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Abstract: Control barrier functions (CBFs) have been recently considered for ensuring safety
of nonlinear input-affine systems by means of appropriately designed controllers rendering a
desired superlevel set of the CBF function forward invariant. In this work, we consider the safety
control problem for nonlinear input-affine systems with multiple time-varying input delays. In
order to ensure safety, we first design a set of predictors that estimate the state of the system
at different future times by utilizing the control laws designed to ensure safety of the delay-free
system. Under the assumption of perfect estimation of the future states, we show that under
the designed controller, the closed-loop performance of the systems with and without the input
delays is the same by the time the input with the largest delay acts on the system with delays
for the first time.
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1. INTRODUCTION

Over the last decades, continuous technological advances
have increased the number of applications autonomous
systems can contribute at. In the vast majority of these
applications, autonomous systems often need to perform a
variety of complex tasks in highly uncertain environments
while ensuring their safety e.g., avoiding collisions with
respect to existing (static or dynamic) obstacles in the
area or avoid entering at unsafe regions, where for example
humans are present. Recently, safety has been expressed
for general nonlinear input-affine systems as the problem of
ensuring forward invariance of a known set C ⊂ Rn, called
the safety set. This set is often defined as a superlevel
set of a known, nonlinear function called a control barrier
function (CBF).

CBF-based approaches have attracted much interest as
they offer a direct control design based on which a state-
dependent controller is found as a solution to a convex
quadratic problem (QP). Initially proposed in the context
of safety control in Wieland and Allgöwer (2007) and later
in Ames et al. (2017), control barrier functions have been
extended to other forms including but are not limited
to fixed or finite time (Sharifi and Dimarogonas (2021);
Srinivasan et al. (2018)), time-varying (Xu (2018)) or non-
smooth CBFs (Glotfelter et al. (2017)). In addition, they
have been applied to a variety of applications spanning
from safety (collision or obstacle avoidance)Wang et al.
(2017) to connectivity maintenance (Capelli and Sabattini
(2020)) and satisfaction of spatio-temporal constraints
(Garg and Panagou (2019); Lindemann and Dimarogonas
(2018); Charitidou and Dimarogonas (2021)).

⋆ This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by
the Knut and Alice Wallenberg Foundation, the ERC CoG
LEAFHOUND and the Swedish Research Council.

Control barrier functions for systems with state or input
delays have been considered in Orosz and Ames (2019);
Kiss et al. (2021); Ren (2021) and Singletary et al. (2020);
Jankovic (2018); Abel et al. (2019, 2020, 2021) respec-
tively. In Orosz and Ames (2019) the notion of safety
functionals is introduced, and Krasovskii-like conditions
are obtained to ensure stability and safety of systems with
time delays. In Kiss et al. (2021) the discretization of the
time-delay system is proposed to simplify the design of
the corresponding safety sets while in Ren (2021) Razu-
mikhin type conditions are obtained for safety and control
of nonlinear systems with time delays. Control barrier
functions for systems with a single, constant input delay
have been considered for the first time - to the authors’
best knowledge - in Jankovic (2018), where the predictor-
feedback approach Krstić (2009) is utilized. Closer to our
work are the approaches presented in Abel et al. (2019,
2020), where systems with multiple, constant and distinct
input delays are considered. While in Abel et al. (2019) the
system with the multiple delays achieves the same closed
loop performance with the system without delays after the
larger delay of the system with delays is compensated, in
Abel et al. (2020) authors aim towards ensuring safety
when a smaller number of inputs acts on the system.

Recently, safety of systems with a single, known, time-
varying input delay has been addressed in Abel et al.
(2021). Nevertheless, to the best of our knowledge, ensur-
ing safety in the presence of multiple, possibly different,
time-varying input delays is still an open problem. Mo-
tivated by Abel et al. (2019), in this work we consider
the problem of designing a feedback controller that en-
sures safety of the system with the multiple, time-varying
delays. Under a monotonicity assumption on the time-
varying delays acting at the system, we design a set of
state-predictors considering the safety controllers designed
for the nominal system and propose applying elementwise



the delay-free nominal controller at the current predicted
states to the system with the delays. Then, under the as-
sumption of accurate prediction, we show that the closed-
loop performance of the system under consideration is
identical to the one of the nominal system, when the
largest delay of the system is compensated for the first
time.

