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KDF: Kinodynamic Motion Planning via Geometric
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Abstract—We integrate sampling-based planning techniques
with funnel-based feedback control to develop KDF, a new
framework for solving the kinodynamic motion-planning problem
via funnel control. The considered systems evolve subject to
complex, nonlinear, and uncertain dynamics (aka differential
constraints). Firstly, we use a geometric planner to obtain a high-
level safe path in a user-defined extended free space. Secondly, we
develop a low-level funnel control algorithm that guarantees safe
tracking of the path by the system. Neither the planner nor the
control algorithm use information on the underlying dynamics of
the system, which makes the proposed scheme easily distributable
to a large variety of different systems and scenarios. Intuitively,
the funnel control module is able to implicitly accommodate the
dynamics of the system, allowing hence the deployment of purely
geometrical motion planners. Extensive computer simulations
and hardware experiments with a 6-DOF robotic arm validate
the proposed approach.

Index Terms—kinodynamic motion planning, uncertain dy-
namics, funnel control

I. INTRODUCTION

MOTION planning of autonomous systems is one of the
most fundamental problems in robotics, with numerous

applications such as exploration, autonomous driving, robotic
manipulation, autonomous warehouses, and multi-robot coor-
dination [1], [2]. It has been extensively studied in the related
literature; works have been continuously developed for the
last three decades, exploring plenty of variations, including
feedback control, discrete planning, uncertain environments,
and multi-agent systems. One important and active area of
research consists of kinodynamic motion planning, i.e., when
the planning algorithm takes into account the underlying
system dynamics, also known as differential constraints [1].

In this paper we develop KDF, an algorithmic framework
for the kinodynamic motion-planning problem by integrating
sampling-based algorithms with intelligent feedback control.
We consider systems that evolve subject to high-dimensional

C. K. Verginis is with the Division of Signals and Systems, Department
of Electrical Engineering, Uppsala University, Uppsala, Sweden. e-mail:
christos.verginis@angstrom.uu.se.

D. V. Dimarogonas is with the School of Electrical and Engineering and
Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden,
e-mail: dimos@kth.se.

L. E. Kavraki is with the Department of Computer Science at Rice
University, Houston, TX, USA, e-mail: kavraki@rice.edu.

This work was supported by the H2020 ERC Starting Grant BUCOPHSYS,
the European Union’s Horizon 2020 Research and Innovation Programme
under the GA No. 731869 (Co4Robots), the Swedish Research Council (VR),
the Knut och Alice Wallenberg Foundation (KAW), the Swedish Foundation
for Strategic Research (SSF), and the National Science Foundation project
NSF 2008720 (LEK).

dynamics, which are highly nonlinear and uncertain. The
proposed framework is the integration of the following three
modules. The first module is the KDF sampling-based motion
planners (KDF-MP), which is a family of geometric planners
that produce a path in an “extended” free space. By “extended”
we mean that the obtained path has some clearance with
respect to the workspace obstacles. The second module is
the smoothening of the derived path and its endowment with
time constraints in order to produce a smooth time-varying
trajectory. The third module is a funnel-based, feedback-
control scheme that achieves safe tracking of this trajectory
within the clearance of the extended free space. Neither of
the aforementioned modules uses any information on the
dynamics of the system. The proposed framework guarantees
that the system will follow safely the derived path, free from
collisions. Loosely speaking, we augment geometric motion
planning algorithms with extended free-space capabilities and
intelligent feedback control to provide a new solution to the
kinodynamic motion-planning problem. The incorporation of
the control scheme relieves the sampling-based motion planner
from the system dynamics and their uncertainties.

Feedback control is a popular methodology to tackle
motion-planning problems, since it simultaneously solves the
planning and control problems, offering a closed-form policy
for the control input of the system. Artificial potential fields
constitute the main tool of closed-form feedback control
methods. Early works develop the so-called “navigation func-
tions” [3], appropriately constructed terms whose gradient
constitutes a vector field that takes the system safely to the
goal configuration from almost all initial conditions (except
for a set of initial conditions that has measure zero). Navi-
gation functions can accommodate sphere worlds (spherical
obstacles), as well as star-shaped obstacles via appropriate
diffeomorphic transformations [3]. Several works build on the
notion of navigation functions, and propose harmonic-based
potential fields as well as point-world transformations [4],
[5]. Potential field-based feedback control schemes have also
accommodated multi-robot systems as well as higher order
dynamics and model uncertainties [6]–[8]. Optimization-based
feedback control techniques, such as Model Predictive Control
(MPC) and barrier functions have also been employed to tackle
the motion planning problem [9]–[12].

Although feedback control is a promising and convenient
tool for motion planning problems, it is usually restricted to
simple robot shapes, such as spheres or ellipsoids. For more
complex structures, such as high-dimensional robotic manipu-
lators, the aforementioned strategies can guarantee safety but



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

suffer from local minima configurations, or high computation
times that render them impractical. Randomized planning has
been introduced to tackle such scenarios; [13] and [14], [15]
develop the notions of probabilistic roadmaps (PRM) and trees
(Expansive Space Trees - EST, Rapidly Exploring Random
Trees - RRT), constituting efficient and probabilistically com-
plete geometric solutions to high-dimensional motion-planning
problems. These methodologies build a discrete graph that
spans the free space by incremental sampling, providing
thus a safe path to be followed by the robot. Variants of
sampling-based algorithms have been also proposed in order
to improve their attributes; RRT-connect [16] computes two
trees in the free space (from the initial and goal config-
uration, respectively), speeding up the convergence to the
goal, and asymptotically optimal algorithms, such as RRT*,
PRM*, provide a path whose length becomes shorter (more
optimal) as the number of samples increases [17]. The initial
versions of the aforementioned algorithms are geometrical,
without accommodating the dynamics (differential constraints)
of the system. To that end, tree-based algorithms such as
RRTs and ESTs have been extended to kinodynamic planning
[14], [18]. Kinodynamic planning algorithms simulate forward
the dynamics of the system by randomly sampling control
inputs, in order to find a feasible path in the state space.
Moreover, similarly to PRM, [19] and [20] use the framework
of LQR-trees, i.e., trees of trajectories that probabilistically
cover the free space. By linearizing the system dynamics
and using optimal control techniques, every point of the
free space is assigned a funnel corresponding to its region
of attraction with respect to the goal configuration. Similar
ideas are used in [21], where dynamics linearization and
reachability sets are employed to develop an optimal kinody-
namic algorithm. Sampling-based algorithms have been also
integrated with receding horizon optimization techniques [22]
whereas [23] develops a Hamilton-Jacobi-Bellman approach.
In this work we leverage geometric sampling-based motion
planning-techniques and feedback control; we integrate the
two, efficiently combining and exploiting their benefits and
avoiding thus high computation times and undesired local
minima configurations.

Another important disadvantage of the majority of the
related works in motion planning is their strong dependence
on the considered model of the system dynamics; the re-
spective algorithms use partial or full information on the
underlying dynamic models. Optimization-based algorithms
usually employ dynamics linearization or simulate forward
the dynamical model to obtain an optimal control input.
The latter is similar to kinodynamic sampling-based motion
planning algorithms, which simulate forward the model using
random inputs to obtain feasible samples in the free space.
The accurate identification of the system dynamics of real
robots is a tedious procedure, due to the high uncertainty in
the several components (dynamic parameters, friction terms)
and unknown exogenous disturbances. Hence, the considered
dynamic models used in the aforementioned algorithms do not
match sufficiently enough the dynamics of the actual system.
As a result, the actual trajectories of the robotic system might
deviate from the predicted/planned ones, jeopardizing thus

safety and degrading performance.
Similar to the approach developed in this paper, the works

[20], [24]–[32] develop two-stage algorithms, combining ge-
ometric planning in an extended free space with control
procedures. However, [24]–[27] do not consider any uncer-
tainties in the robot dynamics, while [28], [29], [32] consider
stochastic uncertainties, modeled via Gaussian distributions
and belief trees and spaces; [29] develops a receding-horizon
controlled based on such spaces. These approaches, how-
ever, usually deal with linearized dynamics, and/or propagate
the uncertainties on the planning horizon, constraining thus
the free space excessively. Additionally, for high-dimensional
articulated robots, such as robotic manipulators, and com-
plicated obstacle-cluttered workspaces, receding-horizon ap-
proaches might be too computationally expensive and result
in local-minima configurations. The work [20] proposes an
algorithm that builds trees of funnels based on the (known)
bounds of model disturbances, restricted however to polyno-
mial robot dynamics. Similarly, the works [30], [31] con-
sider dynamic uncertainties that are, however, restricted to
uniformly bounded disturbances that evolve in a priori known
sets. Additionally, the aforementioned works cannot guarantee
the evolution of the system in pre-defined bounds that are
independent of the dynamic uncertainties. In this paper, we
consider systems with high-order nonlinear dynamics. The
dynamics consist of state-dependent terms and time-varying
disturbances that are unknown. In contrast to the aforemen-
tioned works (e.g., [20], [31]), we consider that these time-
varying disturbances evolve in bounded but unknown sets,
whereas the state-dependent terms might grow unbounded.
Neither the planning nor the feedback-control module use
any information on the underlying system dynamics or their
bounds, providing thus robustness to model uncertainties and
unknown external disturbances, and applicability to a large
variety of different systems and scenarios. More specifically,
the proposed framework exhibits the following important
characteristics:

1) The (unknown) dynamics of the system are not sim-
ulated forward in time and are hence decoupled from
the motion planner. This results in the latter being
purely geometrical, depending on the geometry of the
configuration space and user-defined funnel bounds that
are set a priori and define the extended free space.

2) Even though kth-order dynamics are considered, the mo-
tion planner searches for a path only in the configuration
space, since the dynamics are appropriately compensated
by the designed feedback control protocol.

3) We do not resort to linearization of the dynamics and
computation of basins of attraction around the output
trajectories, since the designed feedback control protocol
applies directly to the nonlinear model.

Note that, since the sampling-based motion planner involved
in our framework is purely geometric, it is expected to
yield lower complexity than standard kinodynamic planning
algorithms. Such algorithms sample points in a space of larger
dimension, including random states and control inputs, and
simulate forward the underlying dynamics; hence they usually
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require more computational resources than geometric planners.
It should be noted that similar ideas were pursued in [33], [34],
without however considering the complex unknown systems
adopted in this work. We validate the proposed methodology
an Unmanned Aerial Vehicle (UAV) and a 6DOF UR5 manip-
ulator in CoppeliaSim environment [35], as well as a 6DOF
Hebi-Robotics manipulator. This paper is an extension of our
recent work [36] along the following directions: firstly, we
generalize our framework to a family of geometric sampling-
based motion planners (as opposed to just RRT used in
[36]); secondly, we use a different control algorithm that
can handle more general robot dynamics and uncertainties;
thirdly, the bounds that define the funnel where the system
evolves in, which also define the extended free space in the
developed motion planner, are a priori user-defined. This is
in contrast to [36], where the bounds depended on the system
dynamics and gain tuning was needed to shrink the funnel
and produce less conservative trajectories. Finally, we use
extensive hardware experiments to validate the efficiency of
the proposed framework.

II. PROBLEM FORMULATION

Consider a robotic system characterized by the configuration
vector q1 ∈ T ⊂ Rn, n ∈ N. Usual robotic structures (e.g.,
robotic manipulators) might consist of translational and rota-
tional joints, which we define here as qt = [qt1, . . . , q

t
ntr

]> ∈
Rntr and qr = [qr1, . . . , q

r
nr

]> ∈ [0, 2π)nr , respectively, with
ntr +nr = n, and hence T :=Wtr × [0, 2π)nr , where Wtr is
a closed subset of Rntr . Without loss of generality, we assume
that q1 = [(qt)>, (qr)>]>.

