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Abstract—We propose a distributed control and coordination
strategy for multi-agent systems where each agent has a local
task specified as a Linear Temporal Logic (LTL) formula and
at the same time is subject to relative-distance constraints with
its neighboring agents. The local tasks capture the temporal
requirements on individual agents’ behaviors, while the relative-
distance constraints impose requirements on the collective motion
of the whole team. The proposed solution relies only on relative-
state measurements among the neighboring agents without the
need for explicit information exchange. It is guaranteed that
the local tasks given as syntactically co-safe or general LTL
formulas are fulfilled and the relative-distance constraints are
satisfied at all time. The approach is demonstrated with computer
simulations.

Index Terms—Agents and autonomous systems; Cooperative
control; Hybrid systems; Switched systems

I. INTRODUCTION

COOPERATIVE control of multi-agent systems generally
focuses on designing local control laws to achieve a

global control objective, such as reference-tracking [12], con-
sensus [26], or formation [14]. In addition to these objectives,
various relative-motion constraints are often imposed to ensure
stability, safety and integrity of the overall system, such as
collision avoidance [3], network connectivity [14], [31], or
relative velocity constraints [12]. This work is motivated by
the desire to specify and achieve more structured and complex
team behaviors than the listed ones. Particularly, following
a recent trend, we consider Linear Temporal Logic (LTL)
formulas as suitable descriptions of desired high-level goals.
LTL allows the designer to rigorously specify various temporal
tasks, including periodic surveillance, sequencing, request-
response, and their combinations. Furthermore, with the use
of formal verification-inspired methods, a discrete plan that
guarantees the specification satisfaction can be automatically
synthesized, while various statespace abstraction techniques
bridge the continuous control problem and the discrete plan-
ning one. As a result, a generic hierarchical approach that
allows for the correct-by-design control with respect to the
given LTL specification has been formulated and largely
employed during the last decade or so in single-agent as well
as multi-agent settings. In particular, task specifications are
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expressed as LTL formulas for a single dynamical system
in [4] and an automated framework is proposed to translate the
task directly into a hybrid controller, which drives the system
to fulfill this task. For multi-agent systems, LTL formulas have
been used to specify complex high-level global tasks [2], [15],
[17], [21], [22], [28], [30], local tasks [5], [9], [29] and even
communication protocols [23] among the agents.

In temporal logic-based multi-agent control, two different
points of view can be taken: a top-down and a bottom-up. In
the former one, a global specification captures requirements on
the overall team behavior. Typically, the focus of synthesizing
a control strategy is on decomposing the global specification
into smaller local tasks to be executed by the individual agents
in a synchronized [2] or partially synchronized [17], [30]
manner. A central monitoring unit is often crucial to ensure
the satisfaction of the global goal.

In contrast, in the bottom-up approach, each agent is as-
signed its own local task. These tasks can be fully indepen-
dent [5], [9] or partially dependent, involving requests for
collaboration with the others [28], [29]. A major issue here
is the decentralization of planning and control procedures.
In [9], a decentralized revision scheme is suggested for a
team in a partially-known workspace. In [5], gradual veri-
fication is employed to ensure that independent LTL tasks
remain mutually satisfiable while avoiding collisions. In [29],
a receding horizon approach is employed to achieve partially
decentralized planning for collaborative tasks. In [28], the
authors propose a compositional motion planning framework
for multi-robot systems under local safe LTL specifications.

In this work, we tackle the multi-agent control problem
under local LTL tasks from the bottom-up perspective. We
are motivated by a scenario where the accomplishment of
the local LTL tasks requires a collaborative execution of
a sequence of services, which include (1) locally-assigned
independent tasks that can be accomplished by a single robot,
such as surveillance, delivery; (2) locally-assigned dependent
tasks that require the involvement of other robots, such as
collaborative assembly. Instead of challenging the centralized
control ensuring the satisfaction of such dependent tasks,
we view the problem as control under local LTL tasks and
additional coupling constraints. Namely, the agents are subject
to dynamic constraints with neighboring agents that maintain
their geographical closeness necessary for the collaborative
service execution. The maintenance of relative-distance con-
straints is closely related to the connectivity of the multi-
agent network in robotic tasks [14]. As pointed out in [12],



[31], [32], maintaining this connectivity is of great importance
for the stability, safety and integrity of the overall team,
for global objectives like rendezvous, formation and flocking.
Very often the connectivity of underlying interaction graphs is
imposed by assumption rather than treated as an extra control
objective. We addressed a version of this problem in [10],
where we proposed a dynamic leader-follower coordination
and control scheme as a solution. In this work, however, we
aim for a fully decentralized and communication-free solution
that is applicable, e.g., to low-cost robotic systems equipped
with range and angle sensors, but without communication
capabilities.

The bottom-up viewpoint is especially fitting for hetero-
geneous systems, where certain tasks can be accomplished
only by certain agents, and hence, it is reasonable to assume
that each agent is given a task for which it is responsible.
However, it is worth mentioning that global cooperative tasks
can also be accommodated in our approach as long as they
can be decomposed into local ones similarly as in [2], [30].
In particular, thanks to the geographical closeness due to
the additional relative-distance constraints, this decomposition
does not lead to locally-assigned independent tasks, nor to
locally-assigned dependent tasks whose execution should be
synchronized in time. In other words, the services over which
the LTL formulas are built can be shared by several agents,
but through the decomposition process they might be simply
assigned to a single agent (owner of the respective task),
instead of assigning it to the subset of involved agents that
are later required to carefully synchronize to participate on
providing them.

Our solution consists of four ingredients: an initial plan
synthesis algorithm, a decentralized potential-field-based mo-
tion controller, a discrete switching policy and finally a plan
adaptation algorithm. The application domains are multi-agent
systems with fully-actuated agents within a 2D obstacle-
free workspace where agents are assumed to be point mass
and thus inter-agent collision is not considered. Tasks are
assigned to the agents locally over (possibly collaborative)
services provided in pre-defined regions of interests visited
along the agent’s trajectories. The main contributions are:
(i) different from [5] and [10] where a satisfying discrete
plan is enough, the proposed initial plan synthesis algorithm
here minimizes a cost of a satisfying plan; (ii) the proposed
distributed motion controller guarantees almost global con-
vergence and the satisfaction of relative-distance constraints,
for an arbitrary number of leaders with different local goals.
Most related literature only allows for a single leader [10],
[26] or multiple leaders with the same global goal as the
team [24], [32]; (iii) three different local coordination policies
are proposed for different types of local tasks. Compared
with [17], these coordination policies are fully-distributed and
applied to communication-less agents. This paper builds on
preliminary results from [11]. We provide here detailed proofs
that are omitted there. Moreover, we are interested to find
the cost-optimal plan instead of just a plan as in [11]. We
also enrich the analysis by considering mixed types of local
task specifications. Additionally, a real-time plan adaptation
algorithm is proposed.

The rest of the paper is organized as follows. Section II
introduces the preliminaries. In Section III, we formalize
the considered problem. Section IV presents our solution in
details. Section V demonstrates the numerical simulations. We
conclude and discuss about future directions in Section VI.

II. PRELIMINARIES

A. Linear Temporal Logic (LTL)

A Linear Temporal Logic (LTL) formula over a set of atomic
propositions Σ that can be evaluated as true or false is defined
inductively according to the following rules [1]: an atomic
proposition σ ∈ Σ is an LTL formula; if ϕ and ψ are LTL
formulas, then also ¬ϕ, ϕ ∧ ψ, ©ϕ, ϕUψ, 3ϕ, and �ϕ
are LTL formulas, where ¬ (negation), ∧ (conjunction) are
standard Boolean connectives and © (next), U (until), 3

(eventually), and � (globally) are temporal operators. The
semantics of LTL is defined over the infinite words over 2Σ.
Intuitively, σ ∈ Σ is satisfied on a word w = w(1)w(2) . . . if
it holds at w(1), i.e., if σ ∈ w(1). Formula©ϕ holds true if ϕ
is satisfied on the word suffix that begins in the next position
w(2), whereas ϕ1 Uϕ2 states that ϕ1 has to be true until ϕ2

becomes true. Finally, 3ϕ and �ϕ are true if ϕ holds on w
eventually and always. For full details, see e.g., [1].

Syntactically co-safe LTL (sc-LTL) is a subclass of LTL
built without the operator 2 and with the restriction that the
negation operator ¬ can be applied to atomic propositions
only [19]. In contrast to general LTL formulas, the satisfaction
of an sc-LTL formula can be achieved in a finite time, i.e.,
each word over 2Σ satisfying an sc-LTL formula ϕ consists
of a satisfying prefix that can be followed by an arbitrary
suffix. The set of words that satisfies an LTL formula ϕ over
Σ can alternatively be captured through a Büchi automaton
Aϕ = (Q, 2Σ, δ, Q0, F ), where Q is a finite set of states;
2Σ is an input alphabet; δ : Q × 2Σ → 2Q is a transition
relation; Q0 ⊆ Q is a set of initial states; and F ⊆ Q
is a set of accepting states. An infinite run over an input
word w = w(1)w(2) . . . is an infinite sequence of states
% = q1q2 . . . , such that q1 ∈ Q0 and qi+1 ∈ δ(qi, w(i)), for
all i ≥ 1. A run is accepting if it intersects the set of accepting
states F infinitely many times, and a word w is accepted if
there exists an accepting run over it. Any LTL formula ϕ can
be algorithmically translated [7] into a Büchi automaton.

B. Discrete Plan Synthesis

A weighted transition system is a tuple T = (S,−→
, s0,W,Σ, L), where S is a finite set of states; −→⊆ S×S is
a (deterministic) transition relation; s0 ∈ S is the initial state;
W : S × S → R+ is a weight function; Σ is a set of atomic
propositions; and L : S → 2Σ is a labeling function. W (s, s′)
approximates the cost of the transition (s, s′) ∈−→i. A finite
or infinite run of T is a finite or infinite sequence of states
τ = s1s2 . . . , such that s1 = s0 is the initial state, and for
all i ≥ 1 it holds that (si, si+1) ∈−→. The word produced by
the run s1s2 . . . is L(s1)L(s2) . . . .

The goal of discrete plan synthesis is to find a run of a
given weighted transition system, such that ϕ is satisfied by
the produced word. It can be addressed via the construction



and analysis of a product automaton: a product automaton
of a weighted transition system and a Büchi automaton is a
tuple P = T ⊗ Aϕ = (QP , 2

Σ, δP , QP,0, FP,0,WP), where
QP = S ×Q; δP ⊆ QP × 2Σ ×QP . ((s, q), L(s), (s′, q′)) ∈
δP if (s, s′) ∈−→ and q′ ∈ δ(q, L(s)); QP,0 = {(s0, q0) |
q0 ∈ Q0}; FP,0 = {(s, qf ) | s ∈ S, qf ∈ F};
WP : δP → R+. WP((s, q), σ, (s′, q′)) = W (s, s′), where
((s, q), σ, (s′, q′)) ∈ δP . Each run of the product automa-
ton % = (s1, q1)(s2, q2) . . . can be projected onto a run
τ = s1s2 . . . of T and onto a run q1, q2 . . . ofAϕ. Particularly,
an accepting run of P projects onto a run of T that produces
a word accepted by Aϕ. Hence, finding an accepting run of P
gives a solution to the plan synthesis problem. The interested
reader is referred, e.g., to [1] for further details.

