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A Window-based Periodic Event-triggered
Consensus Scheme for Multi-agent Systems
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Allgöwer

Abstract— In this paper we consider the periodic event-
triggered consensus problem for single-integrator multi-
agent systems. In existing approaches, consensus is typ-
ically achieved by trigger schemes enforcing a monotone
decrease of a Lyapunov function. Such trigger schemes
may however result in more transmissions than actually re-
quired to ensure consensus or to meet certain performance
specifications. This is because a monotone decrease may
be a rather conservative condition for a given Lyapunov
function in an event-triggered setting. To overcome the
conservativity, we propose a novel window-based trigger
scheme, which allows to leverage existing trigger schemes
from the literature to derive less conservative ones. This is
achieved by taking the past system behavior into account
and allowing a temporary increase of the Lyapunov func-
tion as long as a decreasing tendency is still guaranteed.
For that, information from previous time steps within cer-
tain time windows is considered. We provide an explicit
bound on the evolution of the Lyapunov function that is
the same for the window-based scheme and the (mono-
tone) original trigger schemes. To illustrate the benefits of
the window-based scheme, we validate its efficacy by a
comprehensive simulation study and demonstrate that the
scheme typically reduces the average update rate of the
underlying communication structure in comparison to the
original trigger schemes.

Index Terms— Event-triggered Consensus, Networks
of Autonomous Agents, Communication Networks, Net-
worked Control Systems

I. INTRODUCTION

The practical need for decentralized control solutions in
networked systems has led to the increasing importance of
multi-agent systems (MAS) over the past few years [1]–
[4]. Advantages include high flexibility and low installa-
tion and maintenance costs. Typically MAS are connected
by a communication network that introduces communication
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constraints and bandwidth limitations. Therefore, controlling
MAS typically introduces additional challenges as, e.g., to
use communication resources as efficient as possible. The
underlying communication structure is typically described by
a graph, specifying and limiting the possible communication
among the agents.

In the field of MAS, the so-called consensus problem, is
one of the fundamental tasks [1]. It has received increasing
attention in research within the past decades [5]–[7]. The
objective is that all agents agree on a joint state value, which
is typically achieved by designing a suitable control law,
which depends on the agents’ neighbors’ states and leads to
convergence of each agents’ state(s) to the consensus value.

A particularly relevant case is the continuous-time consen-
sus problem with single-integrator dynamics for undirected
graphs [8]. However, the necessary continuous computation
of the control law and continuous communication among the
agents as described in these works is hard to realize in practice.
To that end, the periodically sampled-time consensus prob-
lem, that overcomes this drawbacks, has been proposed [9].
This setup is also called periodically time-triggered consensus
(PTTC). The idea is to communicate with neighbors and
update control inputs only at predefined sampling times. Nev-
ertheless, this approach can be successful only if the sampling
period is sufficiently small, which may result in unnecessary
high network load in communication and frequent actuation
updates. Therefore, event-triggered consensus (ETC) has been
proposed as an alternative, inspired by the developments in
event-triggered control [10]. The underlying idea of ETC is to
broadcast information to neighboring agents only when this is
indicated as necessary according to a state-dependent trigger
condition called the trigger rule. Control inputs are updated
whenever an agent itself or one of its neighbors triggers.

Since the original paper [5], various publications dealt with
the topic of ETC for MAS [7], [11], [12]. The main advantage
of ETC in comparison to PTTC is that agents trigger only
when it is considered necessary by the trigger rule. In many
setups, ETC leads to an overall reduction of the required com-
munication [7], reducing energy consumption and necessary
network bandwidth. Moreover, the actuation frequency and up-
date computations are typically reduced. However, the trigger
rule still needs to be monitored and evaluated continuously,
which is in general challenging in digital implementation. The
works [13], [14] modify the standard consensus protocol, such
that finite-time convergence in ETC is achieved.
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The concept of periodic event-triggered consensus (PETC)
aims to unify ETC and PTTC, in order to combine their
advantages. Instead of the continuously monitored trigger rule
in ETC, the trigger rule in PETC is checked periodically with
a sufficiently small sampling period. Thus, the so-called Zeno
behavior, where infinitely many trigger instances within a
finite time are required, is naturally ruled out. Furthermore, a
periodically checked trigger rule is much easier to implement
on a digital hardware device than a continuously monitored
one. Moreover, the overall network load in comparison to
PTTC can still be reduced if a meaningful trigger rule
is implemented. However, PETC often requires the agents’
clocks to be synchronized, which may require additional effort.
Early results on multi-agent PETC are stated in [6], requiring
periodic communication among the agents, i.e., periodic state
updates are required for trigger rule evaluation, but not for
input recomputations. PETC results without the need for
periodic communication are proposed in [15] and [12] and
for an ETC setup is in [16]. Furthermore, a PETC scheme
for agents with nonlinear dynamics has been developed in
[17]. An explicitly time-dependent trigger rule for single-
and double-integrator dynamics based on a time-dependent
and decreasing error bound was introduced in [7] and further
generalized in [18].

Most of existing results for (P)ETC are based on stan-
dard Lyapunov theory, such that a monotone decrease of a
Lyapunov function is ensured by the trigger rule. This leads
however potentially to a waste of network resources. We
address this problem by introducing a novel trigger scheme,
which provides the possibility to leverage existing trigger rules
to derive less conservative trigger rules. This is achieved by
taking the past system behavior into account in the form of
using a sum of past values of the trigger rule, leading to a
novel window-based trigger scheme, that allows to exploit
leftover conservativity from previous time steps. The scheme
is motivated by non-monotonic Lyapunov functions, i.e., by
allowing an increase of the Lyapunov function as long as a
decreasing tendency can still be guaranteed [19]. A similar
idea has been proposed in [20], where it is shown that this
can be advantageous to reduce the amount of transferred data.
However, they do not consider a multi-agent setup, but rather
a general event-triggered control setup.

The contribution of this paper can be divided into three
parts. The first one is the development of the window-based
trigger scheme, which allows less conservative trigger behavior
compared to existing trigger rules. The scheme allows to take
past information into account, which happens within so-called
time windows. The considered information from previous time
steps can be interpreted as a conservativity excess measure.
This potentially allows a less conservative trigger decision at
the current time step. We provide an explicit upper bound on
the evolution of the Lyapunov function. Using the presented
scheme, we are able to tune the upper bound directly, indepen-
dent of the choice of the time-windows. This asymptotically
converging upper bound guarantees a asymptotic convergence
of the MAS to the consensus value.

As a second contribution, we develop two specific stan-
dalone trigger rules and apply the novel scheme to them. One

of the trigger rules uses a purely time-dependent decreas-
ing bound and leverages a discrete-time version of the one
proposed in [7]. The other one leverages a state-dependent
trigger rule, using the neighbor’s states to determine the trigger
instances. We provide an intuitive interpretation of why the
scheme is able to reduce the conservativity of trigger rules,
while guaranteeing the same upper bound.