We consider kth-order systems, with k ≥ 2, of the form

q̇i = fi(q̄i, t) + gi(q̄i, t)qi+1, ∀i ∈ {1, . . . , k − 1} (1a)
q̇k = fk(q̄k, t) + gk(q̄k, t)u, (1b)

where q̄i := [q>1 , . . . , q
>
i ]> ∈ T × Rn(i−1), for all i ∈

{1, . . . , k}, and u ∈ Rn is the control input of the system.
Note that the kth-order model (1) generalizes the simpler 2nd-
order Lagrangian dynamics, which is commonly used in the
related literature.

The vector fields fi, gi, which represent various terms
in robotic systems (inertia, Coriolis, friction, gravity, cen-
trifugal) are considered to be completely unknown to the
designer/planner, for all i ∈ {1, . . . , k}. The only assumptions
we make for the system are mild continuity and controllability
conditions, as follows:

Assumption 1. The maps q̄i 7→ fi(q̄i, t) : T×Rn(i−1) → Rn,
q̄i 7→ gi(q̄i, t) : T×Rn(i−1) → Rn×n are continuously
differentiable for each fixed t ∈ R≥0 and the maps t 7→
fi(q̄i, t) : R≥0 → Rn, t 7→ gi(q̄i, t) : R≥0 → Rn×n are
piecewise continuous and uniformly bounded for each fixed
q̄i ∈ T×Rn(i−1), for all i ∈ {1, . . . , k}, by unknown bounds.

Assumption 2. It holds that

λmin

(
gi(q̄i, t) + gi(q̄i, t)

>
)
≥ λ > 0,

for a positive constant λ, for all q̄i ∈ Rn(i−1), t ≥ 0,
i ∈ {1, . . . , k}, where λmin(·) is the minimum eigenvalue of a
matrix.

Assumption 1 intuitively states that the terms fi(·), gi(·)
are sufficiently smooth in the state q̄i and bounded in time
t. The smoothness in q̄i is satisfied by standard terms that
appear in the dynamics of robotic systems (inertia, Coriolis,
gravity); friction terms might pose an exception, since they are
usually modeled by discontinuous functions of the state [37].
Although smooth friction approximations can be employed
[38], the proposed control design can be adapted to account for
discontinuous dynamics (as, e.g., in [39]); we consider smooth
terms for ease of exposition.

Note that, unlike existing methodologies in the control-
design literature, such as feedback linearization [40], tradi-
tional adaptive control [36], control-barrier-function design
[12], or model-predictive control [41], we consider that the dy-
namic terms fi(·) and gi(·) are completely unknown. Further,
the incorporation of time dependence in fi(·), gi(·) reflects
time-varying and bounded external disturbances (e.g., wind
or adversarial perturbations). However, unlike existing works
in motion planning and control (e.g., [20], [31]), the bounds
of such disturbances are considered unknown. Finally, note
that we assume that the terms fi(·), gi(·) are continuously
differentiable but not upper-bounded with respect to q̄i. The
proposed algorithm guarantees the boundedness of q̄i and,
consequently, of fi(·), gi(·).

Assumption 2 is a sufficiently controllability condition for
(1); intuitively, it states that the input matrices gi do not change
the direction imposed to the system by qi+1 when the latter are
viewed as inputs (with qk+1 = u). Note that standard holo-
nomic Lagrangian systems satisfy this condition. Examples
include robotic manipulators, omnidirectional mobile robots,
and fully actuated aerial vehicles. Systems not covered by
(1) consist of underactuated or non-holonomic robots, such as
unicycles, underactuated aerial or underwater vehicles. Each of
these systems requires special attention and cannot be framed
into the general framework presented in this work. However,
funnel control can be applied for such systems (see, e.g., [42]–
[44]) and the proposed methodology could be extended to
account for non-holonomic and underactuation constraints.

We consider that the robot operates in a workspaceW ⊂ R3

filled with obstacles occupying a closed set O ⊂ R3. We
denote the set of points that consist the volume of the robot
at configuration q1 as A(q1) ⊂ R3. The collision-free space is
defined as the open setAfree := {q1 ∈ T : A(q1)∩O = ∅}. Our
goal is to achieve safe navigation of the robot to a predefined
goal region Qg ⊂ Afree from an initial configuration q1(0) ∈
Afree via a path qp : [0, σ]→ Afree satisfying qp(0) = q1(0)
and qp(σ) ∈ Qg , for some positive σ.

The problem we consider is the following:

Problem 1. Given q1(0) ∈ Afree and Qg ⊂ Afree, respectively,
design a control trajectory u : [0, tf ] → Rn, for some finite
tf > 0, such that the solution q∗(t) of (1) satisfies q∗1(t) ∈
Afree, for all t ∈ [0, tf ], and q∗1(tf ) ∈ Qg .

The feasibility of Problem 1 is established in the following
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assumption.

Assumption 3. There exists a (at least twice differentiable)
path qp : [0, σ] → Afree such that qp(0) = q(0) and qp(σ) ∈
Qg .

III. MAIN RESULTS

We present here the proposed solution for Problem 1. Our
methodology follows a two-layer approach, consisting of a
robust trajectory-tracking control design and a higher-level
sampling-based motion planner. Firstly, we design an adaptive
control protocol that compensates for the uncertain dynamical
parameters of the robot and forces the system to evolve in a
funnel around a desired trajectory, whose size can be a priori
chosen by the user/designer, and is completely independent
from the system dynamics (1). We stress that this constitutes
the main difference from our previous work [8], where the
derived funnel depends on the bounds of the various dynamic
terms and the external disturbances. Secondly, we develop
a geometric sampling-based motion planner that uses this
funnel to find a collision free trajectory from the initial to the
goal configuration. Intuitively, the robust control design helps
the motion planner procedure, which does not have to take
into account the complete dynamics (1). Section III-A gives
some preliminary background on funnel control and provides
the control design, while Section III-B provides the motion
planner.

A. Control Design

In order to tackle the unknown dynamics of (1) we use the
methodology of funnel control [45], [46]. Funnel control aims
at achieving containment of a scalar tracking error e(t) in a
user-prespecified time-varying set, defined by certain functions
of time, as

−ρ(t) < e(t) < ρ(t), ∀t ≥ 0, (2)

where ρ(t) denotes a smooth and bounded function of time,
with bounded derivatives, that satisfies ρ(t0) > |e(t0)| and
ρ(t) > 0, for all t ≥ t0, called funnel function (or perfor-
mance function in [45]). Fig. 1 illustrates the aforementioned
statements. Since the funnel set is user defined a priori, it can
be set to converge to an arbitrarily small residual set with
speed no less than a prespecified value, e.g., by using the
funnel function ρ(t) := (ρ0 − ρ∞)e−λt + ρ∞. The parameter
ρ∞ := limt→∞ ρ(t) > 0 represents the maximum allowable
value of the steady state error and can be set to a value
reflecting the resolution of the measurement device, so that the
error e(t) practically converges to zero. Moreover, the constant
λ determines the decreasing rate of ρ(t) and thus is used to
set a lower bound on the convergence rate of e(t). Therefore,
the appropriate selection of the function ρ(t) imposes certain
transient and steady state performance characteristics on the
tracking error e(t). Intuitively, larger λ and small ρ∞ improve
the performance of the system, yielding fast convergence close
to zero. Although these constants can be arbitratrily set by a
user, their values affect significantly the stress imposed on the
system, and hence they should be chosen according to the
system’s capabilities.

0 2 4 6 8 10 12 14

−4

−2

0

2

4

t

ρ(t)

−ρ(t)

e(t)

Fig. 1: Illustration of funnel control, where the error e(t) is
confined in the prescribed funnel defined by the function ρ(t).

The key point in funnel control is a transformation of
the tracking error e(t) that modulates it with respect to
the corresponding funnel specifications, encapsulated in the
function ρ(t). This is achieved by converting the constrained
problem to an unconstrained one via a transformation of
the form T

(
e(t)
ρ(t)

)
, where T : (−1, 1) → (−∞,∞) is a

strictly increasing, odd and bijective mapping. Then the funnel
specifications are met by simply preserving the boundedness
of T

(
e(t)
ρ(t)

)
. Most funnel control schemes do not employ

any information on the system dynamics, using a high-gain
approach. That is, the control action approaches infinity as
the state approaches the funnel boundary, “pushing” thus the
system to remain inside the funnel. In this work we extend
the funnel control design to apply for the system (1) and the
manifold T, and we show how such a design can be used in
the motion planning of the uncertain robotic system (1).

Let qd := [(qtd)>, (qrd)>]> := [qtd1 , . . . , q
t
dntr

, qrd1 , . . . , q
r
dnr

]>

: [t0, t0 + tf ] → T be a smooth (at least k-times contin-
uously differentiable) reference trajectory, with qtd ∈ Rntr

and qrd ∈ [0, 2π)nr being its translational and rotational parts,
respectively. Such a trajectory will be derived by smoothening
and adding time constraints to the output path of the sampling-
based motion-planning algorithm that will be developed in
the next section. Note that the smoothness assumption on
qd is not restrictive, since the smoothening of geometric
paths eases the resulting robot motion and is hence common
practice in real applications. Nevertheless, we stress that the
proposed control algorithm can be applied separately on the
raw path segments produced by the local collision-checking
planner of the motion-planning algorithm, without requiring
any smoothening. This might, however, induce discontinuities
on the control algorithm, which might be problematic for robot
actuators.

We wish to design the control input u of (1) such that q(t)
converges to qd(t), despite the unknown terms fi, gi. We start
by defining the appropriate error metric between q1 and qd,
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which represents their distance. Regarding the translational
part, we define the standard Euclidean error et := qt− qtd. For
the rotation part, however, the same error er := qr−qrd does not
represent the minimum distance metric, since qr evolves on the
nr-dimensional sphere, and its use might cause conservative or
infeasible results in the planning layer. Hence, unlike standard
control schemes, which drive the Euclidean difference er to
zero (e.g., [47]), we use the chordal metric

dC(x) := 1− cos(x) ∈ [0, 2],∀x ∈ [0, 2π),

extended for vector arguments x = [x1, . . . , xn] ∈ [0, 2π)n to

d̄C(x) :=
∑

`∈{1,...,n}

dC(xj). (3)

Note that the chordal metric induces a limitation with
respect to tracking on the unit sphere. Consider

ηr` := dC(er`) = 1− cos(er`),

where er` := qr`−qrd` is the `th element of er, ` ∈ {1, . . . , nr}.
Differentiation yields

ḋC(er`) = sin(er`)ė
r
`,

for all ` ∈ {1, . . . , nr}, which is zero when er` = 0 or er` = π.
The second case is an undesired equilibrium, which implies
that the point er` = 0 cannot be stabilized from all initial
conditions using a continuous controller. This is an inherent
property of dynamics on the unit sphere due to topological
obstructions [48]. In the following, we devise a control scheme
that, except for guaranteeing that er`(t) evolves in a predefined
funnel, guarantees that er`(t) 6= π, for all t ∈ (t0, tf ], provided
that er`(t0) 6= π, for all ` ∈ {1, . . . , nr}.