C. Weighted Graph

An undirected weighted graph is a tuple G = (N , E, h),
where N = {1, . . . , N} is a set of nodes; E ⊆ N × N is a
set of edges; and h : E → R+ is the weight function, which
can be omitted if the weight is uniform over all edges. Each
node i has a set of neighbors Ni = {j ∈ N | (i, j) ∈ E}.
A path from node i to j is a sequence of nodes starting
with i and ending with j such that the consecutive nodes
are neighbors. G is connected if there is a path between
any two nodes and G is complete if E = N × N . The
Laplacian matrix H of G is an N × N positive semidefinite
matrix: H(i, i) =

∑
j∈Ni

h(i, j),∀i ∈ N ; H(i, j) = −h(i, j),
∀(i, j) ∈ E, and H(i, j) = 0, otherwise. For a connected
graph G, H has nonnegative eigenvalues [8] and a single zero
eigenvalue with the eigenvector 1N , where 1N = [1, . . . , 1]T .

In this paper, each vector norm over Rn is the Euclidean
norm [13]. We use |S| to denote the cardinality of a set S and
v[i] to denote the i-th element of a vector or a sequence v.

III. PROBLEM FORMULATION

A. Agent Dynamics and Network Structure

We consider a team of N autonomous agents with identities
(IDs) i ∈ N = {1, . . . , N}, satisfying the dynamics:

ẋi(t) , ui(t), i ∈ N (1)

where xi(t), ui(t) ∈ R2 are the respective state and the control
input of agent i at time t > 0. Let xi(0) be the given initial
state. The agents are modeled as point masses without volume,
i.e., inter-agent collisions are not considered.

Each agent has a sensing radius r > 0, which is assumed
to be identical for all agents. Namely, each agent can only
observe another agent’ state if their relative distance is less
than r. Thus, given {xi(0), i ∈ N}, we define the embedded
graph G0(t) , (N , E0(t)), where (i, j) ∈ E0(t) if ‖xi(t) −
xj(t)‖ < r. We assume that G0(0) is connected initially and
one of the control objectives is to ensure that G0(t) remains
connected for all time t ≥ 0.

B. Task Specifications

Within the 2D workspace, each agent i ∈ N has a set of
Mi ≥ 1 regions of interest, denoted by Πi , {πi1, . . . , πiMi

}.

These regions can be of different shapes, such as spheres,
triangles, or polygons. For simplicity of presentation, πi` ∈ Πi

is here represented by a circular area around a point of interest:

πi` = B(ci`, ri`) = {y ∈ R2 | ‖y − ci`‖ ≤ ri`}, (2)

where ci` ∈ R2 is the center; rmin ≤ ri` ≤ rmax is the radius
where 0 < rmin < rmax are the upper and lower bounds
for the radii for all regions. Other shapes than spheres would
require an under-approximation of these shapes as spheres
first, in order to apply the proposed solution. We assume that
these regions do not intersect and the workspace is bounded,
particularly:

Assumption 1. (I) ‖ci`‖ < cmax, ∀i ∈ N and ∀πi` ∈ Πi,
where cmax > 0 is a given constant. (II) ‖ci`i−cj`j‖ > 2 rmax,
∀i, j ∈ N , ∀πi`i ∈ Πi and ∀πj`j ∈ Πj .

Moreover, there is a set of atomic propositions known
to agent i, denoted by Σi. Each region of interest is as-
sociated with a subset of Σi through the labeling function
Li : Πi → 2Σi . Without loss of generality, we assume that
Σi ∩ Σj = ∅, for all i, j ∈ N such that i 6= j. We view the
atomic propositions Li(πi`) as a set of services that agent i
can provide when being present in region πi` ∈ Πi. Hence,
upon the visit to πi`, the agent i chooses among Li(πi`) the
subset of atomic propositions to be evaluated as true, i.e.,
the subset of services it provides among the available ones.
These services are abstractions of action primitives that can
be executed in different regions, such as manipulation tasks
or data gathering. Some services within Σi may depend on
the other agents’ collaborations, meaning that they can be
provided only if the other agents are around. In this paper, we
do not focus on how services are being provided or how the
agents collaborate in providing them; we aim at guaranteeing
the necessary preconditions for providing these collaborative
services: the geographical closeness.

We denote by xi(T ) the trajectory of agent i during the
time interval [0, T ), where T > 0 and T can be infinity. The
trajectory xi(T ) is associated with a unique finite or infinite
sequence, called a path, pi(T ) , πi1πi2 . . . of regions in
Πi that agent i crosses, and with a finite or infinite sequence
of time instants t′i0ti1t

′
i1ti2t

′
i2 . . . when i enters or leaves the

respective regions. Formally, for all k ≥ 1: 0 = t′i0 ≤ tik ≤
t′ik < tik+1 < T , xi(t) ∈ πik, for πik ∈ Πi, ∀t ∈ [tik, t

′
ik],

and xi(t) /∈ πi`, ∀πi` ∈ Πi and ∀t ∈ (t′ik−1, tik). However,
agent i may choose to provide services only at some regions
along the path pi. Denote by pi(T ) = πi`1πi`2 . . . the
effective path as a subsequence of pi such that `k < `k+1,
∀k ≥ 1 and πi`k ∈ pi(T ), ∀πi`k ∈ pi(T ). The word produced
by agent i is given by the provided services along the sequence
of regions in pi. In particular, at region for πi`k ∈ pi(T ), agent
i chooses to provide a set of services w`k , where w`k 6= ∅ and
w`k ⊆ Li(πi`k) is a subset of services available at region πi`k .
Namely the produced word wordi(T ) = w`1w`2 . . . complies
with pi(T ) if ∅ ⊂ w`k ⊆ Li(πi`k), ∀πi`k ∈ pi(T ). Thus
an agent’s behavior is fully determined by its trajectory, its
effective path and the word it produces.

The local task of each agent i ∈ N is specified as a
general LTL or an sc-LTL formula ϕi over Σi and captures



requirements on the services to be provided by agent i. In
this work, we do not focus on how the service providing is
executed by an agent; we only aim at controlling an agent’s
motion to reach the regions where these services are available.
Given the trajectory xi(T ) of agent i, the satisfaction of its
task formula ϕi is defined as follows:

Definition 1. Agent i’s trajectory xi(T ) satisfies ϕi if there
exists an effective path pi(T ) and a compliant word wordi(T )
such that wordi(T ) |= ϕi.

C. Cost of An Effective Path

Since we are interested in the quantitative cost of satisfying
a local task, we propose the following way to measure the
cost of an effective path. The motion of agent i is estimated
through a weighted transition system [1]:

Ti , (Π′i, −→i, Li, Σi, π
′
i,0, Wi), (3)

where Π′i , Πi ∪ {πi0}. πi0 , xi(0) represents the agent’s
initial position symbolically; −→i, Π′i × Π′i is the transi-
tion relation, which is the full Cartesian product; Li and
Σi are the labelling function and the set of propositions
for services defined earlier; π′i,0 , πi0 is the initial state;
Wi :−→i→ R+ approximates the cost of each transition,
Wi(πi`1 , πi`2) , ‖ci`1−ci`2‖−ri`1−ri`2 , ∀(πi`1 , πi`2) ∈−→i,
where πi`1 , πi`2 ∈ Πi; and Wi(πi0, πi`) , ‖xi(0)− ci`‖.

Consider that one of agent i’s effective path is given by
pi(T ) = πi`1πi`2 . . . . Then this effective path is assigned
with a cost. In this work, the cost is defined as the maximal
distance traveled between two consecutive regions along the
path. Formally, denote by ϑ the set of consecutive regions
in pi(T ), i.e., ϑ = {(π′i0, π`1), (π`k , π`k+1

), ∀k = 1, 2, . . . }.
Its cost is defined as:

cost(pi(T )) , max
(πs, πg)∈ϑ

{
Wi(πs, πg)}, (4)

which is still valid when T =∞. Namely, we want to mini-
mize the maximal distance travelled between two consecutive
regions in the effective path. This is due to the consideration
that for services-related specifications it is of great interest
to ensure the frequency at which a service is provided. The
standard cost definition as the cumulative cost can be used
instead by incorporating the synthesis algorithms proposed
in [9], [15]. Formally the problem we consider is stated below:

Problem 1. Given a team of N agents as in Section III-A,
and their task specifications as in Section III-B, design a
distributed control law ui, the associated effective path pi(T )
and its corresponding word wordi(T ), ∀i ∈ N , such that for
T =∞:
(1) wordi(T ) satisfies ϕi; and
(2) pi(T ) has minimal cost by (4); and
(3) ‖xi(t)− xj(t)‖ < r, ∀(i, j) ∈ E0(0), ∀t ∈ [0, T ).

Note that the task specifications ϕi, ∀i ∈ N need not be the
same type among the agents, i.e., ϕi can be either a syntacti-
cally co-safe or a general LTL formula. More details can be
found in Section IV-C. Moreover, two practical applications
of the above formulation are that (i) a team of underwater

vehicles are deployed such that each vehicle monitors a certain
feature (e.g., temperature, concentration) over different areas.
Local task specifications are preferred over a global one
as the vehicles have distinctive capabilities and clear task
assignments. Since explicit wireless communication is unre-
liable in underwater domain, sonar-based range sensors are
more practical for our communication-free solution, while the
relative-distance constraint can be formulated as the formation
requirement of the team for certain collaborative tasks; (ii)
different users specify a local task to different robots within
a heterogeneous team. Without any wireless communication,
one robot needs to transfer its knowledge about the workspace
by gestures to other teammates, which requires that the robots
stay close to enable the gesture detection, e.g., see [18].

IV. SOLUTION

The proposed solution consists of four layers: (i) an offline
synthesis scheme for the initial discrete plan of each agent, i.e.,
the effective path of progressive goal regions and the sequence
of services to be provided; (ii) a distributed continuous control
scheme that guarantees that one of the agents reaches its
progressive goal region in finite time while the relative-
distance constraints are fulfilled at all time; (iii) a hybrid
control layer that coordinates the discrete plan execution and
the continuous control law switching, to ensure the satisfaction
of each agent’s local task; (iv) a real-time plan adaptation
algorithm that each agent could apply to improve its discrete
plan, given its updated position and its plan execution status.

A. Initial Discrete Plan Synthesis

As introduced in Section II, the discrete plan satisfying the
local task can be generated using standard techniques from
automata-based formal synthesis. Loosely speaking, an LTL
or an sc-LTL formula ϕi is firstly translated into a Büchi
automaton. A product automaton is constructed as described
in Section II-B. Then one of its accepting runs is found and
projected onto the desired discrete plan.

Here, we aim to find an effective path for agent i ∈ N
with the property that (i) there exists a compliant word
satisfying ϕi and (ii) the effective path is optimal with
respect to the cost function (4). To that end, we adapt
the standard synthesis scheme as follows. For each agent
i ∈ N , we build a product automaton Pi = Ti ⊗
Aϕi

= (QP,i, 2
Σi , δP,i, QP,i,0, FP,i,WP,i) as described

in Section II-B, with a slight change in δP,i reflecting
the form of the words compliant with the effective paths:
((s, q), σ, (s′, q′)) ∈ δP if (s, s′) ∈−→ and q′ ∈ δ(q, σ),
where ∅ ⊂ σ ⊆ L(s). An accepting run %i of Pi over an
input word wi projects onto a run τi of Ti with the property
that w complies with the effective path pi(T ) and satisfies ϕi,
while for any word wi that satisfies ϕi and is compliant with
an effective path pi(T ), there exists an accepting run of Pi
that projects onto a run τi of Ti that is compliant with w.