As the third contribution, we perform an extensive sim-
ulation study, considering multiple parameter combinations
and communication structures and thus covering a wide range
of scenarios. Our simulations provide detailed evidence on
the reduction of the average update rate and can be used as
guideline for how to chose the time windows for the two
explicitly considered trigger rules.

This remainder of this paper is organized as follows. The
considered setup and preliminaries are presented in Section II.
In Section III, we introduce the proposed trigger scheme and
derive a bound on the Lyapunov function. The development
of the specific trigger rules and their application on the
window-based scheme can be found in Subsection III-C. To
demonstrate the efficacy of the proposed scheme, the results
of comprehensive simulations are shown and discussed in
Section IV. Section V concludes the paper.

II. PRELIMINARIES AND SETUP

A. Notation
Define N := {x ∈ Z | x > 0}, N0 := N ∪ {0} and R+ :=

{x ∈ R | x > 0}. For a real symmetric matrix L ∈ Rn×n

we denote the eigenvalues of L by λi{L}, where λmin{L}
and λmax{L} are the minimum and maximum eigenvalues.
Eigenvalues are always sorted in an ascending order, i.e.,
λi{L} ≤ λi+1{L}. Further, let ∥·∥ be the 2-norm of a vector
or the induced 2-norm of a matrix, depending on the argument.
The identity matrix of size n×n is denoted by I and 1 ∈ Rn

is the vector containing 1 in every entry. If y ∈ Rn is a vector,
yi denotes the i-th entry of y, i ∈ {1, ..., n}. Finally, we denote
the transposed inverse of a square matrix U as U−⊤.

B. Algebraic Graph Theory
The underlying communication structure of the MAS is

captured by an undirected, weighted graph G = (V, E) with
n vertices from the vertex set V and the edges (i, j) ∈ E .
The set E is the set of all edges of the graph. Denote the
adjacency matrix A = (aij) with aij = w(i, j) if (i, j) ∈ E
and aij = 0 otherwise. The function w : E → R assigns a
weight to every edge. Two vertices i and j are called adjacent,
if there is an edge directly connecting them, i.e., if (i, j) ∈ E .
Since the graph is the underlying structure for an MAS, each
vertex represents an agent. The set of neighbors of agent i is
given by Ni := {j : (i, j) ∈ E}. The agent’s degree is defined
as di :=

∑
j∈Ni

w(i, j) i.e., the sum of all adjacent edges’
weights of the corresponding agent. Denote the degree matrix
∆ ∈ Rn×n as the diagonal matrix of all individual agents’
degrees di. If for each pair of distinct vertices we can find a
path between them, i.e., a sequence of edges connecting them,
G is called connected. Otherwise the graph is disconnected.
The Laplacian (matrix) L of G is defined as L := ∆−A. By
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construction, L = L⊤. For real symmetric n×n matrices like
L, a spectral decomposition L = UΛU⊤ exists [21], such that
Λ is the diagonal matrix with the eigenvalues of L in ascending
order on the diagonal and U = U−⊤ ∈ Rn×n contains the
corresponding eigenvectors of L as columns. The graph G is
connected if and only if λ2{L} > 0, i.e., the eigenvalues of
the Laplacian are [1, Theorem 2.8]

0 = λ1{L} < λ2{L} ≤ λ3{L} ≤ . . . ≤ λn{L}. (1)

Furthermore, the eigenvector corresponding to the eigenvalue
λ1{L} = 0 is v1 = 1. From that, it follows that the null space
of L is spanned by 1 [1].

C. Setup
We assume the underlying graph representing the network

structure of the MAS to be undirected, static, and connected.
Consider a distributed control setup, i.e., agents can commu-
nicate with their respective neighbors only. The dynamics of
each agent i are given by a single-integrator, i.e.,

ẋi = ui, (2)

where xi ∈ R and ui ∈ R are the state and input of agent i,
respectively.

The goal is to have all agents’ states converge to the same
value. This quantity is called the consensus value. Define the
agreement set as

A :=
{
x ∈ Rn | xi = xj ∀i, j

}
= span{1}. (3)

Each agent of the MAS is controlled in a periodic event-
triggered fashion. Thus, for each agent a trigger rule is checked
periodically at each time tk := t0 + kh with the common
sampling period h ∈ R0. This rule decides whether an event
is triggered. If an event is triggered, the current state value of
the agent is sent to the agent’s neighbors. To formally describe
the MAS, an additional state variable is thus required. Let
x̂(tk) := [x̂1(tk)

⊤, . . . , x̂n(tk)
⊤]⊤ be the vector of the last

transmitted states, i.e., x̂i(tk) is the state value of agent i at
its latest trigger instant. Further, define

e = x̂− x (4)

as the error between the last transmitted states and the current
ones. All agents check their trigger rules periodically and if
an event is triggered, broadcast their current state xi(tk) to
the neighbors j ∈ Ni. The control input of agent i is updated
whenever new information is received or broadcast.

We assume that the inputs are implemented in a zero-order
hold fashion. The PETC protocol is given by

ui(t) =κ
∑
j∈Ni

w(i, j)
(
x̂j(tk)− x̂i(tk)

)
for t ∈ [tk, tk+1),

(5)

with the additional controller design parameter (control gain)
κ ∈ R+. Within consecutive time steps, the inputs (5) are thus
implemented in a zero-order hold (ZOH) fashion. Control laws
like (5) are of closed-loop nature and therefore typically offer
advantages like robustness against disturbances. Note that it is
also possible to achieve consensus by other means than (5),

e.g., by using Flooding [22, p.368f.]. Additionally, observe
that the here presented scheme requires the clocks of all agents
running synchronously. In practice, there are approaches to
deal with that challenge, cf. [23] and the references therein.

Since we are dealing with a linear system evaluated peri-
odically with fixed sampling period, we consider the exactly
discretized system instead of the continuous-time system. The
closed-loop behavior for t ∈ [tk, tk+1) is then given by
ẋ(t) = −κLx̂(tk), cf. [1], [5]. The closed-loop system in
continuous-time and discrete-time can be written as

x(t) = x(tk)− κ(t− tk)Lx̂(tk) (6)
x(tk+1) = x(tk)− κhLx̂(tk) (7)

and equivalently to (7)

x(tk+1) = (I − κhL)x(tk)− κhLe(tk) (8)

with using the error definition (4). We assume that all agents
trigger at t0 to initialize the PETC scheme.

Remark 1: Convergence, boundedness, and stability of the
exactly discretized system (7) imply the respective property for
the corresponding (original) continuous-time MAS (6) [24].
Thus, results that are subsequently derived for the exactly
discretized system (7) imply the same guarantees for the
continuous-time MAS (6).

Remark 2: In this paper, we restrict ourselves to single-state
agents xi ∈ R for simplicity reasons. However, the presented
results for single-integrator dynamics can be extended to
multiple states by redefining L using the Kronecker product,
cf. [1].