The funnel is defined by the functions ρtj : [t0, t0 + tf ] →
[ρt
j
, ρ̄tj ], ρ

r
` : [t0, t0 +tf ]→ [ρr

`
, ρ̄r`] with initial and final values

ρ̄tj , ρ̄
r
`, and ρt

j
, ρr

`
, respectively, i.e.,

ρtj(t0) = ρ̄tj , ρ
r
`(t0) = ρ̄r` (4a)

ρtj(t0 + tf ) = ρt
j
, ρr`(t0 + tf ) = ρr

`
(4b)

0 < ρt
j
≤ ρ̄tj , 0 < ρr

`
≤ ρ̄r` < 2 (4c)

and being consistent with the errors initially, i.e.,

|etj(t0)| < ρ̄tj , ηr`(t0) < ρ̄r` (4d)

for all j ∈ {1, . . . , ntr}, ` ∈ {1, . . . , nr}. The functions ρtj ,
ρr` are assumed to be smooth, with bounded derivatives, for
all j ∈ {1, . . . , ntr}, ` ∈ {1, . . . , nr}. Our aim is to design a
control protocol such that

|etj(t)| < ρtj(t), ∀j ∈ {1 . . . , ntr}, (5a)

ηr`(t) < ρr`(t), ∀` ∈ {1 . . . , nr}, (5b)

for all t ∈ [t0, t0 + tf ]. Note that, since ρ̄r` < 2, guar-
anteeing (5b) ensures that ηr`(t) < 2, i.e., er`(t) 6= π, for
all t ∈ [t0, t0 + tf ], ` ∈ {1, . . . , nr} and avoidance of the
respective singularity. The funnel functions can be defined a
priori by a user, specifying the performance of the system
in terms of overshoot and steady-state value of the errors
etj , e

r
`. For instance, for the exponentially decaying ρtj(t) =

(ρ̄tj−ρtj) exp(−λjt)+ρt
j
, ∀t ∈ [t0, t0 + tf ], a user can choose

the constants ρt
j
, ρ̄tj , λj dictating the maximum error steady-

state value, overshoot, and speed of convergence. The only
hard condition is property (4d) above, stating that the errors
needs to respect the funnel constraints initially. Note also that
the funnel functions do not depend on the robot dynamics,
and can converge to values ρt

j
, ρr

`
arbitrarily close to zero at

t0 + tf , achieving thus practical stability. We provide more
details on the choice of the funnels after the control-design
algorithm, which is described next.

Let us define first the normalized errors as

ξtj :=
etj
ρtj
, ∀j ∈ {1 . . . , ntr}, (6a)

ξr` :=
ηr`
ρr`
, ∀` ∈ {1 . . . , nr}. (6b)

Note that, in order for the errors etj and ηr` to satisfy the
funnel constraints, the control design must guarantee that
ξtj ∈ (−1, 1) and ξr` ∈ [0, 1). In order to do that, we define
the transformed errors and signals

εtj := ln

(
1 + ξtj
1− ξtj

)
, ∀j ∈ {1 . . . , ntr}, (7a)

εr` := ln

(
1

1− ξr`

)
, ∀` ∈ {1 . . . , nr}, (7b)

rtj :=
∂εtj
∂ξtj

=
2

1− (ξtj)
2
, ∀j ∈ {1 . . . , ntr}, (7c)

rr` :=
∂εr`
∂ξr`

=
1

1− ξr`
, ∀` ∈ {1 . . . , nr}. (7d)

Note that εtj , r
t
j , and εr`, r

r
` diverge to infinity as ξtj and

ξr` approach 1, respectively. The control design exploits this
property; it aims to keep these signals bounded in order to
achieve ξtj(t) ∈ (−1, 1) and ξr`(t) ∈ [0, 1). We now proceed
with a back-stepping methodology [40]. Since q2 is part of the
system state and cannot be designed, we set a desired reference
signal that we want q2 to track. In particular, we define the
reference signal for q2 as α1 := [(αt)>, (αr)>]>, with

αt := −
[
kt1
ρt1
rt1ε

t
1, . . . ,

ktntr

ρtntr

rtntr
εtntr

]>
(8a)

αr := −
[
kr1
ρr1
rr1 sin(er1), . . . ,

krnr

ρrnr

rrnr
sin(ernr

)

]>
(8b)

where ktj , k
r
` are positive gain constants, j ∈ {1, . . . , ntr},

` ∈ {1, . . . , nr}.
The rest of the algorithm proceeds recursively: for i ∈
{2, . . . , k}, we define the error

ei :=
[
ei1 , . . . , ein

]>
:= qi − αi−1 ∈ Rn, (9)

where αi−1 will be given subsequently in (11). We design
funnel functions ρim : [t0, t0 + tf ] → [ρ

im
, ρ̄im ], ρ

im
≤ ρ̄im ,

such that ρim(t0) = ρ̄im > |eim(t0)|1, for all m ∈ {1, . . . , n},
and define

ξi :=
[
ξi1 , . . . , ξin

]>
:= ρ−1

i ei, (10a)

1Note that eim (t0) can be measured at the time instant t0 and the functions
ρim can be designed accordingly.
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εi :=
[
εi1 , . . . , εin

]>
:=
[
ln
(

1+ξi1
1−ξi1

)
, . . . , ln

(
1+ξin
1−ξin

)]>
(10b)

ri := diag

{[
∂εim
∂ξim

]
m∈{1,...,n}

}
, (10c)

where ρi := diag{[ρim ]i∈{1,...,n}} ∈ Rn×n. Finally, we design
the intermediate reference signals as

αi := −Kiρ
−1
i riεi,∀i ∈ {2, . . . , k − 1}, (11)

and the control law

u = −Kkρ
−1
k rkεk, (12)

where Ki ∈ Rn×n, i ∈ {2, . . . , k}, are positive definite z
matrices.

Note that the funnels defined by the functions ρi are defined
initially (at t = t0) since they only require the measured value
of ei(t0) in order to guarantee ρim(t0) > |eim(t0)|, for m ∈
{1, . . . , n}; the type and structure of the functions ρi, however,
can be determined a priori by a user. A standard choice is ex-
ponentially decaying ρim(t) = (ρ̄im−ρim) exp(−λimt)+ρ

im
,

or constant ones ρim(t) = ρ̄im , with the rule ρim(t0) =
ρ̄im = |eim(t0)|+ α, for some α > 0. Finally, although tight
funnels ρtj , ρ

r
` might be desired to achieve close proximity of

q1(t) to qd(t), the funnels defined by ρi are only required
to be bounded; convergence to very small values (e.g., by
choosing very small values ρ

im
for exponentially-decaying

funnels) does not have a direct physical interpretation in the
system’s configuration space and can overstress the system
causing unnecessarily large control inputs.

Remark 1. The control algorithm (6)-(12) resembles the
function of reciprocal barriers used in optimization. That
is, the intermediate reference and control signals (8), (11),
(12) approach infinity as the errors |etj |, 1 − er`, |eim |, i ∈
{2, . . . , k−1} approach the respective funnel functions ρtj , ρ

r
`,

ρim , j ∈ {1, . . . , ntr}, ` ∈ {1, . . . , nr}, m ∈ {1, . . . , n}, i ∈
{2, . . . , k}. Intuitively, this forces these errors to remain inside
their respective funnels, by compensating for the unknown
dynamic terms of (1), which are assumed to be continuous
and hence bounded in these funnels. In addition, note that the
control algorithm does not use any information on the state-
and time-dependent system dynamics fi(·), gi(·), giving rise
to two important properties; firstly, it can be easily applied to
a large variety of systems with different dynamic parameters;
secondly, it is robust against unknown, possibly adversarial,
time-varying disturbances. The latter is clearly illustrated in
the performed experiments of Section IV.

Remark 2 (Control gain selection and control input bounds).
The control gain matrices Kt, Kr, Ki, i ∈ {2, . . . , k} are
chosen by the user and can be any positive definite matrices.
It should be noted, however, that their choice affects both the
quality of evolution of the errors inside the funnel envelopes
as well as the control input characteristics (e.g., decreasing
the gain values leads to increased oscillatory behavior within,
which is improved when adopting higher values, enlarging,
however, the control effort both in magnitude and rate).

Additionally, fine tuning might be needed in real-time sce-
narios, to retain the required control input signals within the
feasible range that can be implemented by the actuators. In
fact, by following the proof of correctness of the proposed
control algorithm (in the Appendix), we can derive expressions
connecting the control input magnitude with the control gains.
More specifically, the proof of Theorem 1 provides positive
constants ε̄, ξ̄t < 1, ξ̄r < 1, ε̄i, ξ̄i < 1 that satisfy
|εtj(t)| ≤ ε̄, εr`(t) ≤ ε̄, |ξtj(t)| ≤ ξ̄t, |ξr`(t)| ≤ ξ̄r, ‖εi(t)‖ ≤ ε̄i,
‖ξi(t)‖ ≤ ξ̄i, for all t ≥ t0, j ∈ {1, . . . , ntr}, ` ∈ {1, . . . , nr},
i ∈ {2, . . . , k}. Subsequently, according to (7) and (10), we
can derive positive constants r̄t, r̄r, r̄i such that rtj(t) ≤ r̄t,
rr`(t) ≤ r̄r, ‖ri(t)‖ ≤ r̄i, for all t ≥ t0, j ∈ {1, . . . , ntr},
` ∈ {1, . . . , nr}, i ∈ {2, . . . , k}. Moreover, in view of (12),
it holds that ‖u(t)‖ ≤ Kkρ̄r̄kε̄k, for all t ≥ t0, where
ρ̄ is the upper bound of ‖ρ−1

k ‖. Consequently, Kk can be
tuned in order to achieve ‖u(t)‖ ≤ ū for some pre-defined
saturation bound ū; an explicit derivation can be found in
[49]. Nevertheless, it should be noted that the aforementioned
constants involve upper bounds of the unknown dynamic terms
fi(·), gi(·) in the part of the state space where |ξtj | < 1,
ξrr < 1, |ξim | < 1, j ∈ {1, . . . , ntr}, ` ∈ {1, . . . , nr},
i ∈ {2, . . . , k}, m ∈ {1, . . . , n} (i.e., inside the respective
funnels). Therefore, such bounds must be known for the
potential confinement ‖u(t)‖ ≤ ū. In the same spirit, potential
known parts of the dynamics can be leveraged and used in the
control design; such parts will then be explicitly cancelled in
the closed-loop system, which is expected to yield a smoother
control-input trajectory and making it easier to enforce explicit
bounds on the control input. In case the dynamics or their
bounds are unknown, however, the problem of guaranteeing
containment in a user-defined funnel for a system with un-
known high-order dynamics while at the same time complying
with explicit control-input bounds is significantly challenging.
Potential solutions include on-the-fly relaxation of the funnel
functions ρtj , ρ

r
`, ρi, j ∈ {1, . . . , ntr}, ` ∈ {1, . . . , nr},

i ∈ {2, . . . , k}, or modifications of the reference trajectory
qd. Finally, the discrete nature of the microcontroller units
of robot actuators prevents the continuous application of the
control law (12), which might hinder the performance of the
overall scheme. Therefore, tuning of the control gains towards
optimal performance should be performed off-line or using a
simulator.

The next theorem guarantees the correctness of the proposed
protocol.

Theorem 1. Let the dynamics (1) as well as prescribed funnels
ρtj , j ∈ {1, . . . , ntr}, ρr`, ` ∈ {1, . . . , nr} satisfying the
prescribed initial constraints (4). Then the control protocol
(6)-(12) guarantees that

|etj(t)| < ρtj(t),∀j ∈ {1, . . . , ntr}, (13a)

ηr`(t) = 1− cos(er(t)) < ρr`(t),∀` ∈ {1, . . . , nr} (13b)

as well as the boundedness of all closed loop signals, for all
t ∈ [t0, t0 + tf ].