The remainder of the paper is organized as follows: Section
2 includes notation and required background knowledge,
Section 3 introduces the problem formulation, Section 4
presents the control design approach, Section 5 provides a
numerical example and Section 6 provides conclusions and
directions of future research.

2. NOTATION AND PRELIMINARIES

Scalars and vectors are denoted by non-bold and bold let-
ters respectively. The partial derivative of a continuously
differentiable function h : Rn → R evaluated at x′ is abbre-
viated by ∂h(x′)

∂x = ∂h(x)
∂x

∣∣
x=x′ and is considered to be a row

vector. The interior of the superlevel set of h(x), denoted
by C, is defined as int(C) = {x ∈ Rn : h(x) > 0}. A class K
function α : R≥0 → R≥0 is a strictly increasing continuous
function with α(0) = 0. An extended class K function
α : R → R≥0 is a locally Lipschitz continuous and strictly
increasing function with α(0) = 0. A continuous function
β : R≥0×R≥0 → R≥0 is a class KL function (Khalil, 1996,
Def 4.3) if, for each fixed s, the mapping β(s, r) belongs
to class K with respect to r, and for each fixed r, β(s, r)
is decreasing with respect to s and β(s, r) → 0 as s → ∞.

2.1 Control barrier functions for systems without delays

In this section we summarize some relevant results on
safety control for systems without delays. Consider the
input-affine dynamical system:

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn, u ∈ Rm is the state and control input
respectively and f : Rn → Rn, g : Rn → Rn×m are locally
Lipschitz functions. Let h : Rn → R be a continuously
differentiable function. Based on h(x) we may define its
zero superlevel set as follows:

C = {x ∈ Rn : h(x) ≥ 0}. (2)

Definition 1. (Xu et al., 2015, Def. 6) Given a set C ⊂ Rn

defined in (2) for a continuously differentiable h : Rn → R,
the function h is called a control barrier function (CBF)
defined on a set D with C ⊂ D ⊆ Rn, if there exists an
extended class K function α such that:

sup
u∈Rm

[
∂h

∂x
(f(x) + g(x)u) + α(h(x))

]
≥ 0, ∀x ∈ D.

Given a CBF h : Rn → R, for all x ∈ D define the set:

Kcbf (x) =

{
u ∈ Rm :

∂h

∂x
(f(x) + g(x)u) + α(h(x)) ≥ 0

}
.

Theorem 2. (Xu et al., 2015, Cor. 7) Given a set C ⊂ Rn

defined by (2) for a continuously differentiable function h,
if h is a CBF on D, then any locally Lipschitz continuous
controller u : D → Rm such that u(x) ∈ Kcbf (x) will
render the set C forward invariant.

Let unom : Rn → Rm be a locally Lipschitz controller
that is designed offline for the system to ensure a higher

specification such as stabilization as in Ames et al. (2019).
We will refer to unom(x) as the nominal controller. Then,
the following result can be deduced:

Theorem 3. (Xu et al., 2015, Thm. 8) Assume that vector
fields f and g in the control system (1) are both locally
Lipschitz continuous, and that h : D → R is a locally
Lipschitz continuous CBF. Let unom : Rn → Rm be a
locally Lipschitz continuous nominal controller. Suppose
furthermore that ∂h

∂xg(x) ̸= 0 for all x ∈ D. Then,
u∗ = q(x) defined as:

u∗ = argmin
u∈Rm

∥u− unom(x)∥22, (3)

subject to:
∂h

∂x
(f(x) + g(x)u) + α(h(x)) ≥ 0 (3a)

is locally Lipschitz continuous for x ∈ D.

The controller q(x),x ∈ D found as a solution to (3) can
be written in closed form as follows:

q(x) =

unom(x), a(x) > 0

unom(x)− a(x)

∥b(x)∥22
bT (x), otherwise

, (4)

where a(x) = ∂h
∂x (f(x) + g(x)unom(x)) + α(h(x)) and

b(x) = ∂h
∂xg(x). In the following we will denote the j-th

element of q(x) by qj(x).