D. Lyapunov function
We use Lyapunov arguments for convergence analysis. To

that end, we define the following quadratic form Lyapunov
function V (x) = x⊤Lx as the quadratic form of x =
[x1 ... xn]

⊤ and the Laplacian matrix L. By construction,
Lx = 0 ⇔ x ∈ span{1} = A, cf. Subsection II-B and
hence, V (x) = 0 ⇔ x ∈ A, i.e., V is positive definite
with respect to A. Thus, whenever V → 0 it follows that
x converges to the agreement set. Moreover, observe that
d
dt1

⊤x(t) = −κx̂(tk)
⊤L1 ≡ 0 for t ∈ [tk, tk+1), i.e., the

average of states is constant over time. Therefore, convergence
to the agreement set A under the input (5) is equivalent to
convergence to the consensus value. As a result, V → 0 is a
sufficient condition for reaching consensus.

III. WINDOW-BASED TRIGGER SCHEME

In this section, we propose the window-based trigger
scheme that leverages existing trigger rules by using infor-
mation from past time steps within time windows. Under the
agreement protocol (5), the trigger scheme shall rely only on
local information and should guarantee that all agents’ states
converge to the consensus value.

Before introducing the window-based trigger scheme, we
analyze the time evolution of the Lyapunov function and derive
an upper bound in Subsection III-A. This bound is then used
for the trigger scheme that is introduced and discussed in
Subsection III-B.
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A. Upper bound on the time-evolution of the Lyapunov
function

Almost all multi-agent (P)ETC approaches in the literature
are based on various (continuous-time) upper bounds for
V̇ (x(t)). A similar bound specifically for discrete-time MAS
is computed subsequently. We denote xk := x(tk) and ek :=
e(tk). Using the closed-loop description (8), we obtain

V (xk+1) =
[
(I − κhL)xk − κhek

]⊤
L
[
(I − κhL)xk − κhek

]
=x⊤

k Lxk + x⊤
k (κ

2h2L3 − 2κhL2)xk

+ e⊤k (κ
2h2L3)ek − 2κhx⊤

k L
2(I − κhL)ek.

We utilize Young’s Inequality ±2x⊤Lz ≤ ax⊤Lx + 1
az

⊤Lz
with some 0 < a < 2 and vectors x, z for the last term, which
leads to

V (xk+1) ≤ V (xk)− x⊤
k L

(
(2− a)κhL− κ2h2L2

)
xk

+ e⊤k

(
1

a
L+

(
1− 2

a

)
κhL2 +

1

a
κ2h2L3

)
κhLek.

Define the matrices

Px := (2− a)κhL− κ2h2L2

Pe :=

(
1

a
L+

(
1− 2

a

)
κhL2 +

1

a
κ2h2L3

)
κhL

(9)

then one can get

V (xk+1)− V (xk) ≤ −x⊤
k LPxxk + e⊤k Peek. (10)

Since we eventually need a decrease in V between some
time steps tk and tk+1, we require Px to be positive semi-
definite. By invoking standard results from linear algebra, the
eigenvalues of Px are

λj{Px} =
(
(2− a)− κhλi{L}

)
κhλi{L} =: g(λi{L}).

(11)

However, as the different indices i and j in (11) indicate,
the order of λj{Px} is in general not the same as λi{L},
i.e.,

(
(2− a)− κhλi{L}

)
κhλi{L} is not necessarily the i-th

eigenvalue of Px. The relation (11) thus induces a permutation
in the mapping from λi{L} to λj{Px} and their associated
eigenvectors. To establish the positive semi-definiteness of Px

with respect to A, λj{Px} ≥ 0 ∀j is required. Assuming
λi{L} ≠ 0 and with (11), we obtain

(2− a)− κhλi{L} ≥ 0 ∀i (12)

as a necessary condition, where h, κ > 0 by design. The
case λi{L} = 0, i.e., for i = 1, is considered later. Above
inequality (12) is the most tight for i = n, because of (1).
Therefore, (12) is satisfied if

κh <
2− a

λn{L}
. (13)

Equation (13) is a condition on κh for our scheme to work.
Since now λj{Px} ≥ 0, we have λ1{Px} = 0, because
λ1{L} = 0, i.e., λ1{L} is mapped onto λ1{Px}. However,
all other eigenvalues may be permuted. Since λ1{Px} = 0,

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

g(λ2{L})

g(λ3{L})

g(λ4{L})

g(λ5{L})g(λ6{L})

κh

λ
i{
P
x
}

Fig. 1. Typical eigenvalues λ2 to λn of the matrix Px, depending on
the design parameter κ. The second smallest eigenvalue σ = λ2{Px}
is highlighted in red.

we are specifically interested in λ2{Px} as this eigenvalue-
consequently captures the important convergence properties.
It can be computed as

λ2{Px} = min
i≥2

{(
(2− a)− κhλi{L}

)
κhλi{L}

}
. (14)

Due to (11) being quadratic in λi{L}, the computation of
λ2{Px} can be reduced to

λ2{Px} = min
i∈{2, n}

{(
(2− a)− κhλi{L}

)
κhλi{L}

}
, (15)

cf. Figure 1. Additionally, Figure 1 confirms graphically that
(13) is the condition for λi{Px} > 0 for i ≥ 2 and thus
for Px being positive semi-definite. To tackle the permutation
induced by (11), define the permutation map ϕ : j 7→ i and
U = V Φ for permuting the eigenvalues and eigenvectors, re-
spectively. Hereby is Φ the corresponding permutation matrix
for permuting columns with Φ−1 = Φ⊤. Using the spectral
decomposition L = UΛU⊤ = V ΦΛΦ⊤V ⊤ and Px = V DV ⊤

with y := V ⊤x, we further get that

−x⊤LPxx = −x⊤V ΦΛΦ⊤DV ⊤x

= −
n∑

j=1

λϕ(j){L}λj{Px}y2j (16)

= −λϕ(1){L}λ1{Px}y21 −
n∑

j=2

λϕ(j){L}λj{Px}y2j .

Since λ1{L} = 0 is mapped onto λ1{Px} = 0, we have
ϕ(1) = 1 and thus λϕ(1){L} = 0. Moreover, λi{L} > 0
∀i ≥ 2 and −λi{Px} ≤ −λ2{Px} ∀i ≥ 2, so we can bound
above equation by

−x⊤LPxx ≤ −
n∑

j=2

λϕ(j){L}λ2{Px}y2j

= −λ2{Px}x⊤V ΦΛΦ⊤V ⊤x

= −λ2{Px}x⊤Lx = −λ2{Px}V (x).