In Algorithm 1, we modify the Dijkstra’s algorithm (see,
e.g., [20]) to find the finite paths from a state v ∈ QP,i to
all the other states minimizing the bottleneck weight, where
the bottleneck weight of a path is defined as the maximal



Algorithm 1: Minimum bottleneck path, MinBot(v)
Input: Product automaton Pi and v ∈ QP,i
Output: Dv, Pv
S := QP,i; D[v] := 0;
forall the u ∈ QP,i do

if u 6= v then
Dv(u) :=∞; Pv(u) := None;

while S 6= ∅ do
u := argminu∈S

{
Dv(u)

}
; remove u from S;

forall the u′ ∈ δP,i(u) do
b := max

{
Dv(u),WP,i(u, u

′)
}

;
if b ≤ Dv(u

′) then
Dv(u

′) := b; Pv(u′) := u;

return Dv, Pv

weight of the individual edges on the path. The output of the
MinBot(v) algorithm is the distance function Dv : QP,i →
R+, where Dv(u) gives the minimal bottleneck weight from
v to the state u ∈ QP,i, and the predecessor function Pv :
QP,i → QP,i, where Pv(u) gives the predecessor of u ∈ QP,i
on the minimal-bottleneck path. Then we can synthesize the
optimal effective path of Pi as follows:

(I) For all v0 ∈ QP,i,0, compute (Dv0 , Pv0) =
MinBot(v0); (II) For all vf ∈ FP,i, compute (Dvf , Pvf ) =
MinBot(vf ); (III) Find the pair (v0, vf ), where v0 ∈
QP,i,0 and vf ∈ FP,i that minimizes the term
max

{
Dv0(vf ),max(v,vf )∈δP,i

{Dvf (v),WP,i(v, vf )}
}
, where

Dv0(vf ) is the minimal bottleneck from v0 to vf ; and the
second term is the minimal bottleneck from vf back to itself.
Note that v is any predecessor of vf given by δP,i. Denote
the optimal pair as (v?0 , v

?
f ); (IV) The computed accepting run

of Pi is in the prefix-suffix form %i = %i,pre (%i,suf)
ω , where

%i,pre is the minimal-bottleneck path from v?0 to v?f , computed
based on Pv?0 ; %i,suf is the minimal-bottleneck cycle from v?f
back to itself, computed based on Pv?f similarly.

The accepting run %i of Pi is naturally projected onto
Ti as follows, which results into the initial plan: τi(0) =
τi,pre(τi,suf)

ω , where τi,pre = (πi1, wi1) . . . (πiki , wiki) is the
plan prefix, and τi,suf = (πiki+1, wiki+1) . . . (πiKi , wiKi) is
the periodical plan suffix; (πik, wik) is called the progres-
sive goal region; πik ∈ Πi and ∅ ⊂ wik ⊆ Li(πik),
∀k = 1, . . . ,Ki. Thus the word corresponding to τi(0)
is given by its projection onto Σi, namely wordi(T ) =
τi(0)|Σi

= wi1 . . . wiki(wiki+1 . . . wiKi
)ω; then the effective

path pi is given as the projection of τi(0) onto Πi, namely
pi(T ) = τi(0)|Πi = πi1 . . . πiki(πiki+1 . . . πiKi)

ω . We denote
by pi,pre(T ) = πi1 . . . πiki the prefix of the effective path
and by pi,suf(T ) = πiki+1 . . . πiKi

the suffix. For general
LTL formulas ϕi, the plan τi indicates the desired effective
path pi(T ) and the infinite sequence of services wordi(T );
for sc-LTL formulas ϕi, τi,pre indicates the desired effective
path pi(T ) and the finite sequence of services wordi(T ).
Moreover, any trajectory that satisfies the prefix with an
arbitrary extension would satisfy ϕi. Note that in our work,

LTL formulas are interpreted over the provided services along
a trajectory, not the available ones. Hence, unplanned crossing
of a region as well as collaborations on providing other agents’
services does not influence the local LTL task satisfaction.

The computational complexity of the above synthesis al-
gorithm is O(|QP,i|2 · |QP,i,0| · |FP,i|) in the worst case,
where |QP,i| is the number of states in Pi. Other recent
temporal logic-based discrete plan synthesis algorithms can be
used to accommodate various environmental constraints and
advanced plan optimality criteria, e.g., [1], [9], [30].

B. Continuous Controller Design

As stated previously, each agent synthesizes its initial plan
as a sequence of goal regions to reach and a set of services to
provide there. However, these goal regions of different agents
can be at different locations and potentially far away. Further-
more, the relative-distance constraints require the neighboring
agents to stay close. Before stating the control scheme, let us
first introduce the notion of connectivity graph, which allows
us to handle the relative-distance constraints. Recall that each
agent has a limited sensing radius r > 0 as mentioned in
Section III-A. Let κ ∈ (0, r) be a given constant. Then we
define the connectivity graph G(t) as follows:

Definition 2. Let G(t) , (N , E(t)) denote the undirected
time-varying connectivity graph at time t ≥ 0, where E(t) ⊆
N × N is the set of edges. (I) G(0) = G0(0); (II) At time
t > 0, (i, j) ∈ E(t) iff one of the following conditions hold:
(i) ‖xi(t)−xj(t)‖ ≤ r−κ; or (ii) r−κ < ‖xi(t)−xj(t)‖ ≤ r
and (i, j) ∈ E(t−), where t− < t and |t− t−| → 0.

Note that the condition (II) above guarantees that a new edge
will only be added when the distance between two previously-
unconnected agents decreases below r − κ. In other words,
there is a hysteresis effect when adding new edges to the con-
nectivity graph. Consequently, each agent i ∈ N has a time-
varying set of neighbors Ni(t) = {j ∈ N | (i, j) ∈ E(t)}.
Let the progressive goal region of agent i ∈ N at time t be
given by πig = B(cig, rig) ∈ Πi. We propose the following
two different control modes:
(1) the active mode:

Cact : ui(t) , −di pi −
∑

j∈Ni(t)

hij xij , (5)

(2) the passive mode:

Cpas : ui(t) , −
∑

j∈Ni(t)

hij xij , (6)

where xij , xi − xj ; pi , xi − cig; and the coefficients are

di ,
ε3

(‖pi‖2 + ε)2
+

ε2

2 (‖pi‖2 + ε)
;hij ,

r2

(r2 − ‖xij‖2)2
,

where ε > 0 is a key design parameter to be appropriately
tuned. We show in detail how to choose ε in the sequel. Note
that both controllers in (5) and (6) are nonlinear and rely on
only locally-available states, i.e., xi(t) and xj(t), j ∈ Ni(t).

Assume that G(Ts) is connected at time Ts > 0. Moreover,
assume that there are 1 ≤ Na ≤ N agents that are in the active



mode obeying (5) with its goal region as πig = B(cig, rig) ∈
Πi; and the rest Np = N −Na agents that are in the passive
mode obeying (6). For simplicity, denote by the group of active
and passive agents Na, Np ⊆ N , respectively. In the rest of
this section, we show that under arbitrary number of active
agents, by following the control laws (5) and (6), exactly one
active agent can reach its goal region within finite time Tf ∈
(Ts, +∞), while the relative distance ‖xi(t) − xj(t)‖ < r,
∀(i, j) ∈ E(Ts) and ∀t ∈ [Ts, Tf ].

1) Relative-Distance Maintenance: In this part, we show
that the relative-distance constraints are always satisfied under
the control laws (5) and (6). We consider the potential-field
function below:

V (t) ,
1

2

∑
i∈N

∑
j∈Ni(t)

φc(xij) + bi
∑
i∈N

φg(xi) (7)

where φc(·) is an attractive potential to agent i’s neighbors:

φc(xij) ,
1

2

‖xij‖2

r2 − ‖xij‖2
, ‖xij‖ ∈ [0, r − δ); (8)

while φg(·) is an attractive force to agent i’s goal, defined by:

φg(xi) ,
ε2

2

‖pi‖2

‖pi‖2 + ε
+
ε2

4
ln(‖pi‖2 + ε), (9)

where function ln(·) is the natural logarithm; bi ∈ B indicates
the agent i’s control mode. Namely, bi = 1, ∀i ∈ Na and bi =
0, ∀i ∈ Np. Clearly V (t) is lower-bounded by Na ln(ε)ε2/4.
Moreover, it can be verified that

∇xi
V =

∂V

∂xi
= bi di pi +

∑
j∈Ni(t)

hij xij = −ui. (10)

Theorem 1. G(t) remains connected and no existing edges
within E(Ts) will be lost, namely E(Ts) ⊆ E(t), ∀t ≥ Ts.

Proof. Assume that the network G(t) remains invariant during
the time period [t1, t2) ⊆ [Ts, ∞), i.e., no edges are added or
removed. Thus the neighboring sets {Ni, i ∈ N} also remain
invariant and V (t) is differentiable for t ∈ [t1, t2). Then the
time derivative of V (t) is given by

V̇ (t) =
∑
i∈N

(∇xi
V )T ui

= −
∑
i∈N

∥∥bi di pi +
∑

j∈Ni(t)

hij xij
∥∥2 ≤ 0,

(11)

meaning that V (t) is non-increasing, ∀t ∈ [t1, t2). Thus
V (t) ≤ V (Ts) < +∞ for t ∈ [t1, t2). On the other hand,
assume a new edge (p, q) is added to G(t) at t = t2,
where p, q ∈ N . By Definition 2, ‖xpq(t2)‖ ≤ r − κ and
φc(xpq(t2)) = (r−κ)2

κ(2r−κ) < +∞ since 0 < κ < r. Denote by
Ê ⊂ N×N the set of newly-added edges at t = t2. Let V (t+2 )
and V (t−2 ) be the value of V (t) before and after adding the
set of new edges to G(t) at t = t2. We get V (t+2 ) = V (t−2 ) +∑

(p, q)∈Ê φc(xpq(t2)) ≤ V (t−2 ) + |Ê| (r−κ)2

κ(2r−κ) < +∞, where
we use the fact that |Ê| is bounded as Ê ⊂ N × N . Thus
V (t) < +∞ also holds when new edges are added at time t2.
Similar analysis can be found in [14]. As a result, V (t) < +∞
for t ∈ [Ts, ∞). Note that V (t) is non-increasing when G(t)

remains unchanged and increases when new edges are added.
By Definition 2, one existing edge (i, j) ∈ E(t) will be
lost only if xij(t) = r. It implies that φc(xij) → +∞ and
V (t) → +∞ by (7). By contradiction, new edges might be
added into E(t) but no existing edges within E(t) will be
lost, namely E(Ts) ⊆ E(t), ∀t ≥ Ts. If G(Ts) is initially
connected, then G(t) remains connected for all t ≥ Ts.