3. PROBLEM FORMULATION

In this work we consider a system with multiple input
delays defined as follows:

ẋ(t) = f(x(t)) +

m∑
j=1

gj(x(t))uj

(
κj(t)), (5)

where f : Rn → Rn and gj : Rn → Rn, j ∈ J =
{1, . . . ,m} are locally Lipschitz functions, x ∈ Rn and

u = [u1 . . . um]
T ∈ Rm is the state and control input

of (5) and κj : R≥0 → R, j ∈ J are continuously
differentiable functions incorporating the actuation delay
that are assumed to satisfy the following inequality for
every t ∈ R≥0:

κm(t) ≤ . . . ≤ κ1(t). (6)

If κj(t) = t − τj , for every j ∈ J , where τj , j ∈ J are
known, positive constants, i.e., the delays acting at the
system are constant, then (6) becomes τ1 ≤ . . . ≤ τm
which is identical to the condition considered in Abel et al.
(2019, 2020). Here, we assume that (5) is forward complete
for every locally bounded control input uj(κj(t)) ∈ R, j ∈
J , t ≥ 0, and for every initial condition x(0) = x0, i.e.,
the system does not exhibit finite escape time. Similar to
Krstić (2010), we make the following assumption on the
delay functions κj(t), j ∈ J :

Assumption 4. Every function κj : R≥0 → R, j ∈ J is
continuously differentiable and for every t ≥ 0 satisfies the
following:

κj(t) ≤ t, (7a)

t− κj(t) < ∞, (7b)

κ′
j(t) =

dκj(t)

dt
> 0, (7c)

Equation (7a) ensures that the system depends only on
past or current inputs, i.e., it is causal. The second part



of Assumption 4 guarantees that the j-th control input
will be applied at the system in finite time while (7c)
implies that κj(t) is monotonically increasing for every
t ≥ 0. As a result of the latter, the inverse function of
κj(t), j ∈ J , t ≥ 0, denoted by κ−1

j (t), exists and is well-

defined in {κj(t) : t ≥ 0}. We will call κj(t) and κ−1
j (t)

the j-th delay and j-th prediction time at t. For example,
if κj(t) = t − τj , where τj > 0 is a constant delay, then,

κ−1
j (t) = t+ τj . Thus, in this case x(κ−1

j (t)) = x(t+ τj) is
the state of the system at the future time t+ τj , for every
t ≥ 0.

Consider a continuously differentiable function h : Rn → R
and define its zero superlevel set as in (2). The set C ⊂ Rn

is called the safety set and is assumed to be non-empty
with no isolation points, i.e., int(C) ̸= ∅ and int(C) = C.
Based on the above, we may state the problem considered
in this paper as follows:

Problem 5. Consider the multi-input delay system (5)
and the set C defined in (2). Design the control inputs
uj(κj(t)), j ∈ J , for every t ≥ 0 such that C is rendered
forward invariant, i.e., if x(0) ∈ C, then x(t) ∈ C, for every
t > 0.

4. CONTROL APPROACH

In this section we present the design of a feedback con-
troller, found as a solution to a quadratic program (QP),
that ensures safety for systems with multiple delays. To
achieve this and given (6), we first design a set of state-
predictors at times κ−1

j (t), j ∈ J for (5). These predictors
will be later considered in the design of the individual
inputs uj(t), j ∈ J acting on the system with different
delays.

Assume for now the existence of a set of a-priori known
controllers:

uj(t) = qj(zj(t)), j ∈ J (8)

where qj : Rn → R is a locally Lipschitz function for
every j ∈ J . As will be later shown, these feedback
controllers are defined by (4) with respect to the predicted
state at κ−1

j (t), j ∈ J , denoted by zj(t). Following a

similar procedure to Bekiaris-Liberis and Krstić (2017)
and considering the time-varying nature of the input
delays (Krstić (2010)), we may define the future state
predictors as follows:

Proposition 6. Consider the system dynamics (5) with
input delay functions κj(t), j ∈ J , t ≥ 0 satisfying
(6). Let Assumption 4 hold and assume the existence
of locally Lipschitz functions qj : Rn → R, j ∈ J .

