithms
Problem formulation

• Given a function f, express it as a composite function of some set of new functions

• Sometimes, a composite expression can be found in which the new functions are significantly simpler than f

• The problem of selecting the "best" decomposition is too hard to be solved exhaustively
Problem formulation

• All practical algorithms using decomposition theory in logic circuit synthesis restrict the type of decomposition

• The basis for the different types of decomposition is the simple disjunctive decomposition
Simple disjunctive decomposition

• Let $X := (x_1, \ldots, x_n)$

• Simple disjunctive decomposition of a function f: $B^n \rightarrow B$ is a representation of the form:

 $f(X) = g(h(Y), Z)$

 where $h: B^{|Y|} \rightarrow B$, $g: B^{|Z|+1} \rightarrow B$ and $Y, Z \subseteq X$ such that $Y \cup Z = X$ and $Y \cap Z = \emptyset$

• Y is called bound set; Z is called free set
Simple disjunctive decomposition

$X \left\{ \begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\end{array} \right\} f$

$Y \left\{ \begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\end{array} \right\} h$

$Z \left\{ \begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\end{array} \right\} g$

$\text{cost} \quad |Y| \quad |Z| \quad |X| \quad n$
Bound set existence condition

• Suppose \(f = g(h(Y),Z) \) is given by a Karnaugh map with the columns representing the variables from \(Y \) and the rows - from \(Z \)

```
\[
\begin{array}{cccc}
 00 & 01 & 11 & 10 \\
\hline
 0 & 0 & 1 & 0 & 0 \\
 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]
```

\(Y = \{x_1, x_2\} \) \hspace{1cm} \(k(Y/Z) = 2 \)

\(Z = \{x_3\} \)

• **Column multiplicity** \(k(Y/Z) \) is the number of distinct columns in such a map
Column multiplicity

\[g(h, x_3) \]

unique up to complementation

\[f(x_1, x_2, x_3) \]

\[h(x_1, x_2) \]

\[x_1 x_2 \]

\[x_3 \]

\[\begin{array}{c|cccc}
 & 0 & 1 & 0 & 0 \\
\hline
0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
\end{array} \]

\[\begin{array}{c|cc}
 & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 1 \\
\end{array} \]

\[\begin{array}{c|cc}
 & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 1 \\
\end{array} \]
Bound set existence condition

Theorem (Ashenhurst, 1959): for \(f: B^n \rightarrow B \), \(Y \) is a bound set if and only if \(k(Y/Z) \leq 2 \)

- Brute-force method for finding all bound sets:
 - build Karanugh maps for all possible partitionings \(Y/Z \) and check column multiplicity
 - \(N \) of all partitionings is \(O(2^n) \) for \(|X|= n \)
Finding bound sets from BDDs

• A more efficient way to check whether Y is a bound set is to build a BDD with the variables from Y on the top:

\[k(Y/Z) = 4 \]

• \(k(Y/Z) \) = number of nodes in the lower block adjacent to the cut line
Example

\[k(Y/Z) = 2 \]

\begin{array}{c|c|c|c}
\hline
x_1x_2 & 00 & 01 & 11 & 10 \\
\hline
x_3 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\hline
\end{array}
Multiple-valued functions

Theorem (Karp, 1963): for \(f: M^n \rightarrow M \), \(Y \) is a bound set if and only if \(k(Y/Z) \leq m \)

- If we have \(k(Y/Z) \leq m \) for a Boolean function, we can decompose it as:

\[
f(X) = g(h(Y),Z)
\]

with \(h: B^{|Y|} \rightarrow M \), \(g: B^{|Z|} \times M \rightarrow B \), or

\[
f(X) = g(h_1(Y), h_2(Y), \ldots, h_{\log_2 m}(Y), Z)
\]
Complex decompositions

• Once a decomposition $f(X) = g(h(Y), Z)$ is found, either g, h, or both may be similarly decomposed, giving one of the following complex disjunctive decomposition types:

 • **multiple**: $f(X) = g(h(Y_1), k(Y_2), Z)$

 • **iterative**: $f(X) = g(h(k(Y_1), Z_1), Z_2)$

 • **tree-like**: $f(X) = g(h(k(Y_1), Z_1), I(Y_2), Z_2)$
Examples of complex decompositions