2) Convergence Analysis: In this part, we analyze in detail
the convergence properties of the closed-loop system, i.e., the
multi-agent system under the control laws (5) and (6) for
any number of active and passive agents. We have shown
that the potential function V (t) is lower-bounded and non-
increasing when G(t) remains invariant by Theorem 1 above.
We first show that the graph G(t) becomes complete and thus
invariant when the system converges to the set of critical points
defined in the sequel. By LaSalle’s invariance principle [16]
we only need to find out the largest invariant set within
{xi, ∀i ∈ N | V̇ (t) = 0}. By enforcing V̇ (t) = 0, it implies:

bi di pi +
∑

j∈Ni(t)

hij xij = 0, ∀i ∈ N . (12)

Then we can construct one N × N diagonal matrix D that
D(i, i) = bi di, ∀i ∈ N and D(i, j) = 0, i 6= j and i, j ∈
N . and another N × N matrix H that H(i, i) =

∑
j∈Ni

hij ,
∀i ∈ N and H(i, j) = −hij , i 6= j and ∀(i, j) ∈ E(t)
while H(i, j) = 0, ∀(i, j) /∈ E(t). Note that hij > 0 as
‖xij‖ ∈ [0, r) by (10), ∀(i, j) ∈ E(t). As a result, H is the
Laplacian matrix of the graph G(t) = (N , E(t), h), where
h(i, j) = hij , ∀(i, j) ∈ E(t). Then (12) is equivalent to:

H⊗ I2 · x + D⊗ I2 · (x− c) = 0, (13)

where ⊗ is the Kronecker product [13]; x is the stack vector
for xi, i ∈ N and x[i] = xi; I2 is the 2 × 2 identity matrix;
c is the stack vector for cig and c[i] = cig if i ∈ Na and
c[i] = 02 if i ∈ Np, where 02 is a 2 × 1 zero vector. Let C
be the set of critical points of V (t) that satisfy (13), i.e., C ,
{x ∈ R2N |H⊗I2 ·x+D⊗I2 ·(x−c) = 0}. Now we show that
at the critical points within C the relative distances between
any two agents can be made arbitrarily small by reducing ε
and thus the underlying network becomes a complete graph.

Lemma 2. For all critical points xc ∈ C, (I) ‖xij‖ can be
made arbitrarily small by reducing ε, ∀(i, j) ∈ E(t); (II)
there exists ε0 > 0 that if ε < ε0, then the connectivity graph
G(t) is complete.

Proof. (I) For a critical point xc ∈ C,
∑

(i,j)∈E(t) hij‖xij‖2 =

xTc · (H⊗ I2) · xc. holds. Combining it with (13), we get∑
(i,j)∈E(t)

hij‖xij‖2 = −xTc · (D⊗ I2) · (xc − c)

= −(xc − c)T · (D⊗ I2) · (xc − c)− cT · (D⊗ I2) · (xc − c)

= −
∑
i∈N

bi di
(
‖pi‖2 + cTi` pi

)
≤
∑
i∈N

bi ‖ci`‖ di‖pi‖.

Since it can be verified that di ‖pi‖ < ε
√
ε for ‖pi‖ ≥

0 and ‖ci`‖ < cmax is given in Assumption 1, we get∑
(i,j)∈E(t) hij‖xij‖2 < Na cmax ε

√
ε ≤ N cmax ε

√
ε, where



we use the fact that bi = 0, for i ∈ Np and Na ≤ N . Thus
∀(i, j) ∈ E(t), it holds that hij‖xij‖2 < N cmax ε

√
ε , ς .

It can be verified that hij‖xij‖2 is monotonically increasing
as a function of ‖xij‖. This implies that ∀(i, j) ∈ E(t),
‖xij‖2 ≤ r2 ς , or equivalently ‖xij‖2 ≤ ε

√
ε ξ, where

ξ , r2N cmax. Thus ‖xij‖ can be made arbitrarily small by
reducing ε. (II) Moreover, let ε0 satisfy the condition

(N − 1)
√
ε0
√
ε0 ξ < r − δ. (14)

If ε < ε0, then for any pair (p, q) ∈ N ×N , ‖xpq‖ satisfies
‖xpq‖ = |xp−x1 +x1−x2 + · · · −xq| ≤ (N − 1)

√
ε
√
ε ξ <

r−δ, as there exists a path in G(t) of maximal length N from
any node p ∈ N to another node q as G(t) remains connected
for t > Ts by Theorem 1; and ‖xij‖ ≤ ε

√
ε ξ from above,

∀(i, j) ∈ E(t). By Definition 2 this implies (p, q) ∈ E(t).
Thus G(t) is a complete graph when x(t) ∈ C.

Namely, at the critical points, the graph G(t) is complete
and thus remains invariant afterwards. Firstly, we define the
following set for each active agent i ∈ Na:

Si , {x ∈ R2N | ‖x− 1N ⊗ cig‖ ≤ rS(ε)}, (15)

where rS(ε) ,
√

3N ε+
√

(N − 1)ε
√
ε ξ. Loosely speaking,

Si represents the neighbourhood around the goal region center
of an active agent i ∈ Na. Furthermore, let S , ∪i∈Na

Si and
S¬ , R2N \ S. In the following, we analyze the properties
of the critical points of V (t) within the regions S and S¬.
More specifically: by Lemma 3 there are no local minima but
saddle points within S¬; by Lemma 4 these saddle points are
non-degenerate; by Lemmas 5-7 all critical points within S
are local minima. To explore these properties, we compute
the second partial derivatives of V (t) with respect to xi:

∂2V

∂xi∂xi
= bi di ⊗ I2 + bi d

′
i pi · pTi

+
∑

j∈Ni(t)

(
hij ⊗ I2 + h′ij xij · xTij

)
,

(16)

∂2V

∂xi∂xj
= −hij ⊗ I2 − h′ij xij · xTij , ∀j 6= i, (17)

where

d′i =
−4 ε3

(‖pi‖2 + ε)3
+

− ε2

(‖pi‖2 + ε)2
, and h′ij =

4 r2

(r2 − ‖xij‖2)3
.

Lemma 3. There are no local minima of V within S¬.

Proof. We prove this by showing that if a critical point xc ∈
S¬ there always exists a direction z ∈ R2N at xc such that
the quadratic form zT∇2V z is negative semi-definite. Given
a critical point xc ∈ C and xc ∈ S¬, then by definition ‖x−
1N ⊗ ci`‖ > rS(ε), ∀i ∈ Na. Besides, for any i ∈ Na, we
can bound ‖x− 1N ⊗ ci`‖ as follows:

‖x− 1N ⊗ ci`‖ = ‖x− 1N ⊗ xi + 1N ⊗ (xi − cig)‖

≤
√∑
j∈N
‖xij‖2 +

√
N ‖pi‖ ≤

√
(N − 1)ε

√
ε ξ +

√
N ‖pi‖,

where we use the fact that ‖xij‖2 ≤ ε
√
ε ξ at xc, ∀(i, j) ∈

E(t) by Lemma 2. By comparing it with rS(ε) which is

the lower bound, we get ‖pi‖ ≥
√

3 ε, ∀i ∈ Na. Choose
z , 1N ⊗ z, where z ∈ R2 and ‖z‖ , 1. Then zT ∇2V z is
evaluated by using (16)-(17): zT∇2V z =

∑
i∈N bi di z

T z +

bi d
′
i z
T pi p

T
i z , zTMz, where M ,

∑
i∈Na

(di ⊗ I2 +
d′i pi p

T
i ) is a 2× 2 Hermitian matrix, of which the trace is

trace(M) =
∑
i∈Na

2 di + d′i ‖pi‖2 = ε3
∑
i∈Na

3ε− ‖pi‖2

(‖pi‖2 + ε)3
< 0,

as we have shown that ‖pi‖ ≥
√

3ε above, ∀i ∈ Na if
xc ∈ S¬. On the other hand, denote by pi = [pi,x, pi,y] the
coordinates of pi. The determinant of M is given by

det(M) = −(
∑
i∈Na

d′i pi,x pi,y)2

+ (
∑
i∈Na

di + d′i p
2
i,x)(

∑
i∈Na

di + d′i p
2
i,y)

≥ 1

2

∑
i, j∈Na

[
(di + d′i‖pi‖2)(dj + d′j‖pj‖2)

]
> 0,

since d′i‖pi‖2 < −di for ‖pi‖ >
√

3ε, ∀i ∈ Na; and
(pi,xpi,y − pj,xpj,y)2 ≤ ‖pi‖2‖pj‖2 by Cauchy-Schwarz
inequality [13]. Denote by λ1 and λ2 the eigenvalues of M ,
where λ1, λ2 ∈ R as M is Hermitian. Since trace(M) < 0 and
det(M) > 0, then M is negative definite and both eigenvalues
are negative [13], i.e., λ1, λ2 < 0. Thus for any vector z ∈ R2,
zTMz < 0. In other words, for any vector z = 1N ⊗ z where
z ∈ R2, zT∇2V z < 0. To conclude, for any critical point
xc ∈ C, if xc ∈ S¬ then xc is not a local minimum.

Lemma 4. There exists ε1 > 0 such that if ε < ε1, all critical
points of V in S¬ are non-degenerate saddle points.

Proof. To show that V is Morse we use Lemma 3.8 from [27],
which states that the non-singularity of a linear operator
follows from the fact that its associated quadratic form is sign
definite on complementary subspaces.

Let Q = {v ∈ R2N | v = 1N ⊗ z, z ∈ R2}. In Lemma 3,
we have shown that for any vector v ∈ Q, vT∇2V v < 0. Let
P = {v ∈ R2N | v = eN ⊗ z, eN ⊥ 1N , eN ∈ RN , z ∈ R2}.
Firstly, it can be easily verified that P is the orthogonal com-
plement of Q. In the following, we show that ∇2V is positive
definite in P . Let z ∈ P , i.e., z , eN⊗z , [zT1 , z

T
2 , . . . , z

T
n ]T ,

where z ∈ R2, eN ∈ RN , eTN ⊥ 1N , zi ∈ R2, ∀i ∈ N . The
quadratic form zT ∇2V z at xc can be computed explicitly
using (16)-(17):

zT∇2V z =
∑
i∈Na

(
di ‖zi‖2 + d′i |pTi zi|2

)
+

∑
(i, j)∈E(t)

(
hij ‖zi − zj‖2 + 2h′ij |(xi − xj)T (zi − zj)|2

)
≥
∑
i∈Na

(
di ‖zi‖2 + d′i |pTi zi|2) +

∑
(i, j)∈E(t)

hij ‖zi − zj‖2

≥
∑
i∈Na

(
di + d′i‖pi‖2

)
‖zi‖2 + zT (H⊗ I2)z,

where we use the fact that h′ij > 0, d′i < 0 and |pTi zi| ≤
‖pi‖‖zi‖. It can be verified that di + d′i‖pi‖2 > −0.1ε for
‖pi‖ ≥

√
3ε, ∀i ∈ Na. Moreover, the second term can be



lower-bounded by zT (H⊗I2)z = (eN⊗z)T ·(H⊗I2) ·(eN⊗
z) = (eTN ·H · eN ) ‖z‖2 ≥ λ2(H) ‖z‖2, where we apply the
Courant-Fischer Theorem [13]: mineN⊥1N {eTN · H · eN} =
λ2(H) ‖eN‖2 > 0, since H is the Laplacian matrix defined
in (13), which is positive semidefinite with λ1(H) = 0, of
which the corresponding eigenvector is 1N ; and the second
smallest eigenvalue λ2(H) > 0. In addition, since hij > 1/r2

and G(t) is a complete graph at xc by Lemma 2, it holds
that λ2(H) > N/r2 by [8]. This implies that zT∇2V z ≥∑
i∈Na

(
N
r2 +di+d′i‖pi‖2

)
‖zi‖2 ≥

∑
i∈Na

(
N
r2 −0.1ε

)
‖zi‖2.