Let ϕj,j′(t) = κj(κ
−1
j′ (t)), for any j, j′ ∈ J and define

zj(t) = x(κ−1
j (t)), j ∈ J . Then, the functions zj(t), j ∈ J

satisfy the following equations:

z1(t) = x(t) +

∫ t

κ1(t)

1

κ′
1(κ

−1
1 (s))

(
f(z1(s))+

+

m∑
j=1

gj(z1(s))uj(ϕj,1(s))

)
ds, (9a)

zk+1(t) = zk(t) +

∫ t

ϕk+1,k(t)

1

κ′
k+1(κ

−1
k+1(s))

(
f(zk+1(s))+

+

k∑
j=1

gj(zk+1(s))qj(zk+1(s))+

+

m∑
j=k+1

gj(zk+1(s))uj(ϕj,k+1(s))

)
ds, k ∈ J \{m}

(9b)

with initial conditions:

z1(θ) = x(0) +

∫ θ

κ1(0)

1

κ′
1(κ

−1
1 (s))

(
f(z1(s))+

+

m∑
r=1

gr(z1(s))ur(ϕr,1(s))

)
ds, for κ1(0) ≤ θ ≤ 0

(10a)

zj(θ) = zj−1(0) +

∫ θ

ϕj,j−1(0)

1

κ′
j(κ

−1
j (s))

(
f(zj(s))+

+

j−1∑
r=1

gr(zj(s))qr(zj(s))+

+

m∑
r=j

gr(zj(s))ur(ϕr,j(s))

)
ds,

for ϕj,j−1(0) ≤ θ ≤ 0, j ∈ J \{1}. (10b)

Proof. The validity of our claim will be shown by induc-
tion. We will first show the design of the predictors at
times κ−1

j (t), j = 1, 2 and then we will generalize to any

predictor x(κ−1
j (t)), j ∈ {3, . . . ,m}. In the following we

use the fact that
dκ−1

j
(t)

dt = 1
κ′
j
(κ−1

j
(t))

. Observe that the

division with κ′
j(κ

−1
j (t)) is well defined for every t due to

(7c) of Assumption 4. Let s = κ−1
1 (t) for all t ≥ κ1(0).

Hence, z1(t) = x(κ−1
1 (t)) = x(s). Then, it holds:

dz1(t)

dt
=

dx

ds

ds

dt
=

(
f(x(s)) +

m∑
j=1

gj(x(s))uj(κj(s))
)ds
dt

=
(
f(z1(t)) +

m∑
j=1

gj(z1(t))uj(ϕj,1(t))
)dκ−1

1 (t)

dt

=
1

κ′
1(κ

−1
1 (t))

(
f(z1(t)) +

m∑
j=1

gj(z1(t))uj(ϕj,1(t))
)
.

Integrating the above equation from κ1(t) to t and from
κ1(0) to θ ≤ 0 we get (9a) and (10a), respectively. Next,
let τ = ϕ1,2(t) for every t ≥ ϕ2,1(0). Observe that z2(t) =

x(κ−1
2 (t)) = z1(τ) for all t ≥ ϕ2,1(0). Then, we have:

dz2(t)

dt
=

(
f(z2(t)) + g1(z2(t))q1(z2(t))+

+

m∑
j=2

gj(z2(t))uj(ϕj,2(t))
)dκ−1

2 (t)

dt
,

where we considered that u1(ϕ1,2(t)) = q1(z1(ϕ1,2(t))) =
q1(z2(t)) and the fact that z2(t) = z1(ϕ1,2(t)). Integrating
from ϕ2,1(t) to t and ϕ2,1(0) to θ ≤ 0 we get (9b) and (10b)
for k = 1 and j = 2 respectively. For any k ≥ 2, denote
by zk(t) the predictor of x at κ−1

k (t). Then, zk(t) evolves
according to the following differential equation:



dzk(t)

dt
=

(
f(zk(t)) +

k−1∑
j=1

gj(zk(t))qj(zk(t))+

+

m∑
j=k

gj(zk(t))uj(ϕj,k(t))
)dκ−1

k (t)

dt
.