(17)

Thus, with σ := λ2{Px} and (10) we have

V (xk+1) ≤ (1− σ)V (xk) + ∥Pe∥ ∥e(tk)∥2 (18)
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as an upper bound on the time-evolution of V . For a ∈ (0, 2)
it is guaranteed that σ < 1, which can easily be verified by
determining the global maximum of (15). Thus, σ can be seen
as the natural and maximum convergence rate of the discrete-
time system that can be guaranteed by (18). This maximum
guaranteed convergence rate is achieved if e = 0 for all
sampling times tk, i.e., for PTTC. This means that σ is the
maximum convergence rate which can be guaranteed in theory,
although the actual one might be higher.

Remark 3 (Maximum allowable sampling period):
Inequality (13) is the sufficient condition under which
the bound (18) is valid for all initial conditions. In standard
PTTC, where all agents trigger at any tk, it is well-known
that the sampling period h has to fulfill h < 2

λn{L} in order
to reach consensus, see e.g., [9]. Thus, if we apply (5) for
κ = 1, condition (13) on the sampling period is consistent
with h < 2

λn{L} , since the design parameter a has to fulfill
a ∈ (0, 2). The additional parameter κ thus generalizes the
PETC protocol (5) while the sampling period bound remains
consistent with previous results. Given h and a bound on
λn{L}, κ can always be chosen such that (13) is satisfied.
The choice of κ thus has to happen either prior to, or at the
same time than setting the sampling period on all agents,
but not at the start of the consensus process itself. Thus, the
agents do not need to agree on a common value for κ, instead
the parameter is determined and set whenever the sampling
period h is fixed

Remark 4 (Continuous-time convergence speed): For a
fixed sampling period h we can choose the discrete-time
convergence speed σ by using the controller parameter κ
in order to achieve a desired continuous-time convergence
speed µ. Note that the convergence speed σ of the exactly
discretized system is evidently dependent on the sampling
period h, cf. equation (15). However, the additional controller
parameter κ allows to render the convergence speed (15) as
well as the discrete-time upper bound (18) independent of the
sampling period h. This is achieved by weighting the input
(5) appropriately. If the weights w(i, j) can be chosen freely,
the same can be achieved by appropriately weighting the
underlying graph of the MAS. However in a setting, where
the weights w(i, j) cannot be influenced, κ still allows us to
render h independent of the other system parameters. This is
especially useful in a setup, where h is bounded by practical
limitations. Since κ can be computed based on h, no initial
communication of κ to the agents is required. Whilst the
maximum possible convergence rate of the exactly discretized
system (7) is then independent of h, the convergence rate of
the original continuous-time system (6) still depends on h.
In particular, the continuous-time convergence rate is defined
as the largest µ for which V (x(t)) ≤ e−µ(t−t0)V (x(t0))
holds. For t = t0 + kh, the discrete-time convergence rate
V (x(t)) ≤ (1 − σ)kV (x(t0)) implies that the previous
equation holds with µ = − log(1−σ)

h > 0.

B. Trigger scheme

Based on the bound (18), the key concept of this paper is
introduced next. To keep things as general as possible, consider

first some general trigger rule of the form

ei(tk)
2 < fi(k, xk), (19)

where fi : N0 × R → R is called trigger function of agent
i, for which typically fi > 0 holds. In the literature, various
trigger functions can be found to determine the trigger instants
of agent i, see e.g., [5]–[7], [11], [12], [15], [16]. Whenever
(19) is violated in a non-windowed trigger scheme, agent i
triggers. Typically, the fi’s in the literature are chosen such
that V (xk+1) < V (xk) is ensured for all tk. Furthermore,
define

f(k, xk) :=

n∑
i=1

fi(k, xk). (20)

The idea for our PETC scheme is: instead of merely taking
the current time step in the trigger rule into account, prior
information shall be exploited as well. More precisely, if at a
previous sampling time the error was smaller than the bound
induced by (19), the difference shall be used to increase the
admissible error at the current sampling time.

To formalize the idea, define for each agent i a strictly
increasing sequence T i

0, T
i
1, T

i
2, ... = {T i

m}m∈N0 ⊆ {tk}k∈N0

with T i
0 = T0 = t0 for all i. The sequences are in general

distinct for different agents. For now, no further assumptions
on the sequences shall be made until Section IV, where we
analyze specific sequence choices. Let further kim be the time
index at T i

m, i.e., tki
m

= T i
m. These sequences define time

windows of discrete sampling times for evaluating the trigger
rule. From the current time step k, let T i

m be the closest prior
element of the corresponding sequence, i.e.,

T i
m = max

t̃∈{T i
m}m∈N0
t̃≤tk

t̃. (21)

The window for which the trigger rule is evaluated starts at
T i
m + h, i.e., at tki

m+1 and lasts up to the current time step
tk or until T i

m+1 is reached. At the lower part of Figure 2, a
visualization is shown on how the time windows depend on
the corresponding sequence {T i

m}m∈N0
. Note that the time

windows for agent i defined by {T i
m}m∈N0

are in general
distinct and independent of the trigger instants τ i (event times
of agents), cf. Figure 2. We detail on possible window choices
in Section III-D.

The precise formulation of the window-based trigger
scheme as well as a resulting guaranteed bound on the
evolution of the Lyapunov function is given next.

Theorem 1 (Window-based trigger scheme): Define for
each agent i a strictly increasing sequence {T i

m}m∈N0 with
T i
m ∈ {tk}k∈N0

and T i
0 = T0 = t0 for all i. Suppose (13)

holds for the chosen a ∈ (0, 2) and κ ∈ R+ and that the
control inputs are given by (5) for all agents i. Moreover, let
the trigger rule for each agent be

ei(tk)
2 <fi(k, xk)

+

k−1∑
k̄=ki

m+1

(1− σ)k−k̄
(
fi(k̄, xk̄)− ei(tk̄)

2
) (22)
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within the time window k ∈ [kim + 1, kim+1] for the trigger
function fi. Let the sequence of trigger instants be defined by

{τ im}m∈N0
:= {tk = t0 + kh and

(22) is violated at tk for agent i}.
(23)

Then the following bound holds for all k ∈ N0:

V (xk) < (1− σ)kV (x0) + ∥Pe∥
k−1∑
k̄=0

(1− σ)k−k̄−1f(k̄, xk̄).

(24)
The proof of Theorem 1 can be found in Appendix A.

Note here again that the sequences {τ im}m∈N0
and {T i

m}m∈N0

defining the trigger instants and the time windows, respec-
tively, are in general distinct.

Remark 5: Theorem 1 reveals an important property of the
window-based trigger scheme: the bound on the Lyapunov
function V is independent of the choice of the windows. Thus
using (19) as trigger rule leads to the same bound as using (22)
for any window choice. However, we note that the resulting
performance of the two trigger rules is different, as we will
show later in Section IV.