Thus if ε < N/(0.1r2), it holds that the quadratic form
zT∇2V z > 0, ∀z = eN ⊗ z where eN ⊥ 1N , z ∈ R2.
To conclude, ∇2V |Q is negative definite by Lemma 3 and
∇2V |P is positive definite from the analysis above, given that
ε satisfies the conditions below:

ε < min{ε0,
N

0.1r2
} , ε1. (18)

By Lemma 3.8 from [27], we can conclude that ∇2V is non-
singular at the saddle points xc ∈ S¬. Thus, all critical points
within S¬ are non-degenerate saddle points if ε < ε1.

Now we focus on showing that all critical points within S
are local minima. First we need the following two lemmas
stating that when the system is at a critical point belonging
to Si of any active agent i ∈ Na, then all the other agents
are within this goal region πig and away from their own goal
region center by at least distance rmin.

Lemma 5. There exists ε2 > 0 that if ε < ε2, the following
statements hold: (I) Si ∩ Sj = ∅, ∀i 6= j and i, j ∈ Na;
(II) If xc ∈ Si for any i ∈ Na, then xj ∈ πig, ∀j ∈ N and
‖xj − cjg‖ > rmin, j 6= i, ∀j ∈ Na.

Proof. Let ε2 be given as the solution of

rS(ε2) ,
√

3N ε2 +
√

(N − 1)ε2
√
ε2 ξ , rmin, (19)

where rmin is given in Assumption 1. Note that ε2 is unique
as the left-hand side is a function of ε2 that monotonically
increases and has the range [0, ∞). Assume that xc ∈ Si?
for some i? ∈ Na, i.e., ‖xc − 1N ⊗ ci?g‖ ≤ rS(ε2). Then
∀j 6= i?, j ∈ Na, it holds that (I) ‖xc − 1N ⊗ cjg‖ = ‖xc −
1N⊗cig+1N⊗cig−1N⊗cjg‖ ≥

√
N ‖cig−cjg‖−‖xc−1N⊗

cig‖ ≥ 2
√
N rmin − rS(ε), due to that ‖cig − cjg‖ > 2rmin

by Assumption 1. Since ε < ε2, then rS(ε) < rS(ε2) = rmin.
Thus ‖xc − 1N ⊗ cjg‖ > 2

√
N rmin − rmin > rmin = rS(ε2),

implying that xc /∈ Sj . (II) ‖xj − ci?g‖ < ‖xc−1N ⊗ ci?g‖ <
rmin < ri?g, meaning that xj ∈ πi?g, ∀j ∈ N . Thus, for each
active agent j ∈ Na, it holds ‖xj− cjg‖ = ‖xj− ci?g + ci?g−
cjg‖ ≥ ‖ci?g− cjg‖−‖xj− ci?g‖ ≥ 2rmin− rmin > rmin.

Lemma 6. There exists ε6 > 0 such that if ε < ε6, then
for any critical point xc ∈ Si, i ∈ Na, then it holds that
‖pi‖ <

√
0.4ε.

Proof. Without loss of generality, let xc ∈ Si? , where i? ∈
Na. By summing (12) for all i ∈ N , we get di? pi? =
−
∑
j 6=i?,j∈Na

dj pj . Consider the scalar function f(‖pj‖) =
dj(‖pj‖)‖pj‖ for ‖pj‖ ≥ 0. It is monotonically increasing for
‖pj‖ ∈ [0, 3.2

√
ε) and decreasing for ‖pj‖ ∈ [3.2

√
ε, ∞).

If xc ∈ Si? for i? ∈ Na, then ‖xc − 1N ⊗ ci?g‖ ≤ rS(ε2).
Moreover, ‖x − 1N ⊗ ci?`‖ ≥ ‖1N ⊗ xi? − 1N ⊗ ci?g‖ −
‖x − 1N ⊗ xi?‖ ≥

√
N ‖pi?‖ −

√
(N − 1)ε

√
ε ξ. This

implies ‖pi?‖ ≤
√

3 ε + 2
√
ε
√
ε ξ. Moreover by Lemma 5,

‖pj‖ > rmin , ∀j 6= i?, j ∈ Na. Thus if rmin > 3.2
√
ε, namely

ε < 0.07 r2
min , ε3, it holds that dj ‖pj‖ < 0.5ε2/rmin,

∀j 6= i?, j ∈ Na. Thus di? ‖pi?‖ < 0.5(Na−1)ε2/rmin. If the
following two conditions hold: (i)

√
3 ε+ 2

√
ε
√
ε ξ < 3.2

√
ε;

(ii) 0.5(Na − 1)ε2/rmin < dj(
√

0.4ε)
√

0.4ε, then ‖pi?‖ <√
0.4ε since it is shown earlier that function dj(‖pj‖)‖pj‖ is

monotonically increasing for ‖pj‖ ∈ [0, 3.2
√
ε). Condition (i)

above implies that ε < 4.1/ξ2 , ε4 and condition (ii) holds
for any Na ≤ N if ε < 0.8 r2

min/(N −1)2 , ε5. To conclude,
if ε < ε6, where

ε6 , min{ε3, ε4, ε5}, (20)

then xc ∈ Si? implies ‖pi?‖ <
√

0.4ε.

With the above two lemmas, we can now show that all
critical points of V (t) within S are local minima.

Lemma 7. There exists εmin > 0 such that if ε < εmin, all
critical points of V within S are local minima.

Proof. A critical point xc ∈ S can only belong to one set Si of
an active agent i ∈ Na by Lemma 5. Let xc ∈ Si? , where i? ∈
Na. Let z ∈ R2N and ‖z‖ = 1. Set z = [zT1 , z

T
2 , . . . , z

T
n ]T ,

where zi ∈ R2, ∀i ∈ N . Then zT ∇2V z at xc is computed
as:

zT∇2V z =
∑
i∈Na

(
di ‖zi‖2 + d′i |pTi zi|2

)
+∑

(i, j)∈E(t)

(
hij‖zij‖2 + 2h′ij |xTij zij |2

)
.

(21)

where zij , zi − zj . Since |pTi zi| ≤ ‖pi‖‖zi‖, di > 0
and d′i < 0, it holds that di ‖zi‖2 + d′i |pTi zi|2 ≥ (di +
d′i‖pi‖2)‖zi‖2,∀i ∈ Na. It holds that for j 6= i? and
∀j ∈ Na, dj + d′j‖pj‖2 > ε2ĝ where ĝ , −2/r2

min, since
‖pj‖ > rmin by Lemma 5; and di? + d′i?‖pi?‖2 > 0.08ε
since ‖pi?‖ >

√
0.4ε by Lemma 6. Regarding the second

term of (21), since Lemma 2 shows that G(t) is a com-
plete graph at xc with hij > 1/r2 and h′ij > 0, we get∑

(i, j)∈E
(
hij ‖zij‖2 + 2h′ij |xTij zij |2

)
≥
∑
j∈N ‖zi?j‖2/r2.

Thus (21) can be bounded by

zT∇2V z ≥
∑
i∈Na

(
di + d′i ‖pi‖2

)
‖zi‖2 +

∑
j∈N

hi?j ‖zi?j‖2

≥ 0.08 ε‖zi?‖2 − ε2
∑

j 6=i?,j∈Na

|ĝ|‖zj‖2 +
1

r2

∑
j∈N

‖zi?j‖2

≥
∑
j∈Na

( 1

r2
+

0.08ε

N

)
‖zi?‖2 +

( 1

r2
− ε2|ĝ|

)
‖zj‖2 −

2

r2
zTi? zj ,

as 1 ≤ Na ≤ N . If the following condition holds:
(

1
r2 +

0.08ε
N

)(
1
r2 − ε

2|ĝ|
)
>
(

1
r2

)2
, it implies zT∇2V z > (|zTi? zj | −

zTi? zj)/r
2 ≥ 0, ∀z ∈ R2N , i.e., ∇2V is positive definite at

xc ∈ S. The above condition is equivalent to ε2 + N
0.08 r2 ε−



1
r2|ĝ| < 0. Since ε > 0, this implies that

0 < ε <

√
( N

0.08 r2 )2 + 4
r2|ĝ| −

N
0.08 r2

2
, ε7. (22)

To conclude, if

ε < min{ε1, ε2, ε6, ε7} , εmin, (23)

where ε1, ε2, ε6 and ε7 are positive and defined in (18), (19),
(20) and (22), then all local minima within S are stable.

By summarizing Lemmas 3-7, we can derive the following
convergence result for the controlled closed-loop system:

Theorem 8. Assume that G(Ts) is connected and ε < εmin

by (23). Then starting from anywhere in the workspace except
a set of measure zero, there exists a finite time Tf ∈ [Ts,∞)
and one agent i? ∈ Na, such that xj(Tf ) ∈ πi?g, ∀j ∈ N ,
while at the same time ‖xi(t)− xj(t)‖ < r, ∀(i, j) ∈ E(Ts)
and ∀t ∈ [Ts, Tf ].

Proof. Firstly, the second part follows from Theorem 1 which
guarantees that all edges within E(Ts) will be reserved for all
t > Ts. Secondly, we have shown that V (t) by (7) is lower-
bounded and non-increasing after G(t) becomes complete by
Lemma 2. By LaSalle’s invariance principle [16], we only
need to find out the largest invariant set within V̇ (t) = 0.
Lemmas 3 to 7 ensure that V (t) has only local minima inside
S and saddle points outside S. These saddle points have
attractors of measure zero by Lemma 4. Thus starting from
anywhere in the workspace except a set of measure zero,
the system converges to the set of local minima. Part (I) of
Lemma 5 shows that a local minimum can not belong to
two different Si simultaneously. Thus the system converges
to the set of local minima within Si? for one active agent
i? ∈ Na. By part (II) of Lemma 5, all agents would be inside
πi?g at a critical point within Si? , i.e., xj ∈ πi?g, ∀j ∈ N .
Consequently, by continuity, there exists a finite time Tf <∞
that xj(Tf ) ∈ πi?g, ∀j ∈ N , for one active agent i? ∈ Na.

Remark 1. Note that Theorem 8 above holds for any number
of active agents that 1 ≤ Na ≤ N . Namely, independent of the
number of active agents, one of the active agents will reach
its goal region first within finite time, while the whole team
fulfills the relative-distance constraints at all time.

C. Hybrid Control Structure

In this part, we propose three different switching protocols
for each agent to decide on its own activity or passivity under
there different cases, such that all agents can fulfill their
local tasks and at the same time satisfy the relative-distance
constraints. Through these protocols, we can integrate the
discrete plan execution from Section IV-A and the continuous
control laws from Section IV-B into a hybrid control scheme,
which monitors the plan execution and motion control online
and in real-time. This hybrid scheme is fully decentralized and
only relies on local relative-state measurements.