Define w = ϕk,k+1(t). Then, zk+1(t) = zk(w) =

x(κ−1
k+1(t)), for every t ≥ ϕk+1,k(0). Using this definition,

for every t ≥ ϕk+1,k(0), we have:

dzk+1(t)

dt
=

(
f(zk+1(t)) +

k∑
j=1

gj(zk+1(t))qj(zk+1(t))+

+

m∑
j=k+1

gj(zk+1(t))uj(ϕj,k+1(t))
)dκ−1

k+1(t)

dt
,

(11)

where as in the case with k = 1 we considered that
uj(ϕk,k+1(t)) = qj(zk+1(t)), j ∈ {1, . . . , k}, k ≤ m− 1. In-
tegrating from ϕk+1,k(t) to t we derive (9b). Additionally,
integrating (11) from ϕk+1,k(0) to θ ≤ 0, we get (10b) for
j = k. Since zk+1(t) satisfies (9b) for every k ∈ J \{m},
we can deduce the result.

Throughout this work, we will assume that the predictors
defined in (9a)-(9b), (10a)-(10b) are computed analytically
and perfectly estimate the systems’ future state, i.e.,
zj(t) = x(κ−1

j (t)), j ∈ J . For a numerical approximation

of the predictors, the reader may refer to Karafyllis (2011);
Karafyllis and Krstić (2017).

Let’s consider (5) and assume for a moment that every
input acts at the system with the same delay. Assume
without loss of generality this delay to be κ1(t). Observe
that no input acts at the system in the time interval
[0, κ−1

1 (0)]. However, for any t ≥ 0, safety can be enforced
by means of the following constraint:

∂h

∂x
(f(x(κ−1

1 (t))) +
∑
j∈J

gj(x(κ
−1
1 (t)))uj(t))

≥ −α(h(x(κ−1
1 (t)))),

(12)

where α : R → R≥0 is an extended class K function. By

Proposition 6, x(κ−1
1 (t)) = z1(t). Based on that, (12) can

be written as follows:
∂h

∂x
(f(z1(t)) +

∑
j∈J

gj(z1(t))uj(t)) ≥ −α(h(z1(t))).

This constraint resembles (3a) with z1(t) instead of x(t).
Hence, invoking the solution of (3), where unom : Rn →
Rm is a locally Lipschitz, nominal controller, we may
obtain the optimal control inputs u∗

j (t) = qj(z1(t)), j ∈ J ,
according to (4). When multiple input delays are consid-
ered, it is not straightforward how (12) can be modified
to account for the different future states x(κ−1

j (t)), j ∈ J .

Motivated by Abel et al. (2019), we propose solving (3)
sequentially for every j ∈ J , assuming that at the j-th
iteration the inputs act at the system with the same delay
κj(t). Then, omitting the remaining part of the solution
of the j-th iteration, we apply only qj(zj(t)) to (5). As a
result, using the state-predictors of Proposition 6, we may
define u∗

j (t), j ∈ J as follows:

u∗
j (t) = qj(zj(t)), j ∈ J . (13)

Due to the existence of the time-varying delays, as in
the case of a single delay, discussed above, the system
(5) remains uncontrolled for the first κ−1

1 (0) time units.
Therefore, in order to ensure the safety of the system at
all times, considering the multiple time-varying delays of
(5), we pose the following assumption:

Assumption 7. Consider the system (5) with input delay
functions κj(t), j ∈ J , t ≥ 0 satisfying (6) and let
Assumption 4 hold. Let h : Rn → R be a CBF function
for (1). Then, the initial conditions x(0) and uj(t), t ∈
[κj(0), ϕj,1(0)), j ∈ J of (5) ensure that h(x(t)) > 0 holds,

for every t ∈ [0, κ−1
1 (0)].