Comparing (22) to (19) reveals an important advantage of
the proposed trigger scheme. At some time tk ̸= tki

m+1 =
T i
m+h, it is known from the trigger rule of the previous steps

back to the beginning of the current time window that for
agent i

k−1∑
k̄=ki

m+1

(1− σ)k−k̄
(
fi(k̄, xk̄)− ei(tk̄)

2
)
> 0. (25)

This is because if the sum is about to get nonpositive, the agent
is triggered, which in turn only adds a nonnegative fi to the
sum. Thus, (25) potentially allows additional freedom for the
error at the current time step. It can be interpreted as exploiting
the excess of conservativity from previous time steps. A higher
error ei(tk)

2 might be allowed at the current time step if
in previous time steps (up to the last tki

m+1, i.e., inside the
time window) the error was small compared to the allowed
error bound. Therefore, it can be used as conservativity excess
in the current time step. As a result, ei(tk)

2 is allowed to
be higher than the associated bound fi(k, xk) at this time
instant due to this exploited excess of conservativity. Our
scheme is thus motivated by the concept of non-monotonic
Lyapunov functions [19], which it implicitly utilizes. While
often trigger rules are designed such that a decrease in the
Lyapunov function is required at every time step, the use of
conservativity excess in (22) allows the Lyapunov function
to be non-monotonic, as long as a decreasing tendency is
guaranteed. We solely give an upper bound (24) on the time
evolution of V (tk), but not in between consecutive time steps.

To emphasize the conservativity excess interpretation, define

Si,k :=

k∑
k̄=ki

m+1

(1− σ)k−k̄
(
fi(k̄, xk̄)− ei(tk̄)

2
)
. (26)

Here, Si,k is exactly the conservativity excess at time tk,
including time steps prior to k up to the start of the current

t0

T i
0 T i

1 T i
2 T i

3

τ i0 τ i1 τ i2 τ i3 τ i4 τ i5

tk

fi(k, xk)− ei(tk)
2

Si,k

Fig. 2. Visualization of the window-based trigger scheme: time window
definition based on an exemplary sequence {T i

m}m∈N0 (red) and
conservativity excess (Si,k) interpretation (blue). Dotted lines represent
the conservativity excess behavior if the agent would not trigger at that
specific time.

time window. The trigger rule (22) can then be replaced by

0 < Si,k (27)

and Si,k can be computed from the previous excess of con-
servativity as

Si,k = (1− σ)Si,k−1 +
(
fi(k, xk)− ei(tk)

2
)

(28)

by using only additional information at time tk. We note
that the proposed trigger scheme can thus be implemented
efficiently using the above reformulation, since not all paststate
values and errors need to be stored for the current time window
in contrast to when implementing it according to (22).

The main benefit of the reformulation (27) is that it allows
more insight into the main idea of the scheme: At the current
time step and within the current time window, the conser-
vativity excess Si,k is computed. If this excess is about to
get nonpositive, the agent triggers, thus setting ei(tk) to 0.
Therefore, the trigger rule prevents the conservativity excess
of getting nonpositive, but at the same time accounting for
conservativity excess from previous time steps. In Figure 2,
a visualization of the conservativity excess interpretation is
shown, illustrating the main motivation of our scheme.

For example at t3, where fi(k, xk)−ei(tk)
2 is negative, the

standard trigger rule (19) would trigger, whereas the windowed
one (22) does not, because there is leftover conservativity
from previous time steps. Due to the design of (22), Si,k−1

is reset to 0 whenever a new window starts, cf. Figure 2. The
above discussion provides thus an intuitive explanation why
the presented scheme has the potential of reducing the number
of trigger instances.

The scheme is conceptually similar to [16], where the au-
thors present a dynamic trigger rule in a continuous-time ETC
setup, but without the conservativity excess interpretation. In
fact, (22) can be interpreted as a dynamic trigger condition,
with Si,k being the dynamic variable for each agent i. The
window-based scheme therefore resembles a specific choice
of dynamic variables with an explicit motivation, namely the
reduction of trigger instances for existing trigger rules by
exploiting leftover conservativity from previous time steps and
being motivated by the concept of non-monotonic Lyapunov
functions. Using (22) therefore leads to a potentially less
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conservative trigger rule compared to (19) while guaranteeing
the same upper bound. Note that this does not necessarily
imply that there will be less trigger instances in the closed-
loop. In Section IV, the resulting closed-loop behavior will
be examined in detail. As a conclusion, even though (22) is a
more general formulation of (19) that allows a higher bound
for the error in the trigger rule and therefore leading to a
potentially less conservative trigger rule, the guaranteed upper
bound on the evolution of the Lyapunov function remains the
same. Note that similar behavior was reported for the dynamic
trigger rule from [16] in comparison to the corresponding static
trigger rule.

Remark 6: The presented window-based trigger scheme is
related to the one given in [20] for continuous ETC, where
the error difference is integrated and transmissions are only
triggered when the value of the integral reaches 0. This less
conservative trigger rule, which is considered in a general
networked control setting, reduces the number of transmissions
between plant and controller. An important difference of the
proposed trigger scheme in contrast to the one presented in
[20] is that our T i

m are not restricted to represent the trigger
instants. This enables a more variable trigger rule design with
potentially better performance.

Remark 7: The design parameter a influences the matrices
Px and Pe and thus σ and the bound (18). With that, also
the convergence speed of the corresponding continuous-time
system (6) is influenced, cf. Remark 4.

C. Specific trigger rules for the proposed scheme

The general formulation (19) captures a wide range
of existing non-windowed trigger functions. To illustrate
the application of the general concept we consider two
specific type of existing trigger functions in this subsection
on which the window-based concept, i.e., (22) is applied.
First we consider time-dependent trigger functions, where
fi is explicitly dependent on time only and therefore
independent of the current state. Secondly, we examine a
special type of state-dependent trigger rules, where the trigger
function fi is now explicitly dependent on the current state xk.

1) Time-dependent trigger functions: When looking at (24)
it is evident that V (xk) → 0 if the sum

k−1∑
k̄=0

(1− σ)k−k̄−1f(k̄, xk̄) (29)

converges to 0 as k → ∞, which can be ensured for example
for fi → 0. Thus we can use Theorem 1 to derive an
entire class of purely time-dependent trigger rules for which
convergence to the consensus value is guaranteed.

Theorem 2: Let the conditions of Theorem 1 hold, where
the window-based trigger rule (22) is implemented with
fi(k, xk) = fi(k), 0 ≤ fi(k) < ∞ for all k ≥ 0 and
for all i ∈ {1, ..., n}, and lim

k→∞
fi(k) = 0. Then the MAS

asymptotically converges to the consensus value.
Proof: Recalling equation (20), if fi(k) fulfills the

conditions 0 ≤ fi(k) < ∞ and lim
k→∞

fi(k) = 0, so does f(k).

Next consider (29). From Kronecker’s Lemma [25, Lemma 2]
we obtain convergence of (29) to 0 as N → ∞. Thus,
lim
k→∞

V (xk) = 0 and therefore asymptotic convergence of x

to the consensus value follows.
Remark 8: Kronecker’s Lemma does not require that

fi(k) ≥ 0 for all i, k. Technically, negative fi(k) are possible
as well, as long as the series

∑N
k=1 f(k) is converging.