1) Switching Protocol for sc-LTL: Let us first focus on a
case where each local task ϕi, i ∈ N is an sc-LTL formula.
As introduced in Section IV-A, the discrete plan τi for agent
i is a finite satisfying prefix of progressive goal regions
and the set of services to provide at each region: τi,pre =
(πi1, wi1) . . . (πiki , wiki), where πi1, πi2, . . . , πiki ∈ Πi and
wi1, wi2, . . . , wiki ∈ 2Σi . We propose the following activity
switching protocol for each agent i ∈ N , (referred by Psc):
(I) At time t = 0, agent i sets κi := 1 and itself as active

and sets πig := πiκi
, namely the first goal region by τi.

The active controller (5) is applied to agent i, where the
progressive goal region is πig, i.e., cig = ci`1 .

(II) Whenever agent i reaches its current progressive goal
region πig = πiκi and κi < ki, it provides the prescribed
set of services wiκi

by τi and it sets κi := κi + 1 and
πig := πiκi

. Then the controller (5) for agent i is updated
accordingly by setting cig = ci`k+1

.
(III) Whenever agent i reaches its last progressive goal region

πig = πiki , it provides the set of services wiki by which
it finishes the execution of its finite discrete plan τi.
Afterwards it remains passive by controller (6).

Theorem 9. By the protocol Psc above, it is guaranteed that
∀i ∈ N , ϕi is satisfied by xi(T ), and ‖xi(t) − xj(t)‖ < r,
∀(i, j) ∈ E0(0) and ∀t ≥ 0, where T =∞.

Proof. At t = 0, all agents are active and following the
controller (5). By Theorem 8, all agents converge to one
agent’s goal region at a finite time t1 > 0. Denote by i ∈ N
this agent. Then either by step (II) of the protocol agent i
updates its active control law by setting πig = πi2, or by
step (III) agent i has completed its plan τi,pre and becomes
passive. Since all agents’ plans are finite and Theorem 8
holds for any number of active agents, we obtain that there
exists a finite time instant Tfj , such that one of the agents
j ∈ Na finishes executing its plan τj,pre, i.e., such that ϕj
becomes satisfied. Then by step (III), this agent is passive
by controller (6) for all times t ∈ [Tfj ,∞). Inductively, we
conclude that there exists a time instant Tf , by which all agents
complete their plans. All agents are passive for all t ∈ (Tf ,∞)
and by controller (6) they all converge to one point. The second
part of the theorem follows directly from Theorem 8.

2) Switching Protocol for General LTL: As introduced
in Section IV-A, if the task specification ϕi is given
as a general LTL formula, then the plan τi is given
by an infinite sequence in the prefix-suffix form: τi =
τi,pre(τi,suf)

ω = (πi1, wi1)(πi2, wi2) . . . , where τi,pre =
(πi, wi1) . . . (πiki , wiki), for ki > 0 and τi,suf =
(πiki+1, wiki+1) . . . (πiKi , wiKi), where πi1, πi2, . . . , πiKi ∈
Πi is the sequence of goal regions and wi1, wi2, . . . , wiKi ∈
2Σi is the associated sequence of services.

The main challenge in this case is to ensure that each agent
executes its plan suffix infinitely often. The activity switching
protocol Psc from Section IV-C1 could not be applied here
since all agents should remain active at all time due to the
infinite discrete plan. Besides, it is possible that the team may
repetitively converge to πig for one agent i ∈ N while never
visiting the other agents’ progressive goal regions. Hence, we



aim here to design a “fair” protocol that enforces a progressive
satisfaction towards each agent’s local task.

Reaching-Event Detector. Agent i ∈ N can detect when
it reaches its own progressive goal region πig by checking
if xi(t) ∈ πig. However it is also essential that it can detect
when another agent j ∈ N reaches πjg. Since the connectivity
graph is complete, it is sufficient for agent i to detect when
a neighboring agent j ∈ Ni(t) reaches πjg. Given that the
agents satisfy the dynamics by (1) and that each agent i ∈
N can measure xi(t) − xj(t), ∀j ∈ Ni(t) in real time, we
assume that the agent i can measure or estimate [6] uj(t),
∀j ∈ Ni(t). Let Ωi(j, t) ∈ B be a Boolean variable indicating
that agent i detects its neighboring agent j ∈ Ni(t) reaching
the goal region πjg at time t > 0. We propose a reaching-
event detector below inspired by [25]. Simply speaking, the
detector checks if within a short time period [t−∆t, t], there
exists j ∈ Ni(t), such that uj(t) has changed from a relatively
small value (below a given ∆u) by a difference larger than
certain ∆d. If so, it indicates that the agent j has reached
its progressive goal region πjg. This design is motivated by
the following facts: By Theorem 7, the system is at a local
minimum whenever an active agent is in its progressive goal
region. Thus, when the agent j reaches πjg at time t, all control
inputs ui(t) are close to zero for all i ∈ N by (12). Afterwards,
our switching protocol guarantees that only agent j switches
its control law either to (5) to navigate to the next goal region
or to (6) to become passive. This change is lower-bounded
by ∆d derived using control law (5) and Lemmas 5, 6 as ∆d ,
|f(rmin) − f(

√
0.4ε)|, where f(‖pj‖) = dj(‖pj‖)‖pj‖ is a

scalar function and dj(‖pj‖) is defined by (IV-B). In contrast,
for the other agents i 6= j, i ∈ N , the control input ui(t)
remains unchanged and close to zero.

Activity Switching Protocol. Firstly, we define a round as
the time period during which each agent has reached at least
one of its goal regions according to their plans.

Definition 3. For all m ≥ 1, the m-th round is de-
fined as the time interval [T	m−1

, T	m
), where T	0

= 0,
T	m−1

< T	m
and for all m ≥ 1, T	m

is the small-
est time satisfying the following conditions for all i ∈
N : wordi(T	m

) = wi1wi2 . . . wi` for some ` ≥ 1 and
wordi(T	m) 6= wordi(T	m−1).

This notion of a round is crucial to the protocol design
below. We fistly introduce two local variables: χi ≥ 0 that
indicates the starting time of the current round and Υi ∈ ZN
a vector to record how many progressive goal regions each
agent has reached within one round since χi. Then the activity
switching protocol (referred by Pge) is as follows:

(I) At time t = 0, Υi := 0N , χi := 0, κi := 1. The agent i
is active and follows control law (5), where πig := πiκi

.
(II) Whenever the agent i reaches its current progressive goal

region πig = πiκi
, it provides the prescribed set of

services wiκi by τi and updates the current progressive
goal region accordingly: If κi < Ki then κi := κi + 1,
and if κi = Ki then κi := ki + 1. Furthermore,
πig := πiκi

, and finally Υi[i] := Υi[i] + 1. Generally
speaking, the agent i decides to stay active or to become

passive based on the probability function:

Pr(bi = 1) =

{
fprob(·) if fcond(·) = True,

0 otherwise,

where fprob(·) ∈ [0, 1] and fcond(·) ∈ {True, False}
are functions of time t and the local variables Υi and χi,
subject to the following: given that the current round is
the m-th one, there exists a time T ∈ (T	m−1 , T	m),
such that fcond(·) = False for all t ∈ [T, T	m).
Whenever bi = 1, the agent i keeps following the control
law (5) with the updated πig . Otherwise, it becomes
passive and the control law (6) is applied.

(III) Whenever agent i detects that Ωi(j, t) = True, for some
j 6= i ∈ N , it sets Υi[j] = Υi[j] + 1.

(IV) Whenever Υi[j] ≥ 1, ∀j ∈ N , i.e., all elements of Υi are
positive, then agent i sets Υi := 0N , χi := t and follows
the active control law (5) to its goal region πig .

A straightforward choice of the function Pr(·) is fcond =
False, for all t ≥ 0. Then the agent i always becomes passive
once it visits πig and it becomes active again after the current
round is completed by step (IV). In this case, the number of
active agents gradually decreases within each round. However,
a different choice may allow trading the fairness of activity
switching with the increased efficiency of plan executions.
The switching to passive control mode may be temporarily
postponed and thus the visits to progressive goal regions may
become more frequent. Examples are given in Section V.

Lemma 10. The round [T	m−1 , T	m) is finite, ∀m ≥ 1.

Proof. Let t = T	m−1 = 0, and thus Υi[j] = 0, for all i, j ∈
N by step (I). By Theorem 8, one of the agents reaches its
progressive goal region in finite time at t1 ≥ T	j−1

. Since
there are only finite number of agents and due to the required
properties of fcond, there exists a finite time Tfj ≥ 0, when
either the step (IV) applies or when one of the agents j ∈ Na
necessarily becomes passive by the function Pr(·) in step (II)
and remains passive till the end of the round. In the former
case, T	m

= Tfj , i.e., we directly obtain that the first round
is finite. In the latter case, the same argument can be applied
to the N − 1 active agents such that one of them will become
passive in finite time. By repeating this process, we obtain that
there exists a finite time instant Tf , such that step (IV) applies,
i.e., such that T	m

= Tf . Again, we derive that the first round
is finite. Inductively, let m > 1, t = T	m−1

, and Υi[j] = 0, for
all i, j ∈ N by step (IV). Using analogous arguments as above,
we derive that the mth round [T	m , T	m+1 ] is finite.

Theorem 11. By the protocol Pge above, it is guaranteed that
∀i ∈ N , ϕi is satisfied by xi(T ) and ‖xi(t) − xj(t)‖ < r,
∀(i, j) ∈ E0(0) and ∀t > 0, where T =∞.

Proof. (Sketch) The satisfaction of ϕi follows directly from
the correctness of each agent’s discrete plan and the fact that
each round is finite by Lemma 10. At last, the relative-distance
constraints are always maintained as shown in Theorem 8.

3) Switching Protocol for Mixed Task Specifications: As
stated in Section III, the task specifications {ϕi, i ∈ N} can
be of different types. Namely, some tasks are given as sc-LTL



formulas (denoted byNsc ⊆ N ) and some are given as general
LTL formulas (denoted by Nge ⊆ N ).

We firstly show that a new switching protocol is needed for
this case, i.e., simply applying the protocol Psc for agents in
Nsc and the protocol Pge for agents in Nge is not a valid
solution. The reason is that when one agent j ∈ Nsc has
finished executing its plan, it would switch to being passive
indefinitely by step (III) of Psc. After that for all agents i ∈
Nge, one round may never finish in finite time since step (IV)
of Pge will not be reached as Υi[j] = 0 holds always. To that
end, we firstly propose another event detector as follows:

All-passive Detector: Let Ψi(t) ∈ B be a Boolean variable
which indicates that agent i ∈ Nge detects that all of its
neighboring agents are in the passive mode at time t > 0. As
discussed earlier, when all agents within N are passive and
following the controller (6), the closed-loop system dynamics
can be described by ẋ = −(H⊗ I2)x, where the matrix H is
defined in Section IV-B2. It has been shown that H is positive
semidefinite with only one zero eigenvalue. As a result,
all agents would asymptotically converge to one rendezvous
point [26]. In other words, xij(t) = xi(t) − xj(t) → 0 and
ui(t) → 0 as t → +∞, ∀(i, j) ∈ N × N . Thus we propose
that Ψi(t

′) becomes True if agent i detects that |uj | < ∆c

holds, ∀j ∈ Ni and ∀t ∈ [t′ − ∆p, t
′], where ∆c > 0 is

the upper bound on the control input and ∆p > 0 is the
monitoring period. Given the appropriately chosen ∆c and
∆p, Ψi(t

′) becomes True only when all agents are passive
at time t = t′. Without loss of generality, assume there is at
least one agent being active in the team at time t = t′. Since
|ui| < ∆c holds for all time t ∈ [t′ − ∆p, t

′], it means the
system stays at the critical point of V (t) associated with one
of the active agents for at least the time interval [t′ −∆p, t

′].
By the analysis of V (t) from Section IV-B, this violates the
fact that all active agents should navigate to their individual
goal regions by following (5). Thus Ψi(t) becomes True only
when all agents are passive at time t.