Assumption 7 ensures that the system remains safe at
the first κ−1

1 (0) time units, when no control is applied to
the system. After κ−1

1 (0) time units, the control inputs
u∗
j (t), defined in (13), are applied to the system from

κ−1
j (0) onwards. As a result, over the time intervals

[κ−1
j (0), κ−1

j+1(0)] the system is controlled only with the

first j control inputs uj′ respectively, i.e., j′ ∈ J \{j +
1, . . . ,m}. As these controllers are pre-computed without
information on the past inputs acting at the system at each
time t, it is possible for the system to be steered outside
the safety set C. Therefore, in order to ensure the safety of
the system at the intervals [κ−1

j (0), κ−1
j+1(0)], j ∈ J \{m}

we pose the following assumption:

Assumption 8. Consider the system (5) with input delay
functions κj(t), j ∈ J , t ≥ 0 satisfying (6) and let Assump-
tions 4 and 7 hold. Let h : Rn → R be a CBF function for
(1). Consider further the locally Lipschitz functions qj :
Rn → R, defined in (13), where unom : Rn → Rm is a lo-
cally Lipschitz, offline designed, nominal controller. Then,
x(t) ∈ C, for every t ∈ [κ−1

j (0), κ−1
j+1(0)], j ∈ J \{m}, when

x ::= x(t) evolves according to:

ẋ = f(x) +

j∑
r=1

gr(x)qr(x) +

m∑
r=j+1

gr(x)ur(κr(t)).

Assumption 8 ensures that the system controlled by the
control inputs qj′(zj′(t)), j

′ ∈ J \{j + 1, . . . ,m}, de-
fined in (13), remains always safe in the time interval
[κ−1

j (0), κ−1
j+1(0)], i.e., the state evolves inside C. When

κj(t) = t − τj , for every j ∈ J , where τj > 0 is a
known, constant delay, then Assumption 8 recovers the
assumption considered in (Abel et al., 2019, Prop. 2).
A similar assumption to Assumption 8 has also been
considered in Bekiaris-Liberis and Krstić (2017) in the
context of stabilization, where the system is assumed to
not exhibit finite escape time when controlled with the
first 1, . . . , j inputs, where j ∈ J . Having ensured initial
safety (assumption 7) and safety of the partially controlled
system (assumption 8), we may ensure the safety of (5) at
all times as follows:

Theorem 9. Let h : Rn → R be a continuously differen-
tiable function and assume that h(x) is a CBF function
for (1). Consider further the system (5) with input delay
functions κj(t), j ∈ J , t ≥ 0 satisfying (6) and let Assump-
tions 4,7 and 8 hold. Then, the control inputs defined by
(13) for every j ∈ J render C forward invariant for (5).

Proof. By Assumptions 7-8 the safety of the system is en-
sured at the intervals [0, κ−1

1 (0)] and [κ−1
j (0), κ−1

j+1(0)], j ∈
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Fig. 1. The delay functions κj(t), j ∈ J and their corre-

sponding inverse functions κ−1
j (t).

J \{m}. Hence, it remains to be shown that x(t) ∈ C, for
every t ≥ κ−1

m (0). Observe that for every t ≥ κ−1
m (0), all in-

puts are acting to the system, hence, under the assumption
that the state-predictors defined in (9a)-(9b) accurately
estimate the future states x(κ−1

j (t)), we may conclude that

the system acts identically to (1) under the control inputs
qj(x(t)), j ∈ J , and thus for every t ≥ κ−1

m (0) the following
holds:

d

dt
(h(x(t)) =

∂h

∂x

(
f(x(t)) +

∑
j∈J

gj(x(t))qj(x(t))

)
.

By design of the control inputs qj(x(t)), j ∈ J , found as
the optimal solution to (3), it holds that:

d

dt
(h(x(t))) ≥ −α(h(x(t))), x(t) ∈ D, t ≥ κ−1

m (0).