Proof. The proof is given in the Appendix.
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Remark 3 (Funnel properties). Theorem 1 establishes a funnel
around the desired trajectory qd where the state q(t) will
evolve in. This funnel will be used as clearance in the motion
planner of the subsequent section to derive a collision-free
path to the goal region. We stress that this funnel can be
a priori chosen by a user, in contrast to our previous work
[36], where the corresponding funnel depends on the system’s
dynamic terms that are unknown to the user. The only hard
constraint is the one imposed by (4d) at t0, i.e., |etj(t0)| < ρ̄tj ,
ηr`(t0) < ρ̄r`, for j ∈ {1, . . . , ntr}, ` ∈ {1, . . . , nr}. Note,
however, that the collision-free geometric trajectory qd of the
motion planner will connect the initial condition q(0) to the
goal and hence it is reasonable to enforce qd(0) = q(0),
which implies that the aforementioned constraint is trivially
satisfied. Moreover, the selection of ρtj , ρ

r
` can be chosen such

that the respective funnels are arbitrarily small implying that
the system evolves arbitrarily close to the derived trajectory
qd. It should be noted, nevertheless, that too shrunk or very
fast-converging funnels might yield excessive control inputs
that cannot be realized by the actuators in realistic systems.
Therefore, the funnel characteristics must be always chosen
in accordance to the capabilities of the system. Similarly to
the control gains (see Remark 2), the funnel characteristics
can be explicitly connected to the system’s control input,
requiring, however, upper bounds of the unknown dynamics
fi(·), gi(·). Hence, tuning can be attempted off-line or using
a simulator. As an example, in our results of Section IV, where
we perform computer simulations and hardware experiments
using 6-DOF robotic manipulators, we choose the funnels as
follows. For the computer simulations, we choose ρtj(t) =
0.05 exp(−0.01t) + 0.1, ρrj(t) = 0.005 exp(−0.01t) + 0.005,
implying shrinking funnels from 0.1 to 0.05 and from 0.01
to 0.005 (rad), respectively, with exponential convergence
dictated by exp(−0.01t), while for the hardware experiments
we choose constant funnels ranging from 0.2 to 0.4.

B. Motion Planner

We introduce now the framework of KinoDynamic motion
planning via Funnel control, or KDF motion-planning frame-
work; The framework uses the control design of Section III-A
to augment geometric sampling-based motion-planning algo-
rithms and solve the kinodynamic motion-planning problem.

Before presenting the framework, we define the extended-
free space, which will be used to integrate the results from
the feedback control of the previous subsection. In order to
do that, we define first the open polyhedron as

P(z, ρ̄) := {y ∈ T :|ytj − ztj | < ρ̄tj ,

1− cos(yr` − zr`) < ρ̄r` ,

∀j ∈ {1, . . . , ntr}, ` ∈ {1, . . . , nr}} (14)

where y, z ∈ T consist of translational and rotational terms
(similarly to q1), and ρ̄ := [ρ̄t1, . . . , ρ̄

t
ntr
, ρ̄r1, . . . , ρ̄

r
nr

]> ∈
Rntr+nr is the vector of maximum funnel values. We define
now, similarly to [8], the ρ̄-extended free space

Āfree(ρ̄) := {z ∈ T : Ā(z, ρ̄) ∩ O = ∅}, (15)

where Ā(z, ρ̄) :=
⋃

y∈P(z,ρ̄)A(y). Note that, for vectors ρ1

and ρ2 ∈ Rntr+nr , with ρ1 � ρ2, with � denoting element-
wise inequality, it holds that Āfree(ρ1) ⊆ Āfree(ρ2).

In addition, we need a distance metric that captures accu-
rately the proximity of Āfree(ρ̄) ⊂ T. As elaborated in the
previous section, the Euclidean distance is not an appropri-
ate distance metric in T due to the fact that the rotational
part r evolves on the nr-dimensional sphere. Hence, having
already defined the chordal metric d̄C in (3), we define a
suitable distance metric for vectors x = [(xt)>, (xr)>]>,
y = [(yt)>, (yr)>]> ∈ T as dT : T2 → R≥0, with

dT(x, y) = ‖xt − yr‖2 + d̄C(xr − yr). (16)

The intuition behind the KDF framework is as follows.
The control scheme of the previous subsection guarantees that
the robot can track a trajectory within the bounds (13). In
other words, given a desired trajectory signal qd : [t0, t0 +
tf ] → T, the control algorithm (6)-(12) guarantees that
q1(t) ∈ P(qd(t), ρ̄), for all t ∈ [t0, t0 + tf ]. Therefore, by
the construction of Āfree(ρ̄), if qd(t) belongs to Āfree(ρ̄), q1(t)
belongs to Afree. The proposed sampling-based framework
aims at finding a path in Āfree(ρ̄); this path will be then
endowed with time constraints in order to form the trajectory
qd : [t0, t0 + tf ]→ Āfree(ρ̄), which will then safely tracked by
the system using the designed controller.

Common geometric sampling-based motion-planning al-
gorithms follow a standard iterative procedure that build a
discrete network G = (V, E), (tree, roadmap) of points in the
free space connecting the initial configuration to the goal; V
and E denote the nodes (points) and edges, respectively, of
the network. Standard functions involved in such algorithms
include Sample(), Nearest(G, y), Closest(G, y,K), Steer(y, z),
and ObstacleFree(y, z); Sample() samples a random point
from a distribution inAfree; Nearest(G, y) and Closest(G, y,K)
find the closest and K closest, respectively, nodes of G to
y, according to some distance metric; Steer(y, z) computes a
point lying on line from z to y and ObstacleFree(y, z) checks
whether the path from y to z belongs to the free space Afree
(i.e., collision-free).

The framework we propose in this work modifies the func-
tions Sample() and ObstacleFree(y, z), which constitute the
main building blocks of all sampling-based motion-planning
algorithms. Consequently, we create a basis for a new class
of sampling-based motion-planning algorithms that, in com-
bination with the funnel controller of Section III-A, are able
to solve the kinodynamic motion-planning problem only by
sampling in an extended free geometric configuration space,
without using any information on the system dynamics or
resorting to sampling of control inputs.

As stated before, we aim to find a path in the extended
free space Āfree(ρ̄). To this end, we need to sample points
and perform collision checking in Āfree(ρ̄). Therefore, we de-
fine the functions SampleExt(ρ̄) and ObstacleFreeExt(y, z, ρ̄);
SampleExt(ρ̄) samples a point from a uniform distribution
in the extended free space Āfree(ρ̄); ObstacleFreeExt(y, z, ρ̄)
checks whether the path XLine : [0, σ]→ T, for some positive
σ, from y to z is collision free with respect to the extended
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free space, i.e., check whether y′ ∈ Āfree(ρ̄), ∀y′ ∈ XLine. We
elaborate on the collision checking procedure in Remark 6.

The new functions SampleExt(·) and ObstacleFreeExt(·)
can be used in any geometric sampling-based motion planning
algorithm, giving thus rise to a new family of algorithms,
which produce a safe path in an extended free space Āfree(ρ̄).
This path is then tracked by the system using the control
algorithm of Section III-A. Note, however, that the control al-
gorithm guarantees tracking of a time-varying smooth (at least
k-times continuously differentiable) trajectory qd(t), whereas
the output of the respective motion planning algorithm is a
path, i.e., a sequence of points in T. Therefore, we smoothen
this path and endow it with time constraints, producing hence
a time-varying trajectory. The aforementioned steps, namely
the family of geometric sampling-based motion planning al-
gorithms in Āfree(ρ̄), the addition of time constraints, and the
funnel-control algorithm of Section III-A, constitute the frame-
work of KinoDynamic motion planning via Funnel control,
or KDF motion-planning (KDF-MP) framework. Further, note
that the smoothening of the output path is not required to be
performed by the sampling-based algorithm; it is required by
the overall KDF framework due to to the smooth-trajectory
requirement of the funnel controller. We describe in Remark
4 how such a restriction can be relaxed.

The vector ρ̄, which forms the extended free space Āfree(ρ̄)
(see (15)), is the connection of the KDF-MP algorithms to
the control module of Section III-A and can be chosen by
the user. Intuitively, smaller funnel values lead to a larger
extended free space Āfree(ρ̄) (note that if ρ̄ consists of zeros,
then Āfree(ρ̄) = Afree), giving the chance to navigate through
potential narrow passages or with larger distance from the
obstacles. Moreover, note that the goal Qg must belong to
Āfree(ρ̄). In view of Assumption 3, Qg belongs to the open
set Afree. Therefore, by invoking continuity properties of the
free space, we conclude that there exists a ρε ∈ Rntr+nr

such that Qg ∈ Āfree(ρε)
2. Hence, by choosing ρ̄ such that

ρε � ρ̄, one can achieve Āfree(ρε) ⊆ Āfree(ρ̄) and hence
Qg ∈ Āfree(ρ̄). As stressed before, however, tight funnels
might need excessively large control inputs that might not
be realizable by real actuators. Therefore, one must take into
account the capabilities of the system when choosing ρ̄ and
the funnel functions of Section III-A, as mentioned in Remark
3. If it is not possible to select ρ̄ such that ρε � ρ̄ (e.g., if the
goal Qg is too close to an obstacle), then one can consider a
new goal Q′g that is close to Qg and belongs to Āfree(ρ̄). That
is, Q′g := arg minq∈A dT(q,Qg), where A is a compact subset
of Āfree(ρ̄) for a chosen ρ̄. The probabilistic completeness of
the KDF-MP algorithms follows from that of their original
counterparts (see [36]).

The control protocol of Section III-A guarantees tracking
of a time-varying smooth (at least k-times continuously dif-
ferentiable) trajectory qd(t), whereas the output of a KDF-MP
algorithm is a path, i.e., a sequence of points in T. Therefore,
we endow the latter with a time behavior, as follows.

The output path is first converted to a smooth (at least

2Since the free space Afree and the goal configuration Qg are known, such
a ρε can be explicitly found.

k-times continuously differentiable) one. This is needed to
smoothly interpolate the connecting points of the consecutive
edges of the solution path that is obtained from a KDF-MP
algorithm. This smoothening procedure must be performed in
accordance to the extended free space Āfree(ρ̄), so that the
smoothed path still belongs in Āfree(ρ̄). Time constraints are
then enforced on the smooth path to create a timed trajectory
qd : [0, tf ]→ Āfree(ρ̄), for some tf > 0, which is then given to
the control protocol of Section III-A as the desired trajectory
input. Note that qd(0) must satisfy the funnel constraints (4).

Remark 4. It is also possible to use the output path of the
KDF motion-planning algorithm without any post-processing
steps, i.e., the raw segments that correspond to the edges of
the respective data structure (tree, graph). Each one of these
segments can be endowed with time constraints, as well as
separate funnel functions. The control algorithm of Section
III-A is then applied separately for these segments, possibly
with discontinuities at the connecting points. Although one
avoids the use of post-processing steps on the output path,
such discontinuities might be problematic for the actuators
and might jeopardize the safety of the system.

Remark 5. Note that the duration of the resulting trajectory
tf , and hence the respective velocity q̇d can be a priori chosen
by a user and hence the robotic system can execute the path in
a predefined time interval. There is also no constraint on this
duration, since the control protocol of Section III-A guarantees
funnel confinement with respect to any arbitrarily fast time
trajectory. Nevertheless, the physical limits of the system’s
actuators prevent the achievement of any time trajectory, and
the latter should be properly defined in accordance to any
such limits, similarly to the selection of the control gains and
the funnel characteristics (see Remarks 2 and 3).

Algorithm 1 provides the overall KDF framework, including
the KDF-MP algorithm, the conversion to a time-varying
trajectory, and the application of the funnel control algorithm
of Section III-A. The algorithm extracts first the bounds ρ̄ =
[ρ̄t1, . . . , ρ̄

t
ntr
, ρ̄r1, . . . , ρ̄

r
nr

]> (line 2) which are used in a KDF-
MP algorithm (e.g., an appropriately modified RRT or PRM),
along with the free space Afree, and other potential arguments
such as the goal Qg or a desired number of nodes N (3). The
output path is converted to a smooth time-varying trajectory
with the desired duration tf (line 4), which is then tracked by
the system using the funnel control algorithm (line 5).