However, this is in general not reasonable in view of the trigger
rule (19) as a negative trigger function would always lead to
triggering independent of the error.

In [7], a purely time-dependent exponentially decaying
upper bound on the error was proposed as trigger rule for
a continuous-time ETC setup. In view of this trigger rule,
consider

fi(k, xk) = E0(1− θ)k (30)

as the corresponding discrete-time trigger function, where
E0 > 0 is some arbitrary constant (initial error bound) and
θ ∈ (0, 1) denotes the tunable convergence rate of the error
bound. Note that the trigger function (30) fulfills the conditions
of Theorem 2. Thus, the window-based version of the trigger
rule ei(tk)

2 < E0(1 − θ)k leads to consensus among the
agents. Additionally, we can provide an explicit upper bound
on the time-evolution of the Lyapunov function as captured
by the following corollary.

Corollary 1: Suppose the assumptions of Theorem 1 hold
for the trigger function fi according to (30). Then the MAS
asymptotically converges to the consensus value and the
exponentially decreasing bound

V (xk) < (1− σ)kV (x0)

+ n ∥Pe∥
E0

θ − σ

(
(1− σ)k − (1− θ)k

) (31)

holds for all k ∈ N0.
Proof: Since the trigger function (30) fulfills the as-

sumptions of Theorem 2, convergence to the consensus value
directly follows. To obtain the exponentially decreasing bound
(31), we use Theorem 1 with the trigger function (30):

V (xk) < (1− σ)kV (x0)

+ ∥Pe∥
k−1∑
k̄=0

(1− σ)k−k̄−1
n∑

i=1

E0(1− θ)k̄

=(1− σ)kV (x0)

+ ∥Pe∥
k−1∑
k̄=0

(1− σ)k−k̄−1nE0(1− θ)k̄.

This sum is finite and can be calculated explicitly. Using the
relation

∑k−1
k̄=0 r

k̄ = 1−rk

1−r for r = 1−θ
1−σ yields

V (xk) < (1− σ)kV (x0) + n ∥Pe∥E0(1− σ)k−1
k−1∑
k̄=0

rk̄

=(1− σ)kV (x0)

+ n ∥Pe∥
E0

θ − σ

(
(1− σ)k − (1− θ)k

)
,
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which provides the desired result. Note that, if θ = σ the
bound (31) is still valid when determining its limit for θ → σ
with l’Hôpital’s rule.

Remark 9: Since E0 ∈ (0,∞), there exists some γ > 0
such that E0 ≤ γV (x0) as long as V (x0) ̸= 0. Then, using
Corollary 1, one can derive exponential stability with respect
to A, i.e., ensure

V (xk) <
((

1 +
γn ∥Pe∥
θ − σ

)
(1− σ)k − (1− θ)k

)
V (x0).

(32)
Remark 10: A practical choice of θ should satisfy θ < σ.

Otherwise the error convergence rate θ is larger than the
system’s guaranteed convergence rate σ, which possibly
leads to more frequent triggering. This is consistent with [7,
Theorem 3.2], where the convergence rate of the error bound
is upper bounded by the system’s convergence rate as well.

2) State-dependent trigger functions: We introduce the no-
tation of Vi(xk) as a decomposition of the Lyapunov function
according to

V (x) =

n∑
i=1

1

2

∑
j∈Ni

w(i, j)(xi − xj) =

n∑
i=1

Vi(x), (33)

which can be interpreted as a local Lyapunov function. Con-
sider the upper bound on V that is given by (18). To decrease
V over time, use

fi(k, xk) =
σ − ζ

∥Pe∥
Vi(xk) for some 0 ≤ ζ < σ (34)

as a trigger function, leading to V (xk) < (1− ζ)kV (x0).
When using the trigger function (34) for the trigger rule

(19), exponential stability of the consensus set follows from
standard Lyapunov arguments. For using (34) as trigger func-
tion with the trigger scheme (22), exponential convergence to
the consensus set can be proven based on Theorem 1:

Theorem 3: Suppose the assumptions of Theorem 1 hold,
where the window-based trigger rule (22) is implemented
with fi(k, xk) given by (34). Then the MAS exponentially
converges to the consensus value and the bound

V (xk) < (1− ζ)kV (x0) (35)

holds for all k ∈ N0.
Proof: The proof uses Theorem 1 with the trigger

function fi(k, xk) =
σ−ζ
∥Pe∥Vi(xk). We obtain

V (xk) < (1− σ)kV (x0)

+ ∥Pe∥
k−1∑
k̄=0

(1− σ)k−k̄−1
n∑

i=1

σ − ζ

∥Pe∥
Vi(xk̄) (36)

= (1− σ)kV (x0) +

k−1∑
k̄=0

(1− σ)k−k̄−1(σ − ζ)V (xk̄).

From Lemma 1 given in Appendix B for a = 1 − σ and
b = σ − ζ we obtain (35).

Remark 11: The bound (35) also implies global exponential
stability of the consensus value.

Note that for implementing the trigger function (34), state
information from all neighbors is required, which can typically

only be achieved with periodic communication. In practice,
this is a potential drawback of the state-dependent trigger func-
tion (34). Thus, the main advantage of the choice of fi in (34)
is to reduce the frequency of actuation updates. This especially
applies for settings where the process of actuating and the
computation thereof is resource demanding. An extension of
the here presented scheme to a state-dependent event-triggered
communication setup is not straightforward. This is because
the presented convergence proof relies on an explicit upper
bound on V , which is challenging to provide for a window-
based rule without knowing the states of all neighbors.

Remark 12: Consider the generalized version of (34)

fi(k, xk) = CiVi(xk). (37)

The trigger rule

ei(tk)
2 <

1

λn{L}2
( ∑

j∈Ni

w(i, j)
(
xi(tk)− xj(tk)

))2

(38)

presented in [6] can be brought into the form (37), utilizing
the Cauchy-Schwarz Inequality to obtain Vi according to (33).
Furthermore, as noted in [16], the trigger rule developed in [5]
is a more conservative case of (37). Thus, Theorem 3 applies
to these trigger rules in the literature as well.

D. Time window choices

Any T -sequence satisfying the assumptions made in The-
orem 1 can be chosen. Some convenient choices are listed
subsequently.

• Fixed window. A simple option is to chose all time
windows with a fixed length µi ∈ N ∪ {∞}. For finite
µi, the time windows and thus the trigger rules get
reset within a fixed time interval, whereas for µi = ∞
the trigger scheme exploits any conservativity excess
since the first time step. In the latter case, the length
of the window goes to infinity if the current sampling
instant goes to infinity. For µi = 1 we have the shortest
window length possible, which corresponds to exploiting
no conservativity excess at all and reducing (22) to the
non-windowed original trigger rule (19). Therefore, the
presented scheme is a generalization of any trigger rule
of the form (19).