Then the activity switching protocol for this case, denoted
by Pmx, is designed as follows: for any agent i ∈ Nsc,
it simply follows the switching protocol Psc. Namely, it
traverses the sequences of goal regions and provides the set
of services there according to its finite plan τi,pre. After it
finishes the execution, it remains passive indefinitely. On the
other hand, for any agent i ∈ Nge, we introduce a new
variable Ni,sc(t) ⊆ Ni(t) to save the set of agent i’s neighbors
belonging to Nsc, which is initialized as empty and maintained
locally by agent i. For any agent i ∈ Nge, the steps (I)-(III)
of protocol Pge remain the same, but (IV) should be modified
as follows, and an additional step (V) needs to be added:

(IV) Whenever it holds that Υi[j] ≥ 1, ∀j ∈ N and j /∈
Ni,sc, then agent i sets Υi := 0N , χi := t and follows the
active control law (5) to its goal region πig .

(V) Whenever agent i detects that Ψi(t) = True, then
∀j ∈ N , if Υi[j] = 0, add j to Ni,sc.

Namely, by step (IV) above, each agent i ∈ Nge would reset
Υi to 0 and start a new round once every agent has made a
progress in its plan execution, except those belonging to Ni,sc.
Then when Ψi(t) = True, it means that all agents are in the
passive mode. If the neighbor j ∈ Ni also belongs to Nge, by

step (II) of protocol Pge in Section IV-C2 agent j must have
reached its goal region at least once, i.e., Υi[j] ≥ 1. Thus if
Υi[j] = 0 for some neighbor j ∈ Ni when Ψi(t) = True, it
implies j ∈ Nsc and moreover agent j has finished executing
its finite plan according to step (II) of protocol Psc, and it
remains passive afterwards with Υi[j] being constantly zero.
Thus agent i adds j to Ni,sc by step (V) above.

Theorem 12. By the protocol Pmx above, it is guaranteed
that ∀i ∈ N , ϕi is satisfied by xi(T ) and ‖xi(t)−xj(t)‖ < r,
∀(i, j) ∈ E0(0) and ∀t > 0, where T =∞.

Proof. Similar to Theorem 11, we only need to show that
in this case one “round” is also finite. Note that now the
definition of round differs slightly from Definition 3 as here it
is only defined for all agents in Nge. Before any agent j ∈ Nsc
finishes executing its plan, one round is clearly finite as it ends
once every agent has reached at least one of its progressive
goal regions. Consider that one or more agents within Nsc
(denoted by N1 ⊆ Nsc) have finished executing their plans
and become passive. All agents within Nge will reach their
goal regions at least once before they become passive in finite
time as shown in Lemma 10, i.e., Υi[j] ≥ 1, ∀j ∈ Nge,
while the agents in N1 remain passive since last round, i.e.,
Υi[j] = 0, ∀j ∈ N1. According to step (V) above, each agent
i ∈ Nge would detect that all agents are passive and add all
agents in N1 to Ni,sc. Then by step (IV), all agents i ∈ Nge
would reset Υi and start a new round, since Υi[j] ≥ 1, ∀j ∈ N
and j /∈ Ni,sc, i.e., all neighbors except those in Ni,sc have
made a progress in plan execution.

The above procedure repeats itself until all agents in Nsc
finish their plan execution and become passive. Then it holds
that Ni,sc = Nsc, ∀i ∈ Nge and the results from Theorem 11
apply directly, meaning each agent in Nge can satisfy its local
task. Thus, all agents satisfy their local tasks while fulfilling
the relative-distance constraints for all time.

It is obvious that the above three protocols have different
applicabilities. Thus considering three cases separately is
important such that the users can choose the suitable protocol.

D. Real-time Discrete Plan Adaptation

In the aforementioned approaches, the discrete plan of each
agent is synthesized only once initially from Section IV-A and
executed according to the hybrid control scheme in real-time,
regardless of the agents’ actual trajectories. However, due to
the relative-distance constraints, one agent’s actual trajectory
may be different from the planned one, i.e., it may detour
to other agent’s goal region as stated in Section IV-B. Thus
given the agent’s updated position, its initial plan τi might be
inefficient in terms of cost defined by (4). Thus we propose a
discrete plan adaptation algorithm that ensures that the updated
plan always fulfills the task and has the minimal suffix cost for
any agent i with a general LTL formula defined as follows:

cost(pi,suf(T )) , max
(πs, πg)∈ϑ

{
Wi(πs, πg)

}
(24)

where ϑ = {(πi0, π`1), (π`k , π`k+1
), ∀π`k , π`k+1

∈
pi,suf(T )}; and pi,suf(T ) is the suffix part of the effective path



pi(T ) that will be repeated infinitely often to satisfy a general
LTL formula ϕi. Now assume that at time t0 > 0, agent i
finishes executing its current plan suffix τi,suf once. Denote by
τ−i,suf(t0) the plan suffix before the plan update at time t0 > 0

and τ+
i,suf(t0) the plan suffix after the update. Denote by

word−i (0, t0) the past sequence of services provided by
agent i during the time period [0, t0]. Since the corresponding
word suffix of τ+

i,suf(t0) is given by τ+
i,suf(t0)|Σi

, the planned
sequence of services by agent i during the time period [t0, T )
is given by word+

i (t0, T ) = τ+
i,suf(t0)|Σi

, where T = ∞.
Denote by word?i (T ) the complete word from t = 0 to
t = T , which is the complete sequence of services provided
by agent i. Given the updated plan τ+

i (t0), word?i (T ) can be
computed by concatenating the word during time t = [0, t0]
and the word during time t = [t0, T ) as follows:

word?i (T ) = word−i (0, t0) word+
i (t0, T ). (25)

On the other hand, τ+
i,suf(t0) determines the suffix of an

effective path after time t0 by p+
i,suf(t0) = τ+

i,suf(t0)|Πi , of
which the suffix cost is given by (24).

Problem 2. Find an updated plan suffix τ+
i,suf(t0) for agent i

such that: (I) word?i (T ) by (25) satisfies ϕi; (II) the effective
path suffix p+

i,suf(t0) has the minimal cost by (24).

The solution consists of two main steps: (I) we compute
the set of all product states Q′P,i,t0 ⊆ QP,i that are reachable
from the initial states QP,i,0 given the past effective path
p−i (0, t0) and the past sequence of services word−i (0, t0)
provided by agent i during time [0, t0). In particular, it can be
computed by iterating through the sequence of input word by
word−i (0, t0) and computes the set of successors recursively,
while at the same time ensuring that it is compliant with the
agent’s past effective path by p−i (0, t0). Note that Q′P,i,t0 can
be maintained by each agent along with the plan execution pro-
cedure described in Section IV-C3; (II) we compute firstly the
intersection F ′ = FP,i∩Q′P,i,t0 , which is always non-empty as
Q′P,i,t0 contains at least one accepting state in FP,i as agent i
has finished executing its plan suffix once at t = t0. Then the
graph search algorithm described in Section IV-A is applied
with slight modifications to compute the minimal-bottleneck
prefix and cycle, where QP,i,0 is replaced by Q′P,i,t0 and FP,i
is replaced by F ′. Denote by %i,suf the minimal-bottleneck
cycle from v?f back to itself, which is computed based on Pv?f .
Then τ+

i,suf(t0) is determined by the projection of %i,suf onto Ti
and thus p+

i,suf(t0) is given as the projection of τ+
i,suf(t0) onto

Πi. The worst-case computational complexity of the above
synthesis algorithm can be determined in a similar way to the
initial synthesis algorithm as O(|QP,i|3 · |FP,i|), where |QP,i|
is the number of states in Pi.

Lemma 13. τ+
i,suf(t0) derived above solves Problem 2.

Proof. (Sketch) For part (I) of Problem 2: by how the reach-
able set Q′P,i,t0 is computed, we know that for any state
q′s ∈ Q′P,i,t0 , there exists a path in Pi from one initial
state q′0 ∈ QP,i,0 to q′s, which corresponds to word−i (0, t0).
Furthermore, τ+

i,suf(t0) is generated by enforcing its word
word+

i (t0, T ) corresponds to a path in Pi which starts from

one state q′f ∈ Q′P,i,t0 ∩ F
′ and cycles back to itself. By

concatenating word−i (0, t0) and word+
i (t0, T ) as in (25), it

is guaranteed that the complete word word?i (T ) corresponds
to a path in Pi from the initial state q′0 to an accepting state
q′f and then back to itself, which is an accepting path of Pi by
definition. Regarding part (II): the synthesis algorithm ensures
that the updated plan suffix τ+

i,suf(t0) of Pi minimizes the cost
by (24), which gives the effective path suffix p+

i,suf(t0) with
the minimal suffix cost. This completes the proof.

Now we discuss how to integrate the above plan adaptation
scheme with the switching policies described earlier. We
consider here only the policy Pge from Section IV-C2 and
policy Pmx from Section IV-C3. We propose that each agent
with a general LTL task specification updates its plan when-
ever it finishes executing its plan suffix once, by executing the
adaptation algorithm above to compute the updated plan suffix
τ+
i,suf. To be more specific, for policy Pge, every agent follows

the switching protocol and updates its plan suffix whenever
it finishes executing its current plan suffix; for policy Pmx,
all agents follow the protocol but only the agents within Nge
update its plan suffix whenever it finishes executing its current
plan suffix. Then the continuous controller and the switching
protocol are updated accordingly given the updated plan suffix.

Lemma 14. For all agent i ∈ N , the final execution word
wordi(T ) satisfies ϕi for T = ∞, after applying the plan
adaptation scheme described above.

Proof. For policy Pge, since the plan adaptation is performed
by every agent i ∈ N when it finishes executing its suffix once,
Lemma 13 guarantees that τ+

i,suf(t0) after the update at t = t0 is
a cyclic suffix containing an accepting state of Pi. Thus at least
one accepting state of Pi is visited between two consecutive
plan updates of agent i. Moreover, as shown in Lemma 10
and Theorem 12, any plan suffix has finite length and can be
executed in finite time. The set of accepting states of Pi will
be visited infinitely many times as T =∞. Since the number
of accepting states in Pi is finite, at least one of the accepting
states will be visited infinitely often by word?i (T ) as T =∞.
Thus by definition, word?i (T ) satisfies ϕi when T =∞, ∀i ∈
N . By policy Pmx, any agent i ∈ Nsc does not update its
plan, the result from Theorem 12 still holds, while for any
agent i ∈ Nge, the analysis is similar to policy Pge.