Algorithm 1 KDF

Input: Afree, Qg , N , tf , k, q1(0), qd, ρtj , ρ
r
`, K

t, Kr, Ki,
j ∈ {1, . . . , ntr}, ` ∈ {1, . . . , nr}

Output: u(t)
1: procedure KDF
2: ρ̄← Bounds(ρtj , ρ

r
`);

3: qp ← KDF−MP(ρ̄,Afree, Qg, q1(0), N);
4: qd ← TimeTraj(qp, tf );
5: u← FunnelControl(tf , k, qd, ρ

t
j , ρ

r
`,K

t,Kr,Ki);
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Remark 6 (Collision Checking in Āfree(ρ̄)). The proposed
feedback control scheme guarantees that q(t) ∈ P(qd(t), ρ̄)
for any trajectory qd(t), formed by the sampled points qs of
a KDF-MP algorithm. Therefore, checking whether the points
qs belong to Afree, as in standard motion planners [13], is not
sufficient. For each such point qs, one must check whether
z ∈ Afree, for all z ∈ P(qs, ρ̄), which is equivalent to
checking if qs ∈ Āfree(ρ̄). For simple robotic structures, such
as mobile robots or UAV (see Section IV-A), whose volume can
be bounded by convex shapes, one can enlarge the robot’s or
the obstacles’ volume by ρ̄ and perform the collision checking
procedure in the remaining free space. However, more complex
structures, such as robotic manipulators (see Section IV),
necessitate a more sophisticated approach, since they can
assume nonconvex complex shapes in various configurations.
For such systems, there are two procedures one could follow.
Firstly, for each qs, a finite number of points z can be sampled
from a uniform distribution in P(qs, ρ̄) and separately checked
for collision. In the experimental results of Section IV, we
apply such a procedure for a robotic manipulator with 6
degrees of freedom; in particular, for each sampled point qs in
the free space, we uniformly sample up to 50 more points in
P(qs, ρ̄) and check whether they belong to Afree. Note that the
more points we sample from P(qs, ρ̄), the better exploration
of Āfree(ρ̄) we achieve, guaranteeing hence that qs ∈ Āfree(ρ̄).
Many practical applications, however, entail workspace ob-
stacles that have a so-called “fat”-structure. Such obstacles
consist of objects without protuberances (excluding, e.g., long
and skinny obstacles such as wires, cables and tree branches);
a formal definition can be found in [50], which shows that the
complexity of the free space is linear when the obstacles are
“fat”. Therefore, in such cases, sampling a finite number of
points in P(qs, ρ̄) can be considered to be complete, i.e., the
resulting path will belong to the extended free space Āfree(ρ̄).
The second procedure consists of calculating the convex hull
of the robot around the configuration point qs. First, one
calculates the limit poses of each link of the robot around
qs. Such limits are calculated by combining the lower and
upper bounds of the joints that affect the link (i.e., joints that
come before the link in the articulated robotic structure). These
lower and upper bounds are defined by ρ̄. After deriving the
limit poses, one computes their convex hull, which is expanded
by an appropriate constant to yield an over-approximation
of the swept volume of the potential motion of the link, as
described in [51]. The resulting shape is then checked for
collisions for each link separately.

IV. EXPERIMENTAL RESULTS

This section is devoted to experimental results that validate
the theoretical findings. Firstly, we present computer simula-
tion results from the application of the KDF framework to
a UAV moving in R3, as well as a UR5 robot, in obstacle-
cluttered environments. We use KDF-RRT as the motion plan-
ner and we compare the efficiency with a standard geometric
and kinodynamic RRT algorithms.

Secondly, we present experimental results using the KDF
framework on a 6DOF HEBI manipulator. We compare the

Fig. 2: The obstacle-cluttered 3D workspace and the starting
position of the UAV, along with its augmented volume (green
sphere around the UAV) to account for Āfree(ρ̄), and the goal
configuration (smaller green sphere).

performance of the proposed funnel control algorithm with
our previous work [36] as well as a standard PID controller.

A. Computer Simulations

We apply here the KDF framework by using a KDF-
RRT motion planner and the funnel control algorithm
presented in Sections III-B and III-A, respectively, in two
computer simulated scenarios by using the CoppeliaSim
robotic simulator [35]. In both cases, the KDF-RRT was
implemented using the algorithms of the OMPL library
[52], which was appropriately interfaced with CoppeliaSim.
The control algorithm was implemented via a ROS node in
MATLAB environment, communicating with the CoppeliaSim
scenes using ROS messages at a frequency of 100Hz. The
CoppeliaSim scenes were updated at a frequency of 1kHz.

Unmanned Autonomous Vehicle

The first case consists of a UAV moving in an obstacle-
cluttered 3D space, as shown in Fig. 2. In order to comply
with the dynamic model of Section II, we view the UAV as a
fully actuated rigid body with dynamics

q̇1 = f1(q1, t) + g1(q1, t)q2 (17a)
q̇2 = f2(q1, q2, t) + g2(q1, q2, t)u (17b)

where q1 = [qt1, q
t
2, q

t
3]>, q2 ∈ R3 are the linear position and

velocity, u is the 3D force, acting as the control input, and f1,
g1, f2, g2 are unknown functions satisfying Assumption 1.

The UAV aims to navigate safely to a goal position Qg =
[−3,−4, 3]>, starting from q1(0) = [−4.5,−4.2, 0]> within
90 seconds and space bounds (−5, 5), (−5, 5), (0, 4) in x-,
y-, and z-dimensions respectively (the x- and y- dimensions
correspond to the floor dimensions of Fig. 2). For the safe path
tracking, we choose the exponentially decaying funnel func-
tions ρt1(t) = ρt2(t) = ρt3(t) = ρ(t) := 0.15 exp(−0.1t)+0.05
∈ [0.05, 0.2] (meters), implying ρ̄ = 0.2[1, 1, 1]>, as well
as ρ2j

(t) := (max{2|e2j
(0)|, 0.5} − 0.1) exp(−0.1t) + 0.1 ∈

[0.1,max{2|e2j (0)|, 0.5}] (meters/second) for j ∈ {1, . . . , 3}.
Hence, the minimum distance from the obstacles and the path
output by the KDF-RRT algorithm must be larger than 0.2
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Fig. 3: The 3D (x,y,z) output path of the KDF-RRT algorithm
(blue points), along with the smoothened time-varying trajec-
tory, in meters, for the UAV scenario.

meters. In the conducted simulation, this was achieved by
enlarging the radius of the UAV volume sphere by 0.2, which
was then checked for collision (green sphere in Fig. 2).

The obtained path consists of 50 points in Āfree(ρ̄) and is
converted to a smooth time trajectory as follows. We construct
qd : [0, 100] → R3, such that qd(0) = q1(0) and qd(t) =
Qg , for t ∈ [90, 100], using a standard fitting procedure.
For the construction of qd(t), each pair of two path points
h = [h1, h2, h3]>, w = [w1,w2,w3]> ∈ Āfree(ρ̄) is endowed
with a time duration proportional to their distance, i.e., equal
to 1

90 maxi∈{1,2,3}{|hi − wi|}. For the specific control and
scene update frequencies and chosen funnels, the control gains
that yield satisfactory behavior (reasonable control inputs and
avoidance of oscillations) were found via offline tuning to be
Kt = diag{[ktj ]j∈{1,2,3}} = 2I3 and K2 = 35I3.

The signals of the resulting motion of the UAV for the two
different cases are depicted in Figs. 4 and 5. In particular, Fig.
4 shows the evolution of the errors etj(t), e2m

(t) (in meters
and meters/second, respectively) along with the respective
funnel functions ρtj(t), ρ2m(t), It can be verified that the
errors always respect the respective funnels, guaranteeing
thus the successful execution of the respective trajectories.
Moreover, Fig. 5 depicts the distance of the UAV from the
obstacles DUAV (t) (in meters) as well as the resulting control
inputs u = [u1, u2, u3]> for the three spatial dimensions (in
Newton). Although the output path was smoothened without
taking into account the extended free space Āfree(ρ̄), the UAV
was able to successfully navigate to the goal configuration
safely. Moreover, the funnel controller produced reasonable
control inputs, without excessive oscillations or magnitude.

UR5 Robotic Manipulator

The second case consists of a UR5 6DOF robotic manip-
ulator, whose dynamics are considered to have the form (17)
and whose end-effector aims to sequentially navigate to four
points in R6 (position, orientation), as pictured in Fig. 6. By
using inverse kinematics algorithms, we translate these points
to desired points for the joint variables of the manipulator,
which are then used in a sequential application of the proposed
scheme. We consider here that the base joint of the manipulator
operates in the unit circle [0, 2π), whereas the rest of the joints
operate in [−π, π] ⊂ R defined by mechanical and structural
limits, resulting in q1 = [q11

, . . . , q16
]> = [qt1, . . . , q

t
5, q

r
1]>,

Fig. 4: Top: the evolution of the errors et1(t), et2(t), et3(t) (in
meters), along with the funnels ρt1(t) = ρt2(t) = ρt3(t), shown
in black, for t ∈ [0, 90] seconds. Bottom: the evolution of the
velocity errors e21

(t), e22
(t), e23

(t) (in meters/second), along
with the funnels ρ21(t) = ρ22(t) = ρ23(t), shown in black,
for t ∈ [0, 90] seconds.
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Fig. 5: Top: the distance DUAV (t) (in meters) of the UAV from
the obstacles for t ∈ [0, 90] seconds. Bottom: the evolution of
the control inputs u1(t), u2(t), u3(t) (in Newton) for the three
spatial dimensions and t ∈ [0, 90] seconds.

Fig. 6: The initial configuration of the UR5 robot in an
obstacle-cluttered environment with four targets.
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based on the notation of Section II.
We consider that the robot end-effector has to sequentially

navigate from its initial configuration q0 = [0, 0, 0, 0, 0, 0]> to
the following four target points (shown in Fig. 6).

• Target 1: T1 = [−0.15,−0.475, 0.675]> and Euler-angle
orientation [π2 , 0, 0]>, which yields the configuration
qT1

= [−0.07,−1.05, 0.45, 2.3, 1.37,−1.33]>.
• Target 2: T2 = [−0.6, 0, 2.5]> and Euler-angle orientation

[0,−π2 ,−
π
2 ]>, which yields the configuration qT2

=
[1.28, 0.35, 1.75, 0.03, 0.1,−1.22]>

• Target 3: T3 = [−0.025, 0.595, 0.6]> and Euler-angle
orientation [−π2 , 0, π]>, which yields the configuration
qT3

= [−0.08, 0.85,−0.23, 2.58, 2.09,−2, 36]>

• Target 4: T4 = [−0.525,−0.55, 0.28]> and Euler-angle
orientation [π, 0,−π2 ]>, which yields the configuration
qT4

= [−0.7,−0.76,−1.05,−0.05,−3.08, 2.37]>
The target points where chosen such that they yield increas-

ing difficulty with respect to the navigation path of the robot.
The paths for each pair are computed on the fly using the KDF-
RRT algorithm, after the manipulator reaches each target. For
the safe tracking of the four output paths, we choose the funnel
functions such that ρ̄ = 0.01[1, 15, 15, 15, 15, 15], as will be
elaborated later. Regarding the collision checking in Āfree(ρ̄)
of KDF-RRT, we check a finite number of samples around
each point of the resulting path for collision. We run KDF-RRT
with 10 and 50 such samples and we compared the results to a
standard geometric RRT algorithm in terms of time per number
of nodes. The results for 30 runs of the algorithms are given
in Figs. 7-8 for the four paths, in logarithmic scale. One can
notice that the average nodes created do not differ significantly
among the different algorithms. As expected, however, KDF-
RRT requires more time than the standard geometric RRT
algorithm, since it checks the extra samples in Āfree(ρ̄) for
collision. One can also notice that the time increases with
the number of samples. However, more samples imply greater
coverage of Āfree(ρ̄) and hence the respective solutions are
more likely to be complete with respect to collisions.

Since, in contrast to the standard geometric RRT, KDF-
RRT implicitly takes into account the robot dynamics (17)
through the designed tracking control scheme and the respec-
tive extended free space Āfree(ρ̄), we compare the results to a
standard kinodynamic RRT algorithm that simulates forward
the robot dynamics, assuming known dynamical parameters.
In particular, we run the algorithm only for the first two
joints, with initial configuration [0, 0]> and a randomly chosen
goal configuration at [− π

18 ,
π
4 ]> rad, while keeping the other

joints fixed at 0. For the forward simulation of the respective
dynamics we chose a sampling step of 10−3 sec and total
simulation time 30 sec for each constant control input. The
termination threshold distance was set to 0.25 (with respect
to the distance dT), i.e., the algorithm terminated when the
forward simulation reached a configuration closer than 0.25
units to the goal configuration. The results for 10 runs of
the algorithm are depicted in Fig. 9, which provides the
execution time and number of nodes created in logarithmic
scale. Note that, even for this simple case (planning for only
two joints), the execution time is comparable to the KDF-
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4
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Fig. 7: Box plots showing the execution time of the three al-
gorithms (in logarithmic scale) for the four paths; ’+’ indicate
the outliers.