• Trigger window. Another option is to determine the
window size dynamically by starting a new window at
each trigger instant. Then, T i

m is chosen to be the m-
th trigger instant τ im of agent i, starting at T i

m = t0.
The sequences {τ im}m∈N0

and {T i
m}m∈N0

then coincide,
whereas in all other cases they are in general distinct.
Note that this window choice corresponds to the choice
of the limits of the integral in [20] in a general event-
triggered control setup. It has also similarities to the
event-triggered control approach from [19], where the
decrease of a Lyapunov function sampled at transmission
times is ensured.

• Hybrid window. A third option is to combine the previous
approaches. For this window type, a maximum window
length is selected for each agent. The next window begins



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 9

if either the next event is triggered, or the maximum
window length µi of that agent is reached.

Remark 13: An other option is a moving window, where
a fixed length time window reaches back a fixed number of
time steps and dynamically moves with the current time. This
is however not covered by the theory presented in this paper
and thus considered as an open point for future research.

IV. NUMERICAL EVALUATION

In this section, we examine the closed-loop behavior of the
proposed trigger scheme. As discussed in Subsection III-B, the
presented scheme is able to prolongate the time span between
trigger instants from an open-loop perspective in compari-
son to the corresponding original non-windowed trigger rule.
However, this allows no direct conclusion for the closed-loop
behavior for the MAS. Note that it is in general hard to make
analytic conclusions about the resulting closed-loop behavior
for PETC. Thus, we examine the closed-loop behavior in an
extensive simulation study to cover a wide range of scenarios.
Recall that the theoretically resulting upper bound on V is
the same, no matter how {T i

m}m∈N0 is chosen. However, the
time window choice may have a significant influence on the
average number of required trigger instances. For comparing
different choices of the time windows, we define the update
rate of the underlying communication structure as the ratio
between the actual occurred trigger instances since t0 and the
maximum possible amount of trigger instances, i.e., for PTTC.
Mathematically, at time tk it is defined as

update rate =
m+ 1

k + 1
∈ [0, 1], (39)

where m is the number of times agent i triggered since (and
including) t0, i.e., taken from the latest τ im at tk.

Remark 14: The term update rate was chosen such that it
fits for both the time- and the state-dependent trigger rule
considerations. As the presented state-dependent trigger rule
requires periodic communication, its main purpose is the
reduction of actuation updates, as mentioned in Section III-
C.2. On the other hand, the time-dependent trigger rules do not
require periodic communication and thus additionally reduce
the required communication among the agents. Therefore, the
term update rate can in this case also be interpreted as the
network load of the underlying communication graph.

Subsequently we investigate the influence of different quan-
tities on the update rate, like the chosen parameters, the graph
representing the network structure, the initial condition x(t0),
the time window choice, and the trigger rule parameters, e.g.,
the factor a. Since these quantities might have an influence
on the resulting update rate, it is more convenient to look at
the average update rate for a large number of simulations.
Further, for some initial conditions the states require more
trigger instances and time steps until convergence than others.
Therefore, to capture a wide range of scenarios and obtain
reliable information on the average update rate, a set of
various parameters and graphs is considered. The goal of our
simulation is to cover a broad range of scenarios which is why
we do not just on simulation run for fixed parameters. Note
that it is still not possible to obtain rigorous guarantees about

(a) (b)

(c) (d)

Fig. 3. The four unweighted graphs used for the update rate analysis,
representing the underlying communication structure of the MAS.

the efficacy of the algorithm. We evaluate the update rate for
a simulation for each parameter combination and for various
initial conditions. Parameters that are varied and their ranges
are κ ∈ {0.05, 0.1, 0.15, 0.2}, θ, ζ ∈ {0.01, 0.05, ..., 0.17},
and γ ∈ {0.05, 0.15, ..., 0.45}. Since the trigger mechanism
(22) depends on σ, which implicitly depends on a, we also
iterate over a ∈ {0.1, 0.3, ..., 0.9}. Parameter combinations,
for which θ ≥ σ or ζ ≥ σ hold are excluded, cf. Remark 10
and Theorem 3. For each parameter combination, the same 100
random initial conditions, drawn randomly from the interval
(−1000, 1000), are used. We use the PETC scheme with fixed
window length µ = 1 as a baseline for our comparison(s),
as this corresponds to the non-windowed original trigger
rule. The considered graphs are captured by Figure 3. To
conveniently illustrate the update rate for all simulation runs,
a histogram for the update rates for all simulation runs is
plotted in Figure 4. The resulting update rates are grouped into
bins, which indicate how many times the corresponding update
rate occurred. The average update rate as the average of all
simulation runs is depicted as a vertical red line. This allows
to interpret the outcomes in a more concise way compared to
looking at single simulations, as the distribution of the update
rates is clearly visible. In total, 112,000 simulation runs are
considered per window option. Note that from the numerical
simulations in this paper one cannot obtain guarantees for
any possible situation solely based on numerical simulations.
However, since we are considering a broad range of possible
scenarios, we can deduce a strong indication that our trigger
scheme is indeed able to reduce the average update rate in
many situations.

For the trigger function of Corollary 1, it can be seen that
the average update rate is with 12.3% the smallest among all
investigated window choices for the trigger window variant.
For all examined window variants with fixed window size,
the resulting average update rate is higher. When comparing
the trigger window to the fixed window with length µi = 1,
which is equivalent to the original trigger rule, we observe
that for the considered examples our proposed scheme with
the trigger window option is able to reduce the average update
rate. For the conducted simulations, the relative reduction is
approximately 14.3%. Moreover, also the standard deviation is
decreased from 5.91 to 4.55. This indicates that a scenario in
which the update rate deviates significantly from the average is
rather unlikely. To illustrate the resulting convergence behav-
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Fig. 4. Update rate histograms for the simulation of different window options for the time-dependent trigger rule of Corollary 1 (left) and for the
state-dependent trigger rule of Theorem 3 (right). For comparison, the average value for each window option is indicated by a red vertical line. The
corresponding standard deviation and the average quadratic cost J are denoted s, respectively.

ior, one can consider the quadratic cost J =
∑

k V (tk). For the
trigger rule of Corollary 1, J is larger as for the non-windowed
trigger rule. This is not surprising, as the proposed approach
aims at reducing update rate whilst exploiting conservativity in
the trigger rule, leading potentially to a convergence behavior
closer to the chosen bound.

We now consider the state-dependent trigger function (34),
for which the simulation results are illustrated on the right
side of Figure 4. For our simulations, the trigger window also
leads to a smaller average update rate than the fixed window
with µi = 1. However, we observe that for the considered
simulations a larger fixed window size leads to even less aver-
age update rate. So in contrast to the previously studied time-
dependent trigger function, a larger window size is preferable.
If we again take the fixed window with length µi = 1 as a
baseline for our comparison, the relative difference compared
to the largest possible window size µi = ∞ is around 40%.
The standard deviation decreases from 16.51 to 13.21. When
looking at the resulting quadratic cost J for the different
window options for the state-dependent trigger function, there
is essentially no difference between the considered window
options, i.e., all window options perform similar regarding
quadratic cost, even though they differ significantly in terms
of update rate. This emphasizes that for the state-dependent
trigger rule (34), the proposed scheme can reduce the update
rate even without performance loss.