Theorem 15. When combining the plan adaption scheme with
the protocol Pge or Pmx, it is guaranteed that ∀i ∈ N , the
local task ϕi is satisfied by xi(T ) and ‖xi(t) − xj(t)‖ < r,
∀(i, j) ∈ E0(0) and ∀t > 0, where T =∞.

Proof. (Sketch) The first part regarding the task satisfaction
is a direct extension of Lemma 14 above, while the second
part regarding relative-distance constraints can be shown in a
similar way as in Theorems 11 and 12.

V. SIMULATION

In the following case study, we simulate a team of four
autonomous robots N = {R1, . . . ,R4} subject to the dy-
namics (1) in a bounded, obstacle-free workspace of 40× 40
meters (m). Each robot Ri is given a local task specified as



sc-LTL or LTL formulas ϕi. All algorithms and modules were
implemented in Python 2.7. Simulations were carried out on
a desktop computer (3.06 GHz Duo CPU and 8GB of RAM)
with a simulation stepsize set to 1ms.

As shown in Figure 1a, several regions of interest for
each agent are placed in top-left, top-right, bottom-right and
bottom-left corners of the workspace and they all satisfy
Assumption 1 with cmax = 40 and rmin = 2. Particularly,
we consider the following aspects:

(i) Regions of interest. Agent R1 is an aerial vehi-
cle with four regions of interest, denoted by Π1 =
{π1tl, π1tr, π1br, π1bl} shown in red; agent R2 is a ground
vehicle with three regions of interest Π2 = {π2tl, π2tr, π2bl}
shown in green; agent R3 is also a ground vehicle with
Π3 = {π3tr, π3br, π3bl} shown in blue; agent R4 is an aerial
vehicle with Π4 = {π4tl, π4tr, π4br, π4bl} shown in cyan.
Note that we only consider the planar position of all agents.

(ii) Services. Agent R1 is capable of providing two kinds
of services, i.e., surveillance over an area (denoted by σ11)
and assistance for ground operations (denoted by σ12). Thus
its set of atomic propositions is given by Σ1 = {σ11, σ12}.
Agent R4 can provide the analogous kind of services as R1,
denoted by Σ4 = {σ41, σ42}. Moreover, agent R2 is capable of
providing three kinds of services, i.e., food delivery (denoted
by σ21), water delivery (denoted by σ22), and transportation
(denoted by σ23). Thus its set of atomic propositions is Σ2 =
{σ21, σ22, σ23}. Agent R3 can provide the analogous kind of
services as R2, denoted by Σ3 = {σ31, σ32, σ33}.

(iii) Region labeling. The aerial assistance service is avail-
able at two regions of interest of R1 while the surveillance ser-
vice is available at the other two regions. Namely, L1(π1tl) =
L1(π1br) = {σ11} and L1(π1tr) = L1(π1bl) = {σ12}. Simi-
lar statements hold for agent R4, i.e., L4(π4tl) = L4(π4tr) =
{σ41}, L4(π4bl) = L4(π4br) = {σ42}. While for agent R2,
the food delivery, water delivery and transportation services
are available at its regions of interest, respectively. Namely,
L2(π2tl) = {σ21}, L2(σ2tr) = {σ22}, L2(π2bl) = {σ23}.
Similar statements hold for agent R3, i.e., L3(π3tr) = {σ31},
L3(π3br) = {σ32}, L3(π3bl) = {σ33}.

(iv) Network graph. The agents have a uniform neighboring
radius as r = 8m and the design parameter needed in
Definition 2 is κ = 0.5m. They start from [25, 15], [20, 15],
[15, 20] and [20, 25] in the 2D workspace. Thus the initial
edge set of G(0) is given by E0(0) = {(R1,R2), (R2,R3),
(R3,R4)}. The upper bound by (23) is ε < εmin ≈ 0.031 and
we choose ε = 0.03.

We consider two cases of the agent task specifications: one
with sc-LTL formulas and one with general LTL formulas.

(I) sc-LTL Task Specifications. The finite-time local task for
agent R1 or R4 is to first provide the surveillance, assistance
service to the ground vehicles and then another surveillance
service in this sequence to regions required. Namely, ϕs1 =
3(σ12 ∧3(σ11 ∧3σ12)) and ϕs4 = 3(σ42 ∧3(σ41 ∧3σ42)).
On the other hand, the finite-time local task for agent R2 or R3

is to first deliver food or water and then provide transportation
service, which is formalized as ϕs2 = 3(σ21 ∨ σ22) ∧ 3σ23

and ϕs3 = 3(σ31 ∨ σ32) ∧3σ33.
The synthesized discrete plans derived by the algorithm

described in Section IV-A are as follows: agent R1

needs to provide surveillance at region π1bl, assistance
at region π1tl and then surveillance at region π1bl,
i.e., τ1 = (π1bl, {σ12})(π1tl, {σ11})(π1bl, {σ12});
agent R2 would supply food at region π2tl and
transportation at region π2bl while agent R3 would
supply food at region π3tl and transportation at
region π3bl. Namely, τ2 = (π2tl, {σ21})(π2bl, {σ23})
and τ3 = (π3tr, {σ31})(π3br, {σ33}); At last, agent R4

needs to provide surveillance at region π4bl, assistance
at region π4tl and then surveillance at region π4bl,
i.e., τ4 = (π4br, {σ41})(π4tr, {σ42})(π4tl, {σ41}). It can
be verified that they all satisfy the respective local tasks.
At t = 0, the switching policy Psc from Section IV-C1 is
applied. It takes around 9s for all agents to accomplish the
execution of their local plans. The complete agent trajectories
are shown in Figure 1a, where the distances between the
neighboring agents along with times of reaching the agents’
respective progressive goal regions are also plotted. In
addition, the time instants when each agent reaches their goal
regions are shown to illustrate the progressive plan execution.

(II) General LTL task specifications. In this case, all
agents’ local tasks are specified as general LTL formulas
over the services. The task of agent R1 is to periodically
provide both the surveillance and assistance services σ11 and
σ12 at the required regions, which is represented by φ1 =
�3σ11 ∧ �3σ12; the task of agents R2 and R3 are similar,
which is to periodically provide either food, water supply or
transportation service at desired regions, which is formalized
as φ2 = �3(σ21∨σ22∨σ23) and φ3 = �3(σ31∨σ32∨σ33); at
last, the task of agent R4 is to periodically provide both the
surveillance and assistance services at the required regions,
which is represented by φ4 = �3σ41 ∧�3σ42.

The synthesized discrete plans derived by the algorithm
described in Section IV-A are as follows: agent R1 would
provide assistance at region π1bl and then surveillance at
region π1tl, which is repeated infinitely often, i.e., τ1 =(
(π1bl, {σ12})

(
(π1tl, {σ11})

)ω
; agent R2 would supply food

at region π2tl repetitively and agent R3 would provide trans-
portation service at region π3bl repetitively. Namely, τ2 =
(π2tl, {σ21})ω and τ3 = (π3bl, {σ33})ω; at last, agent R4

would provide surveillance at region π4br and then assistance
at region π4tr, which is repeated infinitely often, i.e., τ4 =(
(π4br, {σ41})(π4tr, {σ42})

)ω
.

The simulation results for the activity switching protocol
Pge from Section IV-C2 are illustrated in Figure 1b. The
functions fprob and fcond were chosen in a way that allows
to partially trade fairness of activity switching for increased
efficiency of plan executions measured in terms of the dis-
tance traveled between consecutive visits to progressive goal
regions. More specifically, an agent is not switched to passive
immediately after it reaches one of its goal region. Rather
than that, it has the following probability of remaining active:
Pr(bi = 1) = e−αiΥi[i](t−χi) if Υi[i] · (t − χi) < χ̄i;
and Pr(bi = 1) = 0 if Υi[i] · (t − χi) ≥ χ̄i, where
χ̄i = 5 and αi = 1. The probability of remaining active
decreases with the increasing time elapsed since the current
round started and with the increasing number agent Ri’s own
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Figure 1: (a) Top: agents’ respective regions of interest in red, green, blue and cyan respectively and their trajectories under policy Psc.
All agents accomplish their sc-LTL tasks after 9s. Middle: the evolution of pair-wise distances ‖x12‖, ‖x23‖, ‖x34‖, which all satisfy the
distance constraints (below 7.5m). Bottom: the time instants when the agents reach their goal regions and provide the set of planned services.
(b) agents’ trajectories under policy Pge with general LTL tasks. (c) agents’ trajectories under policy Pge with general LTL tasks, after
incorporating the plan adaptation algorithm. The bottom figure can be compared with Figure 1b).

progressive goal region was visited. Note that there exists a
finite T ∈ (T	m−1

, T	m
), such that Υi[i] · (t − χi) ≥ χ̄i

for all t ∈ [T, T	m
], hence each agent Ri is guaranteed to

be switched to passive control mode eventually. The selected
function does not necessarily yield a monotonic decrease of
the total number of active agents in the team and is useful
when one agent has close goal regions.

At last, to demonstrate the effectiveness of the local plan
adaptation technique proposed in Section IV-D, we combine
the protocol Pge and the real-time adaptation algorithm. The
results are shown in Figure 1c, which is significantly different
from the results in Figure 1b: Agent R4 adapts its plan to visit
π4tl with service σ42 while agent R1 is reaching π1tl with
service σ11. Then agent R4 adapts its plan to visit region π4bl

and provide the surveillance service there and agent R2 adapts
its plan to visit region π2bl and supply water there while
agent R1 is reaching the region π1bl. Consequently, the agents
reach their goal regions much more often than before when
the real-time adaptation algorithm is not applied, which can
be confirmed by comparing from the time instants when each
agent reaches its goal region in Figures 1b and 1c, respectively.

VI. CONCLUSION AND FUTURE WORK

We proposed a distributed communication-free control
scheme for multi-agent systems to fulfill locally-assigned tasks
as general or sc-LTL formulas, while subject to relative-
distance constraints. Future work include handling collision
avoidance among the agents, uncertainties in the relative-state
measurements and more complex agent dynamics.

REFERENCES

[1] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press,
2008.

[2] Y. Chen, X. C. Ding, A. Stefanescu, and C. Belta. Formal approach to the
deployment of distributed robotic teams. IEEE Transactions on Robotics,
28(1):158–171, 2012.

[3] D. V. Dimarogonas, S. G. Loizou, K. J. Kyriakopoulos, and M. M. Za-
vlanos. A feedback stabilization and collision avoidance scheme for
multiple independent non-point agents. Automatica, 42(2):229–243, 2006.

[4] G. E. Fainekos, S. G. Loizou, and G. J. Pappas, Translating temporal
logic to controller specifications, IEEE Conference on Decision and
Control(CDC), pages 899–904, 2006.

[5] I. Filippidis, D. V. Dimarogonas, and K. J. Kyriakopoulos. Decentralized
multi-agent control from local LTL specifications. IEEE Conference on
Decision and Control (CDC), pages 6235–6240, 2012.

[6] M. Franceschelli, M. B. Egerstedt, and A. Giua. Motion probes for fault
detection and recovery in networked control systems. American Control
Conference (ACC), pages 4358–4363, 2008.

[7] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation.
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