RRT case of 50 samples in the fourth path scenario q3 → q4.
Running the kinodynamic RRT for more than two joints
resulted in unreasonably large execution times (more than 1
hour) and hence they are not included in the results. This
can be attributed to the randomized inputs and complex robot
dynamics; the bias-free random sample of constant inputs and
forward simulation of the complex robot dynamics requires
a significant amount of time to sufficiently explore the 12-
dimensional state space. One may argue that other accelerated
algorithms can be used (e.g., BIT [53]), however it is not trivial
to reduce such long running time.

Next, we illustrate the motion of the robot through the
target points via the control design of Section III-A. For
each sub-path Ti → Ti+1, with T0 = q0 we fit trajectories
qr,id1 , qt,idj , j ∈ {1, . . . , 5}, with time duration tif = 11
seconds, as depicted in Fig. 10, where the extra super-
script i ∈ {0, . . . , 3} stands for the path. For safe tracking,
we choose the exponentially decaying functions ρt,ij (t) =
0.05 exp(−0.01(t − ts)) + 0.1 ∈ [0.1, 0.15] (rad), for all j ∈
{1, . . . , 5}, and ρr,i1 (t) = 0.005 exp(−0.01(t− tpi))+0.005 ∈
[0.005, 0.01], (implying ρ̄ = 0.01[1, 15, 15, 15, 15, 15]), as
well as ρi2j

(t) = 2 max{maxj∈{1,...,6}{|e2j
(tpi)|}, 0.25},

where {tp0 , tp1 , tp2 , tp3} := {0, 11, 22, 33, 44} are the starting
times of the four paths. We further chose kr1 = 1, Kt =
diag{[ktj ]j∈{1,...,5}} = diag(1, 1, 5, 5, 5) and K2 = 0.1I6 and
the control-input saturation bounds for the 6 joints of the UR5
robot are [150, 150, 150, 12, 12, 12] Newton·meters.

The results of the experiment are depicted in Figs. 11-
13. In particular, Fig. 11 depicts the evolution of the errors
ηr1(t) etj(t) (top and bottom in cos(rad) and rad, respectively),
which always satisfy the funnels defined by the respective
funnel functions ρr1(t), ρtj(t), j ∈ {1, . . . , 5}. Similarly, Fig.
12 depicts the evolution of the errors e2j

(t) (in rad/seconds),



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

RRT KDF-RRT (10) KDF-RRT (50)

-1

-0.5

0

0.5

1

1.5

2

(a)

RRT KDF-RRT (10) KDF-RRT (50)

-1

0

1

2

(b)

RRT KDF-RRT (10) KDF-RRT (50)

-1

-0.5

0

0.5

1

1.5

2

(c)

RRT KDF-RRT (10) KDF-RRT (50)

0

1

2

3

4

(d)

Fig. 8: Box plots showing the number of nodes created in the
three algorithms in logarithmic scale for the four paths; ’+’
indicate the outliers.
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Fig. 9: Box plots showing the execution time (a) and number
of nodes (b) created for the kinodynamic RRT in logarithmic
scale (for the first two joints).

evolving inside the funnel defined by ρ2j (t), j ∈ {1, . . . , 6}.
Finally, Fig. 13 illustrates the minimum distance (in meters) of
the UR5 from the obstacles in the environment (top), which is
always positive and verifies thus the safety of the framework,
and the evolution of the control inputs u(t) = [u1, . . . , u6]>

(in Newton · meters) for the six joint actuators (bottom). It is
evidently concluded that the control-input signals satisfy the
aforementioned saturation bounds [150, 150, 150, 12, 12, 12].

B. Comparative Simulations

In order to further evaluate the proposed algorithm, we
perform additional numerical experiments of the previous sec-
tion’s scenarios comparing the funnel controller with a control-
barrier-function method and a model-predictive controller. We
use a more controlled simulation by explicitly simulating the
system dynamics in the MATLAB environment, which allows
us to inject extra uncertainty and disturbance terms.

Unmanned Autonomous Vehicle

0 2 4 6 8 10
-2

-1

0

1

2

3

(a)

12 14 16 18 20 22
-2

-1

0

1

2

3

(b)

22 24 26 28 30 32
-3

-2

-1

0

1

2

3

(c)

34 36 38 40 42 44
-4

-2

0

2

4

(d)

Fig. 10: The output paths and the respective time-varying
trajectories for the four paths.

Fig. 11: Top: the evolution of the error ηr1(t) (in cos(rad)),
along with the respective funnel ρr1(t), shown in black, for
the four paths. Bottom: the evolution of the errors etj(t) (in
rad), along with the respective funnel ρtj(t), shown in black,
for the four paths.

We first consider the UAV scenario described in the previous
section. We use the simulated dynamics:

q̇1 = q2

q̇2 =
1

m
(d1(q2) + d2(t)) +

1

m
u

where m = 1 is the UAV’s mass, d1(q2) = −0.5q2 −
0.25diag{q2}|q2|, d2(t) = [sin(10t + π

6 ), 0.5 cos(5t −
π
4 ), 0.75 sin(10t+ π

3 )]> are unknown vectors of state and time,
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Fig. 12: The evolution of the velocity errors e2j
(t) (in

rad/seconds), along with the respective funnels ρ2j
(t) (in

black), j ∈ {1, . . . , 6}, for the four paths.
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Fig. 13: Top: the distance DUAV (t) (in meters) of the robot
from the obstacles for the four paths. Bottom: the evolution
of the control inputs u(t) = [u1(t), . . . , u6(t)]> (in Newton ·
meters) for the four paths.

representing uncertainties (e.g., aerodynamic terms) and time-
varying disturbances, respectively; diag{q2} denotes the diag-
onal matrix with the elements of q2 along its main diagonal,
and |q2| denotes the vector of absolute values of q2. In order to
simulate a realistic scenario, we use a periodic-control setting,
where the control input is applied at a frequency of 200Hz,
i.e., every 0.005 seconds. We further consider control-input
bounds of 15 Newton·meters.

We apply the proposed KDF algorithm under the same
settings with the previous section (initial and goal positions,
funnel functions, and control gains). The results are depicted in
Fig. 14, which depicts the evolution of the errors etj(t), along
with the funnel functions ρtj(t), j ∈ {1, 2, 3}, as well as the
control inputs u(t). One can verify the successful containment
of the errors in the funnel and the compliance with the input
saturation constraints. The chattering in the depicted signals
is attributed to the rapid oscillatory disturbances d2(t), whose
magnitude reaches the UAV’s mass. Note, however, that such

disturbances do not affect the algorithm’s performance.
Next, we compare the proposed KDF algorithm with the

high-level control-barrier-function (CBF) methodology pro-
posed in [54] and a model-predictive controller (MPC) [55].
CBF methodologies guarantee invariance in a set C = {q ∈
Rn : ψ(q) > 0}, for some sufficiently smooth function
ψ. In order to apply such a methodology to the considered
environment, shown in Fig. 2, we set ψj1(etj) = ρ̄M − etj ,
ψj2(etj) = ρ̄M + etj j ∈ {1, 2, 3}, aiming to retain the system
in the safe set {et ∈ R3 : ρ̄M > |etj |, j ∈ {1, 2, 3}},
where ρ̄M = 0.2, defining the extended free space of the
KDF-RRT. Since the UAV model has order 2, we apply
the methodology proposed in [54]. In particular, we define
hjk(q, t) = ψ̇jk(etj) + ψjk(etj)

2, j ∈ {1, 2, 3}, k ∈ {1, 2}, and
choose the control input as the solution of the optimization
problem

min
u∈U
‖u‖2

s.t.
∂hjk
∂t

+
∂hjk
∂q1

>
q2 +

∂hjk
∂q2

> 1

m̂
u+ h2

jk
> 0,

∀j ∈ {1, 2, 3}, k ∈ {1, 2}

with U = (−15, 15)3. The controller is agnostic to the
uncertainties and disturbances d1(q), d2(t), and it uses an
estimated mass value of m̂ = 1.5m = 1.5. Note that the
proposed funnel controller does not use any information on
the mass m or the functions d1, d2. The results of the CBF
methodology are given in the top part of Fig. 15, which depicts
the evolution of the errors etj(t), j ∈ {1, 2, 3}, along with the
funnel safety constant ρ̄ for 10 seconds. One concludes from
the results that the errors do not comply with the constraint
|etj(t)| < ρ̄M , showing the large dependence of the CBF
method to the system dynamics.
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Fig. 14: Results of the funnel-control algorithm for the UAV
scenario of the comparative simulation studies. Top: the evo-
lution of the errors et1(t), et2(t), et3(t) (in meters), along with
the funnels ρt1(t) = ρt2(t) = ρt3(t), shown in black, for
t ∈ [0, 90] seconds. Bottom: the evolution of the control inputs
u1(t), u2(t), u3(t) (in Newton) for t ∈ [0, 90] seconds.
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Fig. 15: The evolution of the errors et1(t), et2(t), et3(t) (in
meters), along with the funnel constant ρ̄M = 0.2, shown in
black, for the CBF methodology (top) and the MPC algorithm
(bottom), for t ∈ [0, 10] seconds.

Finally, we apply an MPC algorithm [55] to the afore-
mentioned UAV scenario. More specifically, the controller is
computed by solving online the receding-horizon optimization
problem

min

∫ t+Tp

t

(ē(τ)>Qē(τ) + ū(τ)>Rū(τ))dτ

+ ē(t+ Tp)
>P ē(t+ Tp), (18a)

s.t. ¨̄q1 =
1

m̂
ū, q̄1(t) = q1(t), q̄2(t) = q2(t) (18b)

|ētj(τ)| < ρ̄M , τ ∈ [t, t+ Tp], j ∈ {1, 2, 3} (18c)

ū(τ) ∈ U, τ ∈ [t, t+ Tp] (18d)
ē(t+ Tp) ∈ Ω (18e)

where Tp is the prediction horizon, e = [(et)>, (ėt)>]>,
Q ∈ R6×6, R ∈ R6×6, and P ∈ R6×6 are positive-definite
matrices, Ω is a terminal region, and the barred variables
denote the predicted signals driven by the optimization so-
lution ū(t). A common choice for MPC control is to encode
the obstacle-avoidance specifications in the optimization con-
straints of (18) and aim to minimize the error with respect
to the goal configuration Qg . However, the labyrinth-like
environment of the UAV scenario would require a significantly
large prediction horizon to avoid local-minima configurations;
such a horizon would prevent the MPC to be applied in
real time. Therefore, (18) aims to minimize the error e with
respect to the trajectory computed by the KDF-RRT, while
enforcing the funnel specification |etj(τ)| < ρ̄M , j ∈ {1, 2, 3},
through the optimization constraints. Similarly to the CBF
controller, MPC is agnostic to the model uncertainties and
disturbances, but uses an estimated mass value m̂ = 1.5m.
We further choose Tp = 20, Q = P = 100I6, R = I3,
Ω = {x ∈ R3 : ‖x‖ ≤ 0.1}, and a sampling frequency of

200Hz. The results are depicted in the bottom part of Fig. 15
for 10 seconds. One concludes that the closed-loop system is
unstable since the vertical component grows unbounded; such
a behiavor is attributed to the deviation between the actual
UAV dynamics and the ones used in (18).