- Multiple
- Iterative
- Tree-like
The “best” decomposition

• The more f is decomposed, the more its cost is reduced
• often a function can be decomposed in several different ways depending on the bound set chosen
• since a function may have up to 2^n bound sets, it is too long to consider all possible combinations
 – a theory is needed to decide which is the best
Support set

- The set of variables on which the function f actually depends is called its support set $\text{sup}(f)$

$$\text{sup}(f) = \{ x_i \mid f|_{x_i=0} \neq f|_{x_i=1} \}$$

- **Example**: Support set of

$$f(x_1,x_2,x_3,x_4,x_5) = x_1 + x_2$$

is $\text{sup}(f) = \{x_1, x_2\}$
There are 3 possible ways for two bound sets, A and B, to be related:

- they are non-disjoint, i.e. \(A \cap B = \emptyset \)
- A contains B, i.e. \(A \subset B \)
- they overlap, i.e. \(A \cap B \neq \emptyset \) and \(A \nsubseteq B \) and \(B \nsubseteq A \)
Lemma (Ashenhurst, 1959): If $A \cup B$ is a bound set and $B \cup C$ is a bound set, then A, B, C and $A \cup B \cup C$ are bound sets.
Ordering

• The bound sets A and B are ordered by inclusion if and only if $A \supset B$

• Example: $\{a, b, c, d\} \supset \{b, d\} \supset \{d\}$
Composition tree

Theorem (Ashenhurst, 1959): Given a function \(f: \mathbb{B}^n \rightarrow \mathbb{B} \) with \(\text{sup}(f) = (x_1, \ldots, x_n) \), the set of all its non-overlapping bound sets, partially ordered by inclusion, form a tree

- The tree is unique for a given function (up to complementation)
- The number of nodes in the tree is \(O(n) \)
Consequences

- some bound sets can be implied
 \[A \cup B \land B \cup C \implies A \land B \land C \land A \cup B \cup C \]

- if two composition trees are different, the functions they represent are not equivalent
 - checking equivalence can be terminated earlier
Example

\[h = g x_4 + x'_4 d \]

\[f = x_1 x_2 x_3 x_4 + x'_4 (x_5 \oplus x_6) \]

\[1,2,3,4,5,6 \]

\[1,2,3 \]

\[5,6 \]

AND

XOR
Problem

- Some functions have trivial composition trees
Theorem (Karp, 1963): For multiple-valued functions $M^n \rightarrow M$, Y is a bound set if and only if $k(Y/Z) \leq m$

- If we have $k(Y/Z) \leq m$ for a Boolean function, we can decompose it as:

$$f(X) = g(h(Y), Z)$$

with $h : B^{|Y|} \rightarrow M$, $g : B^{|Z|} \times M \rightarrow B$, or

$$f(X) = g(h_1(Y), h_2(Y), \ldots, h_{\lceil \log_2 m \rceil}(Y), Z)$$
Example, $k(Y/Z) = 4$
Non-disjoint decompositions

\[X \left\{ \vdots \right\} \quad f \]

\[Y \left\{ \vdots \right\} \quad h \]

\[Z \left\{ \vdots \right\} \quad g \]

\[Y \cap Z \neq \emptyset \]
Algorithms based on Boolean decomposition

• There are algorithms for finding all bound sets and deriving from them the decomposed expression for f
 – mostly BDD based, quite fast

• For functions with no disjoint decomposition
 – Roth & Karp decomposition is used
 – Non-disjoint types of decompositions are used (harder to find)
Relation to dominators

• Let X be a set primary inputs dominated by $\{v_1, \ldots, v_k\}$
• Let $X \cup Y$ be a set primary inputs the transitive fan-in of $\{v_1, \ldots, v_k\}$

Then, there exist a decomposition of type

$$f(X, Y, Z) = h(g_1(X, Y), \ldots, g_k(X, Y), Y, Z)$$
Algebraic decomposition

• Algebraic methods provide faster algorithms, because they treat a function like a symbolic polynomial
 – AND = multiplication, OR = addition operation, x and x’ are two different variables

• There are fast methods for manipulating polynomials. The optimally is lost, but the results are quite good
Main idea

- Given a SOP, how do we generate a “good” factored form
- Division operation:
 - is central in many operations
 - find a good divisor
 - apply the actual division
 - results in quotient and remainder
- Factorization
 - factored forms have no inversion except at inputs
 - number of literals is used as size metric
Algebraic divisors and factors

• We say that \(f_{\text{divisor}} \) is an algebraic divisor of \(f_{\text{divident}} \) when:

 – \(f_{\text{divident}} = f_{\text{divisor}} \cdot f_{\text{quotient}} + f_{\text{reminder}} \)

 – \(f_{\text{divisor}} \cdot f_{\text{quotient}} \neq 0 \)

 – \(\sup(f_{\text{divisor}}) \cap \sup(f_{\text{quotient}}) = \emptyset \)

• If \(f_{\text{reminder}} = 0 \), then \(f_{\text{divisor}} \) is called factor of \(f_{\text{divident}} \)
Example

• Algebraic division:

 Let \(f_{\text{dividend}} = ac + ad + bc + bd + e \) and \(f_{\text{divisor}} = a + b \)

 then \(f_{\text{quotient}} = c + d \), \(f_{\text{reminder}} = e \), because

 \[(a+b)(c+d) + e = f_{\text{dividend}} \text{ and } \{a,b\} \cap \{c,d\} = \emptyset\]

• Boolean division:

 Let \(g_{\text{dividend}} = a + bc \) and \(g_{\text{divisor}} = a + b \)

 \(g_{\text{divisor}} \) is NOT an algebraic divisor, even though

 \(g_{\text{dividend}} \neq g_{\text{divisor}} \) with \(g_{\text{quotient}} = a + bc \)

 because \(\{a,b\} \cap \{a,c\} = \emptyset \)
Why do we need to require \(\text{sup}(f_{\text{divisor}}) \cap \text{sup}(f_{\text{quotient}}) = \emptyset \)

- It prevents generation of cubes that are contained in other cubes, as well as universal and void cubes

- Examples:
 1) \(\{a,b\} \cap \{c,d\} = \emptyset \): \((a+b)(c+d) = ac + ad + bc + bd \)
 2) \(\{a,b\} \cap \{a,c\} \neq \emptyset \): \((a+b)(a+c) = aa + ac + ba + bc \)
 - \(aa \) (universal cube) cannot be eliminated in algebraic model
 3) \(\{a,b\} \cap \{a,c\} \neq \emptyset \): \((a+b)(a'+c) = aa' + ac + ba' + bc \)
 - \(aa' \) (void cube) cannot be eliminated in algebraic model
Generation of divisors

- The number of Boolean divisors of a function can be very large
- To find an optimal multi-level expression, we need to generate all possible divisors and choose an expression with the smallest number of literals
- Algebraic divisors are a subset of Boolean divisors, but this subset may still be large
Generation of divisors

- An important subset of algebraic divisors can be generated by treating cubes as divisors.
- The quotient in this process is called kernel and the cube used for division is called co-kernel.
- Kernels and co-kernels can be used to write expressions in factorized form.
Kernel

- **Cube free** expression is an expression which cannot be factored by a cube
 - single cubes are never cube-free
- A **kernel** of an expression is the cube free quotient of the expression obtained by dividing it with a cube
- Cube used to get the kernel of the expression is called its **co-kernel**
- **Kernel set** $K(f)$ is the set of all kernels of f
Example

Let $f_x = ace + bce + de + g$

1. By dividing f_x by cube a we get ce
 - ce is not cube free (can be divided by c or e), so it is not kernel

2. By dividing f_x by e we get $ac + bc + d$
 - $ac + bc + d$ is cube free (cannot be divided by any cube without reminder), so it is a kernel, and e is a co-kernel

3. $K(f_x) = \{(ace+bce+de+g),(ac+bc+d),(a+b)\}$
Kernel set computation

- Naive method:
 - divide function by elements in power set of its support set
 - weed out non cube free quotients

- Smart way:
 - use recursion
 - kernels of kernels are kernels
 - exploit commutativity of multiplication
 - \(ab = ba \)
Example

Let \(f_x = ace + bce + de + g \)

1. Select kernel \(ac + bc + d \)
2. Decompose \(f_x \) as \(f_x = f_ye + g \), with \(f_y = ac + bc + d \)
3. Recur on the quotient \(f_y \):
 1. Select kernel \(a + b \)
 2. Decompose \(f_y \) as \(f_y = f_zc + d \), with \(f_z = a + b \)
4. Resulting factorized expression for \(f_x \):

\[
 f_x = ((a+b)c + d)e + g
\]
Summary of algebraic methods

• Boolean function is treated symbolically as a polynomial
• fast manipulation algorithms
• some optimality is lost, because some Boolean properties are neglected
• useful to reduce large networks