Based on the average costs, the state converges faster for

the state-dependent variant (34) than for the time-dependent
one (30), at the cost of a higher triggering frequency.

To summarize, our simulation study provide strong evidence
that the trigger window option typically performs best for the
time-dependent trigger function (30) according to Corollary 1
and leads for our investigated scenarios to a update rate
reduction of around 14.1%. For the state-dependent trigger
function (34) according to Theorem 3, our simulations study
indicates that a large fixed window size should be used, due
to the resulting update rate reduction of around 40%.

V. CONCLUSIONS

The proposed window-based trigger scheme offers options
for rendering existing trigger rules less conservative. This is
achieved by relaxing the requirement of a decrease of the
Lyapunov function at each time step to a decrease in tendency.
It is shown that the choice of time windows has no effect on
the upper bound of the chosen Lyapunov function, which is
in particular, the same as for the non-windowed basic trigger
rules in the literature. As our simulations show, the scheme
is not only able to reduce the update rate from an open-loop
point of view, but can also reduce the number of required
transmissions in closed-loop if the time windows are chosen
conveniently. Additionally the standard deviation is reduced.

To involve a larger class of multi-agent systems, future work
includes the generalization of the MAS to directed graphs,
to double-integrator, general linear, or nonlinear dynamics.
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Further possible extensions of the scheme might, e.g., include
the consideration of network unreliabilities such as package
dropouts and communication delays. Finally, it is of interest
to apply the window-based scheme to modified consensus
protocols, such as the one presented in [13], [14].

APPENDIX

A. Proof of Theorem 1
We denote in this proof fi(k) = fi(k, xk). To prove (24),

we split up the sequence of sampling times t0, ..., tk into time
windows defined by the sequence {T i

m}m∈N0
and evaluate

the trigger rule for each window separately. First rewrite (22)
in a compact form to obtain

∑k
k̄=ki

m+1(1 − σ)k−k̄ei(tk̄)
2 <∑k

k̄=ki
m+1(1−σ)k−k̄fi(k̄). For each element T i

j +h, ..., T i
j+1

within the windows j = 0, ..., m− 1 the trigger rule ensures

ki
j+1∑

k̄=ki
j+1

(1− σ)k
i
j+1−k̄ei(tk̄)

2 <

ki
j+1∑

k̄=ki
j+1

(1− σ)k
i
j+1−k̄fi(k̄). (40)

Recursively applying (18) results in

V (xk)− (1− σ)kV (x0) ≤ ∥Pe∥
k−1∑
k̄=0

(1− σ)k−k̄−1 ∥e(tk̄)∥
2

= ∥Pe∥
k−1∑
k̄=0

(1− σ)k−k̄−1
n∑

i=1

ei(tk̄)
2

= ∥Pe∥
n∑

i=1

k−1∑
k̄=0

(1− σ)k−k̄−1ei(tk̄)
2. (41)

Using the sequence {T i
m}m∈N0 , the sum on the left-hand side

of (40) can be reformulated by splitting it up into the time
windows, on which the trigger rule is operating:
k−1∑
k̄=0

(1− σ)k−k̄−1ei(tk̄)
2 = (1− σ)k−1ei(t0)

2 (42a)

+

m−1∑
j=0

ki
j+1∑

k̄=ki
j+1

(1− σ)k−k̄−1ei(tk̄)
2 (42b)

+

k−1∑
k̄=ki

m+1

(1− σ)k−k̄−1ei(tk̄)
2. (42c)

The summation (42b) captures all past time windows up to
T i
m whereas (42c) accounts for the time from k = kim + 1 up

to the current time step k. Due to the design of the trigger
rule, each element in (42b) can be bounded using (40) as

ki
j+1∑

k̄=ki
j+1

(1− σ)k−k̄−1ei(tk̄)
2

= (1− σ)k−ki
j+1−1

ki
j+1∑

k̄=ki
j+1

(1− σ)k
i
j+1−k̄ei(tk̄)

2

(40)
< (1− σ)k−ki

j+1−1

ki
j+1∑

k̄=ki
j+1

(1− σ)k
i
j+1−k̄fi(k̄)

=

ki
j+1∑

k̄=ki
j+1

(1− σ)k−k̄−1fi(k̄). (43)

We do the same with the sum in (42c), yielding

k−1∑
k̄=ki

m+1

(1− σ)k−k̄−1ei(tk̄)
2 <

k−1∑
k̄=ki

m+1

(1− σ)k−k̄−1fi(k̄). (44)

Recall that at t0 an event is triggered for all agents. Thus,
ei(t0) = 0 and (1−σ)k−1ei(t0)

2 ≤ (1−σ)k−1fi(0). Inserting
this together with (43) and (44) in (42) and pulling the
sums together, we end up with

∑k−1
k̄=0(1− σ)k−k̄−1ei(tk̄)

2 <∑k−1
k̄=0(1−σ)k−k̄−1fi(k̄). Inserting this in (41) yields V (xk) <

(1−σ)kV (x0)+∥Pe∥
∑n

i=1

∑k−1
k̄=0(1−σ)k−k̄−1fi(k̄) and with

the definition (20) we obtain the desired result (24).

B. Auxiliary results

Lemma 1: Assume Vk < akV0 +
∑k−1

k̄=0 a
k−k̄−1bVk̄ for all

k ∈ N, a ∈ R+ and b ∈ R. Then

Vk < (a+ b)kV0. (45)
Proof: First note that for b = 0, the proof of Lemma 1 is

trivial. Thus, we subsequently assume that b ̸= 0. The proof is
performed by induction. For k = 1 the statement (45) directly
follows from the assumption. Now assume that (45) holds for
all k ≤ k̂, k̂ ≥ 1. In order to show Vk̂+1 < (a + b)k̂+1V0

use the assumption and insert (45) for k̄ ≤ k̂. Vk̂+1 <

ak̂+1V0 +
∑k̂

k̄=0 a
k̂−k̄bVk̄

(45)
< ak̂+1V0 +

∑k̂
k̄=0 a

k̂−k̄b(a +

b)k̄V0 = ak̂+1V0 + ak̂bV0

∑k̂
k̄=0

(
a+b
a

)k̄

. Similar as in the

proof of Corollary 1, we use
∑k̂

k̄=0 r
k̄ = 1−rk̂+1

1−r to obtain

Vk̂+1 < ak̂+1V0 + b
ak̂+1

a

1−
(

a+b
a

)k̂+1

1− a+b
a

V0

= (a+ b)k̂+1V0.

(46)

We observe by induction that (45) holds for all k.
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