UR5 Robotic Manipulator

Next, we perform comparative simulations for the path
T2 → T3 of the UR5 scenario described in the previous
section. We use the simulated dynamics:

q̇1 = q2

q̇2 = B(q1)−1(u− C(q1, q̇1)q̇1 − g(q1) + d1(q2) + d2(t)),

where B ∈ R6×6 is the positive definite inertia matrix,
C ∈ R6×6 is the Coriolis matrix, g ∈ R6 is the gravity
vector, and d1(q2) = −q2 − diag{q2}|q2|, d2(t) = [sin(10t+
π
6 ), 0.5 cos(5t− π

4 ), 0.75 sin(10t+ π
3 ), sin(3t− π

6 ), 0.5 cos(2t+
π
4 ), 0.5 cos(2t)]> are vectors representing model uncertainties
(e.g., friction) and time-varying disturbances, respectively.

We apply the proposed KDF algorithm with the initial and
goal configurations qT2

and qT3
, respectively, using the same

funnel functions as in the previous section, and control gains
kr1 = 1, Kt = diag{[ktj ]j∈{1,...,5}} = I5, K2 = 10I6. The re-
sults are depicted in Fig. 16, which shows the evolution of the
errors ηr1(t), etj(t), along with the respective funnel functions
ρr1(t), ρtj(t), j ∈ {1, . . . , 5}, as well as the resulting control
inputs u(t). One concludes the containment of the errors in
the prescribed funnels and the compliance of the control inputs
with the UR5 saturation bounds [150, 150, 150, 12, 12, 12].
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Fig. 16: Results of the funnel-control algorithm for the UR5
navigation T2 → T3 of the comparative simulation studies.
Top: the evolution of the error ηr1(t) (in cos(rad)), along with
the funnel ρr1(t), shown in black. Middle: the evolution of
the errors etj(t) (in rad), along with the funnel ρtj(t), shown
in black. Bottom: the evolution of the control inputs u(t) =
[u1(t), . . . , u6(t)]> (in Newton · meters).

Next, we apply the CBF methodology from [54], as in the
UAV scenario. We set the barrier functions hr(q, t) = ψ̇r(ηr1)+
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Fig. 17: The evolution of the errors ηr1(t), in cos(rad) (top) and
etj(t), j ∈ {1, . . . , 5}, in rad (bottom), along with the funnel
constant ρ̄r = 0.01, ρ̄tr = 0.15, shown in black, for the CBF
methodology (left) and the first MPC algorithm (right).
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Fig. 18: Results of the second MPC algorithm of the UR5
comparative simulation studies. Top: the evolution of the error
eq(t) = q1(t) − qT3

(in rad). Bottom: the evolution of the
metrics Di(t)

2 − OR2 (in rad2), for i ∈ {1, 2, 3}.

ψr(ηr1)2 and htjk(q, t) = ψ̇t
jk

(etj) +ψt
jk

(etj)
2, where ψr(ηr1) =

ρ̄r − ηr1, ψt
j1

(etj) = ρ̄tr − etj , ψt
j2

(etj) = ρ̄tr + etj , ρ̄r = 0.01,
ρ̄tr = 0.15. The control input is chosen as the solution of the
optimization problem

min
u∈U
‖u‖2

s.t.
∂hr

∂t
+

(
∂hr

∂q1

)>
q2 +

(
∂hr

∂q2

)> [
B̂(q1)−1(u− ĝ(q1)

− Ĉ(q1, q2)q2)
]

+ (hr)2 > 0

s.t.
∂htjk
∂t

+

(
∂htjk
∂q1

)>
q2 +

(
∂htjk
∂q2

)> [
B̂(q1)−1(u− ĝ(q1)

− Ĉ(q1, q2)q2)
]

+ (htjk)2 > 0, ∀j ∈ {1, . . . , 6}, k ∈ {1, 2}

Similarly to the UAV scenario, in order to account for un-
certainty, the controller is agnostic to the terms d1(q2) and
d2(t). Further, the terms B̂(q1), Ĉ(q1, q2), and ĝ(q1) are
estimations of B(q1), C(q1, q2), and g(q1), respectively, and
are computed based on a deviation of the actual masses and
moments of inertia; the deviation is sampled from the interval
[75%, 125%]. The results of the CBF methodology are given
in the left part of Fig. 17, which depicts the evolution of the
errors ηr1(t), etj(t), along with the funnel safety constants ρ̄r
and ρ̄tr. Similar to the UAV scenario, one concludes the strong
dependence of the methodology to the system dynamics, since
the errors are not contained in the region defined by the
constants ρ̄r and ρ̄tr.

Finally, we apply two MPC algorithms [55] for the safe
navigation from qT2 to qT3 . The first one is similar to the one
used for the UAV scenario and consists of the receding-horizon
optimization problem

min

∫ t+Tp

t

(ē(τ)>Qē(τ) + ū(τ)>Rū(τ))dτ

+ ē(t+ Tp)
>P ē(t+ Tp),

s.t. ¨̄q1 = B̂(q1)−1(u− Ĉ(q1, q2)q2 − ĝ(q1)),

q̄1(t) = q1(t), q̄2(t) = q2(t)

η̄r1(τ) < ρ̄r, τ ∈ [t, t+ Tp]

|ētj(τ)| < ρ̄tr, τ ∈ [t, t+ Tp], j ∈ {1, . . . , 5}
ū(τ) ∈ U, τ ∈ [t, t+ Tp]

ē(t+ Tp) ∈ Ω

where we impose the funnel specification with respect to the
trajectory obtained by KDF-RRT through the optimization
constraints. We choose Tp = 20, Q = P = 100I6, R = I3,
Ω = {x ∈ R3 : ‖x‖ ≤ 0.1}, and a sampling frequency of
200Hz. The results are given in the right part of Fig. 17, which
depicts the evolution of the errors ηr1(t), etj(t), along with the
funnel safety constants ρ̄r and ρ̄tr. It is clear that the errors are
not contained in the region defined by ρ̄r and ρ̄tr, verifying
the strong dependence of MPC to the system dynamics.

In the second MPC methodology, we aim to minimize
the deviation of the UR5 configuration with respect to the
goal configuration T3 and we explicitly encode the collision
avoidance in the optimization constraints, i.e.,

min

∫ t+Tp

t

(ēg(τ)>Qēg(τ) + ū(τ)>Rū(τ))dτ

+ ēg(t+ Tp)
>P ēg(t+ Tp),

s.t. ¨̄q1 = B̂(q1)−1(u− Ĉ(q1, q2)q2 − ĝ(q1)),

q̄1(t) = q1(t), q̄2(t) = q2(t)

q1(τ) ∈ S, τ ∈ [t, t+ Tp]

ū(τ) ∈ U, τ ∈ [t, t+ Tp]

ēg(t+ Tp) ∈ Ω
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Fig. 19: The initial configuration of the HEBI robot in an
obstacle-cluttered environment.

where eg = [e>q , ė
>
q ]> = [(q1 − qT3)>, q>2 ]> and the

set S captures the safe part of the workspace, modeled
as the exterior set of three spherical regions, i.e., S =⋃
k∈{1,2,3}{q1 ∈ R6 : Dk = ‖q1 − OCk‖2 > OR2}, with

OC1 = [π2 ,−
2π
9 ,−

π
6 , 0, 0, 0]>, OC2 = [−π4 ,−

π
4 , 0, 0, 0, 0]>,

OC3 = [− 3π
4 ,−

π
3 ,−

π
6 , 0, 0, 0]>, and OR = 2 (rad). Fur-

ther, we choose Tp = 20, Q = P = 100I6, R = I3,
Ω = {x ∈ R3 : ‖x‖ ≤ 0.1}. The results are given in Fig. 18,
which depicts the evolution of the errors eq(t) = q1(t)− qT3

and the metrics D2
k − OR2, k ∈ {1, 2, 3}. Although the

distances satisfy the safety constraint Dk(t) > OR2, the errors
eq exhibit a significant steady-state error, which is attributed
to the dynamic uncertainties. Additionally, we stress that the
imposed safe set defined by ‖q1 − OCk‖2 > OR2 = 4 is a
superset of the actual safe set shown in Fig. 6; larger values of
OR, which would represent more accurately the actual safe set,
led to excessive computational times for the MPC optimization
that would prevent it from being applied in real time.

C. Hardware Experiments
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Fig. 20: The output sequence of points and the respective
trajectories for the two paths of the hardware experiment.

This section is devoted to the experimental validation of the
proposed framework using a 6DOF manipulator from HEBI-
Robotics subject to 2nd-order dynamics (as in (17)), which
consists of 6 rotational joints (see Fig. 19) operating in [−π, π],
resulting in q1 = [qt1, . . . , q

t
6]>.

Fig. 21: The evolution of the normalized errors ξtj (top) and
ξ2j

(t), for j ∈ {1, . . . , 6}, of the hardware experiment.

We consider that the robot has to perform a pick-and-place
task, where it has to pick an object from T1 and deliver it
in T2 (see Fig. 19). We use the KDF-RRT algorithm, with
ρ̄ = [0.15, 0.1, 0.1, 0.2, 0.2, 0.2] rad, to generate two paths:
from the initial configuration to a point close to T1 (to avoid
collision with the object), and from T1 to T2. Regarding the
collision checking in Āfree(ρ̄), we check 10 samples around
each point of the resulting path for collision. We next fit
smooth trajectories for the two paths qr,1d (t), qr,2d (t), with
duration of tf1 = 7 and tf2 = 11 seconds, respectively,
as shown in Fig. 20. For grasping the object, we use linear
interpolation to create an additional trajectory segment to T1

with duration of 3 seconds (see Fig. 20(a) for t ∈ [7, 10]).
For the execution of the control algorithm, we choose

constant funnel functions ρt,i = [ρt,i1 , . . . , ρ
t,i
6 ]> = ρ̄ =

[0.15, 0.1, 0.1, 0.2, 0.2, 0.2] rad, for the two paths i ∈ {1, 2}.
Moreover, we choose ρ2j = 15 for all j ∈ {1, . . . , 6},
and the control gains as Kt = diag(1.25, 1.5, 1, 2, 1, 1),
K2 = diag(250, 200, 150, 50, 20, 10).

0 5 10 15 20

-2

-1

0

1

2

3

4

Fig. 22: The evolution of the control inputs u(t) =
[u1(t), . . . , u6(t)]> of the hardware experiment.

The results of the experiment are depicted in Figs 21 and 22.
In particular, Fig. 20 depicts the normalized signals ξt(t) =
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[ξt1, . . . , ξ
t
6]> and ξ2(t) = [ξ21

, . . . , ξ26
]> (top and bottom,

respectively) for t ∈ [0, 21] seconds. It can be observed that for
the entire motion, it holds that ξtj ∈ (−1, 1), ξ2j (t) ∈ (−1, 1),
for all j ∈ {1, . . . , 6}, which implies that −ρtj < etj(t) =
q1(t)− qd(t) < ρtj , −ρ2j

< e2(t) = q2j
(t)− α1j

(t) < ρtj , for
all j ∈ {1, . . . , 6} and t ∈ [0, 21] seconds, with α1 as in (8).
Therefore, we conclude that the robot tracks the path output by
the KDF-RRT algorithm within the prescribed funnel, avoiding
thus collisions. Snapshots of the path execution are given in
Fig. 23 for t = 10 and t = 19 seconds.

π
2

π
3

t = 10 sec

(a)

π
2

π
3

t = 19 sec

(b)

Fig. 23: Snapshots of the hardware experiment at t = 10 (a),
and t = 19 (b) seconds.