Note that x(κ−1
m (0)) ∈ C by Assumption 8. Hence, by

(Khalil, 1996, Ch 4.4), when invoking the Comparison
Lemma (Khalil, 1996, Ch. 3.4), it holds that h(x(t)) ≥
β(|h(x(κ−1

m (0)))|, t) ≥ 0, for any t ≥ κ−1
m (0), where β :

R≥0 ×R≥0 → R≥0 is a class KL function. Thus, x(t) ∈ C,
for every t ≥ κ−1

m (0). Considering the latter result in
addition to Assumptions 4,7-8, the result follows.

5. NUMERICAL EXAMPLE

Consider the two-dimensional system:

ẋ(t) =

[
−x1(t)− x2(t)

x3
1(t)

]
+

[
u1(κ1(t))
u2(κ2(t))

]
,

where f(x) is obtained by Abel et al. (2020) and κj(t), j ∈
J = {1, 2} are time-varying delay functions whose inverse
functions are defined as follows:

κ−1
1 (t) = t+ 1 +

1

4
cos t,

κ−1
2 (t) = t+ 2 +

1

2
cos t.

The delay functions κj(t), j ∈ J and their inverse func-
tions are shown in Figure 1. The initial conditions of
the system are chosen to be uj(t) = 0, for every t ∈
[κj(0), 0), j ∈ J and x(0) = [1.5 −1.5]

T
. Consider the

function h : R2 → R defined as follows:
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Fig. 2. Evolution of (5) and h(x(t)) over time with the
proposed control approach.

h(x) = ∥x− c∥22 − 1,

where c = [−1.5 0.5]
T
. Observe that ∂h

∂x = 2(x− c)T and

g(x) = I2 is of full rank for every x ∈ D, thus ∂h
∂xg(x) = 0,

if and only if x = c. If D ⊂ R2 is chosen such that c /∈ D,
then h(x) is a CBF for the system without delays.

Here, we consider a linear class K function α : ξ 7→ 0.1ξ
and a nominal controller unom : D → R2 that aims at

steering the system to p = [−3 0.5]
T

and is defined as
follows:

unom(x) = −f(x)−
[
0.1 0
0 0.07

]
(x− p).

In Figure 2a the evolution of the system between 0 and
100 sec is shown. In the first κ−1

1 (0) = 1.25 sec, when the
system is uncontrolled, the system moves towards violating
the safety constraint. Therefore, as shown in Figure 2b,
the decrease of h(x(t)) for t ∈ [0, 1.25] is significantly
steep. Between 1.25 and 2.5 sec, where κ−1

2 (0) = 2.5,
the control input affecting the x1 coordinate starts acting
at the system, slowing down the evolution of the system



towards the unsafe region. The effect of u1(t) on the
system is noticeable in Figure 2b, where the rate of
decrease of h(x(t)) with respect to t becomes smaller
when t ∈ [1.25, 2.5]. After 2.5 sec, the system becomes
fully controlled and starts moving towards the stabilization
point while staying away from the unsafe area. As a result,
the barrier function h(x) remains positive at all times and
h(x(t)) ≥ 0.1866, for every t ∈ [0, 100].

6. CONCLUSIONS

In this work a safety controller is designed for a system
with multiple, time-varying input delays. Under a mono-
tonicity assumption on the delays functions, we design a
set of state-predictors for the system utilizing the safety
controller of the corresponding system without delays.
Then, under the assumption of perfect estimation of the
future states, we show that the systems remain safe by the
time the largest delay acting on the system is compensated
for the first time. Future work, will consider ways to
relax the monotonicity assumption imposed on the delay
functions of the system and extend the current framework
to ensure forward invariance of time-varying safety sets.
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critical control of systems with time-varying input delay.
IfacPapersOnline, 54(18), 169–174.

Ames, A.D., Coogan, S., Egerstedt, M., Notomista, G.,
Sreenath, K., and Tabuada, P. (2019). Control barrier
functions: Theory and applications. In European Control
Conference, 3420–3431.

Ames, A.D., Xu, X., Grizzle, J.W., and Tabuada, P.
(2017). Control barrier function based quadratic pro-
grams for safety critical systems. IEEE Transactions on
Automatic Control, 62(8), 3861–3876.

Bekiaris-Liberis, N. and Krstić, M. (2017). Predictor-
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