We further test the robustness of the proposed control
scheme against adversarial disturbances. In particular, we
disturb the manipulator using a rod three times during
the execution of the aforementioned trajectory (see Fig.
24). In order to prevent the control scheme from having
invalid values (see the domain of definition of (7) and
(10)), we set ξtj = max

{
min

{
1,

etj
ρtj

}
,− etj

ρttj

}
, ξ2j

=

max
{

min
{

1,
e2j
ρ2j

}
,− e2j

ρ2j

}
for all j ∈ {1, . . . , 6}. The

evolution of the signals ξt(t), ξ2(t) are depicted in Fig. 25
for 21 seconds, with vertical black dashed lines depicting
the instants of the disturbance, which affects mostly the first
joint of the system; note from Fig. 25 that ξt1 and ξ11

are
excessively increased with respect to their nominal values
shown in Fig. 21, implying a large increase in the respective
errors et1 and e21

. Nevertheless, one can conclude that, despite
the presence of adversarial disturbances, the system manages
to successfully recover and complete the derived path.

In order to further evaluate the proposed control algorithm,
we compared our results with a standard well-tuned PID
controller as well as the parametric adaptive control scheme
(PAC) of our previous work [36]. The signals ξt for these
two control schemes are depicted in Fig. 26. Note that the
controllers fail to retain the normalized errors ξtj(t) in the
interval (−1, 1). Although in the particular instance this did
not lead to collisions, it jeopardizes the system motion, since
it does not comply with the bounds set in the KDF-RRT.

This experimental section helps to verify the validity and
effectiveness of the proposed algorithm in a practical setting.
In particular, note that the considered model in eq. (1) assumes
continuous measurements of the system state (e.g., the joint
angles in the case of a robotic manipulator) and continuous
application of the control input. However, the sensors and

Fig. 24: Application of adversarial disturbances in the hard-
ware experiment.

Fig. 25: The evolution of the normalized errors ξtj (top) and
ξ2j (t), for j ∈ {1, . . . , 6}, of the hardware experiment, in
the case of adversarial disturbances. The time instants of the
disturbance application are shown with vertical dashed lines.

motors in a real system, as well as the communication between
them, operate at discrete sampling instants. The successful
application of the proposed algorithm in such a system shows
its robustness against such differences and its applicability in
a real-world scenario. Furthermore, the numerical experiments
show the robustness of the proposed algorithm against manu-
ally added perturbations.

V. CONCLUSION

We develop KDF, a new framework for solving the kinody-
namic motion-planning problem for complex systems with un-
certain dynamics. The framework comprises of three modules:
first, a family of geometric sampling-based motion planners
that produce a path in an extended free space; secondly, a
smoothening and time endowment procedure that converts
the path into a smooth time-varying trajectory; and finally,
a funnel-based feedback control scheme that guarantees safe
tracking of the trajectory. Neither of the modules uses any
information on the system dynamics. Experimental results
demonstrate the effectiveness of the proposed method. Future
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Fig. 26: The evolution of the normalized errors ξtj and ξ2j
(t),

for j ∈ {1, . . . , 6}, of the hardware experiment, when using a
PID controller (top), and the adaptive control algorithm from
[36] (bottom).

directions will focus on extending KDF to systems with
non-holonomic and underactuated dynamics and taking into
account explicit input constraints.

APPENDIX

Proof of Theorem 1. : Consider the non-empty open set

Ω :=
{

(q̄, t) ∈ T× Rn(k−1) × [t0, t0 + tf ) : ξtj ∈ (−1, 1),

ξr` ∈ [0, 1), ξi ∈ (−1, 1)n,∀j ∈ {1, . . . , ntr},
` ∈ {1, . . . , nr}, i ∈ {2, . . . , k}

}
, (19)

where we implicitly write the ξ variables as function of q̄
and time t. The constraints (4) imply that (q̄(t0), t0) ∈ Ω.
By substituting the control law (12) in the dynamics (1), we
obtain a closed-loop system ˙̄q = fcl(q̄, t) and one can verify,
based on Assumption 1, that fcl is continuously differentiable
in q̄ and continuous t on Ω. Therefore, the conditions of [56,
Theorem 2.1.3] are satisfied and we conclude the existence of
a maximal solution q̄(t) for t ∈ It := [t0, t0 + tmax), with
tmax > 0, satisfying (q̄(t), t) ∈ Ω for all t ∈ It.

Hence, for t ∈ It, the transformed errors εtj , ε
r
`, εi are well

defined. We proceed inductively with the following steps.
Step 1. Consider the positive definite and radially un-

bounded candidate Lyapunov function V1 := 1
2 (εt)>Ktεt +∑

`∈Lr
kr`ε

r
`, where Lr := {1, . . . , nr}, and Kt :=

diag{[ktj ]j∈{1,...,ntr}} ∈ Rntr×ntr , kr` are gains introduced in
(8). Let also the first equation of (1) be partitioned as[

q̇t

q̇r

]
=

[
f t(q1, t)
f r(q1, t)

]
+

[
g11(q1, t) g12(q1, t)
g13(q1, t) g14(q1, t)

]
q2.

Differentiating V1, using q2 = α1 + e2 from (9) and substitut-
ing (8), we obtain

V̇1 =− σ>KR̃ρ̃−1S̃g1S̃ρ̃
−1R̃Kσ+

σ>KR̃ρ̃−1

[
S̃
(
f1 + g1e2 − q̇d

)
− ˙̃ρξ

]
=: Tn + Tb,

where we further define ξ := [(ξt)>, (ξr)>]>,
σ := [(εt)>, (rr)>]>, K := blkdiag{Kt,Kr}, R̃ :=
blkdiag{r̃t, I}, S̃ := blkdiag{I, s̃r}, ρ̃ := blkdiag{ρ̃t, ρ̃r},
ξt := [ξt1, . . . , ξ

t
ntr

]>, ξt := [ξr1, . . . , ξ
r
nr

]>, r̃t :=
diag{[rtj ]j∈{1,...,ntr}}, rr := [rr1, . . . , r

r
nr

]>, ρ̃t :=
diag{[ρtj ]j∈{1,...,ntr}}, ρ̃r := diag{[ρr`]`∈{1,...,nr}}, εt :=
[εt1, . . . , ε

t
ntr

]>, s̃r := diag{[sin(er`)]`∈{1,...,nr}}, and Kr :=
diag{[kr`]`∈{1,...,nr}} ∈ Rnr×nr . Since Tn is a quadratic form,
it holds that Tn = − 1

2σ
>KR̃ρ̃−1S̃(g1 + g>1 )S̃ρ̃−1R̃Kσ, and

in view of Assumption 2, Tn ≤ −g‖KR̃ρ̃−1S̃σ‖2, where
g := 1

2λmin(g1 + g>1 ) > 0. Moreover, we obtain from (6)
1−cos(er`) = ρr`ξ

r
` implying sin2(er`) = ρr`ξ

r
`(1+cos(er`)), for

all ` ∈ Lr. By further defining k := gλmin(Kρ̃), we obtain

Tn ≤ −k‖r̃tεt‖2 − k
∑
`∈Lr

(rr`)
2ξr`(1 + cos(er`)).

Note that, for t ∈ It, it holds that ξt` ∈ (−1, 1) and hence
ηr`(t) = 1− cos(er`(t)) < ρr`(t) ≤ ρ̄r` < 2, for all ` ∈ Lr (see
(4)). Therefore, it holds that 1 + cos(er`) ≥ 2− ρ̄r` =: er` > 0,
` ∈ Lr. By further defining er := min`∈Lr

{er`}, we obtain

Tn ≤− k‖r̃tεt‖2 − ker
∑
`∈Lr

(rr`)
2ξr` ≤ −m‖κ‖2,

where κ := [(r̃tεt)>, rr1
√
ξr1, . . . , r

r
nr

√
ξrnr

]>, and m :=
min{k, ker}. Moreover, the fact that qd(t) is bounded and
(q̄(t), t) ∈ Ω for t ∈ It implies that qt1(t) is bounded as
‖qt(t)‖ ≤ supt≥t0 ‖q

t
d(t)‖ +

√
ntr maxj∈{1,...,ntr}{ρ̄tj} and

‖e2(t)‖ ≤
√
nmaxm∈{1,...,n}{ρ̄2m

}, for t ∈ It. Note that the
aforementioned bounds do not depend on tmax. Hence, we
conclude by Assumption 1 that f1(q1(t), t), g1(q1(t), t) are
bounded in It, by bounds independent of tmax. Next, owing
to the boundedness of qr1(t) and q̇d, ρ̃−1 (by definition and
assumption, respectively), as well as by using ξr` <

√
ξr` < 1,

for all ` ∈ Lr, we conclude that there exists a positive finite
constant B̄1, independent of It, satisfying Tb ≤ B̄1‖κ‖, for
all t ∈ It. Therefore, V̇1 becomes V̇1 ≤ −m‖κ‖2 + B̄1‖κ‖ for
all t ∈ It and is negative when ‖κ‖ > B̄1

m , i.e.,

√∑
j∈Lt

(rtjε
t
j)

2 +
∑
`∈Lr

(rr`)
2ξr` >

B̄1

m
, (20)

with Lt := {1, . . . , ntr}. From the definition of rtj in (7), it
holds that rtj(t) ≥ 2, for all j ∈ Lt and ∀t ∈ It. Moreover,
one can conclude by inspection that the function f(x) =

1
(1−x)2 x− ln

(
1

1−x

)
is positive for positive x, Therefore, since

by definition ξr` ≥ 0 it holds that (rr`)
2ξr` ≥ εr`, for all ` ∈ Lr.

Therefore, it holds that
√∑

j∈Lt
(rtjε

t
j)

2 +
∑
`∈Lr

(rr`)
2ξr` ≥√∑

j∈Lt
(εtj)

2 +
∑
`∈Lr

εr` and a sufficient condition for V̇1

to be negative is
√∑

j∈Lt
(εtj)

2 +
∑
`∈Lr

εr` > B̄1

m1
, from

which we conclude, by applying Theorem 4.18 of [40], that
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there exists a positive constant ε̄ satisfying |εtj(t)| ≤ ε̄ and
εr`(t) ≤ ε̄, which implies via (7) that

|ξtj(t)| ≤ ξ̄t :=
exp(ε̄)− 1

exp(ε̄+ 1
< 1 (21)

ξr`(t) ≤ ξ̄r :=
exp(ε̄)− 1

exp(ε̄)
< 1, (22)

for all t ∈ It, j ∈ Lt, ` ∈ Lr. Hence, α1(t), as designed in (8),
is bounded, for all t ∈ It, from which we also conclude the
boundedness of q2 = e2 +α1, since ‖e2(t)‖ = ‖ρi(t)ξ2(t)‖ ≤√
nmaxm∈{1,...,n}{ρ̄2m

} for all t ∈ It. Moreover, by invoking
(21), we conclude the boundedness of α̇1, for all t ∈ It.

Step i ∈ {2, . . . , k}: We apply recursively the aforemen-
tioned line proof for the remaining step. By considering the
function Vi = 1

2ε
>
i Kiε, we obtain

V̇i ≤− ε>i riρ−1
i KigiKiρ

−1
i riεi

+ ‖riρ−1
i Kiεi‖‖fi + giei+1 − α̇i−1 − ρ̇iξi‖,

for i ∈ {2, . . . , k − 1}, and

V̇k ≤− ε>k rkρ−1
k KkgkKkρ

−1
k rkεk

+ ‖rkρ−1
k Kkεk‖‖fk − α̇k−1 − ρ̇kξk‖,

from which we conclude the boundedness of εi and ξi as

‖εi(t)‖ ≤ ε̄i ⇒ ‖ξi(t)‖ ≤ ξ̄i :=
exp(ε̄i)− 1

exp(ε̄i) + 1
, (23)

for all t ∈ It for positive finite constants ε̄i. As a conse-
quence, all intermediate signals αi and system states qi+1,
i ∈ {2, . . . , k − 1}, as well as the control law (12) remain
bounded for all t ∈ It.

What remains to be shown is tmax = ∞. Notice that (21)
and (23) imply that the system remains bounded in a compact
subset of Ω, i.e., (q̄(t), t) ∈ Ω̄ ⊂ Ω, for all t ∈ It. Since
q̄(t) has been proven bounded, the conditions of [56, Theorem
2.1.4] hold and we conclude hence that τmax =∞.
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